THE SUBMANIFOLD OF SELF-DUAL CODES IN A GRASSMANN MANIFOLD

SHIGERU KOBAYASHI AND ICHIRO TAKADA

(Received May 16, 1994)

1. Introduction

By a $[N,m]$-linear code over a finite field F, we mean an m-dimensional vector subspace of an N-dimensional vector space V over F. Let C^\perp be the orthogonal complement of a $[N,m]$-linear code C in V, that is $C^\perp = \{ v \in V | \langle v, c \rangle = 0 \text{ for any } c \in C \}$, where \langle , \rangle denotes a fixed inner product of V. This is called the dual code of C which is a $[N,N-m]$-linear code. C is called self-orthogonal (resp. self-dual) if and only if $C \subseteq C^\perp$ (resp. $C = C^\perp$). For any linear code, it may be known that there exists a self-dual embedding, and so every linear code can be made from a self-dual code. Therefore we are interested in self-dual codes. Since a linear code C is a vector space, C can be thought as an element of the Grassmann manifold $GM(m,V)$. Similarly, C^\perp can be thought as an element of $GM(N-m,V)$. As a set, $GM(m,V)$ and $GM(N-m,V)$ are isomorphic so that C and C^\perp correspond each other as elements of the Grassmann manifolds. In this paper, we shall study the self-orthogonality and the self-duality of linear codes through the Grassmann manifolds. In section 1, we shall give a constructive proof of self-dual embedding of linear codes. In section 2, we shall summarize about the Grassmann manifolds and give an elementary result about the self-duality using a projective embedding. In section 3, we shall give our main theorem on self-orthogonality and self-duality of linear codes. This theorem shows that self-orthogonal codes and self-dual codes are on a quadratic surface in the projective space. Combining our results, we can see that every linear code can be obtained from a self-dual code, and every self-dual code is a special case of a self-orthogonal code.

2. Self-dual embedding of linear codes

In this section, we assume $N=n+m$. Let C be a $[N,m]$-linear code over a finite field F. We shall construct a self-dual code which contains C as an embedding image. It may be known, but this is a motive for studying self-dual codes and so we shall give the proof. Since C can be thought as a subspace of
First assume that $\text{ch}(F) = 2$ and consider the equation

$$\langle \xi^{(0)}, \xi^{(0)} \rangle + X^2 = 0. \tag{2.1}$$

where $\langle \ , \ \rangle$ means the inner product of F^N. Since the Frobenius map $x \rightarrow x^2$ is an automorphism of F, the equation (2.1) has solution, say $X = a_{00}$. Further consider the equations

$$\langle \xi^{(i)}, \xi^{(0)} \rangle + a_{0,0}X_i = 0 \quad (i = 0, \cdots, m-1).$$

Since these equations are linear, they has solutions, say $X_i = a_{0,i}$ ($i = 0, \cdots, m-1$). Now the following matrix

$$C = \begin{pmatrix} \xi \cr \xi \cr \vdots \cr \xi \cr \xi \end{pmatrix} \begin{pmatrix} a_{0,0} \\ a_{0,1} \\ \vdots \\ a_{0,m-1} \end{pmatrix}$$

satisfies $\langle \xi_1, \xi_i \rangle = 0$ ($j = 0, \cdots, m-1$), where $\xi_1 = (\xi_1, a_{0,j})$ are column vectors in F^N. Next consider the equation

$$\langle \xi^{(1)}, \xi^{(1)} \rangle + X^2 = 0.$$

We can obtain the solution as above, say $X = a_{1,1}$. Further consider equations

$$\langle \xi^{(1)}, \xi^{(0)} \rangle + a_{1,1}X_i = 0 \quad (i = 1, \cdots, m-1).$$

Clearly we have solutions, say $X_i = a_{1,i}$ ($i = 1, \cdots, m-1$). Hence the following matrix
satisfies
\[\langle \xi_2^{(0)}, \xi_2^{(j)} \rangle = 0 \quad (j = 0, 1, \ldots, m - 1) \]
\[\langle \xi_2^{(1)}, \xi_2^{(k)} \rangle = 0 \quad (k = 1, 2, \ldots, m - 1) \]

where \(\xi_2^{(0)} = (\xi_1^{(0)}, 0) \) and \(\xi_2^{(i)} = (\xi_1^{(i)}, a_{1,1}) \) \((i = 1, \ldots, m - 1)\). We continue this process, so that we have the following matrix

\[
C \begin{pmatrix}
a_{0,0} & \cdots & \cdots & 0 \\
a_{0,1} & a_{1,1} & \cdots & \\
\vdots & \vdots & \ddots & \vdots \\
a_{0,m-1} & a_{1,m-1} & \cdots & a_{m-1,m-1}
\end{pmatrix} = \begin{pmatrix}
\xi_2^{(0)} \\
\xi_2^{(1)} \\
\vdots \\
\xi_2^{(m-1)}
\end{pmatrix}
\]

We can express this matrix in the form

\[
\begin{pmatrix} C & A \end{pmatrix} = \begin{pmatrix}
\xi_2^{(0)} \\
\xi_2^{(1)} \\
\vdots \\
\xi_2^{(m-1)}
\end{pmatrix}
\]

where \(A \) is the following \(m \times m \) matrix

\[
\begin{pmatrix}
a_{0,0} & \cdots & \cdots & 0 \\
a_{0,1} & a_{1,1} & \cdots & \\
\vdots & \vdots & \ddots & \vdots \\
a_{0,m-1} & a_{1,m-1} & \cdots & a_{m-1,m-1}
\end{pmatrix}
\]

Clearly the matrix (2.2) satisfies
\[\langle \xi_2^{(i)}, \xi_2^{(j)} \rangle = 0 \quad (i,j = 0, 1, \ldots, m - 1). \]

Thus this matrix gives a self-orthogonal code. On the other hand, consider
the dual code C^\perp. Then the same argument can be applied to the dual code C^\perp. Since $N=m+n$, we can express C^\perp in the form

$$C^\perp = \begin{pmatrix} \eta^{(0)} \\ \eta^{(1)} \\ \vdots \\ \eta^{(n-1)} \end{pmatrix} \begin{pmatrix} 1 \\ n \\ \vdots \\ 1 \end{pmatrix}.$$

We can also obtain a self-orthogonal code from C^\perp and express in the form

$$(C^\perp B)$$

where B is an $n \times n$ matrix obtained from C^\perp as well as A. To make a self-dual code, we take the following matrix

$$\hat{C} = \begin{pmatrix} C & A & 0 \\ C^\perp & 0 & B \end{pmatrix}.$$

This is a self-dual $[2N,N]$-code because C^\perp is a dual vector space of F^N / C.

Next we assume $\text{ch}(F)=p>2$ and consider an equation

$$X_1^2 + X_2^2 + X_3^2 + \langle \xi^{(0)}, \xi^{(0)} \rangle = 0.$$

Then a theorem of Chevalley-Warning (cf. [3]) shows that this equation have a solution, say $(a_{0,0}^{(1)}, a_{0,0}^{(2)}, a_{0,0}^{(3)})$. Further we consider following equations

$$\langle \xi^{(0)}, \xi^{(0)} \rangle + a_{0,0}^{(1)} X_i = 0 \quad (i = 1, \cdots, m - 1).$$

These equations have a solution since the equations are linear. We set a solution as

$$(x_1, \cdots, x_{m-1}) = (a_{0,1}, a_{0,2}, \cdots, a_{0,m-1}).$$

Then the following matrix

$$\begin{pmatrix} a_{0,0}^{(1)} & a_{0,0}^{(2)} & a_{0,0}^{(3)} \\ a_{0,1} & \cdots & \cdots \\ \vdots & \cdots & \cdots \\ a_{0,m-1} & \cdots & 0 \end{pmatrix} = \begin{pmatrix} \xi^{(0)} \\ \xi^{(1)} \\ \vdots \\ \xi^{(m-1)} \end{pmatrix}.$$

satisfies
\[\langle \xi_1^{(i)}, \xi_1^{(i)} \rangle = 0 \quad (i = 0, 1, \ldots, m - 1). \]

Next consider
\[X_1^2 + X_2^2 + X_3^2 + \langle \xi_1^{(1)}, \xi_1^{(1)} \rangle = 0. \]

Let \((a_{1,1}^{(1)}, a_{1,1}^{(2)}, a_{1,1}^{(3)})\) and \(a_{1,j}\) be a solution of
\[\langle \xi_1^{(1)}, \xi_1^{(j)} \rangle + a_{1,1}^{(1)} x_j = 0 \quad (j = 1, 2, \ldots, m - 1). \]

Then the following matrix

\[
\begin{pmatrix}
\xi_1^{(1)} & a_{1,1}^{(1)} & a_{1,1}^{(2)} & a_{1,1}^{(3)} \\
\xi_2^{(1)} & a_{1,2} & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots \\
\xi_{m-1}^{(1)} & a_{1,m-1} & \cdots & 0
\end{pmatrix}
\]

satisfies
\[\langle \xi_1^{(1)}, \xi_2^{(j)} \rangle = 0 \quad (j = 1, 2, \ldots, m - 1). \]

We continue this process, so that we have the following matrix

\[
(C \quad A) = \begin{pmatrix}
\xi_0^{(0)} \\
\xi_0^{(1)} \\
\vdots \\
\xi_{m-1}^{(m-1)}
\end{pmatrix},
\]

where \(A\) is the following \(m \times 3m\) matrix

\[
A = \begin{pmatrix}
a_{0,0}^{(1)} & a_{0,0}^{(2)} & a_{0,0}^{(3)} & \cdots & \cdots & 0 \\
a_{0,1} & 0 & 0 & \cdots & \cdots & \vdots \\
\vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\
a_{0,m-1} & \cdots & 0 & a_{m-1,m-1}^{(1)} & a_{m-1,m-1}^{(2)} & a_{m-1,m-1}^{(3)}
\end{pmatrix},
\]

which satisfies:
\[\langle \xi_0^{(i)}, \xi_0^{(j)} \rangle = 0 \quad (i, j = 0, 1, \ldots, m - 1). \]

Thus this matrix gives a self-orthogonal code. Further we can apply the same method to the dual code \(C^\perp\). By using the same notation as above, we have a self-orthogonal code for \(C^\perp\).
where B is an $n \times 3n$ matrix obtained from C^\perp as well as A. For $k \geq 5$, consider the following equations

\[
f_1(X_1, \ldots, X_k) = \sum_{i=1}^{k} X_i^2 = 0
\]

\[
f_2(X_1, \ldots, X_k) = \sum_{i=1}^{k-1} X_i X_{i+1} = 0
\]

Since $\sum_{i=1}^{2} \text{deg} f_i = 4 < k$, we can use a theorem of Chevalley-Warning again, so that there exists a non-trivial solution

\[\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k)\]

Since α is non-trivial, we may assume that $\alpha_1 \neq 0$. We set

\[
M = \begin{pmatrix}
\alpha_1 & \cdots & \alpha_k & 0 \\
0 & \alpha_1 & \cdots & 0 \\
& & \ddots & \vdots \\
0 & & \alpha_1 & \cdots & \alpha_k \\
2kN & \cdots & \cdots & \cdots & \cdots & (k+1)N
\end{pmatrix}
\]

Then the following matrix

\[
\begin{pmatrix}
C & A & 0 & 0 \\
C^\perp & 0 & B & 0 \\
0 & 0 & 0 & M
\end{pmatrix}
\]

Therefore we obtain the following theorem.

Theorem 1. Let C be a $[N,m]$-linear code over a finite field F. Then there exist a self-dual code \tilde{C} such that C is embedded in \tilde{C}. More precisely, we can take \tilde{C} as follows:

1. if $\text{ch}(F) = 2$, \tilde{C} is self-dual $[2N,N]$-linear code.
2. if $\text{ch}(F) = p > 2$, then for any integer $k \geq 5$, \tilde{C} is a self-dual $[(2k+4)N, (k+2)N]$-linear code.
3. Grassmann Manifold

In this section, we summarize about Grassmanian manifolds. Let \(N = n + m \) and \(V = V(N) \) be an \(N \)-dimensional vector space over a field \(F \). Put \(GM(m, V) = \{ m \text{-dimensional subspace of } V \} \). Take a basis \(\{ e_0, e_1, \ldots, e_{N-1} \} \) of \(V \). Then \(V = F e_0 \oplus F e_1 \oplus F e_2 \oplus \cdots \oplus F e_{N-1} \). Let \(V^* \) be the dual space of \(V \) and \(\{ f_0, f_1, \cdots, f_{N-1} \} \) be a dual basis with \(\langle e_i, f_j \rangle = \delta_{ij} \) where \(\delta_{ij} \) denotes Kronecker delta. Let \(V^* = F f_0 \oplus F f_1 \oplus \cdots \oplus F f_{N-1} \). For a subspace \(V_0 \subseteq V \), define \(V_0^\perp = \{ f \in V^* \mid f(V_0) = 0 \} \). Then there is a one to one correspondence between \(V_0 \) and \(V_0^\perp \), so that \(GM(m, V) \) is isomorphic to \(GM(n, V^*) \) as a set. Let \(\wedge^m V \) be the space of \(m \)-th exterior products of \(V \). \(\wedge^m V \) is the \(\binom{N}{m} \)-dimensional vector space over \(F \) with basis \(\{ e_{i_0} \wedge e_{i_1} \wedge \cdots \wedge e_{i_{m-1}} \mid 0 \leq i_0 \leq i_1 \leq \cdots \leq i_{m-1} \leq N \} \). We define the projective embedding of \(GM(m, V) \) as follows:

\[
GM(m, V) \to P(\wedge^m V)
\]

\[
\xi = \begin{pmatrix} \xi(0) \\ \vdots \\ \xi(m-1) \end{pmatrix} \mapsto \xi(0) \wedge \cdots \wedge \xi(m-1).
\]

For \(\xi \in GM(m, V) \), we can write \(\xi = \sum_{0 \leq i \leq N} \xi_{ji} e_i \). Then

\[
\xi(0) \wedge \cdots \wedge \xi(m-1) = \sum_{0 \leq i_0 < \cdots < i_{m-1} \leq N} \xi_{i_0 \cdots i_{m-1}} e_{i_0} \wedge \cdots \wedge e_{i_{m-1}}
\]

where \(\xi_{i_0 \cdots i_{m-1}} \) is the determinant of the matrix obtained by picking out the \(i_0, \cdots, i_{m-1} \) columns of \(\xi \).

The above projective embedding can be translated as follows:

\[
GM(m, V) \to P(\wedge^m V)^{-1}(F)
\]

\[
\xi = \begin{pmatrix} \xi(0) \\ \vdots \\ \xi(m-1) \end{pmatrix} \mapsto (\xi_{i_0 \cdots i_{m-1}})_{0 \leq i_0 < \cdots < i_{m-1} \leq N}.
\]

(3.1)

Further, this projective embedding satisfies the \textit{Plücker} relation

\[
\sum_{0 \leq i \leq N} (-1)^i \xi_{k_0 \cdots k_{i-2} i_0 \cdots i_{m-1}} = 0
\]

for

\[
0 \leq k_0 < \cdots < k_{m-2} < N, 0 \leq i_0 < \cdots < i_m \leq N
\]
where \(I_i \) means removing \(l_i \).

Let \(C \) be a \([N,m]\)-linear code which is an element of \(GM(m,V) \) and write

\[
C = \begin{pmatrix}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{pmatrix}
\]

Likewise, let

\[
C^\perp = \begin{pmatrix}
\eta^{(0)} \\
\vdots \\
\eta^{(n-1)}
\end{pmatrix}
\]

which is an element of \(GM(n,V) \). According to (3.1), \(GM(m,V) \) has a projective embedding into \(P^{\mathbb{Z}^{m-1}}(F) \) and similarly \(GM(n,V) \) has a projective embedding into \(P^{\mathbb{Z}^{n-1}}(F) \). Since \(P^{\mathbb{Z}^{m-1}}(F) = P^{\mathbb{Z}^{n-1}}(F) \), we have an easy criterion of self-duality of \(C \) as follows:

Theorem 2. Let \(C \) be a \([N,m]\)-linear code over a finite field \(F \) and let \(C^\perp \) be the dual code of \(C \). Assume that \(C \) and \(C^\perp \) are as above. Then \(C \) is self-dual if and only if

\[
(\xi^{(0)} \wedge, \ldots, \xi^{(m-1)})_0 \leq l_0 < \cdots < l_{m-1} \leq N = (\eta^{(0)} \wedge, \ldots, \eta^{(n-1)})_0 \leq s_0 < \cdots < s_{n-1} \leq N \quad \text{in} \quad P^{\mathbb{Z}^{m-1}}(F) \text{ and } N=2m.
\]

Proof. First assume that \(C \) is a self-dual code. Then since \(C = C^\perp \), the theorem is clear. Conversely, assume that \((\xi^{(0)} \wedge, \ldots, \xi^{(m-1)})_0 \leq l_0 < \cdots < l_{m-1} \leq N = (\eta^{(0)} \wedge, \ldots, \eta^{(n-1)})_0 \leq s_0 < \cdots < s_{n-1} \leq N \) in \(P^{\mathbb{Z}^{m-1}}(F) \) and \(N=2m \). Then clearly \((\xi^{(0)} \wedge \cdots \wedge \xi^{(m-1)}) = (\eta^{(0)} \wedge \cdots \wedge \eta^{(n-1)})\) and \(\xi^{(0)} \wedge \cdots \wedge \xi^{(m-1)} = a \eta^{(0)} \wedge \cdots \wedge \eta^{(n-1)} \) for some non-zero element \(a \) of \(F \). Hence \(\xi^{(0)} \wedge \cdots \wedge \xi^{(m-1)} \wedge \eta^{(0)} = a \eta^{(0)} \wedge \cdots \wedge \eta^{(n-1)} \wedge \eta^{(0)} = 0 \) \((i = 0, \ldots, m-1)\), that is \(\eta^{(0)} \in F \xi^{(0)} \wedge \cdots \wedge F \xi^{(m-1)} \). Similarly, we have \(\xi^{(i)} \in F \eta^{(0)} \wedge \cdots \wedge F \eta^{(n-1)} \). This implies that \(F \xi^{(0)} \wedge \cdots \wedge F \xi^{(m-1)} = F \eta^{(0)} \wedge \cdots \wedge F \eta^{(n-1)} \) and we have \(C = C^\perp \).

4. Self-duality of linear codes

In this section, we shall study self-orthogonal (resp. self-dual) codes in the Grassmann manifolds.

Theorem 3. Let \(C = F \xi^{(0)} \wedge \cdots \wedge F \xi^{(m-1)} \) be a \([N,m]\)-linear code over a finite field \(F \). Then \(C \) is a self-orthogonal (resp. self-dual) code if and only if \(C \) is a point of the Grassmann manifolds which satisfies the Plücker's relations and is on the quadratic surface defined by

\[
\sum_{0 \leq l_0 < \cdots < l_{m-1} \leq N} \xi^{2}_{l_0, \ldots, l_{m-1}} = 0 \quad \text{(resp. further} \quad N=2m),
\]
where $\xi_{i_0,\ldots,i_{m-1}}$ is the determinant of the matrix obtained by picking out the m columns l_0,\ldots,l_{m-1} of C.

Proof. As explained in the previous section, C can be thought as a point of the Garassmann manifolds which satisfies the Plücker's relations. So we must prove that C is self-orthogonal if and only if C is on the quadratic surface defined as above. First assume that C is a self-orthogonal code. Let

$$C = \begin{pmatrix} \xi^{(0)} \\ \vdots \\ \xi^{(m-1)} \end{pmatrix}$$

Since C is contained in C^\perp, we have

$$\uparrow \left(\begin{array}{c} \xi^{(0)} \\ \vdots \\ \xi^{(m-1)} \end{array} \right) \downarrow = m$$

where $t_{\xi^{(i)}}$ is the transpose of $\xi^{(i)}$. Then we have

$$\det \left\{ \left(\begin{array}{c} \xi^{(0)} \\ \vdots \\ \xi^{(m-1)} \end{array} \right) \left(\begin{array}{c} t_{\xi^{(0)}} \\ \vdots \\ t_{\xi^{(m-1)}} \end{array} \right) \right\} = 0.$$

In this case, Binet-Cauchy formula (cf.[1]) implies

$$\det \left\{ \left(\begin{array}{c} \xi^{(0)} \\ \vdots \\ \xi^{(m-1)} \end{array} \right) \right\} = \sum_{\square} \det(\square) = 0$$

where \square is an $m \times m$ matrix obtained by picking out m columns of C and summation is taken over all $m \times m$ matrices.

Conversely, we assume that
Then Binet-Cauchy formula implies

\[\det \left(\begin{array}{cc}
\xi(0) & t \xi(0) \\
\vdots & \vdots \\
\xi(m-1) & t \xi(m-1)
\end{array} \right) = 0 \]

since

\[\det \left(\begin{array}{ccc}
\langle \xi(0), \xi(0) \rangle & \cdots & \langle \xi(0), \xi(m-1) \rangle \\
\vdots & \vdots & \vdots \\
\langle \xi(m-1), \xi(0) \rangle & \cdots & \langle \xi(m-1), \xi(m-1) \rangle
\end{array} \right) = 0 \]

where \(\langle \ , \rangle \) means canonical inner product in \(F^N \).

This shows that for any \(i (i=0, \cdots, m-1) \),

\[X_i \langle \xi(0), \xi(0) \rangle + \cdots + X_{m-1} \langle \xi(m-1), \xi(0) \rangle = 0 \]

has a non-trivial solution \((\lambda_0, \cdots, \lambda_{m-1}) \). In particular,

\[\langle \lambda_0 \xi(0) + \cdots + \lambda_{m-1} \xi(m-1), \xi(0) \rangle = 0 \]

so that

\[\lambda_0 \xi(0) + \cdots + \lambda_{m-1} \xi(m-1) \]

is contained in \(C \cap C^\perp \). We set

\[\eta^{m-1} = \lambda_0 \xi(0) + \cdots + \lambda_{m-1} \xi(m-1) \]

which satisfies

\[\langle \xi(0), \eta^{m-1} \rangle = 0 \quad (i=0, \cdots, m-1). \]

By renumbering \(\lambda_0, \cdots, \lambda_{m-1}, \) we may assume that \(\lambda_{m-1} \neq 0 \). We claim that

\[\xi(0), \xi(m-2), \eta^{m-1} \]

are linearly independent over \(F \). Assume that

\[a_0 \xi(0) + \cdots + a_{m-2} \xi(m-2) + a_{m-1} \eta^{m-1} = 0 \]

for \(a_0, \cdots, a_{m-1} \in F \). Then
Since $\zeta(0), \ldots, \zeta(m-2)$ are linearly independent, we have

$$a_i + a_{i-1} \lambda_i = 0 \quad (i = 0, \ldots, m-1), \quad a_{m-1} \lambda_{m-1} = 0.$$

Since $\lambda_{m-1} \neq 0$, we have that $a_{m-1} = 0$. Thus we obtain

$$a_0 \zeta(0) + \cdots + a_{m-2} \zeta(m-2) = 0.$$

Since $\zeta(0), \ldots, \zeta(m-2)$ are linearly independent, we have

$$a_0 = \cdots = a_{m-2} = 0.$$

This shows that $\zeta(0), \ldots, \zeta(m-2), \eta(m-1)$ are linearly independent.

Now $\{\zeta(0), \ldots, \zeta(m-2), \eta(m-1)\}$ becomes a basis of C. Since

$$\langle \eta(m-1), \zeta(0) \rangle = 0 \quad (i = 0, \ldots, m-1),$$

we know

$$\det \begin{pmatrix}
\zeta(0) \\
\vdots \\
\zeta(m-2) \\
\eta(m-1)
\end{pmatrix} \begin{pmatrix}
\zeta(0) & \cdots & \zeta(m-2) & \eta(m-1)
\end{pmatrix} = 0$$

which implies

$$\det \begin{pmatrix}
\zeta(0) \\
\vdots \\
\zeta(m-2) \\
\eta(m-1)
\end{pmatrix} \begin{pmatrix}
\zeta(0) & \cdots & \zeta(m-2) & \eta(m-1)
\end{pmatrix} = \det \begin{pmatrix}
\zeta(0) \\
\vdots \\
\zeta(m-2) \\
\zeta(0) & \cdots & \zeta(m-1)
\end{pmatrix} = 0.$$

By the same argument, we see that there exists a non-trivial solution

$$(\mu_0, \ldots, \mu_{m-2}) \in F^{m-1}$$

such that

$$\langle \mu_0 \zeta(0) + \cdots + \mu_{m-2} \zeta(m-2), \zeta(0) \rangle = 0 \quad (i = 0, \ldots, m-2).$$

We set
\[\eta^{(m-2)} = \mu_0 \xi^{(0)} + \cdots + \mu_{m-2} \xi^{(m-2)} \]

which satisfies
\[\langle \xi^{(i)}, \eta^{(m-2)} \rangle = 0 \quad (i = 0, \ldots, m - 2), \quad \langle \eta^{(m-1)}, \eta^{(m-2)} \rangle = 0. \]

Similarly,
\[\{ \xi^{(0)}, \ldots, \xi^{(m-3)}, \eta^{(m-2)}, \eta^{(m-1)} \} \]

becomes a basis of \(C \). We proceed this process. Then we obtain a basis
\[\{ \eta^{(0)}, \ldots, \eta^{(m-1)} \} \]

which satisfies
\[\langle \eta^{(i)}, \eta^{(j)} \rangle = 0 \quad (i, j = 0, \ldots, m - 1). \]

Now \(C \) becomes a self-orthogonal code. Since the case of a self-dual code is clear, the proof is complete.

References

Department of Mathematics
Naruto University of Education
Takashima, Naruto, 772, Japan
e-mail address: skoba@naruto-u.ac.jp
and
Department of Mathematics
Tokushima University
Tokushima, 770, JAPAN
e-mail address: g01536@sinet.ad.jp