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Abstract

Details of mathematical aspects and trajectories of control variables are described for a text

entitled �Coupled Nosé-Hoover Equations of Motions.�
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Note: An equation such as "Eq. (1)" refers to the equation that appears in the text,

while an equation such as "Eq. (S1)" refers to the equation that appears in this document.

I. EVALUATION OF �

The value of �i(�0) 2 R (i = 1; : : : ;m), de�ned by Eq. (45), can be evaluated, under

suitable mathematical conditions, such that

�i(�0) = �
Z
R2n
D�i�E(E(x; p); �0)dxdp

�Z
R2n
�E(E(x; p); �0)dxdp (S1a)

= �
Z
R2n
�E(E(x; p); �0)D�i ln �E(E(x; p); �0)dxdp

�Z
R2n
�E(E(x; p); �0)dxdp (S1b)

=
D
Y
�0
i

E
�E ;�0

; (S1c)

where Y �0i (x; p) � �D�i ln �E(E(x; p); �0) for (x; p) 2 R2n. Namely, �i(�0) is the aver-

age of the function Y �0i in the distribution whose density, �0(x; p; : : :), is proportional to

�E(E(x; p); �0). Note that �0 is not a dynamical variable here, but just an arbitrarily �xed

parameter value. By using e.g., the density dynamics [Phys. Rev. E 65, 026105 (2002);

ibid. 71, 046708 (2005)], such a density �0 can be created, so that �i(�0) is obtained as

the long-time average, generated by the density dynamics, of Y �0i in principle. Note that if

m = 1 and �E is the BG density, then �(�0) is the energy average under the BG ensemble

at temperature 1=kB�0.

II. THE SOLUTION OF THE INVERSE PROBLEM

Consider s approximate equalities,

hh�(�)i ' 
� 2 R; � = 1; : : : ; s; (S2)

for given values, (
1 : : : ; 
s) = 
, in general [s = 1 is used in Eq. (65)]. Here the LHS is

de�ned using a given function f that contains l (� s) parameters (�1 : : : ; �l) = � 2 Rl;
viz., f = f(� ;�) : �(Rm) ! R, � 7! f(�;�). We solve Eq. (S2) with respect to � for a

given 
. To do this, we assume three conditions: (i) for any given �0 2 �(Rm), there exists
U0 � E(�0) 2 RM (M 2 N) such that

�(�0;U0) ' 0; (S3)
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where �(�0;U0) is de�ned in Eq. (47); (ii) we can represent such that �0 = �(�), where the

mapping � : Rl ! �(Rm) is speci�cally computed; (iii) for a map � = (�1 : : : ;�s) de�ned

by ��(�) � hh�if(�;�) (� = 1; : : : ; s), there exists � 2 Rl such that

�(�) = 
 (S4)

for a given 
 2 Rs.
Now, take a solution (which is not necessarily unique) of Eq. (S4), �
 2 Rl [assumption

(iii)]. Then we have �0 = �


0 � �(�
) [assumption (ii)], and set U0 = U



0 � E(�



0) that yields

�(�
0 ;U


0 ) ' 0 [assumption (i)]. Remember that we have �
, �



0 , and U



0 for the given 
 in

advance. We thereby see that �
 also becomes a solution of Eq. (S2), becauseR
�(Rm) h�(�)f(�;�)Z(�;U0)d�R

�(Rm) f(�;�)Z(�;U0)d�

������=�
;
U0=U



0

� hh�(�)ij�=�
;
U0=U



0

(S5a)

'
R
�(Rm) h�(�)f(�;�)e

�(�(�0;U0)j�)d�R
�(Rm) f(�;�)e

�(�(�0;U0)j�)d�

����� �=�
; �0=�
0
U0=U



0 =E(�



0 )

� hhh�(�)iij�=�
; �0=�
0
U0=U



0

(S5b)

'
R
�(Rm) h�(�)f(�;�)d�R

�(Rm) f(�;�)d�

�����
�=�


� hh�if(�;�
) (S5c)

= ��(�
) = 
� (S5d)

holds for any �.

Note that, while assumptions (ii) and (iii) may be loosened for small l, m, and s, assump-

tion (i) should be critical to solve the problem. To speci�cally see this, suppose an ideal

situation where the integration, Eq. (46b), is explicitly performed so that hhh(�)ii is given
by a known function, 	, of both �(�0) and �; viz., hhh(�)ii = 	(�(�(�)); �). Nonetheless,
we cannot easily solve 	(�(�(�)); �) = 
 with respect to �, since the function � is unknown

[much e¤ort is required to know the entire functional form; cf. Eq. (S1)], although the

functions 	 and � are known (by the assumptions).

III. THE EFFECT OF PARAMETER c

A special case.�We investigate the e¤ect of parameter c introduced in Eq. (55). First

we consider the function setting in Sec. II I in the text, where �E is given by Eq. (53),

or its generalization, Eq. (59), and f � fG is given by Eq. (56). Then the ODE is given

3



by Eq. (5) with T (x; p;Q) represented by Eq. (54) and ~U�(Q) represented by Eq. (58) with

A� = c(�+�2+U0). Let ' : t 7! (x(t); p(t); �(t); Q(t);P(t); �(t)) be any solution of ODE (5),
_! = X 0(!). Suppose that we change the parameter value from c > 0 to c0 > 0. We then

have a number 
 that satis�es c0 = e�
=lc =: c
. De�ne a phase-space map �
 : 
 !

; (x; p; �; Q;P ; �) 7! (x; p; �; Q+ 
;P ; �), viz., the translation of Q. Then '
 := �
 � ' :
t 7! (x(t); p(t); �(t); Q(t) + 
;P(t); �(t)) is a solution of an ODE, _! = X 0


(!), where X
0

 is X

0

using c
 instead of c. This is shown as follows: For any !, X 0

(�
(!)) = X

0

(x; p; �; Q+
; P; �)

is given by Eq. (10) [RHS of Eq. (5)] with T
(x; p;Q + 
) and r ~U
E(x;p)(Q + 
), instead of
T (x; p;Q) and r ~UE(x;p)(Q), respectively. Here the index 
 in T
 and r ~U
E(x;p) indicate the
use of c
 instead of c. We �nd that T
(x; p;Q + 
) = 1=(kBc
)e�(Q+
)=l = T (x; p;Q) and

r ~U
E(x;p)(Q+ 
) = (c
=l)(E(x; p) + �2 + U0)e(Q+
)=l � (�1 + 1)=l = r ~UE(x;p)(Q). Thus

X 0

(�
(!)) = X

0(!) for all !: (S6)

Therefore we have D'
(t) = D�
('(t)) � D'(t) = D'(t) = X 0('(t)) = X 0

(�
('(t))) =

X 0

('
(t))) for all t, so the proof is completed.

Namely, the translation of Q in any solution of the original ODE just yields a solution

of the parameter-changed (c ! c
) ODE. Conversely, for any solution, '
, of _! = X
0

(!),

we similarly see that ��
 � '
 becomes a solution of _! = X 0(!). Thus, we have a mapping

between the solution spaces, S := fsolution of _! = X 0(!)g ! S
 = fsolution of _! = X 0

(!)g,

'
d7! �
�', and �nd it is bijective, due to �
���
 = id
 (8
). This means that we completely

know the solutions of the parameter-changed ODE from the solutions of the original ODE,

just by the translation.

A general case.� The above results also hold in a more general function setting. Let the

map � : Rm ! Rm be parameterized by c 2 A (a certain set), denoted as �c. We only assume
two conditions. First, � possesses the following relationship between a parameter change

and a variable translation: for c1; c2 2 A, there exists 
 2 Rm such that �c2(Q) = �c1(Q�
)
for all Q (this �c is a generalization of the map Q 7! ceQ=l with m = 1). Second, the vector

�eld, Xc, is smooth and takes the form: Xc(!) = Y (x; p; �;P ; �; �c(Q); D�c(Q); D2�c(Q));

viz., the dependence on Q is only through �c and its �rst and second di¤erentials, D�c and

D2�c [Eq. (5) satis�es this condition, since T (x; p;Q) given by Eq. (6) involves only �(Q)

and since ~UE(x;p) given by Eq. (8) involves only �(Q) and D�(Q) [see also Eq. (3)] so that

r ~UE(x;p)(Q) involves only Dk�c(Q) (k = 0; 1; 2)]. We can show that if ' is a solution of
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_! = Xc1(!) then �
 � ' (�
 is the one given above) becomes a solution of _! = Xc2(!): It

follows from Dk�c2(Q) = Dk�c1(Q � 
) for every Q and k that Xc2(�
(!)) = Xc1(!) for

all !, which corresponds to Eq. (S6). Hence the proof can be completed in the same manner

as the special case. Similarly, a bijective mapping between the solution space of _! = Xc1(!)

and that of _! = Xc2(!) is obtained.

IV. THE TOTAL ERROR

Figure 1 shows the total error measured by �(t), with respect to time t, for the dis-

tribution of x in the 1-dimensional double-well (1DW) potential system. See text for the

details.
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FIG. 1: (a) Di¤erence in the 1D marginal distribution of x between simulation and theory as a

function of the simulation time for the 1DW model. (b) The same as (a), but cZ = 0:1 (solid, blue)

and 10 (dashed, blue), cY = 0:1 (solid, cyan) and 10 (dashed, cyan),MT = 0:1 (solid, red) and 10

(dashed, red), and l = 0:224 (solid, magenta) and 22:4 (dashed, magenta). cZ = cY = 1, MT = 1,

and l = 2:24 are used unless otherwise mentioned. All quantities are dimensionless.
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FIG. 2: Time courses of � for 1DW. Color schemes are the same as in Fig. 4 of the text.

V. TRAJECTORIES OF �, �, AND P FOR THE 1DW MODEL SYSTEM

The oscillation, as well as the distribution, of � depends on cZ, where a smaller cZ tends to

yield a larger period (Fig. 2). This is reasonable as an analogue that we observe in the single

NH equation, because cZ essentially corresponds to the inverse of Nose�s mass QNH [recall

the discussion in Sec. IIB in the text, such that the setting of our �Z(�) leads to the friction

term of the NH equation via cZ = 1=2kBTexQNH]. In contrast, �, which directly controls

the physical system, depends minimally on cY and MT, as these are temperature-system

parameters. The e¤ects of l on the dynamics of � are not straightforward. � is governed by

_� = TP � TD (nkB = 1 in 1DW), as seen in the typical examples shown in Fig. 3. When

l = 22:4 [Fig. 3(a)], around TD, which reduces slowly, TP oscillates fast, so that � has two

oscillation modes: one is the slow (�3 periods for time 20) mode around zero with relatively
large amplitudes and the other is the fast mode, inherited from TP, with relatively small

amplitudes. While for l = 0:224 [Fig. 3(b)], TD and TP oscillate with larger amplitudes than

those in Fig. 3(a). However, since the periods of TD and TP are similar, cancellations occur

so that TP � TD maintains small values and the amplitude of � is comparable to that in
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FIG. 3: Time courses of TD (green) and TP (red), and � (blue) for 1DW. (a) l = 22:4, 0 � t � 20;

(b) l = 0:224, 0 � t � 20; and (c) l = 22:4, 80 � t � 100. Dotted lines in (a) and (c) indicate �1.

Fig. 3(a). For l = 22:4 and 80 � t � 100 [Fig. 3(c)], against the slow motion of TD as in

0 � t � 20 [Fig. 3(a)], TP oscillates with very large amplitudes [cf. Fig. 4(b) of the text ],

which a¤ect the motion of �. The faster mode of � seen in 0 � t � 20 seems to grow and
attain the large amplitudes in 80 � t � 100. This is the reason why � for l = 22:4 suddenly
has the large �uctuations seen in Fig. 2 (bottom panel).

The trajectories of � show that a larger period and amplitude in the oscillating-like

motion of � appear as cY is decreased (Fig. 4). This dependence of cY on � is similar to the

dependence of cZ on �, as expected from the roles of these two parameters [exactly speaking,

there is a di¤erence in that the friction term �Z (�) described by � and cZ in Eq. (5) is

multiplied by T (x; p;Q), whereas the friction term �Y (�) described by � and cY is not]. The

temperature-system variable � does not strongly depend on the physical-system parameter

cZ. We also see that �� a control variable in the temperature system� does not strongly

depend on the temperature-system parameters, MT, which is the mass parameter, and l,

which is the potential parameter [see Eq. (58)]. This tendency seems to be reasonable, by

considering the analogous tendency in the single NH equation that the control variable in
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the physical system does not depend strongly on the mass and potential parameters of the

physical system.
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FIG. 4: Time courses of � for 1DW. Color schemes are the same as in Fig. 4 of the text.

The dependence on the parameters of the trajectory of P (Fig. 5) is similar to that of

the dynamical temperature TD. This is suggested by the relations, M�1
T P = _Q and TD /

exp [�Q=l]. Even though the cases of cY = 10 andMT = 10 are seemingly exceptional, the

periods of the two oscillating modes existing in TD and in P are actually similar, whereas

the faster modes in P have large amplitudes and those in TD have small amplitudes. As

expected from the relation, _� =M�1
T P2 � 1, there are also correlations between P2 and �.

This may not be clear for l = 0:224 in the behavior of P shown in Fig. 5, but it is actually
observed if we view them on a shorter time scale, as shown in Fig. 6.
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FIG. 5: Time courses of P for 1DW. Color schemes are the same as in Fig. 4 of the text.
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FIG. 6: Time courses of P (green), P2 � 1 (blue) and � (red) for 1DW. l = 0:224 and MT = 1.
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