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An Accelerated Explicit Method with a Two-Stage Computation 

Scheme for Transient Thermal Stress and Welding Deformation† 

 
MA Ninshu* 

 
Abstract 

An accelerated explicit method with two-stage computation scheme is developed for simulating transient thermal 
stress and deformation occurring in a long time welding heating and cooling process. The first computation 
stage is based on a dynamic explicit method considering the characteristics of the welding mechanical process 
by controlling both the temperature increment and time scaling parameter. In the second computation stage, a 
static equilibrium computation scheme is implemented after dynamic thermal loading to obtain a static solution 
of transient thermal stress and welding deformation. In the two-stage computation scheme, a damping parameter 
was determined based on a transient radial eigenvalue, which corresponds to a transient welding deformation 
and is automatically computed using the mass center velocity of the finite element model. The validity of the 
accelerated explicit method is verified by comparing the transient thermal deformation and residual stresses 
with those computed by the implicit FEM and experimental measurements. 

 
KEY WORDS: (Accelerated explicit method), (Two-stage computation scheme),  
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1. Introduction 
Since the finite element method (FEM) was 

established in 1950s-1960s by Argyris [1], Clough [2], 
Zienkiewicz [3] and other pioneers, it has been widely 
used in various fields. Today, two types of the finite 
element method, the implicit FEM [3] and the explicit 
FEM [4-9], are selectively employed depending on the 
characteristics of problems to be solved. The implicit 
FEM is generally used for static problems or quasi-static 
problems such as the static stress or the transient stress 
and strain induced in metal forming, welding and fatigue 
cycling. The explicit FEM is often applied to compute the 
short time dynamic response due to impact loading. To 
compute the quasi-static stress and strain by the dynamic 
explicit FEM, Liu et al. [5, 6] applied the explicit method 
and the implicit method to different zones in a FE model. 
To improve the efficiency of the dynamic explicit method 
for thin-walled structures, Belytschko et al. [7] developed 
a center integration shell element with hourglass control 
algorithm and Gilbertsen et al. [8] employed parallel 
computation. Oden [9] analyzed the static deformation by 
explicit time integration using a proper damping 
parameter. Underwood [10] proposed a dynamic 
relaxation method for the transient quasi-static analysis 
and Paradrakakis [11] developed a method to 

automatically evaluate the critical eigenvalue. 
In the field of computational welding mechanics, 

Ueda [12], Hibbit [13], Goldak [14] and Karlsson [15] 
started their researches and applications of the finite 
element method in 1970s-1980s. Since Ueda and 
Yamakawa [12] proposed a thermal elastic-plastic 
material model for welding thermal stress based on the 
static implicit finite element method, the implicit FEM 
was mainly used for welding thermal-mechanics coupling 
simulations [16-25]. Brown and Song in 1992 [19] 
simulated the welding deformation and residual stresses 
of one meter ring structure in 1992, which was a large 
model at that time. Lindgren et al. in 1997 [20] reduced 
the computer time by applying dynamic meshing scheme 
to implicit FEM. In the recent decade, Murakawa et al. 
[21] and Nishikawa et al. [22] in 2004 reduced 
computation time with a fast iterative substructure 
method (ISM) in which the global FE model was divided 
into a large linear zone and a small nonlinear zone 
according to the transient temperature distribution during 
welding. Furthermore, considering a little effect the 
constraint located away from the welding zone on the 
welding induced inherent strain [17], Murakawa et al. in 
2014 [23] developed the inherent strain based ISM named 
as i-ISM in which the nodes in the zones away from 
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welding line are constrained and released repeatedly at 
several certain steps. Huang et al. [24] modified the ISM 
and implemented large strain terms for the welding 
deformation computation in lap joints of thin plates. With 
the aid of the implicit FEM enhanced by ISM, Ma et al. 
[25] analyzed the residual stresses induced by laser –arc 
hybrid welded butt joints. Andersen in 2000 [26] 
investigated residual stresses and deformations in large 
ship structures using a solid element model for welded 
joints and a shell element model for welded structures, 
respectively. Deng et al. [27] focused the welding 
residual deformation using implicit FEM and shell 
element models based on inherent deformation concept. 
He successfully predicted welding assembly deformation 
using interface element which was employed to model 
the joining of weld lines before and after welding. 
Lindgren in 2006 [28] reviewed the recent development 
and progress of computational welding mechanics. He 
indicated that parallel computing used in implicit finite 
element methods reduced the computer time and that 
used in explicit finite element methods had better 
scalability. 

Compared with the implicit FEM, the explicit FEM 
has a great advantage in solving large scale FE models 
because it uses a small amount of computer memory and 
its parallelized program has a good performance. 
Therefore, the explicit FEM has been successfully used to 
simulate dynamic phenomena of very large automobile 
structures under impact loading [29] and quasi-static 
mechanical phenomena in metal forming processes [30]. 
Because the welding heating and cooling time is long, the 
direct application of the standard dynamic explicit FEM 
with very small explicit time step may take a long 
computation time. Ma et al. in 1998 [31] made a first trial 
simulation using a dynamic explicit FEM with a mass 
scaling technique for the thermal buckling deformation in 
a butt welded joint of thin aluminum sheets. In 2008 Ma 
and Umezu [32] summarized the techniques of how to 
use commercial dynamic explicit FEM software for the 
simulation of the welding thermal deformation. However, 
the commercial dynamic explicit FEM software cannot 
consider the welding characteristics such as the filling of 
the welding groove. Recently, Shibahara et al. in 2011 
[33] proposed an idealized explicit finite element method 
using an assumed mass matrix and a damping matrix for 
the simulation of the quasi-static welding thermal stress 
and deformation. Ikushima et al. [34] employed GPU for 
parallel computation and simulated welding residual 
stresses produced in a large scale multi-pass butt welded 
joint of thick plates. However, the simulation on the 
welding deformation especially induced in the 
thin-walled structures was not reported. 

In the current work, an accelerated explicit method 
with two-stage computation scheme is developed for 
simulating transient thermal stress as well as deformation 
occurring in welding heating and cooling processes. The 
first computation stage is based on the dynamic explicit 
FEM considering the characteristics of welding 
mechanical processes by controlling both the temperature 

increment and time scaling parameter. In the second 
computation stage, a static equilibrium computation 
scheme based on a dynamic relaxation algorithm is 
implemented after thermal loading in order to obtain a 
quasi-static solution of transient thermal stress and 
welding deformation. In this two-stage computation 
scheme, a damping parameter is automatically 
determined using the transient radial eigenvalue 
computed from the velocity at the mass center of the 
finite element model. The validity of the developed 
accelerated explicit method is verified by comparing the 
transient thermal stress and welding deformation with 
those obtained by an implicit FEM [23-25] and 
experimental measurement. 
 
2. Accelerated explicit method with a two stage 
computation scheme 
2.1 Standard dynamic explicit 

A general equation of motions and its transformed 
form are respectively given by Eq.(1) and Eq.(2). 

extFKuCvMa    (1) 

)()()(
)()()()(

int tFtFdttF
tKutCvdttFdttMa

dampext

ext  (2) 

Where, M, C, K and Fext are the mass matrix, damping 
matrix, stiffness matrix and external force. Since the 
second term Cv and the third term Ku represent, 
respectively, the damping force Fdamp and internal 
residual force Fint. 

If the above motion equation is combined with FEM, 
the diagonal mass matrix , the equivalent external nodal 
force , the equivalent internal nodal force   and the 
damping nodal force   can be computed by following 
equations, 

dVolNNM
Vol

T
ii    (3) 

)()()( dttPdttPdttF pressureeconcentratext  (4) 

Vol
dVoltBtF )()(int    (5) 

)()( tvCtFdamp     (6) 
Where, VolNi ,,  are the mass density of materials, 
the shape function of element and the volume of finite 
element model; the external nodal force )( dttFext  
includes the concentrated nodal force econcentratP , the nodal 

force due to external pressure pressureP and others such as 
the contacting nodal force; B is a matrix describing the 
relation between strains at integration points and nodal 
displacements in an element;  is the stress vector in 
elements. 

To solve the motion equation (2), a very small time 
increment dt given by the following equation must be 
used according to Courant-Frederic’s-Lewy Condition 
[35]. 

c
Ldt e      (7) 

Where, the eL  in the above equation is the equivalent 
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length of elements and c  is the propagation speed of 
stress wave in materials given by following equation. 

1
)21)(1(

)1(Ec    (8) 

Where, ,E  are the Young’s modulus and Poisson’s 
ratio. 
 
2.2 A two stage computation scheme for Accelerated 
explicit method 

It is well known that the time increment dt used in 
the explicit FEM, which is calculated by Eq. (7), is the 
order of 10-7 sec for steels if the element size is about 1.0 
mm. If the total time of welding heating and cooling 
processes is assumed to be 1000 seconds, the 
computation cycles of explicit FEM can be the order of 
more than 10+10 and the computation may not ended 
within the acceptable time. Since the time of a welding 
thermal process can be the order of hours, the standard 
explicit FEM is quite difficult to adopt to simulate the 
quasi-static thermal stress and welding deformation. To 
simulate the long time phenomena occurring in welding 
thermal cycles, a two-stage computation scheme using 
the explicit FEM on the accelerated explicit time domain 
and a stabilization computation for static solution, is 
developed as schematically shown in Fig. 1. The 
accelerated explicit time domain ACEXPt  is determined 
with consideration of the time interval realt and 
temperature increment in welding thermal cycles. This 
simulation method is here called accelerated explicit 
method abbreviated to ACEXP for easy description in the 
following sections. If the 2nd stage stabilization 
computation is skipped, the method becomes an explicit 
method for dynamic solution under the accelerated time 
domain. 

 Real time and temperature

Stage1: Explicit FEM
in accelerated time domain

Stage2: Stabilization 
computation for static solution

Δt ACEXP = function (Δt , ΔT)

Time = time +  Δt
Temp = temp + ΔT

 
Fig. 1. A two-stage computation scheme of accelerated 

explicit method 
 
2.2.1 Accelerated explicit time domain 

To use the explicit method for the long time 
(e.g.1000sec or more) phenomena produced in a thermal 
loading process shown in Fig. 2, the real time has to be 
scaled or accelerated many times (e.g.1000 times or 
more) without changing the thermal loads as 
schematically shown in Fig. 3. For the easy 
understanding, the real time domain, time domains for the 

thermal conduction implicit FEM and for the ACEXP 
method are schematically represented in Fig. 4. To 
distinguish the very small explicit time increment   
determined by Eq. (7), the real time increment denoted by 

realt  and the time increment thermt  for thermal 
conduction analysis are named as the real time interval 
and the thermal time interval, respectively. The 
corresponding time interval in the accelerated explicit 
analysis is denoted by ACEXPt . The similar symbols for 
real time, the time for thermal conduction analysis and 
the time for the ACEXP method are denoted by realt , 

thermt , ACEXPt , respectively.  In the welding thermal 
conduction simulation using implicit FEM, a thermal 
time interval thermt  is generally set to be equal to the 
real time interval realt . 

 
T

100 1000

realt
realt

(sec)

ΔT
m

ax

 
Fig. 2. An example of welding thermal cycle in the real 

time domain. 

T

0.1 1.0
ACEXPtACEXPt

(sec)

ΔT
m

ax

 
Fig. 3. An example of thermal cycle in the accelerated 

explicit time domain. 
 

(b) Thermal conduction time domain

(c) Accelerated explicit time domain

(a) Real time domain

realreal ttrealt

realt

thermt thermtherm tt

realtherm tt

realACEXP tt

ACEXPt ACEXPACEXP tt
dt

 
Fig. 4. Various time domains for real phenomena, 
thermal conduction and accelerated explicit method. 
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Fig. 4. Various time domains for real phenomena, 
thermal conduction and accelerated explicit methods. 
In this developed explicit method for stress and strain 
simulation, the accelerated explicit time interval   

ACEXPt  corresponding to the real time interval realt  
is set by Eq.(9) using the combination of the time based 
scaling parameter scalet  and the temperature increment   

dT based time converting scheme with the consideration 
of the characteristics of welding thermal cycles. 

dt
dT
T

t
tt
scale

real
ACEXP max   (9) 

Where, maxT  is the maximum temperature change in 

the real time interval realt and dt is the explicit time 
given by Eq.(7).  

The first term in the equation (9) uses the 
conventional mass scaling technique [13]. The second 
term is based on the temperature increment control 
method used in the implicit FEM [17] and in an idealized 
explicit FEM [14]. Based on this time accelerating 
scheme, the explicit computation cycles or the 
computation time at the first stage will be controlled by 
the two parameters scalet  and dT . Their combination 
is better to control both the computation accuracy and 
computation time which is proportional to the explicit 
cycles. 
 
2.2.2 Stabilization computation scheme for static solution 

Usually, the dynamic explicit solution does not 
satisfy the static mechanical equilibrium condition. 
Therefore, to obtain the static solution of welding thermal 
stress and deformation, a stabilization computation with 
repeating explicit cycles at the fixed real time is 
performed based on a dynamic relaxation algorithm [10]. 
To save the computation time without losing the accuracy, 
the stabilization computation can selectively conducted 
once every certain step intervals Nc  as shown in Fig. 5. 

During the stabilization computation, the ratio ratioE  
of kinematic energy to internal energy and the ratio 

ratioU   of the normalized displacement increment to the 
normalized total displacement of the FE model are 
defined by Eqs.(10-11), respectively. If the ratios ratioE   
and ratioU  are less than their tolerances tolE  and tolU , 
respectively, the results computed by ACEXP can be 
considered as a static solution. 

tolNE

ie
e

Nodes

i
ratio E

V

mv
E

1

1

2

2
1

        (10) 

tolNodes

i
zyx

Nodes

i
zyx

ratio U
uuu

uuu
U

1

222

1

222        (11) 

 

 

Explicit
time

ACEXPt

Nc Nc Nc Nc

Temperature

Explicit
cycles

Nc

: stabilization computations

 
Fig. 5. Selective stabilization computation scheme at the 

certain thermal step intervals Nc. 
 
The tolerances tolE and tolU  are the order of 410  
for accurate stabilization computation. 
 
2.2.3 Estimation of transient radial eigenvalue for 
damping parameter 

It was reported by Ma and Umezu [27] that the 
effect of dynamic vibrations on the welding deformation 
can be well controlled by applying a mass damping force 
given by following equation based on the minimum 
vibration radial eigenvalue min . 

)(0.2)( min tvMtFdamp    (12) 

To get the minimum radial eigenvalue min of a 
global FE model, generally the eigenvalue analysis based 
on the implicit FEM has to be performed previously. If 
the degrees of freedom of FE models become too large, 
the memory requirement and computation time will be 
very long. On the other hand, the minimum eigenvalue 
computed by the implicit FEM may not fit the transient 
welding deformation mode which is changing during 
welding and subsequent cooling processes. For these 
reasons, an explicit estimation method for the dynamic 
eigenvalue was suggested by Papadrakakis [11]. By 
referring to this method, a transient radial eigenvalue   
corresponding to the transient welding deformation mode 
at time )(tdef  is computed by Eq. (13). The parameter   

)(tg in Eq. (13) is computed using the integrated 
velocity from all nodes of a global FE model defined by 
Eqs. (14-15). The integrated velocity is here called the 
mass center velocity of the FE model. 

)(
)(1

)(
tgdt

tg
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Where, )(tvg  and )( dttvg  are the mass center 

velocities at time )(t  and at time )( dtt , 
respectively. 

Using the transient radial eigenvalue )(tdef , the 
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damping force in the developed accelerated explicit 
method is given by following equation. 

)()(0.2)( tvMttF defdamp   (16) 
 
2.3 Stress and strain computation 

When the acceleration )( dtta  at the nodes of 
FEM using Eq. (2) is obtained, the nodal velocity 

)( dttv , the nodal displacement increment 
)( dttdu  can be easily computed in sequence by Eq. 

(17) and Eq. (18), respectively. 
dtdttatvdttv )()()(   (17) 

dtdttvdttdu )()(    (18) 
Then, strain increment )( dttd at the integration 

points of elements can be computed by Eq. (19). 
)()( dttduBdttd    (19) 

Where, B is the matrix describing the relationship 
between strain and nodal displacement in an element. 
The thermal stress )( dtt  can be computed based 
on thermal elastic plastic theory [12, 17] using the 
following equation. 

)()()()( pT dddTDtdtt  (20) 

Where, the pT dd , and )(TD are the thermal strain 
increment, plastic strain increment and material elastic 
matrix, respectively. The thermal strain increment and 
plastic strain increment are given by Eq. (21) and Eq. 
(22), respectively. 

dTtTD
dT

TdDdTTd T )()()()( 1   (21) 

ij

pp
ij

p
Ytryp dd

THTG
dTTdtt

d ,
)(')(3

),()(  (22) 

Where, )(),( TGT and )(' TH are the transient thermal 
expansion coefficient, shear modulus and plastic work 
hardening tangent coefficient of materials at 
temperature )(T . Y is the yield stress of materials 
changing with the temperature and equivalent plastic 
strain. )( dtttry  is the elastically trial equivalent 
stress when a radial return algorithm is employed for the 
stress update. 
 
2.4 Flow chart of accelerated explicit FEM program 

Based on the proposed accelerated explicit method, 
a FEM program was developed. The flow chart of 
accelerated explicit FEM program is shown in Fig. 6. The 
left side of the flow chart shows the main loop in which a 
temperature file for welding thermal cycles is read, the 
accelerating time interval ACEXPt is determined and 
results are written out. The right side of the flow chart 
expresses the computation procedures from nodal 
acceleration to stress update of the accelerated explicit 
FEM. Since the work in the right side is just simple 
calculations, the parallel computing using multi-cores of 
CPU or GPU will greatly reduce the computation time. 

When the thermal cycles for all nodes were read from a 
temperature file which was previously computed by 
thermal conduction FEM and the accelerated explicit 
time interval ACEXPt  was set, the acceleration 

)( dtta  can be easily computed using Eq. (2) with a 
very small explicit time step dt . Then, the velocity, 
displacement increment, strain increment and stress are 
computed in sequence. When the accumulated explicit 
time dt  reached the accelerated time interval ACEXPt , 
the stabilization computation started. The new scheme 
used in this accelerated explicit method is emphasized in 
the flow chart by a light blue background. The 
computations are continued until the real time reached the 
end time defined in the input data. 

Since this article is only focused on the development 
of the analyzing method for transient stress and welding 
deformation, the descriptions of implicit FEM for 
welding thermal conduction analysis are neglected. The 
nodal temperature and its change with time during 
welding and cooling processes are saved into a 
temperature file for stress and strain calculation using 
ACEXP FEM. 
 
  

END

READ Input data
Mesh data
Material properties
Boundary conditions
External force 
Welding conditions

START

Thermal conduction results
t therm=t real, Temperature

Real time main loop: IT
realrealreal ttt

)()()(
)()(

)()()(

dttdutudttu
dtdttvdttdu

dtdttatvdttv

)()()(
)(
)()(

dttdtdtt
dddDd

dttduBdttd
pT

Accelerated explicit loop

)()(
)()()()(

)()(

)()(

int

int

dttFdttMa
tFtFdttFdttF

tvMtF

dVoltBtF

dVolNNM

dampext

damp

Vol

ii

Output results

Accelerated explicit time

End?
Y

N

dTTdtt ACEXP ,

Stabilization computation
(Once every Nc steps)

),(/ TtAtt real
c

realACEXP

def(t)

 
Fig. 6. Flow chart of accelerated explicit FEM program 
and adopted new schemes. 
 
3. Verification of ACEXP method using a basic model 
3.1 Descriptions of a basic bead welding model 

To verify the accuracy of the proposed accelerated 
explicit method, a section model of a very long bead on 
plate welding plate used a welding simulation book [17] 
is selected as shown in Fig. 7(a). The model dimensions 
in the x, y and z directions are 1mm, 250mm and 15mm, 
respectively. Considering the symmetry of the 
temperature thermal stress and deformation in the width 
direction (y) of the weld line, a half of the transverse 
section is divided by solid elements. The mesh division 
and displacement boundary conditions are shown in Fig. 
7. Only one solid element in the welding direction (x) is 
employed and the x-displacement Ux at all nodes is 
constrained to describe the plane strain state of the model. 
In the thermal conduction simulation, a volume heat 
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source with a uniform distribution in the rectangle prism 
(5.0×3.0×1.0mm) was assumed. The total volume heat 
generation rate is 450 (J/sec) and the heating time is 
0.3333sec. The material physical properties, mechanical 
properties and their temperature dependency are shown in 
Table 1. 

(b) A finite element model of the transverse section in a bead-on-plate weld

(a) A long bead on plate weld

Ux=0 for all nodesQ=450[J/sec], heating time =0.3333sec

250mm
15

m
m

1mm

P

Co

Uy=0 Uz=0

 
Fig. 7. A basic model of a long bead-on-plate weld. 
Table 1. Temperature dependent material properties 

 
 
3.2 Welding thermal cycles and temperature 

distribution 
Fig. 8 shows the thermal cycle at the point   in the 

welding zone computed by an implicit FEM of thermal 
conduction. The maximum reached temperature in the 
thermal cycle at the point oC  is 1576  which is 
slightly higher than the melting point of steel (1500 ). 
The distribution contour of the maximum reached 
temperature around the welding zone is also shown in the 
same figure. The heat affected zone (>723 ) marked by 
a solid line can be easily observed. 
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Fig. 8. Welding thermal cycle at point Co and distribution 

of the maximum reached temperature. 
 

3.3 Transient radial eigenvalue 
This basic bead welding model is close to a simple 

cantilever beam. The eigenvalue of bending deformation 
mode in the z direction can be easily calculated using the 
equation (23) based the classical elastic vibration theory 
[36] if the material properties (mass density scaled 1000 
times, Young’s modulus and Poisson’s ratio) at the room 
temperature shown in Table 1 are used. 

sec]/[39

)115()108.7(1000
)12/115()100.2(

250
875.1

9

35

2

2

2

2
1

rad

Area
EI

Ldef

 (23) 

 
The estimated transient radial eigenvalue )(tdef by 
Eqs. (13-15) and its change with time are shown in Fig. 9. 
When the time is less than about 100 sec, the temperature 
around the welding zone is high and the transient 
eigenvalue is large. When the time is longer than about 
100 sec, the temperature around the welding zone 
becomes lower due to heat conduction and the transient 
radial eigenvalue saturates to a constant value. For the 
comparison, the constant eigenvalue computed by Eq. 
(23) and that computed by eigenvalue analysis using 
commercial FEM software LS-DYNA are also 
represented in the same figure. A good agreement among 
the computed radial eigenvalues by three methods was 
obtained when the temperature becomes low in the 
cooling process. 
 

 
Fig. 9. Estimated transient radial eigenvalue and its 

change with time. 
 
3.4 Welding deformation and thermal stresses 

To verify the proposed ACEXP method, the welding 
induced thermal stress and deformation were computed 
and compared with the results by the implicit FEM. In the 
ACEXP computation, the time scaling factor scalet  and 
temperature increment dT used in Eq.(9) are set to be 
about 1000.0 and 0.1, respectively [28].  

The transient deformation modes and the 
distribution of the z-displacement Uz(mm) during 
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welding and after cooling, computed by the ACEXP 
method, are shown in Fig. 10. The z-displacement Uz(t) 
at the right edge point of the model and its historical 
change with time are shown in Fig. 11. The welding 
deformation computed by the implicit FEM is also 
plotted in Fig. 11 and marked by cycles. It can be easily 
observed that the results by ACEXP method agreed very 
well with the implicit FEM. 

 

P

P

(a) Transient defection during welding

(b) Residual defection after welding
Uz(mm)
Max= 0.342
Min=-1.284  

Fig. 10. Welding deformation mode during welding and 
cooling by ACEXP method 
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Fig. 11. History of z-displacement at edge point P during 

welding and subsequently cooling. 
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Fig. 12. History of thermal stress at welded zone during 

heating and cooling. 
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Fig. 13. Distributions of residual stresses through 

thickness direction. 
Fig. 12 shows the historical changes of the transient 

thermal stresses Sxx and Syy in an element of the welded 
zone during heating and cooling process. The thermal 
stresses by the computed ACEXP method agreed very 
well with the results by the implicit FEM. Fig. 13 
represents the distributions of stresses Sxx and Syy 

through the thickness direction. The residual stresses 
computed by ACEXP method and implicit FEM are close 
each other. 
 
 
3.5 Effect of controlling parameters 

The transient computation of the ACEXP method is 
controlled by three parameters which are a time scaling 
parameter scalet , temperature increment dT defined by 
Eq.(9) and the stabilization computation interval  . The 
referencing values of these parameters from the view of 
high accuracy are 1,1.0,1000 NcdTtscale . Three 
additional computations were performed by changing 
these three parameters one by one. Fig.14 shows the 
transient displacement Uz(t) at the edge point P and the 
effect of these parameters. It can be observed that 
accelerating time control parameters dTtscale,  gave a 
limited influence on the transient deformation. However, 
the interval parameter Nc for the stabilization 
computation had a large effect on the transient 
deformation which saturated to a certain value slower 
than other computation cases. When Nc , the 
stabilization computation was performed only at the final 
step of thermal loading in order to keep the accuracy on 
residual results. All parameters had a little effect on the 
residual deformation. This means that the computed 
residual deformation by the proposed ACEXP method is 
not sensitive to input parameters. 
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Fig. 14. Effect of controlling parameters on welding 

deformation. 
 
4. Welding residual stress and deformation in a fillet 

joint 
4.1 A fillet welding specimen and FE model 

Fig. 15 shows a fillet weld in the experiment. The 
length, width and height of the specimen are 300mm, 
200mm and 100mm, respectively. The thickness of 
flange and web is 4.5mm and 3.2mm, respectively. The 
metal active gas (MAG) arc welding process was 
employed in the experiment and the welding conditions 
are described in the figure. The base material of the plate 
is SS400 and the filler metal is MG-50T. As shown in 
Fig.15, there were six tack welds at the two sides of web 
plate to connect the flange and web plates before the 
regular one-side fillet welding. During the welding, the 
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fillet specimen was placed on a support plate and there 
was no any additional constraint. 

Fig. 16 shows the mesh division with and boundary 
conditions of FE model. A type of eight node solid 
element was used. Total six nodal displacement 
components are constrained in order to prevent the rigid 
movement of the specimen. The constraints are located 
on the flange plate and their positions are about 30mm 
from the fillet weld toe. A moving volume heat source 
was employed in the simulation for welding thermal 
conduction. The welding heat source has a uniform 
distribution in the moving volume as shown in Fig. 16 by 
broken lines. 
 

MAG welding
190A, 19V, 
54cm/min

 
Fig. 15. A specimen of one side fillet welding. 

 
  

C: Uz=0

A: Ux, Uy, Uz=0

B: Ux, Uz=0

Total Nodes: 18483
Total Elements: 14940
DOF : 55449

Volume 
heat source  

Fig. 16. FE model of fillet welded joint for simulation. 
 
4.2 Material properties and their temperature 
dependence for simulation 

The physical properties (mass density den, specific 
heat c, thermal conductivity Lam, heat transfer coefficient 
beta including both convection and radiation, thermal 
expansion coefficient Alfa) normalized by the values 
(den0, c0, Lam0, beta0, Alfa0) at the room temperature 
20oC and their temperature dependence used in the 
thermal conduction simulation are shown in Fig. 17. The 
thermal properties of weld metal (WM) were assumed to 
be the same as base metal (BM). At the high temperature 
over 1000oC, the material properties were considered to 
be the same as those at 1000oC. 

The mechanical properties (Young’s modulus E, 
Poisson’s ratio pr, Yield stress SY and linear plastic strain 
hardening coefficient Etan) normalized by the values (E0, 
pr0, YS0, Etan0) at the room temperature and their 
temperature dependence are shown in Fig. 18. The 
properties of the base metal and filler weld metal are 

assumed to be the same. Young’s modulus, Yield stress 
and linear plastic strain hardening coefficient over 800oC 
are assumed to keep a constant value. The materials 
follow the isotropic linear hardening law and related 
plastic flow rule. 
 
4.3 Temperature distribution 
Fig. 19 shows the transient temperature distribution 
during welding computed by an implicit FEM of thermal 
conduction [23-25]. Fig. 20 represents the maximum 
temperature distributing on the middle transverse section. 
In the same figure, the macro photo of transverse section 
for the observation of molten zone is included. The zone 
where the maximum reached temperature is higher than 
1400oC agreed well with the molten zone observed by 
macro photo. Therefore, the results of thermal conduction 
simulation are reliable for the subsequent simulation of 
thermal stress and deformation. 
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Fig. 17. Normalized thermal physical properties and their 

temperature dependency 
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Fig. 18. Normalized mechanical properties and their 

temperature dependency. 
 

  

Temperature
Min=20
Max=2335  

Fig. 19. Transient temperature distribution during fillet 
welding. 
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Fig. 20. The maximum temperature distribution and 

macro photo of transverse section. 
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Fig. 21. Residual stress distribution computed by ACEXP 
FEM and implicit FEM. 
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Fig. 22. Welding deformation by ACEXP method. 

 

  

 
Fig. 23. The bending deformation of flange plate 

computed by ACEXP and comparison with experiment. 
 

4.4 Welding deformation 
Fig. 21 shows the overall deformation of the fillet 

weld computed by ACEXP method. Fig. 22 represents 

the bending deformation (z-displacement) of flange plate 
of the fillet joint and the comparison with measured 
results at the middle transverse section. A very good 
agreement between simulation and experiment can be 
observed. Therefore, the proposed ACEXP method is 
reliable for the prediction of welding deformation 
 
5. Summaries 
(1) An accelerated explicit method and its FEM program 

for the prediction of welding induced thermal stress 
and deformation were developed using a two-stage 
computation scheme, i.e., a dynamic thermal loading 
computation stage and a stabilization computation 
scheme. 

(2) Transient radial eigenvalue corresponding to the 
transient welding deformation was automatically 
computed using the mass center velocity of the FE 
model and a damping parameter was determined. 

(3) The welding deformation and residual stresses in a 
fillet joint of thin plates were accurately simulated 
using the proposed accelerated explicit method. 

(4) The simulation results by the accelerated explicit 
method were verified through the comparison with 
the results by the experimental measurement and 
conventional implicit FEM. A good agreement was 
obtained, and the proposed accelerated explicit 
method is accurate and reliable. 
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