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Abstract
In the present paper, we discuss the relationship between the Galois extension

corresponding to the kernel of the pro-l outer Galois representation associated to a
hyperbolic curve over a number field andl -moderate points of the hyperbolic curve.
In particular, we prove that, for a certain hyperbolic curve, the Galois extension
under consideration is generated by the coordinates of thel -moderate points of the
hyperbolic curve. This may be regarded as an analogue of the fact that the Galois ex-
tension corresponding to the kernel of thel -adic Galois representation associated to
an abelian variety is generated by the coordinates of the torsion points of the abelian
variety of l -power order. Moreover, we discuss an application of the argument of the
present paper to the study of the Fermat equation.
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Introduction

Throughout the present paper, letl be a prime number,k a number field (i.e., a
finite extension of the field of rational numbers),k an algebraic closure ofk, andC a

hyperbolic curveover k. Write Gk
def
D Gal(k=k), 1C for the pro-l geometric étale fun-

damental groupof C (i.e., the maximal pro-l quotient of the étale fundamental group
�1(C 
k k) of C 
k k), and

�C W Gk ! Out(1C)

2010 Mathematics Subject Classification. Primary 14H30; Secondary 14H25, 14K15, 11D41.



648 Y. HOSHI

for the pro-l outer Galois representation associated to C. In the present paper, we
study the Galois extension

�C
def
D k

Ker(�C)

of k corresponding to the kernel of�C.
The notion for an abelian varietyA=k naturally corresponding to the above pro-l

outer Galois representation�C is the l-adic Galois representation on the l-adic Tate
moduleof A. Thus, the Galois extension�A for the abelian varietyA naturally cor-
responding to the above Galois extension�C is the Galois extension of k obtained by
adjoining to k the coordinates of all torsion points of A of l-power order, i.e.,

�A D k(torsion points ofl -power order ofA).

From this point of view, we have the following two questions:
• What is an analogue for a hyperbolic curve of atorsion point of l-power orderof
an abelian variety?
• If one has an analogue for a hyperbolic curve of atorsion point of l-power order
of an abelian variety, then does the equality

�C D k(“torsion points ofl -power order” ofC)

hold?
Of course, to realize an analogue for a hyperbolic curve of a torsion point ofl -power or-
der of an abelian variety, one may consider a point that lies on theintersection of a given
hyperbolic curve and the set of torsion points of l-power order of the Jacobian variety of
the curve(by means of a suitable immersion from the curve into the Jacobian variety).
On the other hand, however, since (one verifies easily that) the above Galois extension
�C of k is alwaysinfinite, it follows from thefiniteness resultof [20], Théorème 1, that
this analogue for a hyperbolic curve of a torsion point ofl -power order always doesnot
satisfythe above equality

�C D k(“torsion points ofl -power order” ofC).

In §2 of the present paper, we define the notion of anl-moderate pointof a hyper-
bolic curve and an abelian variety (cf. Definition 2.4). Typical examples ofl-moderate
points of hyperbolic curves are as follows:
• The closed point of the tripodP1

k n {0, 1,1} corresponding to atripod l-unit
(cf. Definition 1.6; Proposition 2.8).
• The closed point of a hyperbolic curve of type (1, 1) corresponding to a torsion
point of l-power order of the underlying elliptic curve of the hyperbolic curve
(cf. Proposition 2.7).
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In §2, we also prove that,
for a closed point of a hyperbolic curve, the closed point isl-moderate if
and only if the closed point satisfies the condition “E(C, x, l )” introduced
by Matsumoto in [13], Introduction (cf. the equivalence (1), (3) of Prop-
osition 2.5).

Moreover, we prove that,
for a closed point of an abelian variety, the closed point isl-moderateif and
only if the closed point istorsion (cf. Proposition 2.6).

In particular,
the notion of anl-moderate pointof a hyperbolic curve may be regarded as
an analogue of the notion of atorsion point of an abelian variety.

From this observation, one may pose the following question:
Does the equality

�C D kmdr-l
C

def
D k(l -moderate points ofC)

hold?
Our first result concerning the above question is as follows (cf. Theorem 3.1).

Theorem A. Every l-moderatepoint of C isdefinedover�C, i.e.,

kmdr-l
C � �C.

Theorem A follows immediately from standard techniques that appear in the study
of Galois sections(cf., e.g., [6], [9]).

At the time of writing, the author does not know whether or notthe converse

�C � kmdr-l
C ,

i.e., theequality under consideration, holds in general. However, Theorem A leads nat-
urally to some examples of hyperbolic curves for which the equality under consideration
holds. In particular, we verify the following result (cf. Corollary 3.3; Example 3.4).

Theorem B. If one of the following five conditions is satisfied, then theequality

�C D kmdr-l
C

holds:
(i) C is isomorphic toP1

k n S for some S2 S({0, 1,1}) (cf. Definition 1.4, (iv)) such
that Sn {1} � k (e.g., the tripod P1

k n {0, 1,1}).
(ii) l is odd, and there exists a positive integer n such that C is isomorphic to the
(open) Fermat curveof degree ln

Spec(k[s, t ]=(sl n
C t l n

C 1))
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—where s and t are indeterminates.
(iii) l is odd, and there exists a positive integer n such that(l , n) ¤ (3, 1), and, more-
over, C is isomorphic to the(compactified) Fermat curveof degree ln

Proj(k[s, t, u]=(sl n
C t l n

C ul n
))

—where s, t , and u are indeterminates.
(iv) l D 3, and there exists a positive integer n such that a primitive3n-th root of
unity is contained in k, and, moreover, C is isomorphic to themodular curveY(3n)
parametrizing elliptic curves with0(3n)-structures(cf., e.g., [12]).
(v) l D 3, and there exists an integer n� 2 such that a primitive3n-th root of unity is
contained in k, and, moreover, C is isomorphic to the smooth compactification X(3n)
of the modular curve Y(3n) (cf. (iv)).

Theorem B in the case where condition (i) is satisfied is verified from Theorem A,
together with theexplicit descriptionof �

P

1
k n{0,1,1} given in [1]. Theorem B in the case

where one of conditions (ii), (iii), (iv), and (v) is satisfied is verified from Theorem A
and Theorem B in the case where condition (i) is satisfied, together with some results
given in [7].

Finally, we present an application of the discussion of the present paper to the
study of the Fermat equation(cf. Corollary 3.6).

Theorem C. Suppose that l is� 5 and regular. Let a, b 2 �
P

1
Q

n{0,1,1} n {0, 1} be

elements of�
P

1
Q

n{0,1,1} n {0, 1} such that

al
C bl

D 1.

Then the hyperbolic curve of type(0, 4) overQ(al )

P

1
Q(al ) n {0, 1,1, al }

is not quasi-l -monodromically full (cf. [5], Definition 2.2, (iii)).

Let us observe that it follows immediately from (the discussion given in the proof
of) Theorem C that
• a positive solution of aproblem of Iharaconcerning the kernel of the pro-l outer
representation associated toP1

Q

n {0, 1,1} (cf., e.g., [11], Lecture I, §2; also Re-
mark 1.8.1 of the present paper) and
• a positive solution of aproblem of Matsumoto and Tamagawaconcerning mon-
odromic fullness for hyperbolic curves (cf. [14], Problem 4.1; also [8], Introduction)
imply Fermat’s last theorem(cf. Remark 3.6.1). On the other hand, however, the au-
thor answered the problem of Matsumoto and Tamagawa given as [14], Problem 4.1,
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in the negativein [8] (cf. [8], Theorem A). The above implication is one of the main
motivations of studying the problem of Matsumoto and Tamagawa in [8].

0. Notations and conventions

Numbers. The notationZ will be used to denote the ring of rational integers.
The notationQ will be used to denote the field of rational numbers. Ifl is a prime

number, then we shall writeFl
def
D Z=lZ and Zl for the l -adic completion ofZ. We

shall refer to a finite extension ofQ as anumber field.

Profinite groups. Let G be a profinite group. Then we shall writeZ(G) for the
center of G. We shall say thatG is slim if Z(H ) D {1} for every open subgroup
H � G of G.

Let G be a profinite group andP a property for profinite groups. Then we shall
say thatG is almostP if an open subgroup ofG is P .

Let G be a profinite group. Then we shall writeGab for the abelianizationof G,
i.e., the quotient ofG by the closure of the commutator subgroup ofG.

Let G be a profinite group. Then we shall write Aut(G) for the group of (contin-
uous) automorphisms ofG, Inn(G) � Aut(G) for the group of inner automorphisms of

G, and Out(G)
def
D Aut(G)=Inn(G) for the group of outer automorphisms ofG. If, more-

over, G is topologically finitely generated, then one verifies easily that the topology of
G admits a basis ofcharacteristic open subgroups, which thus induces aprofinite top-
ology on the group Aut(G), hence also aprofinite topologyon the group Out(G).

Curves. Let S be a scheme andX a scheme overS. Then we shall say thatX
is a smooth curveover S if there exist a schemeXcpt which is smooth, proper, geo-
metrically connected, and of relative dimension one overS and a closed subscheme
D � Xcpt of Xcpt which is finite and étale overS such that the complementXcpt

n D
of D in Xcpt is isomorphic toX over S. Note that, as is well-known, ifX is a smooth
curve over (the spectrum of) a fieldk, then the pair “(Xcpt, D)” is uniquely determined
up to canonical isomorphism over k; we shall refer toXcpt as thesmooth compactifi-
cation of X over k and to a geometric point ofXcpt whose image lies onD as acusp
of X.

Let S be a scheme. Then we shall say that a smooth curveX over S is a hyper-
bolic curve (of type (g, r )) (respectively,tripod) over S if there exist a pair (Xcpt, D)
satisfying the condition in the above definition of the term “smooth curve” and a pair
(g, r ) of nonnegative integers such that 2g � 2C r > 0 (respectively, (g, r ) D (0, 3)),
any geometric fiber ofXcpt

! S is (a necessarily smooth proper connected curve) of
genusg, and the degree ofD � Xcpt over S is r .

Let S be a scheme,U � S an open subscheme ofS, and X a hyperbolic curve over
U . Then we shall say thatX admitsgood reductionover S if there exists a hyperbolic
curve XS over S such thatXS�S U is isomorphic toX over U .
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1. Generalities on the kernels of pro-l outer Galois representations

Throughout the present paper, letl be a prime number,k a number field,k an
algebraic closure ofk, C a hyperbolic curveover k, A an abelian varietyover k, and

V 2 {C, A}. Write Gk
def
D Gal(k=k) and Ccpt for the smooth compactificationof C over

k. In the present §1, we discuss generalities on the kernel of the pro-l outer Galois
representation associated toV .

DEFINITION 1.1. (i) We shall write

1V

for the pro-l geometric étale fundamental groupof V (i.e., the maximal pro-l quotient
of the étale fundamental group�1(V 
k k) of V 
k k);

5V

for the geometrically pro-l étale fundamental groupof V (i.e., the quotient of the étale
fundamental group�1(V) of V by the kernel of the natural surjection�1(V 
k k)�
1V ). Thus, we have a natural exact sequence of profinite groups

1! 1V ! 5V ! Gk ! 1

(cf. [25], Exposé IX, Théorème 6.1).
(ii) We shall write

�V W Gk ! Out(1V )

for the outer action determined by the exact sequence of (i).We shall refer to�V as
the pro-l outer Galois representation associated to V.
(iii) We shall write

Gk � 0V
def
D Gk=Ker(�V ) (� Out(1V ))

for the quotient ofGk determined by�V .
(iv) We shall write

�V
def
D k

Ker(�V )
,

i.e.,

0V D Gal(�V=k).

REMARK 1.1.1. It follows immediately from the discussion given in [18], §18, that
there exists a natural isomorphism of1A with the l-adic Tate module Tl (A) of A. More-
over, one verifies easily that the Galois representation�A W Gk ! Out(1A) D Aut(1A)
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coincides, relative to this isomorphism1A
�

! Tl (A), with the usuall -adic Galois repre-
sentationGk ! Aut(Tl (A)) associated toA.

REMARK 1.1.2. LetU � C be an open subscheme ofC. Then one verifies eas-
ily that U is a hyperbolic curveover k. Moreover, it follows immediately from [25],
Exposé V, Proposition 8.2, that the natural open immersionU ,! C induces an outer
surjection5U � 5C. Thus, we have a natural factorizationGk � 0U � 0C.

REMARK 1.1.3. Suppose thatCcpt(k) ¤ ;, and thatCcpt is of genus� 1. Write
JC for the Jacobian variety ofCcpt. Then it follows immediately from [15], Propos-
ition 9.1, together with [25], Exposé V, Proposition 8.2, that the morphismC ,! JC

determined by ak-rational point ofCcpt induces an outersurjection5C�5JC . Thus,
we have a natural factorizationGk � 0C � 0JC .

REMARK 1.1.4. Let N � Gk be a normal closed subgroup ofGk. Then it fol-
lows from theShafarevich conjecture for abelian varieties over number fieldsproven by
Faltings, together with Proposition 1.2, (ii), below, that, for a fixed positive integerd,

the set of the isomorphism classes of abelian varietiesA of dimensiond over
k such that Ker(�A) D N is finite.

On the other hand, it follows from [5], Theorem C, that, for a fixed pair (g, r ) of
nonnegative integers such that 2g� 2C r > 0,

the set of the isomorphism classes of hyperbolic curvesC of type (g, r ) over
k such that Ker(�C) D N is finite.

Moreover, it follows from [5], Theorem A, that
the cardinality of the set of the isomorphism classes of hyperbolic curvesC
of genus zero overk such thatC is l-monodromically full (cf. [5], Defin-
ition 2.2, (i)), every cusp ofC is defined overk, and, moreover, it holds that
Ker(�C) D N is at most one.

REMARK 1.1.5. If one thinks the (notpro-l, as in the present paper, but)pro-
finite outer Galois representation associated toC (i.e., the outer representation ofGk

on �1(C
k k) determined by a similar exact sequence to the exact sequence of Defin-
ition 1.1, (i)), then the kernel istrivial (cf. [10], Theorem C).

Proposition 1.2. The following hold:
(i) The profinite group0V is almost pro-l. More precisely, if the composite

Gk
�V
�! Out(1V )! Aut(1ab

V 
Zl Fl )

factors through a pro-l quotient of Gk, then the profinite group0V is pro-l.
(ii) Let p be a nonarchimedean prime of k whose residue characteristicis ¤ l. Then
it holds that V admitsgood reductionat p if and only if the Galois extension�V=k
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is unramifiedat p. In particular, the Galois extension�V=k is unramified for all but
finitely many nonarchimedean primes of k.
(iii) The profinite group0V is topologically finitely generated.
(iv) The center Z(0A) of 0A is infinite.
(v) The profinite group0C is almost slim.

(vi) It holds that�tpd
=k

def
D �

P

1
k n{0,1,1} � �C.

Proof. First, we verify assertion (i). Since1V is topologically finitely generatedand
pro-l, it follows that the kernel of the natural homomorphism Out(1V )! Aut(1ab

V 
Zl Fl )
is pro-l, which thus implies assertion (i). This completes the proofof assertion (i). As-
sertion (ii) in the case whereV D A (respectively,V D C) follows immediately from
[21], Theorem 1 (respectively, [24], Theorem 0.8). Assertion (iii) is a formal consequence
(cf., e.g., the proof of [14], Lemma 3.3) ofclass field theory, together with assertions (i),
(ii). Assertion (iv) follows immediately from the fact thatthe image of�A contains in-
finitely many homothetiesin Aut(1A) (cf. [2], [3]). Assertion (v) is a formal consequence
(cf., e.g., the proof of [5], Proposition 1.7, (ii)) of thepro-l version of the Grothendieck
conjecture for hyperbolic curves, i.e., [16], Theorem A. Assertion (vi) follows from [10],
Theorem C, (i) (cf. also [23], Remark 0.3; [23], Theorem 0.4;[23], Theorem 0.5). This
completes the proof of Proposition 1.2.

Corollary 1.3. 0C is not isomorphicto 0A. In particular, in the situation ofRe-
mark 1.1.3,the natural surjection0C � 0JC is not an isomorphism.

Proof. This follows immediately from Proposition 1.2, (iv), (v).

REMARK 1.3.6. (i) In the case of abelian varieties, we have a “tautological geo-
metric description” of the Galois extension�A of k corresponding to the kernel of�A

�A D k(torsion points ofl -power order ofA)

—where we writek(torsion points ofl -power order ofA) for the Galois extension of
k obtained by adjoining tok the coordinates of all torsion points ofA of l -power order.
(ii) On the other hand, in the case of hyperbolic curves, at the time of writing, the au-
thor does not know the existence of such a description of the Galois extension�C of k
corresponding to the kernel of�C in general. Moreover, we already verified (cf. Corol-
lary 1.3) that, in the situation of Remark 1.1.3,�C doesnot coincidewith �JC , i.e.,

�JC D k(torsion points ofl -power order ofJC) ¨ �C.

(iii) If the hyperbolic curveC is of genus zero, then we have an explicit “geometric
description” of �C given by Anderson and Ihara as follows (cf. Theorem 1.5 below).
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DEFINITION 1.4. For each algebraic extensionk0 � k of k, let us naturally iden-
tify P

1
k (k0) with k0 t {1}. Let S, T � P1

k (k) be subsets ofP1
k (k).

(i) We shall write

S
[l ]
 T

if

T D {x 2 P1
k (k) j xl

2 S}

—where we write1l def
D 1.

(ii) Let a, b, c 2 S be distinct elements ofS. Then we shall write

S
[(a,b,c)]
 T

if the following condition is satisfied: If we write� for the (uniquely determined) auto-
morphism ofP1

k
over k such that�(a) D 0, �(b) D 1, �(c) D 1, then

T D {�(x) 2 P1
k (k) j x 2 S}.

(iii) Let n be a nonnegative integer. Then we shall refer to a finite chain

SD S0
[�1]
 S1

[�2]
 � � �

[�n�1]
 Sn�1

[�n]
 Sn D T

—where, for eachi 2 {1, : : : , n}, “�i ” is either “l ” (cf. (i)) or “( a, b, c)” (cf. (ii)) for
distinct elementsa, b, c of Si�1 — as acusp chain(from S to T).
(iv) We shall write

S(S)

for the family of subsets ofP1
k (k) that consists of subsetsS0 of P1

k (k) such that there
exists a cusp chain fromS to S0 (cf. (iii)).
(v) We shall write

U(S) � k
�

for the subset ofk
�

that consists ofa 2 S0 n (S0\ {0,1}) for someS0 2 S(S) (cf. (iv)).
(vi) We shall write

E(S) � k
�

for the subgroup ofk
�

generated byU(S) � k
�

(cf. (v)).

Theorem 1.5 (Anderson–Ihara). Let S� P1
k (k) be a finite subset ofP1

k (k) such
that {0, 1,1} � S. (Thus, one verifies easily thatP1

k n S is ahyperbolic curveover k.)
Then it holds that

�

P

1
k nS
D k(E(S)) D k(U(S)).
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Proof. This is a consequence of [1], Theorem B.

DEFINITION 1.6. We shall refer to an element ofU({0, 1,1}) as atripod l-unit.
Thus, it follows from Theorem 1.5 that

�tpd
=k

def
D �

P

1
k n{0,1,1} D k(tripod l -units).

REMARK 1.6.1. An element ofE({0, 1,1}) is called ahigher circular l-unit
(cf. [1], §2.6, Definition). That is to say, a higher circularl -unit is an element ofk

�

obtained by forming a product of finitely many tripodl -units.

Lemma 1.7. Let S� P1
k (k) be a finite subset ofP1

k (k) such that{0, 1,1} � S.
Then the following hold:
(i) Every element ofS(S) contains{0, 1,1}.
(ii) Let T 2 S(S) be an element ofS(S). Then it holds thatS(T) � S(S). In particular,
it holds thatU(T) � U(S), E(T) � E(S).
(iii) Let T � P1

k (k) be a finite subset ofP1
k (k) such that S� T . Then, for every S0 2

S(S), there exists an element T0 2 S(T) such that S0 � T 0. In particular, it holds that
U(S) � U(T), E(S) � E(T).
(iv) For every pair (a, T) 2 U({0, 1,1})� S({0, 1,1}) such that a� {0, 1,1}, there
exists an element T0 2 S({0, 1,1}) such that T¨ T 0, and, moreover, a 2 k(T 0 n {1}).
(v) Let T, T 0 2 S(S) be elements ofS(S); S0 � P1

k (k) a finite subset ofP1
k (k) such

that T0 � S0 � T . Suppose that T� P1
k (k). Then it holds that k(U(S)) D k(U(S0)).

Proof. Assertion (i) follows immediately from the various definitions involved.
Next, we verify assertion (ii). LetT 0 2 S(T) be an element ofS(T). Then, by con-
sidering the “composite” of a cusp chain fromS to T and a cusp chain fromT to
T 0, it follows that T 0 2 S(S). This completes the proof of assertion (ii). Next, we ver-
ify assertion (iii). SinceS0 2 S(S), there exists a cusp chain fromS to S0. Thus, since
S� T , by considering a similar cusp chain fromT to the cusp chain fromS to S0, we
obtain an elementT 0 2 S(T) such thatS0 � T 0. This completes the proof of assertion
(iii). Next, we verify assertion (iv). Sincea 2 U({0, 1,1}), there exists an element
Sa 2 S({0, 1,1}) such thata 2 Sa. Moreover, sinceT 2 S({0, 1,1}), there exists a
cusp chain from{0, 1,1} to T . Thus, (since{0, 1,1} � Sa—cf. assertion (i)), by con-
sidering a similar cusp chain fromSa to the cusp chain from{0, 1,1} to T , we obtain
an elementT 0 2 S({0, 1,1}) such thatT ¨ T 0 (cf. our assumption thata � {0, 1,1},
which thus implies that{0, 1,1} ¨ Sa). On the other hand, sinceT 0 is obtained by

considering a cusp chain fromSa, it follows immediately from the definitions of “
[l ]
 ”

and “
[(a,b,c)]
 ” of Definition 1.4, (i), (ii), that a 2 Sa � k(T 0 n {1}). This completes the

proof of assertion (iv).
Finally, we verify assertion (v). Now I claim that the following assertion holds:
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Claim 1.7.A. It holds that k(U(S)) D k(U(T)).

Indeed, let us first observe that one verifies easily that the automorphism “� ” of P1
k

in Definition 1.4, (ii), is defined overk(a, b, c) (cf. also the discussion concerning
“T (a,b,c)(x)” given in [1], §2.3). Thus, it follows immediately from theinduction on
the “ length” of a cusp chain fromS to T that, to verify Claim 1.7.A, it suffices to

verify Claim 1.7.A in the case whereS
[l ]
 T . Write P1

k nT ! P

1
k nS for the connected

finite étale covering given by mappingu 7! ul , where we writeu for the standard co-
ordinate ofP1

k . (Here, we note that it follows from assertion (i) that everyelement of
S(S) contains{0,1}.) Then one verifies easily that this covering satisfies conditions
(i), (ii), (iii), (iv), and (v) of [7], Lemma 28. Thus, it follows from [7], Lemma 28,
that�

P

1
k nS
D �

P

1
k nT

, which implies (cf. Theorem 1.5) Claim 1.7.A. This completes the
proof of Claim 1.7.A.

It follows from Claim 1.7.A that�
P

1
k nS
D �

P

1
k nT
D �

P

1
k nT

0

. On the other hand,
it follows from Remark 1.1.2 that�

P

1
k nT

0

� �

P

1
k nS

0

� �

P

1
k nT

. Thus, we conclude that
�

P

1
k nS
D �

P

1
k nS

0

, which thus implies (cf. Theorem 1.5) assertion (v). This completes the
proof of assertion (v).

DEFINITION 1.8. We shall write

kun-l (� k)

(cf. the notation at the beginning of [6], §1) for the maximalGalois extension ofk that
satisfies the following conditions:
(1) The extensionkun-l

=k is unramified at every nonarchimedean prime ofk whose
residue characteristic is¤ l .
(2) If �l 2 k is a primitive l -th root of unity, then�l 2 kun-l , and, moreover, the exten-
sion kun-l

=k(�l ) is pro-l.

REMARK 1.8.1. Ihara posed the following question concerning an “arithmetic
description” of �tpd

=Q

(cf., e.g., [11], Lecture I, §2):
(I l ): Does the equality

�tpd
=Q

D Q

un-l

hold?
Note that the inclusion�tpd

=Q

� Q

un-l was already verified. (In fact, one verifies easily

from Proposition 1.2, (i), (ii), that this inclusion�tpd
=Q

� Q

un-l holds.) The problem
(I l ) remainsunsolvedfor generall . On the other hand, ifl is a regular prime, then
the problem (I l ) was answered in theaffirmativeas follows (cf. Theorem 1.9 below).

Theorem 1.9 (Brown, Sharifi). Suppose that l is anodd regularprime. Then
the equality

�tpd
=Q

D Q

un-l
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of the problem(I l ) of Remark 1.8.1holds.

Proof. This follows immediately from the main result of [4],together with [22],
Theorem 1.1.

2. Moderate points

In the present §2, we maintain the notation of the preceding §1. In the present §2,
we define and discuss the notion of anl-moderate pointof V (cf. Definition 2.4). In
particular, we prove that, for a closed point of a hyperboliccurve, the closed point is
l-moderateif and only if the closed point satisfies the condition “E(C,x, l )” introduced
by Matsumoto in [13], Introduction (cf. the equivalence (1), (3) of Proposition 2.5
below). Moreover, we also prove that, for a closed point of an abelian variety, the
closed point isl-moderateif and only if the closed point istorsion (cf. Proposition 2.6
below). From this point of view, the notion of anl-moderate pointof a hyperbolic
curve may be regarded as an analogue of the notion of atorsion point of an abelian
variety (cf. Remark 2.6.1, (i)).

Lemma 2.1. There exists aunique splittingsV of the natural surjection

5V �Gk Ker(�V )
pr2
� Ker(�V )

that satisfies the following conditions:
(1) The image of sV is normal in 5V (� 5V �Gk Ker(�V )).
(2) If V D A, then the image of sA is containedin the image of some(or, alternatively,
every—cf.(1)) splitting of5A� Gk determined by the identity section of A=k.

Proof. Lemma 2.1 in the case whereV D C follows immediately from [7],
Lemma 4, (i), (ii), together with the well-known fact that1C is topologically finitely
generatedand center-free. Next, we verify Lemma 2.1 in the case whereV D A. Let
us first observe that theuniquenessof such ansA follows immediately from condi-
tion (2) of the statement of Lemma 2.1, together with the various definitions involved.
Thus, we verify theexistence ofsuch ansA. Now let us observe that the identity sec-

tion of A=k gives rise to an isomorphism5A
�

!1AÌGk; moreover, one verifies easily

that the closed subgroup{1} Ì Ker(�A) � 1A ÌGk
�

 5A is normal. Thus, the closed

subgroup{1} Ì Ker(�A) � 1A Ì Gk
�

 5A of 5A gives rise to a splitting of the sur-
jection of the statement of Lemma 2.1 that satisfies the condition in the statement of
Lemma 2.1. This completes the proof of Lemma 2.1 in the case where V D A, hence
also of Lemma 2.1.

DEFINITION 2.2. We shall write

8V
def
D 5V=Im(sV )
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(cf. Lemma 2.1). Thus, we have a natural commutative diagramof profinite groups

1 1V 5V Gk 1

1 1V 8V 0V 1

 

!

 

!

(

(

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

—where the horizontal sequences areexact, the vertical arrows aresurjective, and the
right-hand square iscartesian.

REMARK 2.2.1. If V D C, then it follows immediately from the proof of
Lemma 2.1 that the quotient5C � 8C defined in Definition 2.2coincideswith the

quotient “8{l }
C=k ” defined in [7], Definition 1, (iv). On the other hand, ifV D A, then

one verifies easily that the quotient5A� 8A defined in Definition 2.2 doesnot co-

incide with the quotient “8{l }
A=k ” defined in [7], Definition 1, (iv). (In fact, one verifies

easily that the quotient “8{l }
A=k ” defined in [7], Definition 1, (iv), coincideswith the

quotient5A� Gk � 0A.)

DEFINITION 2.3. Let x 2 V be a closed point ofV . Then we shall write

�(x) � k

for the (necessarilyfinite Galois) extension ofk obtained by forming the Galois closure
over k of the residue field ofV at x in k.

DEFINITION 2.4. Let x 2 V be a closed point ofV .
(1) Suppose thatx 2 V is k-rational, i.e., x 2 V(k). Then we shall say thatx 2 V
is l-moderateif the splitting (that is well-defined, up to1V -conjugation) of the upper
exact sequence of the commutative diagram of Definition 2.2 induced byx (i.e., a pro-l
Galois section ofV=k arising from x 2 V(k)—cf. [6], Definition 1.1, (ii)) arises from
a splitting of the lower exact sequence of the commutative diagram of Definition 2.2.
(2) We shall say thatx 2 V is l-moderateif every (necessarily�(x)-rational) closed
point of V 
k �(x) arising from x is l -moderate (in the sense of (i)).

Proposition 2.5. Let x 2 C(k) be a k-rational point of C. Write U
def
D C n {x} �

C. (Thus, one verifies easily that U is ahyperbolic curveover k.) Then the following
conditions are equivalent:
(1) The k-rational point x2 C(k) is l-moderate.
(2) The natural surjection0U � 0C (cf. Remark 1.1.2)is an isomorphism, i.e.,
�C D �U .
(20) The kernel of the natural surjection0U � 0C (cf. Remark 1.1.2)is finite, i.e., the
Galois extension�U=�C is finite.
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(3) The kernel of the composite

Gk ! 5C ! Aut(1C)

of the splitting

Gk ! 5C

(that is well-defined, up to 1C-conjugation) of the upper exact sequence of the com-
mutative diagram ofDefinition 2.2 induced by x and the action

5C ! Aut(1C)

obtained by conjugationcoincideswith Ker(�C).

Proof. This follows immediately from [7], Proposition 33, (i), together with Re-
mark 2.2.1.

REMARK 2.5.1. In [13], Matsumoto studied a closed point of a proper hyper-
bolic curve over a number field that satisfies condition (3) ofProposition 2.5. The
study of the present §2, as well as the study of [7], §4, is inspired by the study of [13].

Proposition 2.6. Let x 2 A(k) be a k-rational point of A. Then the following
conditions are equivalent:
(1) The k-rational point x2 A(k) is l-moderate.
(2) The k-rational point x2 A(k) is torsion.

Proof. Write “H1
cont” for the first continuous cohomology group and KumW A(k)!

H1
cont(Gk, 1A) for the pro-l Kummer homomorphism associated toA (cf., e.g., [6], Re-

mark 1.1.4, (iii)). Consider the following condition:
(10) The cohomology class Kum(x) 2 H1

cont(Gk,1A) is containedin H1
cont(0A,1A)�

H1
cont(Gk, 1A) (cf. [19], the discussion following Corollary 2.4.2; [19], Corollary 2.7.6).

Then one verifies easily from the definition of the splittingsA of Lemma 2.1 that the
equivalence (1), (10) holds.

Next, I claim that the following assertion holds:

Claim 2.6.A. The cohomology group H1cont(0A, 1A) is torsion.

Indeed, let us recall (cf. [2], [3]) that the image Im(�A)
�

! 0A � Aut(1A) of �A con-
tains a subgroupJ � Aut(1A) of Aut(1A) that consists ofhomothetiesand is iso-
morphic toZl as an abstract profinite group. (That is to say,J is nontrivial and con-
tained in 1C lZl (respectively, 1C l 2

Zl ) � Z�l � Aut(1A) if l is odd (respectively,
even).) Then one verifies easily that there exists a positiveinteger N such that, for
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each positive integern, the invariant part (1A=l n
1A)J is annihilated by N, which im-

plies that the kernel of the natural homomorphismH1
cont(0A, 1A) ! H1

cont(J, 1A) is
torsion (cf. also [19], the discussion following Corollary 2.4.2; [19], Corollary 2.7.6).
Thus, to complete the verification of Claim 2.6.A, it sufficesto verify that H1

cont(J,1A)
is torsion. On the other hand, this follows immediately from a straightforward compu-
tation by means of the simple structure ofJ � Aut(1A). This completes the proof of
Claim 2.6.A.

Next, we verify the implication (1)) (2). Suppose that condition (1) is satisfied.
Then it follows from the above equivalence (1), (10), together with Claim 2.6.A, that
Kum(x) is torsion. Thus, there exists a positive integerN such thatN x 2 Ker(Kum).
On the other hand, one verifies easily from theMordell–Weil theorem(cf., e.g., [18],
Appendix II) that the kernel Ker(Kum) isfinite. Thus, we conclude thatN x, hence
also x, is torsion. This completes the proof of the implication (1)) (2).

Finally, we verify the implication (2)) (1). Suppose that condition (2) is sat-
isfied. Let x

Dl , x
¤l 2 A(k) be torsion elements ofA(k) such thatx

Dl is of l-power
order, x

¤l is of prime-to-l order, and x D x
Dl C x

¤l . Then it follows immediately that
Kum(x) D Kum(x

Dl ). Moreover, since (one verifies easily that)x
Dl is l1-divisible in

A(�A), by considering the image ofx
Dl via the pro-l Kummer homomorphism associ-

ated to A
k �A, we conclude that the image of Kum(x) D Kum(x
Dl ) 2 H1

cont(Gk,1A)
in H1

cont(Ker(�A),1A) vanishes, which implies that Kum(x)D Kum(x
Dl ) 2 H1

cont(Gk,1A)
is containedin H1

cont(0A,1A) � H1
cont(Gk,1A) (cf. [19], the discussion following Corol-

lary 2.4.2; [19], Corollary 2.7.6). Thus, it follows from the above equivalence (1),
(10) that x satisfies condition (1). This completes the proof of the implication (2))
(1), hence also of Proposition 2.6.

REMARK 2.6.1. (i) By the equivalence given in Proposition 2.6,
the notion of anl-moderate pointof a hyperbolic curve may be regarded as
an analogue of the notion of atorsion point of an abelian variety.

(ii) However, although (it is immediate that) the issue of whether or not a point of an
abelian variety istorsion doesnot dependon the choice ofl , the issue of whether or
not a point of a hyperbolic curve isl-moderate dependson the choice ofl (cf. Re-
mark 2.8.1 below). A similar phenomenon to this phenomenon may be found in the
analogy between the property ofnot admitting complex multiplicationand the prop-
erty of being quasi-l-monodromically full(cf. [5], Definition 2.2, (iii)). The property
of being quasi-l-monodromically fullfor a hyperbolic curve may be regarded as an
analogue of the property ofnot admitting complex multiplicationfor an elliptic curve
(cf. [14], §4.1; [5], Introduction; [8], Introduction). Onthe other hand, in fact, although
the issue of whether or not an elliptic curve admitscomplex multiplicationdoes not
dependon the choice ofl , the issue of whether or not a hyperbolic curve isquasi-l-
monodromically full dependson the choice ofl (cf. [8], Theorem A).
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REMARK 2.6.2. Let us recall from Remark 1.3.6, (i), that, in the caseof abelian
varieties, we have a “tautological geometric description” of the Galois extension�A of
k corresponding to the kernel of�A:

�A D k(torsion points ofl -power order ofA).

On the other hand, as we discussed in Remark 2.6.1, (i), the notion of an l-moderate
point of a hyperbolic curve may be regarded as an analogue of the notion of a torsion
point of an abelian variety. Thus, one may pose the following question:

Is �C generated by the coordinates of alll-moderate pointsof C? That is to
say, does the equality

�C D kmdr-l
C

def
D

Y

x2C W l -moderate

�(x)

hold?
The §3 focuses on the study of this question.

REMARK 2.6.3. One may expect, from the observation given in Remark 2.6.1,
(i), that the following assertion holds:

Suppose thatC is of genus� 1. Let x1,x2 2 C(k) be twok-rational l-moderate
points of C. Write JC for the Jacobian variety ofCcpt. Then thek-rational
point of JC obtained by forming the difference ofx1 and x2 is l-moderate,
i.e., torsion (cf. Proposition 2.6).

However, in general, the above assertion doesnot hold (cf. Remark 3.4.1 below).

REMARK 2.6.4. The observation given in the proof of Proposition 2.6was re-
lated to the author bySeidai Yasuda.

Proposition 2.7. Suppose that C is oftype (1, 1). Write E for the elliptic curve
over k determined by the hyperbolic curve C. Then every nontrivial torsion point of
E of l-power order is an l-moderatepoint of C.

Proof. This follows immediately from [7], Proposition 40, together with the im-
plication (3)) (1) of Proposition 2.5.

Proposition 2.8. Every closed point ofP1
k n {0, 1,1} corresponding to atripod

l -unit is l-moderate.

Proof. Letx 2 P1
k n{0, 1,1} be a closed point that corresponds to atripod l-unit.

Then it follows from the definition of a tripodl -unit, together with Lemma 1.7, (i),
that there exists an elementT 2 S({0, 1,1}) of S({0, 1,1}) such that ({0, 1,1} �)
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{0, 1,1, x} � T . Thus, it follows immediately from Lemma 1.7, (v), togetherwith
Theorem 1.5, that�

P

1
k(Tn{1})n{0,1,1} D �

P

1
k(Tn{1})n{0,1,1,x} D �

P

1
k(Tn{1})nT

. In particular, we

conclude that the extension

�

P

1
�(x)n{0,1,1,x}=�P

1
�(x)n{0,1,1}

is finite, which implies (cf. the implication (20) ) (1) of Proposition 2.5) thatx is
l-moderate. This completes the proof of Proposition 2.8.

REMARK 2.8.1. Let�l 2 Q be a primitivel -th root of unity. Then it follows from
Proposition 2.8 that the (Q(�l )-rational) closed point ofP1

Q(�l )
n{0,1,1} corresponding to

�l is l-moderate. On the other hand, the (Q(�l )-rational) closed point ofP1
Q(�l )
n{0, 1,1}

corresponding to�l is not l0-moderatefor every prime numberl 0 ¤ l . Indeed, since (one
verifies easily that) 1� �l is not a unitat the (unique) nonarchimedean primel of Q(�l )
whose residue characteristic isD l , one verifies easily that the hyperbolic curveP1

Q(�l )
n

{0, 1,1,�l } of type (0, 4) overQ(�l ) doesnot admit good reductionat l. Thus, it follows
from Proposition 1.2, (ii), that the Galois extension “�

P

1
Q(�l )n{0,1,1,�l } ” of Q(�l ) that occurs

in the case where we take “l ” to be l 0 (i.e., the Galois extension ofQ(�l ) corresponding
to the kernel of thepro-l 0 outer Galois representation associated toP

1
Q(�l )
n {0, 1,1, �l })

is ramifiedat l. On the other hand, since (one verifies easily again from Proposition 1.2,
(ii), that] the Galois extension “�

P

1
Q(�l )n{0,1,1} ” of Q(�l ) that occurs in the case where we

take “l ” to be l 0 (i.e., the Galois extension ofQ(�l ) corresponding to the kernel of the
pro-l 0 outer Galois representation associated toP

1
Q(�l )
n {0, 1,1}) is unramifiedat l, it

follows from the equivalence (1), (2) of Proposition 2.5 that the (Q(�l )-rational) closed
point of P1

Q(�l )
n {0, 1,1} corresponding to�l is not l0-moderate. Thus, we conclude that

the issue of whether or not a given closed point of a hyperbolic curve is l-
moderate dependson the choice ofl .

REMARK 2.8.2. Let us observe that the examples ofmoderate closed pointsgiven
in Proposition 2.7 (respectively, Proposition 2.8) arisesfrom a sort of theelliptic (re-
spectively,Bely̆ı ) cuspidalizationdiscussed in [17], §3.

3. Kernels of pro-l outer Galois representations and moderate points

In the present §3, we maintain the notation of the preceding §2. In the present
§3, we discuss the relationship between the Galois extension of k corresponding to the
kernel of the pro-l outer Galois representationassociated toC and l-moderate pointsof
C. More concretely, we study the question posed in Remark 2.6.2: Does the equality

�C D kmdr-l
C

def
D

Y

x2C W l -moderate

�(x)

hold?
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Theorem 3.1. Every l-moderatepoint of C isdefinedover �C, i.e.,

kmdr-l
C � �C.

Proof. Letx 2 C be anl-moderateclosed point ofC. Let us first observe that, by
replacingk by the (necessarilyfinite Galois) extension ofk corresponding to the image
of the compositeG

�(x) ,! Gk� 0C (note that this extension ofk is containedin �C),
we may assume without loss of generality that the compositeG

�(x) ,! Gk � 0C is

surjective. Then one verifies easily that the natural morphismC 
k �(x)
pr1
! C induces

a commutative diagram of profinite groups

1 1C
k�(x) 8C
k�(x) 0C
k�(x) 1

1 1C 8C 0C 1

 

!

 

!

 

!

o

 

!

 

!

o

 

!

 

!

o

 

!

 

!

 

!

 

!

—where the horizontal sequences areexact, and the vertical arrows areisomorphisms.
Next, let us observe that it follows immediately from the definition of anl -moderate

point that thel -moderate closed pointx of C induces a splitting of the upper horizontal
sequence of the above commutative diagram. Thus, since the vertical arrows of the above
commutative diagram areisomorphisms, we obtain a splitting of the lower horizontal
sequence of the above commutative diagram. In particular, since the right-hand square
of the commutative diagram of Definition 2.2 iscartesian, we obtain a splittings of
the upper horizontal sequence of the commutative diagram ofDefinition 2.2 in the case
whereV D C, i.e., apro-l Galois section sof C=k (cf. [6], Definition 1.1, (i)).

Next, let us observe that it follows immediately from the definition of s that the
restriction ofs to G

�(x) � Gk coincideswith a pro-l Galois section ofC
k �(x)=�(x)
arising from a�(x)-rational closed point ofC
k �(x) (that arises fromx), i.e., the re-
striction of s to G

�(x) � Gk is geometric(cf. [6], Definition 1.1, (iii)). Thus, it follows
from the implication (2)) (1) of [9], Lemma 1.5, thats is geometric. Let y 2 Ccpt(k)
be ak-rational point ofCcpt such that the image ofs is contained in a decomposition
subgroup of5C associated toy 2 Ccpt(k). Then it follows from [9], Lemma 1.4, to-
gether with the definitions ofs and y, that x D y. In particular, we conclude that
�(x) D k � �C. This completes the proof of Theorem 3.1.

REMARK 3.1.1. (i) Consider the following conditions:
(1) The equality�C D kmdr-l

C holds.
(10) The inclusion�C � kmdr-l

C holds.
(2) The extension�C of kmdr-l

C (cf. Theorem 3.1) isfinite.
(3) There areinfinitely many l-moderatepoints of C.
(4) There is anl-moderatepoint of C.
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Then we have an equivalence and implications

(1)� (10) H) (2)H) (3)H) (4).

Indeed, the equivalence (1), (10) follows from Theorem 3.1. The implication
(1) ) (2) is immediate. The implication (2)) (3) follows immediately from the
(easily verified) fact that the Galois extension�C=k is infinite. The implication (3)
) (4) is immediate.

(ii) The discussion given in (i) leads naturally to the following observation concerning
the study ofrational points of hyperbolic curves:

Suppose that condition (4) of (i) holds (e.g., condition (1)of (i) holds). Write
k0

C (� k) for the finite Galois extension ofk corresponding to the kernel of
the composite

Gk
�C
! Out(1C)! Aut(1ab

C 
Zl Fl )

and (k0
C �) (k0

C)pro-l
� (k0

C)nilp
� (k0

C)solv (� k) for the maximal pro-l , nilpotent,
solvable Galois extensions ofk0

C, respectively. Then

C((k0
C)pro-l ),

hence also

C((k0
C)nilp) and C((k0

C)solv),

is nonempty. In particular, if the above displayed composite istrivial , then it
holds that

C(kpro-l ), C(knilp), C(ksolv) ¤ ;.

Indeed, this follows immediately from Theorem 3.1, together with Proposition 1.2, (i).

REMARK 3.1.2. The observation given in the discussion of Remark 3.1.1 was
related to the author byAkio Tamagawa.

Corollary 3.2. Let X! C be a connected finite étale covering of C that arises
from an open subgroup of5C. Suppose that X is ahyperbolic curveover k (i.e., X
is geometrically connectedover k). Then the following hold:
(i) Let x2 X be a closed point of X. Write c2 C for the closed point of C obtained
by forming the image of x via the covering X! C. Then it holds that x is l-moderate
if and only if c is l-moderate. Moreover, in this case, it holds that

�C � �(x) D �X.

In particular, if there exists an l-moderateclosed point of Xdefinedover �C, then it
holds that

�C D �X .
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(ii) We have natural inclusions of fields

kmdr-l
C � kmdr-l

X

\ \

�C � �X .

Moreover, the extension�X=�C (determined by the lower horizontal inclusion)
is finite.
(iii) Suppose that the extension

�C=k
mdr-l
C

(cf. Theorem 3.1)is finite (e.g., C is isomorphic toP1
k n {0, 1,1}—cf. Corollary 3.3

below). Then the two extensions

�X=k
mdr-l
X ,

kmdr-l
X =kmdr-l

C

(cf. (ii)) are finite.

Proof. First, we verify assertion (i). Let us first observe that it follows immedi-
ately from the equivalence (1), (20) of Proposition 2.5, together with Theorem 3.1,
that, to verify assertion (i), by replacingk by �(x), we may assume without loss of
generality thatx 2 X(k), c 2 C(k). Thus, assertion (i) follows from [7], Proposition
35, together with the implication (3)) (1) of Proposition 2.5. This completes the
proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that, by considering the closed
points of X that lie over thel-moderateclosed points ofC, we conclude immediately
from assertion (i) that

kmdr-l
C � kmdr-l

X .

On the other hand, it follows from [7], Proposition 25, (i), that we have an inclusion
�C � �X , and, moreover, the extension�X=�C is finite. Thus, assertion (ii) follows
immediately from Theorem 3.1. This completes the proof of assertion (ii). Assertion
(iii) follows immediately from the various definitions involved, together with assertion
(ii). This completes the proof of Corollary 3.2.

Corollary 3.3. Let S2 S({0, 1,1}) be an element ofS({0, 1,1}) such that
Sn {1} � k. Then it holds that

�

P

1
k nS
D kmdr-l

P

1
k nS

.

In particular, the equality

�tpd
=k

def
D �

P

1
k n{0,1,1} D kmdr-l

P

1
k n{0,1,1}

holds.
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Proof. It follows from Theorem 3.1 that, to verify Corollary3.3, it suffices to
verify that�

P

1
k nS
� kmdr-l

P

1
k nS

. On the other hand, it follows immediately from Lemma 1.7,

(v), together with Theorem 1.5 and the equality of Definition1.6, that�
P

1
k nS

is gener-
ated by the tripod l-units. Thus, to verify Corollary 3.3, it suffices to verify that, for
each tripodl -unit a 2 k n {0, 1}, it holds thata 2 kmdr-l

P

1
k nS

. To this end, let us recall from

Lemma 1.7, (iv), that there exists an elementT 2 S({0, 1,1}) such thatS¨ T , and,
moreover,a 2 k(T n {1}). Let a0 2 T n S. Then sinceS� St {a0} � T , it follows
immediately from Lemma 1.7, (v), thatk(T n {1}, U(S)) D k(T n {1}, U(St {a0})).
Thus, it follows from Theorem 1.5, together with the equivalence (1), (20) of Prop-
osition 2.5, that the closed point ofP1

k n S corresponding toa0 2 k is l-moderate. In
particular, sincea 2 k(T n {1}) D k(T n S) (cf. our assumption thatSn {1} � k), we
conclude thata 2 kmdr-l

P

1
k nS

. This completes the proof of Corollary 3.3.

EXAMPLE 3.4. Theorem 3.1 and Corollary 3.2 give us other examples of hyper-
bolic curvesX over k for which the equality

�X D kmdr-l
X

holds as follows:
(i) Suppose thatl is odd. Let n be a positive integer. Write

X
def
D Spec(k[s, t ]=(sl n

C t l n
C 1))

—wheres and t are indeterminates. Then the equalities

�tpd
=k
D �X D kmdr-l

X

hold. Indeed, let us consider the connected finite étale covering X! P

1
k n{0,1,1} given

by mappingu 7! sl n
(where we writeu for the standard coordinate ofP1

k ). Then one
verifies easily that this covering arises from an open subgroup of5

P

1
k n{0,1,1}. Moreover,

one verifies immediately that every closed point ofX that lies (relative to this cover-
ing) over the closed point ofP1

k n {0, 1,1} corresponding to atripod l-unit is defined
over k(tripod l -units). Thus, since such a closed point ofP1

k n {0, 1,1} is l-moderate
(cf. Proposition 2.8), and

k(tripod l -units)D �tpd
=k

(cf. Definition 1.6), it follows immediately from Corollary3.2, (i), (ii), that the equality

�tpd
=k
D �X

and the inclusion

�tpd
=k
� kmdr-l

X
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hold. In particular, it follows from Theorem 3.1 that the equalities

�tpd
=k
D �X D kmdr-l

X

hold.
(ii) Let n be a positive integer. Suppose thatl is odd, and that (l , n) ¤ (3, 1). Write

X
def
D Proj(k[s, t, u]=(sl n

C t l n
C ul n

))

—wheres, t , and u are indeterminates. Then the equalities

�tpd
=k
D �X D kmdr-l

X

hold. Indeed, by considering the open subschemeU � X of X given by “X” of (i), we
conclude from (i), together with Remark 1.1.2; Proposition1.2, (vi), that the equalities

�tpd
=k
D �X D �U

hold. Moreover, let us observe that if a closed pointx 2 X of X lies on the open
subschemeU � X (i.e., given by “X” of (i)) and is l-moderateas a closed point ofU ,
then it follows from the equivalence (1), (2) of Proposition 2.5 that�U D �Un{x};
thus, it follows immediately from Remark 1.1.2 that�X D �Xn{x}, i.e., x 2 X is l-
moderateas a closed point ofX (cf. the equivalence (1), (2) of Proposition 2.5). In
particular, it follows that the inclusion

kmdr-l
U � kmdr-l

X ,

hence (cf. (i); Theorem 3.1) also the equalities

�tpd
=k
D �X D kmdr-l

X

hold.
(iii) Suppose thatl D 3, and that a primitive cube root of unity is contained ink. Write
X for the modular curve Y(3) parametrizing elliptic curves with0(3)-structures(cf.,
e.g., [12]) overk. Then the equalities

�tpd
=k
D �X D kmdr-3

X

hold. Indeed, as is well-known, if�3 2 k is a primitive cube root of unity, then there
exists an isomorphism overk

X ' P1
k n {1, �3, � 2

3 ,1}.

Thus, since (one verifies easily that){0, 1,�3, � 2
3 ,1} 2 S({0, 1,1}), it follows imme-

diately from Lemma 1.7, (v), together with Remark 1.1.2; Proposition 1.2, (vi); The-
orem 1.5, that the equalities

�tpd
=k
D �X D �

P

1
k n{0,1,�3,� 2

3 ,1}
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hold. Let a 2 k n {0, 1} be a tripod 3-unit; write x 2 X ' P

1
k n {1, �3, � 2

3 ,1} for
the closed point ofX corresponding toa1=3. (Note that it follows immediately from
the definition of a tripodl -unit that a1=3 is a tripod 3-unit.) Then, by considering the
connected finite étale coveringP1

k n {0, 1,�3, � 2
3 ,1} ! P

1
k n {0, 1,1} given by map-

ping u 7! u3 (where we writeu for the standard coordinate ofP1
k ), we conclude from

Corollary 3.2, (i), together with Proposition 2.8, thatx 2 X ' P

1
k n {1, �3, � 2

3 ,1} is
3-moderateas a closed point ofP1

k n {0, 1,�3, � 2
3 ,1}. In particular, it follows immedi-

ately from a similar argument to the argument applied in (ii)(concerning “x 2 X” of
(ii)) that x is 3-moderateas a closed point ofX. Thus, it follows that

a1=3
2 kmdr-3

X ,

which thus implies (cf. the equality of Definition 1.6) that

�tpd
=k
� kmdr-3

X .

In particular, it follows from Theorem 3.1 that the equalities

�tpd
=k
D �X D kmdr-3

X

hold.
(iv) Let n be a positive integer. Suppose thatl D 3, and that a primitive 3n-th root of
unity is contained ink. Write X for the modular curve Y(3n) parametrizing elliptic
curves with0(3n)-structures(cf., e.g., [12]) overk. Then the equalities

�tpd
=k
D �X D kmdr-3

X

hold. Indeed, let us first observe that it is immediate that, to verify the equalities under
consideration, we may assume without loss of generality that kDQ(�3n), where�3n

2 k
is a primitive 3n-th root of unity. Let a 2 k n {0, 1} be a tripod 3-unit. Write x 2
Y(3)' P1

k n {1, �3, � 2
3 ,1} (cf. (iii)) for the closed point ofY(3) corresponding toa1=3

and Ex for the elliptic curve overk(a1=3) determined by the closed pointx 2 Y(3).
Then it follows from the discussion given in (iii) that the closed pointx 2 Y(3) is
3-moderate. In particular, it follows immediately from the equivalence (1), (2) of
Proposition 2.5, together with Proposition 1.2, (ii), thatthe elliptic curve Ex admits
good reductionat every nonarchimedean prime ofk(a1=3) whose residue characteristic
is ¤ 3. Thus, in light of k(a1=3) � �tpd

=k
D kun-3 (cf. Definition 1.6; Theorem 1.9),

since every torsion point ofEx of order 3 is k(a1=3)-rational, and the kernel of the
natural homomorphism GL2(Z3)! GL2(F3) is pro-3, it follows immediately from the
definition of kun-3, together with Proposition 1.2, (i), (ii), that every torsion point of
Ex of 3-power order isdefined over�tpd

=k
D kun-3. In particular, every closed point

of X that lies, relative to the finite étale coveringX ! Y(3) arising from the natural
inclusion 0(3n) ,! 0(3) (which corresponds to an open subgroup of5Y(3)), over x 2
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Y(3) is defined over�tpd
=k
D kun-3. Thus, it follows immediately from Corollary 3.2,

(i), together with (iii), that the equality

�tpd
=k
D �X

and (by allowing tovary a) the inclusion

�tpd
=k
� kmdr-3

X

hold. Thus, it follows from Theorem 3.1 that the equalities

�tpd
=k
D �X D kmdr-3

X

hold.
(v) Let n� 2 be an integer. Suppose thatl D 3, and that a primitive 3n-th root of unity
is contained ink. Write X for the smooth compactificationX(3n) of the modular curve
Y(3n) of (iv). Then the equalities

�tpd
=k
D �X D kmdr-3

X

hold. Indeed, in light of (iv), this follows immediately from a similar argument to the
argument applied in (ii) (by replacing (i) by (iv)).

REMARK 3.4.1. It follows from Example 3.4, (ii), that ifl � 5, then the proper
hyperbolic curveX overQ defined by the homogeneous equation “xl

Cyl
Czl ” satisfies

condition (1) of Remark 3.1.1, (i). In particular, it follows from the implication (1)
) (3) of Remark 3.1.1, (i), thatX admits infinitely many l-moderate points. Thus, it
follows immediately from thefiniteness resultof [20], Théorème 1, that the assertion
given in Remark 2.6.3 doesnot hold.

Lemma 3.5. Suppose that the following two conditions are satisfied:
(1) The equality

�tpd
=Q

D Q

un-l

of the problem(I l ) of Remark 1.8.1holds (e.g., l is an odd regularprime—cf.The-
orem 1.9).
(2) k � �tpd

=Q

D Q

un-l .
Then the following hold:
(i) The equality

�C D �tpd
=Q

holds if and only if the following condition is satisfied:
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(†): The hyperbolic curve C admitsgood reductionat every nonarchimedean
prime of k whose residue characteristic is¤ l , and, moreover, if �l 2 k is a
primitive l-th root of unity, then the restriction to Gk(�l ) � Gk of the composite

Gk
�C
! Out(1C)! Aut(1ab

C 
Zl Fl )

factors through a pro-l quotient of Gk(�l ).
(ii) Suppose, moreover, that the equality

�C D �tpd
=Q

holds, and that the hyperbolic curve C isproperover k. Let x2 C(k) be a k-rational
point of C. Then the equalities

�C D �Cn{x} D �tpd
=Q

D Q

un-l

hold.
(iii) In the situation of (ii), for a closed point of C, it holds that the closed point is
l -moderateif and only if the closed point isdefinedover�tpd

=Q

D Q

un-l . In particular,
it holds that

{l-moderate closed points of C} D C(Qun-l ).

Proof. First, we verify assertion (i). Thenecessityfollows immediately from Prop-
osition 1.2, (ii), together with the definition ofQun-l . To verify the sufficiency, let us
observe that if the condition (†) holds, then it follows immediately from Proposition 1.2,
(i), (ii), together with the definition ofQun-l , that the inclusion�C � Q

un-l holds, which
thus implies (cf. condition (1)) that�C ��tpd

=k
. Thus, thesufficiencyfollows from Prop-

osition 1.2, (vi). This completes the proof of assertion (i).
Next, we verify assertion (ii). It follows from assertion (i) that, to verify assertion

(ii), it suffices to verify that the hyperbolic curveC n {x} satisfies the condition (†). On
the other hand, again by assertion (i), the hyperbolic curveC satisfies the condition (†).
Thus, one verifies easily that the hyperbolic curveC n {x} satisfies the condition (†).
This completes the proof of assertion (ii). Assertion (iii)follows immediately from The-
orem 3.1, together with assertion (ii). This completes the proof of Lemma 3.5.

REMARK 3.5.1. Suppose that conditions (1) and (2) in the statement of
Lemma 3.5 hold. Then it follows from Lemma 3.5, (iii), together with Example 3.4,
(ii) (respectively, Example 3.4, (v)), that the proper hyperbolic curve “X” of
Example 3.4, (ii) (respectively, Example 3.4, (v)), satisfies the equality

{l -moderate closed points ofX} D X(Qun-l ).
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Corollary 3.6. Suppose that l� 5, and that the equality

�tpd
=Q

D Q

un-l

of the problem(I l ) of Remark 1.8.1holds (e.g., l is a regularprime—cf.Theorem 1.9).
Let a, b 2 �tpd

=Q

n {0, 1} D Qun-l
n {0, 1} be elements of�tpd

=Q

n {0, 1} D Qun-l
n {0, 1}

such that

al
C bl

D 1.

Then the hyperbolic curve of type(0, 4) overQ(al )

P

1
Q(al ) n {0, 1,1, al }

is not quasi-l -monodromically full (cf. [5], Definition 2.2, (iii)), i.e., if we write k
def
D

Q(al ) and C
def
D P

1
Q(al ) n {0, 1,1}, then the image of the composite

Gk ! 5C � 8C

—where the first arrow is the splitting(that is well-defined, up to 1C-conjugation) of
the upper exact sequence of the commutative diagram ofDefinition 2.2 induced by the
k-rational point of C determined by al , and the second arrow is the natural surjec-
tion defined inDefinition 2.2—is not open (cf. Remark 2.2.1; [7], Remark 11, (ii); [7],
Proposition 19, (iv)).

Proof. Write X for the proper hyperbolic curve of Example 3.4, (ii), in the case
where (k, n) D (Q, 1); U � X for the open subscheme ofX given by “X” of Ex-
ample 3.4, (i), in the case where (k, n) D (Q, 1); x 2 U for the (�tpd

=Q

-rational) closed
point of U corresponding to the pair (a, b) in the statement of Corollary 3.6. Then it
follows from Remark 3.5.1 thatx is l-moderateas a closed point ofX. In particu-
lar, it follows immediately from the equivalence (1), (3) of Proposition 2.5, together
with [7], Proposition 33, (ii), thatx is not quasi-l-monodromically full(cf. [7], Defin-
ition 8) as a closed point ofX, hence (cf. [7], Proposition 24, (i)) alsoU . Thus, by
considering the connected finite étale coveringU ! P

1
Q

n {0, 1,1} given by mapping

u 7! sl (where we writeu for the standard coordinate ofP1
Q

), we conclude from [7],

Proposition 27, (ii), that the closed point ofP1
Q

n {0, 1,1} corresponding toal is not
quasi-l-monodromically full. In particular, it follows immediately from [7], Remark 11,
(ii), that the hyperbolic curveP1

Q(al ) n {0, 1,1, al } of type (0, 4) overQ(al ) is not

quasi-l-monodromically full. This completes the proof of Corollary 3.6.

REMARK 3.6.1. Corollary 3.6 leads naturally to the following observation which
may be regarded as a “conditional proof” of Fermat’s last theorem:

Suppose that the following two assertions hold:
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(1) The equality�tpd
=Q

DQ

un-l of the problem (I l ) of Remark 1.8.1 holds
for every prime numberl .
(2) The problem of Matsumoto and Tamagawa given as [14], Problem 4.1,
is answered in theaffirmative. (In particular, the equivalence (MT1) ,
(MT2) of [8], Introduction, holds.)

Let l � 5 be a prime number anda, b 2 �tpd
=Q

n{0, 1} D Qun-l
n{0, 1} elements

of �tpd
=Q

n {0, 1} D Qun-l
n {0, 1} such that

al
C bl

D 1.

Then it follows from Corollary 3.6 that the hyperbolic curveof type (0, 4)
overQ(al )

X
def
D P

1
Q(al ) n {0, 1,1, al }

is not quasi-l-monodromically full. Thus, it follows from our assumption that
the equivalence (MT1), (MT2) of [8], Introduction, holds thatX is not quasi-
l 0-monodromically fullfor every prime numberl 0. In particular, it follows im-
mediately from [5], Corollary 7.11, that one of the elementsof the set

{al , bl , �(a=b)l , a�l , b�l , �(a=b)�l },

hence also one of the elements of the set

{a, b, a=b},

is a unit (in the ring of integers ofQ).
Thus, one verifies easily that, for instance, every pair (a, b) of nonzero

rational numbersdoesnot satisfythe equality

al
C bl

D 1.

On the other hand, however, the author answered the problem of Matsumoto and Tama-
gawa given as [14], Problem 4.1, in thenegativein [8] (cf. [8], Theorem A). The above
observation is one of the main motivations of studying the problem of Matsumoto and
Tamagawa in [8].
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