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Abstract

In the present paper, we discuss the relationship betwesrGtiois extension
corresponding to the kernel of the prauter Galois representation associated to a
hyperbolic curve over a number field ahdanoderate points of the hyperbolic curve.
In particular, we prove that, for a certain hyperbolic cyrtiee Galois extension
under consideration is generated by the coordinates of-thederate points of the
hyperbolic curve. This may be regarded as an analogue oftiiaHat the Galois ex-
tension corresponding to the kernel of thadic Galois representation associated to
an abelian variety is generated by the coordinates of theotopoints of the abelian
variety of |-power order. Moreover, we discuss an application of theragq of the
present paper to the study of the Fermat equation.
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Introduction

Throughout the present paper, lebe a prime numberk a number field (i.e., a

finite extension of the field of rational number&)an algebraic closure df, andC a

hyperbolic curveover k. Write Gg d=EfGaI(R/k), Ac for the pro-I geometric étale fun-

damental groupof C (i.e., the maximal prd-quotient of the étale fundamental group
71(C ®k R) of C ® E), and

pc - Gk — OUt(Ac)
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648 Y. HOsHI

for the pro-l outer Galois representation associated ta M the present paper, we
study the Galois extension

Qc def EKET(KJC)

of k corresponding to the kernel qgfc.

The notion for an abelian varietpd/k naturally corresponding to the above pro-
outer Galois representation: is the I-adic Galois representation on the |-adic Tate
moduleof A. Thus, the Galois extensiofts for the abelian varietyA naturally cor-
responding to the above Galois extensi@p is the Galois extension of k obtained by
adjoining to k the coordinates of all torsion points of A gbdwer order i.e.,

Qa = Kk(torsion points ofi-power order ofA).

From this point of view, we have the following two questions:

e What is an analogue for a hyperbolic curve ofaasion point of I-power ordeiof
an abelian variety?

e If one has an analogue for a hyperbolic curve aoesion point of I-power order
of an abelian variety, then does the equality

Qc = k(“torsion points ofl-power order” ofC)

hold?

Of course, to realize an analogue for a hyperbolic curve ofsidn point ofl-power or-
der of an abelian variety, one may consider a point that lietheintersection of a given
hyperbolic curve and the set of torsion points of I-poweresrdf the Jacobian variety of
the curve(by means of a suitable immersion from the curve into the Biacovariety).
On the other hand, however, since (one verifies easily thatlabove Galois extension
Qc of k is alwaysinfinite, it follows from thefiniteness resulof [20], Théoréme 1, that
this analogue for a hyperbolic curve of a torsion point-giower order always doesot
satisfythe above equality

Qc = k(“torsion points ofl-power order” ofC).

In 82 of the present paper, we define the notion of-amderate pointof a hyper-
bolic curve and an abelian variety (cf. Definition 2.4). 15qdi examples of-moderate
points of hyperbolic curves are as follows:

e The closed point of the tripo®! \ {0, 1,00} corresponding to aripod I-unit
(cf. Definition 1.6; Proposition 2.8).

e The closed point of a hyperbolic curve of type (1, 1) corresfiog to atorsion
point of |-power order of the underlying elliptic curve of the hyperbolic curve
(cf. Proposition 2.7).
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In 82, we also prove that,
for a closed point of a hyperbolic curve, the closed point-imoderateif
and only if the closed point satisfies the conditioR(C, x, |)” introduced
by Matsumoto in [13], Introduction (cf. the equivalence &) (3) of Prop-
osition 2.5).

Moreover, we prove that,
for a closed point of an abelian variety, the closed poinit-risoderateif and
only if the closed point igorsion (cf. Proposition 2.6).

In particular,
the notion of anl-moderate pointof a hyperbolic curve may be regarded as
an analogue of the notion of tarsion pointof an abelian variety.

From this observation, one may pose the following question:
Does the equality

Qc = K L'k (-moderate points o€)

hold?
Our first result concerning the above question is as follosfs Theorem 3.1).

Theorem A. Every kmoderatepoint of C isdefinedover Q¢, i.e,
kgdH C QC-

Theorem A follows immediately from standard techniqueg #ygpear in the study
of Galois sectiondcf., e.g., [6], [9]).
At the time of writing, the author does not know whether or tieg converse

Qc C kgwdr-l ,

i.e., theequality under consideratigrholds in general. However, Theorem A leads nat-
urally to some examples of hyperbolic curves for which theatity under consideration
holds. In particular, we verify the following result (cf. @dlary 3.3; Example 3.4).

Theorem B. If one of the following five conditions is satisfigden theequality

QC — kgmr-l
holds:
(i) C is isomorphic toP}\ S for some & S({0, 1,00}) (cf. Definition 1.4, (iv)) such
that S\ {oo} C k (e.g, the tripod P} \ {0, 1,00}).
(i) I is odd and there exists a positive integer n such that C is isomarphithe
(open Fermat curveof degree 1

Speck[s, t]/(s" +t" + 1))
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—where s and t are indeterminates.
(i) I is odd and there exists a positive integer n such tflan) # (3, 1), and more-
over C is isomorphic to thdcompactifiefl Fermat curveof degree "

Projis, t, ul/(s" +t" +u"))

—where st, and u are indeterminates.

(iv) | = 3, and there exists a positive integer n such that a primitd’eth root of
unity is contained in kand moreover C is isomorphic to themodular curveY(3")
parametrizing elliptic curves with"(3")-structures(cf., e.g, [12]).

(v) I =3, and there exists an integer s 2 such that a primitive3"-th root of unity is
contained in k and moreover C is isomorphic to the smooth compactificatior{3%
of the modular curve §3") (cf. (iv)).

Theorem B in the case where condition (i) is satisfied is \estifrom Theorem A,
together with theexplicit descriptionof Qp1\(g 1, given in [1]. Theorem B in the case
where one of conditions (i), (iii), (iv), and (v) is satisfigs verified from Theorem A
and Theorem B in the case where condition (i) is satisfiedettey with some results
given in [7].

Finally, we present an application of the discussion of thesent paper to the
study of the Fermat equatiofcf. Corollary 3.6).

Theorem C. Suppose that | i~ 5 and regular Let a b e Q%\{Oylm, \ {0, 1} be
elements oﬁz%\{oylm} \ {0, 1} such that

a+b =1
Then the hyperbolic curve of tyg®, 4) over Q(a')
P(]i(al) \ {01 11 OO, al}
is not quasik-monodromically full €f. [5], Definition 2.2, (iii)).

Let us observe that it follows immediately from (the disdéossgiven in the proof
of) Theorem C that
e a positive solution of groblem of lharaconcerning the kernel of the ptoeuter
representation associated Ré \ {0, 1,00} (cf., e.g., [11], Lecture |, 82; also Re-
mark 1.8.1 of the present paper) and
e a positive solution of groblem of Matsumoto and Tamagawancerning mon-
odromic fullness for hyperbolic curves (cf. [14], Probleni;4also [8], Introduction)
imply Fermats last theorem(cf. Remark 3.6.1). On the other hand, however, the au-
thor answered the problem of Matsumoto and Tamagawa giveri4ds Problem 4.1,
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in the negativein [8] (cf. [8], Theorem A). The above implication is one ofetimain
motivations of studying the problem of Matsumoto and Tamagaw([8].

0. Notations and conventions

Numbers. The notationZ will be used to denote the ring of rational integers.
The notationQ will be used to denote the field of rational numbers.| s a prime

number, then we shall writé, def Z/1Z and Z, for the |-adic completion ofZ. We
shall refer to a finite extension @ as anumber field

Profinite groups. Let G be a profinite group. Then we shall wrii&G) for the
center of G. We shall say thaG is slim if Z(H) = {1} for every open subgroup
H C G of G.

Let G be a profinite group an® a property for profinite groups. Then we shall
say thatG is almostP if an open subgroup o6 is P.

Let G be a profinite group. Then we shall wri@? for the abelianizationof G,
i.e., the quotient ofG by the closure of the commutator subgroup@f

Let G be a profinite group. Then we shall write AGi( for the group of (contin-

uous) automorphisms db, Inn(G) C Aut(G) for the group of inner automorphisms of

G, and Out(3) d=e'(Aut(G)/Inn(G) for the group of outer automorphisms Gf If, more-

over, G is topologically finitely generatedthen one verifies easily that the topology of
G admits a basis otharacteristic open subgroupsvhich thus induces arofinite top-
ology on the group AufG), hence also grofinite topologyon the group Oufg).

Curves. Let S be a scheme anX a scheme ovefs. Then we shall say thax
is a smooth curveover S if there exist a schem& " which is smooth, proper, geo-
metrically connected, and of relative dimension one o8eand a closed subscheme
D C X°Pt of X' which is finite and étale ove$ such that the complemern®*'\ D
of D in X°is isomorphic toX over S. Note that, as is well-known, iK is a smooth
curve over (the spectrum of) a field then the pair “K°*, D)” is uniquely determined
up to canonical isomorphism over, kve shall refer toX°? as thesmooth compactifi-
cation of X overk and to a geometric point oX°®* whose image lies oD as acusp
of X.

Let S be a scheme. Then we shall say that a smooth crnaver S is a hyper-
bolic curve (of type (@@, r)) (respectivelytripod) over S if there exist a pair X", D)
satisfying the condition in the above definition of the teremboth curve” and a pair
(g, r) of nonnegative integers such thag 2 2 +r > 0 (respectively, g, r) = (0, 3)),
any geometric fiber ofX°? — S is (a necessarily smooth proper connected curve) of
genusg, and the degree oD C X°P over Sisr.

Let Sbe a schemd) € S an open subscheme & and X a hyperbolic curve over
U. Then we shall say thaX admitsgood reductionover S if there exists a hyperbolic
curve Xs over S such thatXs xs U is isomorphic toX over U.
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1. Generalities on the kernels of prot outer Galois representations
Throughout the present paper, letbe a prime numberk a number fieldk an
algebraic closure ok, C a hyperbolic curveover k, A an abelian varietyover k, and

V € {C, A}. Write Gy d=‘°’fGaI(R/k) and C°"* for the smooth compactificatioof C over

k. In the present 81, we discuss generalities on the kernehefptot outer Galois
representation associated ‘o

DEFINITION 1.1. (i) We shall write
Ay

for the pro-I geometric étale fundamental grows V (i.e., the maximal prd-quotient
of the étale fundamental group(V ® k) of V @ K);

[Ty

for the geometrically pro-l étale fundamental growp V (i.e., the quotient of the étale
fundamental groupr;(V) of V by the kernel of the natural surjection(V ® k) —
Avy). Thus, we have a natural exact sequence of profinite groups

1Ay —>IIy > Gc—1

(cf. [25], Exposé IX, Théoréme 6.1).
(i) We shall write

pv : Gk — OUt(Av)
for the outer action determined by the exact sequence ofW@.shall refer topy as

the pro-I outer Galois representation associated to V
(iii) We shall write

Gk — Ty £ Gy/Ker(py) (S Out(Ay))

for the quotient ofGy determined bypy .
(iv) We shall write
QV dZefEKer(,oV),

I'y = GaI(SZV/k)
REMARK 1.1.1. It follows immediately from the discussion given 18], §18, that

there exists a natural isomorphism A&f, with thel-adic Tate module |TA) of A. More-
over, one verifies easily that the Galois representagtign Gy — Out(Aa) = Aut(Aa)
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coincides relative to this isomorphism o — T;(A), with the usual-adic Galois repre-
sentationGx — Aut(T,(A)) associated té\.

REMARK 1.1.2. LetU < C be an open subscheme 6f Then one verifies eas-
ily that U is a hyperbolic curveover k. Moreover, it follows immediately from [25],
Exposé V, Proposition 8.2, that the natural open immerslor> C induces an outer
surjection 1y — Ilc. Thus, we have a natural factorizati@y — I'y — I'c.

REMARK 1.1.3. Suppose tha@®'(k) # @, and thatC° is of genus> 1. Write
Jc for the Jacobian variety o€°". Then it follows immediately from [15], Propos-
ition 9.1, together with [25], Exposé V, Proposition 8.2atttthe morphismC — Jc
determined by &-rational point of C°* induces an outesurjectionTlc — I1;.. Thus,
we have a natural factorizatioBy — I'c — I'y..

REMARK 1.1.4. LetN € Gy be a normal closed subgroup &f. Then it fol-
lows from theShafarevich conjecture for abelian varieties over numbeld§iproven by
Faltings, together with Proposition 1.2, (ii), below, thidr a fixed positive integed,

the set of the isomorphism classes of abelian variefiesf dimensiond over

k such that Kerfa) = N is finite.
On the other hand, it follows from [5], Theorem C, that, for gefl pair @, r) of
nonnegative integers such thag 22 +r > 0,

the set of the isomorphism classes of hyperbolic cu®@esf type (@, r) over

k such that Kergc) = N is finite.
Moreover, it follows from [5], Theorem A, that

the cardinality of the set of the isomorphism classes of Hyge curvesC

of genus zero ovek such thatC is I-monodromically full (cf. [5], Defin-

ition 2.2, (i)), every cusp ofC is defined ovek, and, moreover, it holds that

Ker(oc) = N is at most one

REMARK 1.1.5. If one thinks the (nopro-l, as in the present paper, buijo-
finite outer Galois representation associatedCtdi.e., the outer representation &y
on m;1(C ®x k) determined by a similar exact sequence to the exact seguendefin-
ition 1.1, (i)), then the kernel isrivial (cf. [10], Theorem C).

Proposition 1.2. The following hold
(i) The profinite groupl’y is almost prok. More precisely if the composite

Gk 25 out(Ay) — Aut(A ®4, F)
factors through a pro-lI quotient of & then the profinite groug'y is prod.

(i) Letp be a nonarchimedean prime of k whose residue characteristi¢ |. Then
it holds that V admitsgood reductionat p if and only if the Galois extensiofey /k
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is unramifiedat p. In particular, the Galois extensio2y /k is unramifiedfor all but
finitely many nonarchimedean primes of k.

(iii) The profinite groupl’y is topologically finitely generated

(iv) The center ZI'a) of I'a is infinite.

(v) The profinite groupl’c is almost slim

(vi) It holds that upq, = ps\ (0100 S -

Proof. First, we verify assertion (i). Sinae, is topologically finitely generatednd
pro-l, it follows that the kernel of the natural homomorphism Qutj — Aut(A{",b®z, F)
is pro-l, which thus implies assertion (i). This completes the prafofssertion (i). As-
sertion (ii) in the case wher¥ = A (respectively,V = C) follows immediately from
[21], Theorem 1 (respectively, [24], Theorem 0.8). Asserijiii) is a formal consequence
(cf., e.g., the proof of [14], Lemma 3.3) afass field theorytogether with assertions (i),
(ii). Assertion (iv) follows immediately from the fact th#te image ofoa contains in-
finitely many homothetiga Aut(A ») (cf. [2], [3]). Assertion (v) is a formal consequence
(cf., e.g., the proof of [5], Proposition 1.7, (ii)) of tigo-l version of the Grothendieck
conjecture for hyperbolic curvese., [16], Theorem A. Assertion (vi) follows from [10],
Theorem C, (i) (cf. also [23], Remark 0.3; [23], Theorem 28], Theorem 0.5). This
completes the proof of Proposition 1.2. ]

Corollary 1.3. T¢ is not isomorphicto I'a. In particular, in the situation ofRe-
mark 1.1.3,the natural surjectionl'c — I';. is not an isomorphism

Proof. This follows immediately from Proposition 1.2, (i{V). ]

REMARK 1.3.6. (i) Inthe case of abelian varieties, we haveaaitological geo-
metric descriptiof of the Galois extensiolf2, of k corresponding to the kernel @fa

Qa = Kk(torsion points ofi-power order ofA)

—where we writek(torsion points ofi-power order ofA) for the Galois extension of
k obtained by adjoining t& the coordinates of all torsion points &f of |-power order.
(ii) On the other hand, in the case of hyperbolic curves, attime of writing, the au-
thor does not know the existence of such a description of thiei&extensiorf2¢ of k
corresponding to the kernel @f in general. Moreover, we already verified (cf. Corol-
lary 1.3) that, in the situation of Remark 1.1Q¢ doesnot coincidewith Q,4, i.e.,

Q. = Kk(torsion points ofl-power order ofJc) € Qc.

(iii) If the hyperbolic curveC is of genus zerpthen we have an explicitgeometric
descriptiori of Q¢ given by Anderson and lhara as follows (cf. Theorem 1.5 below
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DEFINITION 1.4. For each algebraic extensi&hC k of k, let us naturally iden-
tify PA(K’) with k'L {oo}. Let S, T € PX(k) be subsets oP2(K).
(i) We shall write

siT

T={xePXk)|x €9

—where we writeoo' &' 0o,
(ii) Let a, b, c € S be distinct elements 0. Then we shall write

s [(aA,gC)] T

if the following condition is satisfied: If we write for the (niquely determingdauto-
morphism of P} over k such that¢(a) = 0, ¢(b) = 1, ¢(c) = oo, then

T ={p(x) e Pi(K) | x € S}.
(iii) Let n be a nonnegative integer. Then we shall refer to a finite chain
s=ggld. bulg bdg =1

—where, for each € {1,...,n}, “x" is either 1" (cf. (i)) or “(a, b, ¢)” (cf. (ii)) for
distinct elements, b, c of S_; — as acusp chain(from Sto T).
(iv) We shall write

S(S)
for the family of subsets o]P’kl(R) that consists of subsetS of IF’kl(R) such that there

exists a cusp chain frons to S (cf. (iii)).
(v) We shall write

U ck”

for the subset ok that consists of € S\ (S N{0,00}) for someS € S(S) (cf. (iv)).
(vi) We shall write

E(S) Ck*
for the subgroup ok™ generated byu(S) € k™ (cf. (v)).

Theorem 1.5(Anderson—lhara) Let SC Pl(k) be a finite subset oP}(k) such
that {0, 1,00} C S. (Thus one verifies easily thaB} \ S is ahyperbolic curveover k)
Then it holds that

Q2p1\s = K(E(S) = k(U(9)).
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Proof. This is a consequence of [1], Theorem B. L]

DEFINITION 1.6. We shall refer to an element ©f({0, 1,00}) as atripod I-unit.
Thus, it follows from Theorem 1.5 that

def : .
Qipa,, = Q10,100 = K(tripod I-units).

REMARK 1.6.1. An element of£({0, 1, 00}) is called ahigher circular I-unit
(cf. [1], 82.6, Definition). That is to say, a higher circulaunit is an element ok”
obtained by forming a product of finitely many tripdelinits.

Lemma 1.7. Let SC P}(k) be a finite subset aB}(k) such that{0, 1,00} C S.
Then the following hold
(i) Every element o8(S) contains{O0, 1, co}.
(i) Let T e S(S) be an element a$(S). Then it holds thaS(T) € S(S). In particular,
it holds thatU(T) € U(S), E(T) € E(S).
(i) Let T < P}(k) be a finite subset dP}(k) such that SC T. Then for every Se
S(9), there exists an element’ € S(T) such that SC T'. In particular, it holds that
U(S) C U(T), E(S) < E(T).
(iv) For every pair(a, T) € U({0, 1,00}) x S({0, 1,00}) such that a¢ {0, 1,00}, there
exists an elementTe S({0, 1,00}) such that TC T’, and, moreovera € k(T' \ {o0}).
(v) Let T, T’ € S(S) be elements 0§(S); S € Pl(k) a finite subset of?}(k) such
that T € S C T. Suppose that T P}(k). Then it holds that @ (S)) = k(U(S)).

Proof. Assertion (i) follows immediately from the variougfohitions involved.
Next, we verify assertion (ii). LeT’ € S(T) be an element o§(T). Then, by con-
sidering the “composite” of a cusp chain fro@ito T and a cusp chain fronT to
T’, it follows that T’ € S(S). This completes the proof of assertion (ii). Next, we ver-
ify assertion (iii). SinceS € S(9), there exists a cusp chain fro@ito S. Thus, since
SC T, by considering a similar cusp chain fromto the cusp chain frons to S, we
obtain an elemenT’ € S(T) such thatS € T'. This completes the proof of assertion
(iii). Next, we verify assertion (iv). Sinca € U({0, 1,00}), there exists an element
S € S({0, 1,00}) such thata € S;,. Moreover, sincel e S({0, 1,00}), there exists a
cusp chain from0, 1,00} to T. Thus, (since0, 1,00} € §,—cf. assertion (i)), by con-
sidering a similar cusp chain froi§, to the cusp chain fron0, 1,00} to T, we obtain
an elemenfT’ € S({0, 1,00}) such thatT < T’ (cf. our assumption thaa ¢ {0, 1,00},
which thus implies thaf0, 1,00} € &). On the other hand, sincé’ is obtained by

considering a cusp chain froig,, it follows immediately from the definitions of i

and % of Definition 1.4, (i), (i), thata € S € k(T’\ {oc}). This completes the
proof of assertion (iv).
Finally, we verify assertion (v). Now | claim that the folliwg assertion holds:
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Claim 1.7.A. It holds that KU(S)) = k(U(T)).

Indeed, let us first observe that one verifies easily that titenaorphism ¢” of IP’El
in Definition 1.4, (i), is defined ovek(a, b, c) (cf. also the discussion concerning
“T@b(x)” given in [1], §2.3). Thus, it follows immediately from thmduction on
the “length’ of a cusp chain fromS to T that, to verify Claim 1.7.A, it suffices to
verify Claim 1.7.A in the case whers & T. Write P\ T — B!\ S for the connected
finite étale covering given by mapping— u', where we writeu for the standard co-
ordinate ofP}. (Here, we note that it follows from assertion (i) that evetgment of
S(S) contains{0, co}.) Then one verifies easily that this covering satisfies dardi
@), (i), (i), (iv), and (v) of [7], Lemma 28. Thus, it fobbws from [7], Lemma 28,
that Qp1 s = Q2p2\7, Which implies (cf. Theorem 1.5) Claim 1.7.A. This comptetbe
proof of Claim 1.7.A.

It follows from Claim 1.7.A thatS2pis = Q17 = Q7. On the other hand,
it follows from Remark 1.1.2 thafpy 1 € Qpng S Qpn7. Thus, we conclude that
Qpis = 2pn\s, which thus implies (cf. Theorem 1.5) assertion (v). Thisnptetes the
proof of assertion (v). ]

DEFINITION 1.8. We shall write
kun-l (g R)

(cf. the notation at the beginning of [6], §1) for the maxin@dlois extension ok that
satisfies the following conditions:

(1) The extensiork'™ /k is unramified at every nonarchimedean prime kfwhose
residue characteristic ig I.

(2) If g ek is a primitivel-th root of unity, theng € kY™, and, moreover, the exten-
sion k'™ /k(g) is pro-l.

REMARK 1.8.1. Ihara posed the following question concerning aritfimetic
descriptiorf of g, (cf., e.g., [11], Lecture I, §2):

(1)): Does the equality

Qtpd/Q — Qun-l

hold?
Note that the inclusiorﬂtpd/0 C QY™ was already verified. (In fact, one verifies easily
from Proposition 1.2, (i), (ii), that this inclusiofq, < QY™ holds.) The problem
(I)) remainsunsolvedfor generall. On the other hand, if is a regular prime, then
the problem [}) was answered in thaffirmative as follows (cf. Theorem 1.9 below).

Theorem 1.9 (Brown, Sharifi) Suppose that | is arodd regularprime. Then
the equality

und
Qtpd/Q =Q
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of the problem(l;) of Remark 1.8.1holds.

Proof. This follows immediately from the main result of [4hgether with [22],
Theorem 1.1. O

2. Moderate points

In the present §2, we maintain the notation of the precedihglig the present §2,
we define and discuss the notion of Bmoderate pointof V (cf. Definition 2.4). In
particular, we prove that, for a closed point of a hyperbalizve, the closed point is
I-moderateif and only if the closed point satisfies the conditioB(C, x,1)” introduced
by Matsumoto in [13], Introduction (cf. the equivalence &) (3) of Proposition 2.5
below). Moreover, we also prove that, for a closed point of &elian variety, the
closed point id-moderateif and only if the closed point isorsion (cf. Proposition 2.6
below). From this point of view, the notion of damoderate pointof a hyperbolic
curve may be regarded as an analogue of the notion tofrsion pointof an abelian
variety (cf. Remark 2.6.1, (i)).

Lemma 2.1. There exists ainique splittingsy of the natural surjection

My xg, Ker(py) E>2> Ker(oy)

that satisfies the following conditions

(1) The image of ¢ is normalin Iy (2 Iy xg, Ker(oy)).

(2) If V = A, then the image of sis containedin the image of soméor, alternatively
every—cf.(1)) splitting of [T, — Gy determined by the identity section of/kA

Proof. Lemma 2.1 in the case wheké = C follows immediately from [7],
Lemma 4, (i), (ii), together with the well-known fact thatc is topologically finitely
generatedand center-free Next, we verify Lemma 2.1 in the case wheve= A. Let
us first observe that theniquenessof such ansp follows immediately from condi-
tion (2) of the statement of Lemma 2.1, together with theowsidefinitions involved.
Thus, we verify theexistence ofsuch ansa. Now let us observe that the identity sec-
tion of A/k gives rise to an isomorphisii 5 = AaxGy; moreover, one verifies easily
that the closed subgroufd} x Ker(pa) € Aa x Gk < T, is normal Thus, the closed
subgroup{1} x Ker(pa) € Aa x Gy < Tl of T, gives rise to a splitting of the sur-
jection of the statement of Lemma 2.1 that satisfies the ¢iomdin the statement of
Lemma 2.1. This completes the proof of Lemma 2.1 in the casereW = A, hence
also of Lemma 2.1. O

DEFINITION 2.2. We shall write

def
Dy = Ty /Im(sy)
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(cf. Lemma 2.1). Thus, we have a natural commutative diago&mrofinite groups

1 Ay MMy Gk 1
ll Lo
1 AV CDV l—‘V 1

—where the horizontal sequences apeact the vertical arrows arsurjective and the
right-hand square isartesian

REMARK 2.2.1. If V = C, then it follows immediately from the proof of
Lemma 2.1 that the quotiedic —» ®¢ defined in Definition 2.2coincideswith the
guotient ‘kbg]/k“ defined in [7], Definition 1, (iv). On the other hand, f = A, then
one verifies easily that the quotiefity — ®, defined in Definition 2.2 doerot co-
incide with the quotient ﬂ)%k” defined in [7], Definition 1, (iv). (In fact, one verifies

easily that the quotientdiﬂ’/k” defined in [7], Definition 1, (iv),coincideswith the

quotientITp —» Gk — 'a.)
DEFINITION 2.3. Letx € V be a closed point o¥/. Then we shall write
k(x) €k

for the (necessaril§inite Galoi§ extension ofk obtained by forming the Galois closure
over k of the residue field oV at x in k.

DEFINITION 2.4. Letx € V be a closed point oV.

(1) Suppose thak € V is k-rational, i.e., x € V(k). Then we shall say that € V
is I-moderateif the splitting (that is well-defined, up ta-conjugation) of the upper
exact sequence of the commutative diagram of Definition 2d2éed byx (i.e., a prok
Galois section ofV /k arising fromx e V (k)—cf. [6], Definition 1.1, (ii)) arises from
a splitting of the lower exact sequence of the commutatiegydim of Definition 2.2.
(2) We shall say thak € V is I-moderateif every (necessarily (x)-rational) closed
point of V ® «(x) arising fromx is |-moderate (in the sense of (i)).

Proposition 2.5. Let x € C(k) be a k-rational point of C. Write e \ {x} C
C. (Thus one verifies easily that U is hyperbolic curveover k) Then the following
conditions are equivalent
(1) The k-rational point x C(k) is I-moderate
(2) The natural surjectionl'y — T'c (cf. Remark 1.1.2)is an isomorphism,i.e.,
Qc = Q.
(2) The kernel of the natural surjectiofly — I'c (cf. Remark 1.1.2)s finite, i.e,, the
Galois extensior2y /Qc is finite.
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(3) The kernel of the composite

Gk —» e — AUt(Ac)
of the splitting
Gk — HC

(that is well-definedup to Ac-conjugatior) of the upper exact sequence of the com-
mutative diagram ofDefinition 22 induced by x and the action

[Ic — Aut(Ac)
obtained by conjugatioroincideswith Ker(oc).

Proof. This follows immediately from [7], Proposition 33),(together with Re-
mark 2.2.1. O

REMARK 2.5.1. In [13], Matsumoto studied a closed point of a propepeny
bolic curve over a number field that satisfies condition (3)Pobposition 2.5. The
study of the present §2, as well as the study of [7], §4, isiiadpby the study of [13].

Proposition 2.6. Let x € A(k) be a k-rational point of A. Then the following
conditions are equivalent
(1) The k-rational point xe A(K) is I-moderate
(2) The k-rational point xe A(K) is torsion

Proof. Write “HY " for the first continuous cohomology group and Ku(k) —
HE .Gk, An) for the prot Kummer homomorphism associated Ao(cf., e.g., [6], Re-
mark 1.1.4, (iii)). Consider the following condition:

(1) The cohomology class Kum) € HL (G, A ) is containedn HZ, (T'a,Aa) €
HE(Gk, Aa) (cf. [19], the discussion following Corollary 2.4.2; [19Zorollary 2.7.6).
Then one verifies easily from the definition of the splittigg of Lemma 2.1 that the
equivalence (1x (1) holds.

Next, | claim that the following assertion holds:

Claim 2.6.A. The cohomology group H,(T'a, Aa) is torsion.

Indeed, let us recall (cf. [2], [3]) that the image ) — ['a € Aut(An) of pa con-
tains a subgroupJ C Aut(Aa) of Aut(A,a) that consists ofhomothetiesand is iso-
morphic toZ, as an abstract profinite group. (That is to sdyis nontrivial and con-
tained in 1 + 1Z; (respectively, 1+ 12Z)) € Z € Aut(A,) if | is odd (respectively,
even).) Then one verifies easily that there exists a posititeger N such that, for
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each positive integen, the invariant part £ o/I"A,)? is annihilatedby N, which im-
plies that the kernel of the natural homomorphistd, (T, Ax) — HE(J, An) is
torsion (cf. also [19], the discussion following Corollary 2.4.29], Corollary 2.7.6).
Thus, to complete the verification of Claim 2.6.A, it suffidesverify that H(J, A a)
is torsion On the other hand, this follows immediately from a straigiward compu-
tation by means of the simple structure #fC Aut(A ). This completes the proof of
Claim 2.6.A.

Next, we verify the implication (1= (2). Suppose that condition (1) is satisfied.
Then it follows from the above equivalence (& (1), together with Claim 2.6.A, that
Kum(x) is torsion Thus, there exists a positive integhr such thatNx € Ker(Kum).
On the other hand, one verifies easily from tkerdell-Weil theorem(cf., e.g., [18],
Appendix II) that the kernel Ker(Kum) idinite. Thus, we conclude thalx, hence
also x, is torsion This completes the proof of the implication (& (2).

Finally, we verify the implication (2= (1). Suppose that condition (2) is sat-
isfied. Letx—;, x4 € A(K) be torsion elements of(k) such thatx_, is of |-power
order, Xy is of prime-to-l order andx = X 4+ X. Then it follows immediately that
Kum(x) = Kum(x—;). Moreover, since (one verifies easily that), is |°°-divisible in
A(25), by considering the image o, via the prot} Kummer homomorphism associ-
ated to A ®y 24, we conclude that the image of Kur)(= Kum(x-) € HL (G, Aa)
in HL, (Ker(pa), A a) vanisheswhich implies that Kun¥) = Kum(x_;) € HL (G, An)
is containedin HY (T, An) € HE(Gk, An) (cf. [19], the discussion following Corol-
lary 2.4.2; [19], Corollary 2.7.6). Thus, it follows from éhabove equivalence (1%
(1) that x satisfies condition (1). This completes the proof of the iogtion (2) =
(1), hence also of Proposition 2.6. O

REMARK 2.6.1. (i) By the equivalence given in Proposition 2.6,

the notion of anl-moderate pointof a hyperbolic curve may be regarded as

an analogue of the notion of tarsion pointof an abelian variety.
(i) However, although (it is immediate that) the issue ofettter or not a point of an
abelian variety igorsion doesnot dependon the choice of, the issue of whether or
not a point of a hyperbolic curve ismoderate dependsn the choice ofl (cf. Re-
mark 2.8.1 below). A similar phenomenon to this phenomenay tme found in the
analogy between the property obt admitting complex multiplicatiomnd the prop-
erty of being quasi-l-monodromically ful{cf. [5], Definition 2.2, (iii)). The property
of being quasi-l-monodromically fulfor a hyperbolic curve may be regarded as an
analogue of the property afot admitting complex multiplicatiofor an elliptic curve
(cf. [14], 84.1; [5], Introduction; [8], Introduction). Othe other hand, in fact, although
the issue of whether or not an elliptic curve admitsmplex multiplicationdoes not
dependon the choice of, the issue of whether or not a hyperbolic curvegisasi-I-
monodromically full dependsn the choice of (cf. [8], Theorem A).
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REMARK 2.6.2. Let us recall from Remark 1.3.6, (i), that, in the cababelian
varieties, we have atdutological geometric descriptidrof the Galois extensiof2 of
k corresponding to the kernel @fa:

Qa = k(torsion points ofi-power order ofA).

On the other hand, as we discussed in Remark 2.6.1, (i), thennof anl-moderate
point of a hyperbolic curve may be regarded as an analogue of thennot a torsion
point of an abelian variety. Thus, one may pose the following daest
Is Qc generated by the coordinates of klinoderate pointsof C? That is to
say, does the equality

c=k"E [  «®

xeC: |-moderate

hold?
The 83 focuses on the study of this question.

REMARK 2.6.3. One may expect, from the observation given in Remaskli2
(i), that the following assertion holds:
Suppose tha€ is of genus> 1. Let x3,x, € C(Kk) be twok-rationall-moderate
points of C. Write Jc for the Jacobian variety o€°P. Then thek-rational
point of J- obtained by forming the difference o, and x, is |-moderate
i.e., torsion (cf. Proposition 2.6).
However, in general, the above assertion doeshold (cf. Remark 3.4.1 below).

REMARK 2.6.4. The observation given in the proof of Proposition ®#&s re-
lated to the author byseidai Yasuda

Proposition 2.7. Suppose that C is ofype (1, 1) Write E for the elliptic curve
over k determined by the hyperbolic curve C. Then every naaitrtorsion point of
E of I-power order is andmoderatepoint of C.

Proof. This follows immediately from [7], Proposition 4@gether with the im-
plication (3) = (1) of Proposition 2.5. O

Proposition 2.8. Every closed point oP} \ {0, 1,00} corresponding to aripod
[-unit is I-moderate

Proof. Letx € P}\{0,1,00} be a closed point that corresponds ttripod I-unit.
Then it follows from the definition of a tripod-unit, together with Lemma 1.7, (i),
that there exists an elemefite S({0, 1,oc}) of S({0, 1,0¢c}) such that {0, 1,00} )
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{0, 1,00, x} € T. Thus, it follows immediately from Lemma 1.7, (v), togetheith
Theorem 1.5, thaQPkl(T\m)\{o,l,oo} = QPE(T\(OQ,)\{O,LOO,X} = QPkl(T\(wD\T. In particular, we
conclude that the extension

$2p2 \(0,100,)/ $2p2 )\ (0,1,00)

is finite, which implies (cf. the implication (2 = (1) of Proposition 2.5) thak is
I-moderate This completes the proof of Proposition 2.8. ]

REMARK 2.8.1. Let € Q be a primitivel -th root of unity. Then it follows from
Proposition 2.8 that theQf(¢)-rational) closed point oPé(m\{O,l,oo} corresponding to
g is I-moderate On the other hand, th&(¢ )-rational) closed point oP’é(a)\{O, 1,00}
corresponding t@; is not I'-moderatefor every prime numbel’ # |. Indeed, since (one
verifies easily that) ¢ is not a unitat the (unique) nonarchimedean pritef Q(¢)
whose residue characteristic+sl, one verifies easily that the hyperbolic cumé(m \
{0, 1,00,4} of type (0,4) overQ(s) doesnot admit good reductioat [. Thus, it follows

from Proposition 1.2, (i), that the Galois extensicm]};‘l([)\{o 100, OF Q(&) that occurs
y\(0, 1,00,

Q
in the case where we také™to bel’ (i.e., the Galois extension @(¢) corresponding
to the kernel of thepro-lI’ outer Galois representation associatedi”&l) \ {0, 1,00, 4})
is ramifiedat I. On the other hand, since (one verifies easily again fromditpn 1.2,

(ii), that] the Galois extensionsz%([)\{o 100 Of Q() that occurs in the case where we
y\MO.14

take 1” to be I’ (i.e., the Galois extension @(¢) corresponding to the kernel of the

pro-lI" outer Galois representation associated”&?a) \ {0, 1, 00}) is unramifiedat [, it

follows from the equivalence (1&> (2) of Proposition 2.5 that the&(¢)-rational) closed

point of Pé(a) \ {0, 1,00} corresponding ta; is not I'-moderate Thus, we conclude that
the issue of whether or not a given closed point of a hyperbalirve isl-
moderate dependsn the choice of.

REMARK 2.8.2. Let us observe that the examplesmifderate closed pointgiven
in Proposition 2.7 (respectively, Proposition 2.8) arifesn a sort of theelliptic (re-
spectively,Belyl) cuspidalizationdiscussed in [17], §3.

3. Kernels of prod outer Galois representations and moderate points

In the present §3, we maintain the notation of the precedidg I8 the present
83, we discuss the relationship between the Galois exterdfi&c corresponding to the
kernel of the pro-I outer Galois representatiassociated t&€ andl-moderate pointf
C. More concretely, we study the question posed in Remark :2Ba2s the equality

Qc = kgwdH def l_[ K (X)

xeC: |-moderate

hold?
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Theorem 3.1. Every Fmoderatepoint of C isdefinedover Q¢, i.e,
kgldH C Qc.

Proof. Letx € C be anl-moderateclosed point ofC. Let us first observe that, by
replacingk by the (necessarilfinite Galoig extension ofk corresponding to the image
of the compositeG,() — Gk — I'c (note that this extension ¢ is containedin Q¢),
we may assume without loss of generality that the compdSitg) — Gk — I'c is

.
surjective Then one verifies easily that the natural morphi€n®y « (x) o C induces
a commutative diagram of profinite groups

1—> AC®k/<()<) — d>C®k/<()<) I 1—‘C®|<K(><) —1

| | |

1 AC (I)C 1_‘C 1

—where the horizontal sequences aseact and the vertical arrows aiisomorphisms

Next, let us observe that it follows immediately from the digion of anl-moderate
point that thel-moderate closed point of C induces a splitting of the upper horizontal
sequence of the above commutative diagram. Thus, sinceettieal arrows of the above
commutative diagram aressomorphismswe obtain a splitting of the lower horizontal
sequence of the above commutative diagram. In particulace ¢he right-hand square
of the commutative diagram of Definition 2.2 ¢artesian we obtain a splittings of
the upper horizontal sequence of the commutative diagraBefihition 2.2 in the case
whereV = C, i.e., apro-l Galois section ©of C/k (cf. [6], Definition 1.1, (i)).

Next, let us observe that it follows immediately from the dion of s that the
restriction ofs to G, € Gk coincideswith a prod Galois section olC ®y «(x)/x(X)
arising from ax(x)-rational closed point o€ ® «(X) (that arises fronx), i.e., the re-
striction of s to G,(x) € Gy is geometric(cf. [6], Definition 1.1, (iii)). Thus, it follows
from the implication (2)= (1) of [9], Lemma 1.5, that is geometric Let y € C°PY(k)
be ak-rational point ofC°* such that the image of is contained in a decomposition
subgroup ofTIc associated toy € CP{(k). Then it follows from [9], Lemma 1.4, to-
gether with the definitions o and y, that x = y. In particular, we conclude that
k(X) = k € Qc. This completes the proof of Theorem 3.1. O

REMARK 3.1.1. (i) Consider the following conditions:
(1) The equalityQc = k2 holds.

(1) The inclusionQc € kP9 holds.

(2) The extensior2c of kT (cf. Theorem 3.1) idinite.
(3) There arenfinitely many I-moderat@oints of C.

(4) There is arl-moderatepoint of C.
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Then we have an equivalence and implications
D<= 1)= 2= R = 4.

Indeed, the equivalence (13> (1) follows from Theorem 3.1. The implication
(1) = (2) is immediate. The implication (2 (3) follows immediately from the
(easily verified) fact that the Galois extensif¥ /K is infinite. The implication (3)
= (4) is immediate.
(i) The discussion given in (i) leads naturally to the feliog observation concerning
the study ofrational points of hyperbolic curves
Suppose that condition (4) of (i) holds (e.g., condition ¢1)i) holds). Write
k2 (€ k) for the finite Galois extension df corresponding to the kernel of
the composite

Gk 5 out(Ac) — Aut(A® @, )

and (2 <) k)Pt < (k)P < (k2)s°V (< k) for the maximal prd- nilpotent,
solvable Galois extensions &£, respectively. Then

C(()P),

hence also

C((kQ)™) and C((kQ)*M),

is nonempty In particular, if the above displayed compositetiiwial, then it
holds that

C(kpro-l)' C(kn”p), C(kSOIV) # a.
Indeed, this follows immediately from Theorem 3.1, togethith Proposition 1.2, (i).

REMARK 3.1.2. The observation given in the discussion of Remarkl3wlas
related to the author bykio Tamagawa

Corollary 3.2. Let X — C be a connected finite étale covering of C that arises
from an open subgroup dflc. Suppose that X is &yperbolic curveover k (i.e, X
is geometrically connectedver K. Then the following hold
(i) Let xe X be a closed point of X. Write € C for the closed point of C obtained
by forming the image of x via the covering—>% C. Then it holds that x is-moderate
if and only if ¢ is kmoderate Moreovey in this case it holds that

Qc -K(X) = Qx.

In particular, if there exists an-moderateclosed point of Xdefinedover Qc, then it
holds that

Qc = Qx.
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(i) We have natural inclusions of fields

kg'dH C k)ngdH
N N
Qc C Qx.

Moreover the extensionQyx/Qc (determined by the lower horizontal inclusjon
is finite.
(iii) Suppose that the extension

Qc/kg\dH

(cf. Theorem 3.1)is finite (e.g, C is isomorphic toP? \ {0, 1, c0}—cf. Corollary 3.3
below. Then the two extensions

Qx/deH,

der-I/kgwdr-l
(cf. (ii)) are finite.

Proof. First, we verify assertion (i). Let us first observattiit follows immedi-
ately from the equivalence (13 (2) of Proposition 2.5, together with Theorem 3.1,
that, to verify assertion (i), by replacing by «(x), we may assume without loss of
generality thatx € X(k), c € C(k). Thus, assertion (i) follows from [7], Proposition
35, together with the implication (3} (1) of Proposition 2.5. This completes the
proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that, lmnsidering the closed
points of X that lie over thel-moderateclosed points ofC, we conclude immediately
from assertion (i) that

mdr{ mdrd
K gt

On the other hand, it follows from [7], Proposition 25, (ihat we have an inclusion
Qc C Qx, and, moreover, the extensidy/Qc is finite. Thus, assertion (ii) follows
immediately from Theorem 3.1. This completes the proof cfeason (ii). Assertion
(i) follows immediately from the various definitions inlke@d, together with assertion
(ii). This completes the proof of Corollary 3.2. ]

Corollary 3.3. Let Se S({0, 1,00}) be an element of({0, 1, cc}) such that
S\ {oo} € k. Then it holds that

—_ ,mdrd
S2pps = k]Pkl\S'

In particular, the equality

def __1,mdrd
Spd), = 2p2\(0,100) = Kpi\(0,100)

holds.
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Proof. It follows from Theorem 3.1 that, to verify Corolla®.3, it suffices to
verify that Qp1\ s € mkld\ré On the other hand, it follows immediately from Lemma 1.7,
(v), together with Theorem 1.5 and the equality of Definitib®, thatszlp&\s is gener-
ated by the tripod I-units Thus, to verify Corollary 3.3, it suffices to verify that,rfo
each tripodl-unit a € k \ {0, 1}, it holds thata € ”lld\ré To this end, let us recall from
Lemma 1.7, (iv), that there exists an elemdnt S({0, 1,00}) such thatS< T, and,
moreover,a € K(T \ {oo}). Leta’ € T\ S. Then sinceSC Su{a'} € T, it follows
immediately from Lemma 1.7, (v), tha(T \ {oo}, U(S)) = k(T \ {oc}, U(SU {a'})).
Thus, it follows from Theorem 1.5, together with the equivede (1)< (2') of Prop-
osition 2.5, that the closed point @ \ S corresponding t&’ € k is I-moderate In
particular, sincea € k(T \ {oo}) = k(T \ S) (cf. our assumption thab\ {cc} C k), we
conclude thata € mkld\r; This completes the proof of Corollary 3.3. O

ExAMPLE 3.4. Theorem 3.1 and Corollary 3.2 give us other examplesypéii
bolic curvesX over k for which the equality

Qy = deH
holds as follows:
(i) Suppose that is odd Let n be a positive integer. Write

X £ speck(s, t]/(8" + 1" + 1))

—wheres andt are indeterminates. Then the equalities
Qtpd/k — QX — k)n;]dH

hold. Indeed, let us consider the connected finite étalertay&X — ]P’kl\{o, 1,00} given

by mappingu > 8" (where we writeu for the standard coordinate @). Then one
verifies easily that this covering arises from an open sulgf [1p:,(o,1,y- Moreover,

one verifies immediately that every closed point Xfthat lies (relative to this cover-
ing) over the closed point P} \ {0, 1,00} corresponding to &ipod I-unit is defined

over Ktripod I-units). Thus, since such a closed pointRf \ {0, 1,00} is I-moderate

(cf. Proposition 2.8), and

k(tripod I-units) = Qpd,
(cf. Definition 1.6), it follows immediately from Corollar8.2, (i), (ii), that the equality

Qtpd/k = Qx
and the inclusion

mdr4
Qtpd i - kx
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hold. In particular, it follows from Theorem 3.1 that the afjties

Qpd, = Q2x = kY™
hold.
(i) Let n be a positive integer. Suppose thais odd and that I, n) # (3, 1). Write

X €' Proj[s, t, ul /(8" +t" +u'"))

—wheres, t, andu are indeterminates. Then the equalities
Qtpd/k =Qx = deH

hold. Indeed, by considering the open subschéhme X of X given by “X” of (i), we
conclude from (i), together with Remark 1.1.2; Propositlog, (vi), that the equalities

Qipg, = 2x = Qu

hold. Moreover, let us observe that if a closed pamE X of X lies on the open
subschemd&J C X (i.e., given by X" of (i)) and is I-moderateas a closed point df/,
then it follows from the equivalence (1> (2) of Proposition 2.5 thafy = Qu\(x};
thus, it follows immediately from Remark 1.1.2 th@x = Qx\(x, i.€., x € X is I-
moderateas a closed point oK (cf. the equivalence (1 (2) of Proposition 2.5). In
particular, it follows that the inclusion

kLTdH C der-I
hence (cf. (i); Theorem 3.1) also the equalities

Qtpd/k — QX — deH
hold.
(iii) Suppose that = 3, and that a primitive cube root of unity is containedkinWrite
X for the modular curve Y3) parametrizing elliptic curves with (3)-structures(cf.,
e.g., [12]) overk. Then the equalities

mdr-3
Qtpd/k = Qx = kX

hold. Indeed, as is well-known, if; € k is a primitive cube root of unity, then there
exists an isomorphism oves

X =~ PF\ {1, g3, &2, 00}.

Thus, since (one verifies easily thdf), 1,3, ¢2, oo} € S({0, 1,00}), it follows imme-
diately from Lemma 1.7, (v), together with Remark 1.1.2; gisition 1.2, (vi); The-
orem 1.5, that the equalities

Qupd,, = 2x = Lpp\(0,145,22,00)
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hold. Leta € k \ {0, 1} be atripod 3-unit; write x € X ~ P} \ {1, ¢3, ¢2, oo} for
the closed point ofX corresponding ta!/3. (Note that it follows immediately from
the definition of a tripod-unit thata'/? is a tripod 3-unit.) Then, by considering the
connected finite étale coverirg! \ {0, 1,¢s, ¢5, oo} — P\ {0, 1,00} given by map-
ping u — u® (where we writeu for the standard coordinate @), we conclude from
Corollary 3.2, (i), together with Proposition 2.8, thate X ~ P} \ {1, ¢35, ¢2, 0o} is
3-moderateas a closed point P} \ {0, 1,¢3, £2, co}. In particular, it follows immedi-
ately from a similar argument to the argument applied in (@ncerning X € X" of
(ii)) that x is 3moderateas a closed point oK. Thus, it follows that

al’3 e der-S,

which thus implies (cf. the equality of Definition 1.6) that
Qupa, < KR,

In particular, it follows from Theorem 3.1 that the equalti

mdr-3
Qtpd/k = QX = kX

hold.

(iv) Let n be a positive integer. Suppose that 3, and that a primitive "3th root of
unity is contained ink. Write X for the modular curve Y3") parametrizing elliptic
curves withI"(3")-structures(cf., e.g., [12]) overk. Then the equalities

dr-3
Qtpd/k = Qx = k? '

hold. Indeed, let us first observe that it is immediate thawdrify the equalities under
consideration, we may assume without loss of generality kha Q(¢z), wherezs € k
is a primitive 3-th root of unity. Leta € k \ {0, 1} be atripod 3-unit. Write x
Y(3) = P\ {1, s, ¢2, 0o} (cf. (iii)) for the closed point ofY(3) corresponding t@'/?
and E, for the elliptic curve overk(a®) determined by the closed poimt € Y(3).
Then it follows from the discussion given in (iii) that theoskd pointx € Y(3) is
3-moderate In particular, it follows immediately from the equivalen€l) < (2) of
Proposition 2.5, together with Proposition 1.2, (ii), thhe elliptic curve Ex admits
good reductionat every nonarchimedean prime kfa'/®) whose residue characteristic
is # 3. Thus, in light ofk(a'/®) C Qpg, = k"2 (cf. Definition 1.6; Theorem 1.9),
since every torsion point oy of order 3 isk(a'®)-rational, and the kernel of the
natural homomorphism GIZ3) — GLy(F3) is pro-3, it follows immediately from the
definition of k'3, together with Proposition 1.2, (i), (i), that every tamsipoint of
Ex of 3-power order isdefined overQyq, = kU"3, In particular, every closed point
of X that lies, relative to the finite étale covering — Y(3) arising from the natural
inclusionT"(3") — T'(3) (which corresponds to an open subgroupIBbf), over x €
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Y(3) is defined overQpq, = kU3, Thus, it follows immediately from Corollary 3.2,
(i), together with (iii), that the equality

Qupg, = $2x
and (by allowing tovary a) the inclusion
Qipa, S kipdr-3
hold. Thus, it follows from Theorem 3.1 that the equalities
Qupa, = Qx = k{3

hold.

(v) Letn=>2 be an integer. Suppose thHat 3, and that a primitive "3th root of unity
is contained irk. Write X for the smooth compactificatiok(3") of the modular curve
Y(3") of (iv). Then the equalities

_ —_ |/mdr-3
Qpa,, = Qx = kY

hold. Indeed, in light of (iv), this follows immediately fno a similar argument to the
argument applied in (ii) (by replacing (i) by (iv)).

REMARK 3.4.1. It follows from Example 3.4, (ii), that if > 5, then the proper
hyperbolic curveX over Q defined by the homogeneous equatioh+y' 4+ 7" satisfies
condition (1) of Remark 3.1.1, (i). In particular, it follenfrom the implication (1)
= (3) of Remark 3.1.1, (i), thaX admitsinfinitely many |-moderate pointsThus, it
follows immediately from thefiniteness resulbf [20], Théoréme 1, that the assertion
given in Remark 2.6.3 doesot hold

Lemma 3.5. Suppose that the following two conditions are satisfied
(1) The equality

Qtpd/@ — Qum
of the problem(l;) of Remark 1.8.1holds (e.g, | is an odd regularprime—cf. The-
orem 1.9)
(2) k< Qtpd/Q = Qum-
Then the following hold
(i) The equality

Qc = Qtpd/Q

holds if and only if the following condition is satisfied
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(t): The hyperbolic curve C admitgood reductionat every nonarchimedean
prime of k whose residue characteristic 1, and, moreoverif g €k is a
primitive I-th root of unity then the restriction to ;) € Gk of the composite

Gk 5 out(ac) — Aut(AR @4, F)

factorsthrough a pro-l quotient of ;).
(i) Supposemoreoverthat the equality

Qc = Qtpd/Q

holds and that the hyperbolic curve C jgroperover k. Let xe C(k) be a k-rational
point of C. Then the equalities

Qc = Qc\x = Qupa, = Q™™

hold.

(iii) In the situation of(ii), for a closed point of Cit holds that the closed point is
[-moderateif and only if the closed point igefinedover Qipd,, = Q™. In particular,

it holds that

{I-moderate closed points of JG= C(Q"™).

Proof. First, we verify assertion (i). Theecessityfollows immediately from Prop-
osition 1.2, (ii), together with the definition @®"™. To verify the sufficiency let us
observe that if the conditiont) holds, then it follows immediately from Proposition 1.2,
(), (i), together with the definition o™, that the inclusior2c € QU™ holds, which
thus implies (cf. condition (1)) thakc € Qpq,. Thus, thesufficiencyfollows from Prop-
osition 1.2, (vi). This completes the proof of assertion (i)

Next, we verify assertion (ii). It follows from assertior) ¢hat, to verify assertion
(i), it suffices to verify that the hyperbolic curv@ \ {x} satisfies the conditionf}. On
the other hand, again by assertion (i), the hyperbolic c@haatisfies the conditionf).
Thus, one verifies easily that the hyperbolic cu@eé, {x} satisfies the conditiont).
This completes the proof of assertion (ii). Assertion (id@lows immediately from The-
orem 3.1, together with assertion (ii). This completes tfmpof Lemma 3.5. ]

REMARK 3.5.1. Suppose that conditions (1) and (2) in the statemdnt o
Lemma 3.5 hold. Then it follows from Lemma 3.5, (iii), togethwith Example 3.4,
(i) (respectively, Example 3.4, (v)), that the proper hygmic curve “X” of
Example 3.4, (ii) (respectively, Example 3.4, (v)), satisfthe equality

{I-moderate closed points of} = X(Q'™).
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Corollary 3.6. Suppose that & 5, and that the equality

— mund
Qtpd/0 = Q

of the problem(l;) of Remark 1.8.1holds(e.g, | is a regularprime—cf.Theorem 1.9)
Let & b € Qupa, \ {0, I} = Q™ \ {0, I} be elements of2yq,, \ {0, 1} = Q"™ \ {0, 1
such that

a +b =1
Then the hyperbolic curve of tyd®, 4) over Q(a')
IEJ’(]i(al) \ {01 11 ool al}

is not quasik-monodromically full €f. [5], Definition 2.2, (iii)), i.e., if we write k&'

Q(a) and c¥ Pé(a,) \ {0, 1,00}, then the image of the composite

Gk—>HC—»<I>C

—where the first arrow is the splittinghat is well-definedup to Ac-conjugatior) of
the upper exact sequence of the commutative diagramefinition 2.2induced by the
k-rational point of C determined by'aand the second arrow is the natural surjec-
tion defined inDefinition 2.2—is not open ¢f. Remark 2.2.1; [7], Remark 11, (ii); [7],
Proposition 19, (iv))

Proof. Write X for the proper hyperbolic curve of Example 3.4, (i), in thase
where k, n) = (Q, 1); U € X for the open subscheme of given by “X” of Ex-
ample 3.4, (i), in the case wherk, (1) = (Q, 1); x € U for the (g, -rational) closed
point of U corresponding to the paim(b) in the statement of Corollary 3.6. Then it
follows from Remark 3.5.1 thak is I-moderateas a closed point oK. In particu-
lar, it follows immediately from the equivalence (& (3) of Proposition 2.5, together
with [7], Proposition 33, (ii), thatx is not quasi-l-monodromically ful{cf. [7], Defin-
ition 8) as a closed point oK, hence (cf. [7], Proposition 24, (i)) alsd. Thus, by
considering the connected finite étale covering— ]P’é \ {0, 1,00} given by mapping
u s (where we writeu for the standard coordinate di’fé), we conclude from [7],
Proposition 27, (i), that the closed point E’g \ {0, 1,00} corresponding ta' is not
quasi-l-monodromically full In particular, it follows immediately from [7], Remark 11,
(i), that the hyperbolic curvdPé(a‘) \ {0, 1,00, @'} of type (0, 4) overQ(a) is not
quasi-l-monodromically full This completes the proof of Corollary 3.6. O

REMARK 3.6.1. Corollary 3.6 leads naturally to the following oh&gion which
may be regarded as adnditional proof’ of Fermats last theorem
Suppose that the following two assertions hold:
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(1) The equalityQpq,, = QU™ of the problem ;) of Remark 1.8.1 holds
for every prime numbel.
(2) The problem of Matsumoto and Tamagawa given as [14], Enoldl. 1,
is answered in thaffirmative (In particular, the equivalence (MY <
(MT>) of [8], Introduction, holds.)

Let| > 5 be a prime number ana, b € Qipa, \ {0, 1 = QU™ \ {0, 1} elements

of Qupa, \ {0, = Q"™ \ {0, 1} such that
a +b =1

Then it follows from Corollary 3.6 that the hyperbolic cureé type (0, 4)
over Q(a)

def
X E Py \ {0, 1,00,a')

is not quasi-I-monodromically full Thus, it follows from our assumption that
the equivalence (M1) < (MT>) of [8], Introduction, holds thaX is not quasi-
I”-monodromically fullfor every prime numbel’. In particular, it follows im-
mediately from [5], Corollary 7.11, that one of the elemeottghe set

{al, bl! _(a/b)l, a_ly b_l! _(a/b)_l},
hence also one of the elements of the set
{a, b, a/b},

is a unit (in the ring of integers ofQ).
Thus, one verifies easily that, for instance, every pairbj of nonzero
rational numbersdoesnot satisfythe equality

a+b =1

On the other hand, however, the author answered the prodidiatsumoto and Tama-
gawa given as [14], Problem 4.1, in thegativein [8] (cf. [8], Theorem A). The above
observation is one of the main motivations of studying thebfgm of Matsumoto and
Tamagawa in [8].
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