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Abstract

We study Lauricella’s hypergeometric functidf, of m variables and the sys-
tem Ea of differential equations annihilating-a, by using twisted (co)homology
groups. We construct twisted cycles with respect to an rategepresentation of
Euler type of Fa. These cycles correspond td 2inearly independent solutions to
Ea, which are expressed by hypergeometric sefgs Using intersection forms of
twisted (co)homology groups, we obtain twisted periodtietes which give quadratic
relations for Lauricella’sFa.

1. Introduction

Lauricella’s hypergeometric serids, of m variablesxg, ..., X, with complex par-
ametersa, by, ..., by, 1, .. ., Cn is defined by

(@ Ny + - + Nn)(by, N1) - (B, M),

VL
(€1, N1) -+ - (Cmy N)N! - - - Ny! !

m

Fa(a, b, ¢c;x) = i

Ng,...,Np=0

wherex = (Xg,...,Xm), b=(by,...,bn), c=(Cy,...,Cm), C1,...,Cm & {0,—1,-2,...}
and €1, n1) = I'(cy + ny)/T'(c1). This series converges in the domain

Da = {(xl,...,xm) ecm
k=1

and admits the integral representation (3). The sysketa, b, c) of differential equa-
tions annihilatingFa(a,b,c;x) is a holonomic system of rank™with the singular locus
S given in (1). There is a fundamental system of solutionEida, b, ¢) in a simply
connected domain i s — S, which is given in terms of Lauricella’s hypergeometric
seriesFp with different parameters, see (2) for their expressions.

In this paper, we construct™twisted cycles which represent elements of theh
twisted homology group concerning with the integral repreation (3). They imply
integral representations of the solutions (2) expressedhbyseriesFa. We evaluate
the intersection numbers of thes® Bwvisted cycles. Further, by using the intersection
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matrix of a basis of the twisted cohomology group in [10], wigegtwisted period
relations for two fundamental systems of solutionsBg with different parameters.

In the study of twisted homology groups, twisted cycles gy bounded cham-
bers are useful. For LauricellaBa, twisted cycles defined by™bounded chambers
are studied in [11]. Though the integrals on these cyclessahations toEa, they do
not give integral representations of the solutions (2)epxdor one cycle. We construct
other twisted cycles from thesé"bounded chambers by using a method introduced in
[5]. For a subsetiy,...,i;} of {1,...,m} of cardinalityr, we construct a twisted cycle
Aj,.i, from the direct product of an-simplex and ih—r) intervals, by a similar man-
ner to [5]. See Section 4, for details. Our first main theordates that this twisted
cycle corresponds to the solution (2) expressed by the péuetion ]_[rp:l xilp_c‘p and
the seriesFa. Our construction has a simple combinatorial structurel anables us
to evaluate the intersection matrix formally. Once the regetion matrix for bases of
twisted homology groups and that of twisted cohomology gsoare evaluated, then we
obtain twisted period relations which are originally idéas among the integrals given
by the pairings of elements of twisted homology and cohoglgroups. Our first
main theorem transforms these identities into quadratatioms among hypergeometric
seriesFa’s. Our second main theorem states these formulas in Se6tion

As is in [2], the irreducibility condition of the systerBa(a, b, ) is known to be

r
bj_,...,bm,C]_—b]_,...,Cm—bm, a—ZcipgéZ
p=1

for any subsefiq, ..., i;} of {1,..., m}. Since our interest is in the property of so-
lutions to Ea(a, b, ¢) expressed in terms of the hypergeometric sefigs we assume
throughout this paper that the parametarsb = (by, ..., by) andc = (¢, ..., Cn)
satisfy the condition above ard, ..., ¢, ¢ Z.

2. Differential equations and integral representations

In this section, we collect some facts about Lauricellgs and the systenit of
hypergeometric differential equations annihilating it.

NOTATION 2.1. Throughout this paper, the lettkralways stands for an index
running from 1 tom. If no confusion is possible} ;. , and []i., are often simply
denoted by)_ (or ) and[] (or [],). respectively. For example, under this conven-
tion Fa(a, b, c; x) is expressed as

(a2 ne) TT(bx, ni) M
Z [T(c, nie) - TT ! X

Fa(a, b, c;x) =

Ny,..., nm=0



TWISTED PERIOD RELATIONS FOR Fa 863

Letdy (k =1,...,m) be the partial differential operator with respeckfo Lauricella’s
Fa(a, b, c; x) satisfies hypergeometric differential equations

Xk(l — Xk)af — Xk Z X 3k3i
1<i<m

i#k

+ (o — @+ b+ Dx)d—be Y x84 —ab | f(x) =0,
1<i=m
i#k
for k=1,...,m. The system generated by them is called Lauricella’s sy€tafa, b, c)
of hypergeometric differential equations.

Proposition 2.2 ([9], [12]). The system J{a,b,c) is a holonomic system of rank
2™ with the singular locus

(1) S:= <ka- I1 (1—inp> =o) ccm
k=1 mj} p=1

{ig,...ir}c{1,..,

If c1,...,Cm & Z, then the vector space of solutions tq (&, b,c) in a simply connected
domain in Dy — S is spanned by the followingJ" elements

r r
p=1

p=1

Here r runs fromO to m, indices i, ...,i; satisfyl<i; <--- <i; <m, and the row
vectors " and ¢+ are defined by

r r
bilmir =b + Z(l - Cip)ep' Cilmir =Cc+2 Z(l - Cip)apy
p=1 p=1

where ¢ is the i-th unit row vector ofC™.

For the abovey, ..., i, we takejq, ..., jmr SO that 1< j; < -+ < jm_r <M
and{ig, ..., i, jo, ..., Jmr} = {1,..., m}. It is easy to see that thig-th entries of
b+~ and ¢t areby, — ¢, + 1 and 2— ¢, (1< p <r) and thejq-th entries areb;,
andcj, (1 =g = m-r), respectively.

We denote the multi-indexii ---i,” by a letter | expressing the sy, ..., i}.
Note that the solution (2) for =0 is f (= f3) = Fa(a, b, c; x).
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Proposition 2.3 (Integral representation of Euler type, [9])For sufficiently small
positive real numbersix...,Xm, if Rek) > Re@k) > 0 (k =1,...,m), then Fa(a,b,c;x)
admits the following integral representation

3)
L I'(c)
F/_\(a, b, c; X) - l_[ m

‘ /(0 ym l_[(tl?kil ' (1_tk)Ck_bk_1) : (1— Z thk>7a dtl A A dtm

3. Twisted homology groups

We review twisted homology groups and the intersection fdretween twisted
homology groups in general situations, by referring to GdaR of [1] and Chap-
ters IV, VIII of [13].

For polynomialsP;j(t) = Pj(t1,...,tm) (1 < j <n), we setD; :={t | Pj(t) =0} C
C™"andM :=C™— (D U---U Dp). We consider a multi-valued functiom(t) on M
defined as

u@):=[[P®", reCc-z@<j<n).
j=1

For ak-simplexo in M, we define a loade#t-simplexo ® u by o loading a branch
of u on it. We denote theC-vector space of finite sums of loadddsimplexes by
Ck(M, u), called thek-th twisted chain group. An element @k(M, u) is called a
twisted k-chain. For a loadedk-simplex o0 ® u and a smoottk-form ¢ on M, the
integral [ . u-¢ is defined by

/ u-¢:= /(the fixed branch oli on o) - ¢.
oRuU o

By the linear extension of this, we define the integral on astedk-chain.
We define the boundary operatdt: Cx(M, u) — Cx_1(M, u) by

3"(c ® u) 1= (o) ® Uly(),

where d is the usual boundary operator aot},) is the restriction ofu to d(c). It is
easy to see thal" o 9 = 0. Thus we have a complex

caM, u): - B M u) B ceamu) S

and its k-th homology groupHy(C.(M, u)). It is called thek-th twisted homology
group. An element of ket is called a twisted cycle.
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By consideringu™! = 1/u instead ofu, we have Hc(C.(M, u™)). There is the
intersection pairingl, betweenHy(C.(M, u)) and Hn(C.(M, u™1)) (in fact, the inter-
section pairing is defined betweety(C,(M, u)) and Haom_k(Ce(M, u™)), however we
do not consider the casds# m). Let A and A’ be elements oH,(C.(M, u)) and
Hm(Ce(M, u™1)) given by twisted cycles; @i - oi ® u; and Zj of 0] ® u;l respect-
ively, whereu; (resp. uj*1) is a branch ofu (resp.u™') on o; (resp.o]f). Then their
intersection number is defined by

In(A, A') = Z Z otiot3 - (o -o*l-’)s- _ul-(S)'
ij SEaiﬂ(rJ' |

where i - o{)s is the topological intersection number ofsimplexeso; and o ats.
In this paper, we mainly consider

M:=C"— (U(tk=O)UU(1—tk=O)U(v =0)>,
k k

wherev := 1—- ) xtx. We consider the twisted homology group &h with respect
to the multi-valued function

m
us= [ [t - )%t v2
k=1

Let A be the regularization of (0, T)® u, which gives an element itd,(C.(M, u)).
For the construction of regularizations, refer to SectiBa4 and 3.2.5 of [1]. Prop-
osition 2.3 means that the integral

dtg A+ Adty
up, ¢\ =——"7—
A tl"'tm

represents-a(a, b, ¢; X) modulo Gamma factors.

4. Twisted cycles corresponding to local solutions,...;,

In this section, we construct™twisted cycles inM corresponding to the solu-
tions (2) to Ea(a, b, ).

Let 0 <r <m and subsetsi;, ..., i;} and{j1, ..., jmer} Of {1,..., m} satisfy
1< <ip,jr<+ < jmer @andf{iz,...,0r, joy o ooy jmer} ={1,..., m}.

NOTATION 4.1. From now on, the lettep (resp.q) is always stands for an index
running from 1 tor (resp. from 1 tom—r). We use the abbreviations , [] for the
indices p, q as are mentioned in Notation 2.1.
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We set
Mip.i, = C™ — (U(sk =0 uJs, —x, =0uJa-sj, =0)U (v, = 0)),
k p q
where

Vg, 1= 1- Z Sp — Z ququ.
p q

Let uj,.;, andg;,.;, be a multi-valued function and am-form on M;,.; defined as

r m—r
. bip Cip—hip,—1 bjq Cj,—bjq—1 . ,—a
Ui, = [ ] 82°(5, =%, )% 272 [ s (@ = 5,)% Pt 072,
p=1 g=1

. dst Ao Adsy
Giyeiy s s
We construct a twisted cycle&il...ir in M;,.., with respect tou;,.;,. Note that if
{i1, ..., ir} = 0, then these settings coincide with those in the end of SeQ&ioWe
choose positive real numbets, ..., en ande so thate < 1— 3", e and ex < 1/4.
And let xq, ..., X be small positive real numbers satisfying

Xk < &k, Zxk(l—i—sk) <e€
k

(for example, if
1
= = —-—, O -,
Be=¢ 5m < X< 6m?2

these conditions hold). Thus the closed subset

s > & _ S
Oy, 1= {(Srl, ..., Sn) €ER™ Sp = Eip 1 Zsp = 8,}
Sjy = €jg» 1—Sj, = ¢j,
is nonempty, since we havei(+ 8/(2m), ..., em + 8/(2m)) € oj,.;,, whered := 1 —

> ek —e > 0. Further,0;,.;, is contained in the bounded domain
S, — X, > 0,
0< qup< 1, 1- DS =) XieSiy > 0} c (0, 1)",

and is a direct product of an-simplex and ifh —r) intervals. Indeed,s, ..., Sn) €
oi,..i, Satisfies

{(sl,...,sm)eRm

S, — X, >s,—¢, >0,

1—Zsp—Zququ >8—ijq >8—ZX|(>0.
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The orientation ofoj,..;, is induced from the natural embeddi®j" ¢ C™. We con-
struct a twisted cycle fronw;,.; ® ui,.i,, where the branch ofij,..; on oj,.;, is de-
fined by the principal value. We may assume that= ¢ (the above example satis-

fies this condition), and denote them by SetlL; := (5 =0),..., Ly = (5n = 0),
Ler]_ = (1 - SJl = O), ce ey L2m7r = (1 - Sjm—r)’ L2m7r+1 = (1 - Zsp = O), and
let U (C R™) be a bounded chamber surrounded Lby ..., Lom—ri1, thenoi,.i, is

contained inU. Note that we do not consider the hyperplabg, .1 (resp. the hy-
perplanesLmy1, ..., Lom—r), whenr =0 (resp.r =m). ForJ C {1,...,2m—r + 1},

we considerL ; := (;; Lj, U; := U N L, and T, := e-neighborhood ofU;. Then
we have

Oji, = Uu-— U TJ.
J

Using these neighborhoods, we can construct a twisted cychg, ..;, in the same man-
ner as Section 3.2.4 of [1] (notatiohsandU correspond toH and A in [1], respect-
ively). Note that we have to consider contribution of bra&n;:lcnfqbp”’(sp — xip)C‘p‘b'p‘l,

when we deal with the circle associatedltg (p=1,...,r), because ok;, < ¢. Thus
the exponent about this contribution is

bip+(Cip—bip—l)=Cip—l.

The exponents about the contributions of the circles aasetitoL j,, Lmiq, Lom—r+1
are simply

qu, Cj, — qu -1, —a,

respectively. We briefly explain the expressioanﬁ...i,. Forj=1,....,2m—r +1, let
l; be the n— 1)-face ofaj,.;, given byai,.;, N Tj, and letS; be a positively oriented
circle with radiuse in the orthogonal complement df; starting from the projection

of I; to this space and surroundirig;. Then A;,.;, is written as

i
1
Ojyi, @ Ujji, + Z <H d_> . ((m Ij) X l_[ Sj) & Ui, »
g£Ic{l,...2m—r+1) \jed jed jed
where

d, :=v,—1, dj:=Bj,—1, Oniq:=rj B — 1 domrpri=a ' -1,

ande := &7V 12, g i= €27V 10,y 1= "Y1 The branch of,.;, on (), 1;) x
[1jes S is defined by the analytic continuation of that @n.i,. Note that we define an
appropriate orientation for eac(lmjejlj)x]_[jEJ Sj, see Section 3.2.4 of [1] for details.
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Iy o1 ly

Fig. 1. A for m = 2.

EXAMPLE 4.2. We give explicit forms ofA, A; and Ay, for m = 2.
() In the case ofl =@, A is the usual regularization of (0,2® u.
(i) In the case ofl = {1}, we have

~ (& xl)ur (Sxb)eur (SExl)eu (Sxl)eu
Mma®mt T 1- s I—a® | 1-pp,t
(31X$)®U1+ (&ExS)eu
(1-m)1-8) (Q-B)L—a™t)
(S xS)Q Uy (SxS)®u
1-aDA-rph  A-rBHA-1)

where the 1-chain$; satisfy 9o = Z?:llj (see Fig. 1), and the orientation of each
direct product is induced from those of its components.
(iii) In the case ofl = {1, 2}, we have

~ xl;)®u xl)®u xlz)®u
Ay = 012 ® Upp + (S x1)Quz  (§xl)®urp, + (S x13) ® Uz
l-n 11—y 1—qg1

(& x ) ®u2 n (& x S) ® ur2 n (S x S) ®ur2
1-y)1-y) (A-y)A-c?) @A-aVHA-y)

where the 1-chaink; satisfy 00 =11 +15 +13 (see Fig. 2), and the orientation of each
direct product is induced from those of its components.




TWISTED PERIOD RELATIONS FOR Fa 869

51—1‘1:0

3

So—x2 =0

[ | : |
O \ ) ] 1

1-— S§1 — S22 = 0
Fig. 2. Ay, for m = 2.
We consider the following integrals:
Fil"'ir 2=/: Uiyoi, @iy
Ai1 ir
C,—2 Gp—hip—1 M b
-[ s (+-5) T asr
i1ir p=1

r m—r —a
-(1—Zsp—2qusjq> ds; A .-+ A dsy.
p=1 q=1

Proposition 4.3.

: I‘(qu)F(CJq q) F(l — a)
Fivei H”C'p ”H re,)  I(e,-a-r+d

: FA<a +r - Z Gi,, b1, ¢ x).

p=1

Proof. We compare the power series expansions of the bo#is.sNote that the
coefficient ofx;*- - - in the series expression &% (a+r —erzlcip,bll--..r,c'r"'r;x) is

(a+r chl +ank) HF(bip+l_Cip+nip)-1_[ F(qu+njq)
(a +r— Zp ) 0 ro,+1-¢,) I'(bj,)
1"(2 C|p F(qu

H r@2-c,+n) H r'(cj, +ny,) H

Anl...nm =
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On the other hand, we have

( _&) i—1_2F(bip_Cip+1+nip)§—nipx'nip
S, (o, —ci, +1)-m,! » e

and

(125 -20s)
F(a+2n-q —a—>_Njq Nig Nig
= > W(l—zsp) LS X

Whenr = 0 (resp.r = m), we do not need the first (resp. second) expansion. The con-
vergences of these power series expansions are verifiedlassfoBy the construction
of Aj,.i,, we have

0<xc<en o, =I5l Is,l<Ll+ey [1-

Thus the uniform convergences (zﬁnl...ir follow from
Xi &
Zle P 1,
S, &i,

1 1 1 .
‘j__—X:Sp‘Zqusjq = m-ZXJqlqu| < EZXIq(1+81q) < g -1

Since A;,..;, is constructed as a finite sum of loaded (compact) simplexesgan ex-
change the sum and the integral in the expressiorFpfi,. Then the coefficient of
x{‘l .- XIm in the series expansion df,..;, is

(4)

Bnl...nm =

L(bi, —ci, +1+n;) l"aJanJq 1
[l r(b,—ci, +1) I'(a) Un_

[ l—lsc,ppfzfnip‘(l_zsp)fafzm l_[ bjq l+mq(1 Sj )ch big-1ds.
i p

Ay q

By the construction, the twisted cycfﬁeil...ir of this integral is identified with the usual
regularization of the loaded domain

{(sl,...,s“)e]Rm 5,>0,1-)"5,>0, O<sjq<1}
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for the multi-valued function
l—[ Cip—1- n.p< ZS ) a—y_ Njg . Squ+njq (1—SJ )qu—qu—l
Ia a
p q

on C™ — (Uy(sx = 00U Uy(1—sj, =0) U (1 - X5, = 0)). Hence the integral in (4)
is equal to

l_[p F(Cip —nj, — 1) F(—a— 3 nj, + 1) . l_[ F(qu + njq)F(qu - qu)

rXc,—a—Yy n—r+1) I'(cj, +nj,)
Using the formula
(5) rgrd-2z = M,
we thus have
Bnl n F(bl )F(CJ bj ) rl-a)
m r -1 q il a’ ,
An, o, H @, —1)- l_[ r(cj,) r>c,—a-r+1)
which implies the proposition. ]

We define a bijection;,..i, : Mi,.;, - M by
S
Lil---ir(sla ey Sm) = (g, o th); tip = T’ tjq = Sj,-

Ip

For exampley (= tp) is the identity map orM = My.

We also define branches of the multi-valued functioon real bounded chambers
in M. On the domain

D, i= (- 1) €R™ | 4> 0, 1= Xt > 0, 1-§, <0, 1-t, > 0],

the arguments ofy, 1 -3 xt, 1—t;, and 1-t;, are given as follows.

t | 1— Xtk 1_tip 1—tjq
0 0 -7 0

We state our first main theorem.

Theorem 4.4. We define a twisted cycld;,..; in M by

Aipeiy 7= (tigeiy ) (Aie,)-
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Then we have

/; H(tskil -(1- tk)ckfbkfl) . (1 - Z thk)—a dtg A--- Adty

-

and hence this integral corresponds to the local solutign, fto Ea(a, b, ¢) given in
Proposition 2.2

igeir

r
U(p) = e’“/jl(z bip=3 cip+r) H Xij;]_cip - Fipir s
p=1

Proof.  Sincej,..i, (0i,..i,) C Di,.i,, the left hand side is equal to

e’“/jl(Z bip =X Gip+r) . H(tib'p_l . (tip _ 1)Cip7bip*1)
P
p

Awl---ir

) H(t;)qiq—l F(@— )0 bl (1 _ Z thk)ia dtg A -+ A diy,

q

where the branch of the integrand is determined naturaljling back this integral by
li,i, leads the first claim. This and Proposition 4.3 imply the secolaim. O

REMARK 4.5. Except in the case dfy, ..., i/} = 0, the twisted cycleA;,..;, is
different from the regularization ob;,.; ® u as elements irtH,(C.(M, u)).

The replacementi — u™! = 1/u and the construction same as,.; give the
twisted cycleA;’ ; which represents an element iy (C.(M, u™l). We obtain the

intersection numbers of the twisted cyclgs;,..;,} and {A-V :

iqeeip S

Theorem 4.6. (i) For 1,3 C{1,...,m} such that I# J, we have {(A,,AY) =0.
(i) The self-intersection number af is

i oy

a_l_[p)/lp . ﬂjq(l_yjq)
l@—DTTpd-n,) 45 @=Bi)Bi, —vi)

Ih(Aiyi AL ) =

Proof. (i) Since Aj,.;’s represent local solutions (2) tdEa(a, b, c) by
Theorem 4.4, this claim is followed from similar argumerndsthe proof of Lemma 4.1
in [6].

(i) By u,.i,, the self-intersection number af;,..; is equal to that of&il...ir with
respect to the multi-valued functiam,..;,. To calculate this, we apply results in [7, 8].
Since we construct the twisted cychg,..; from the direct product of an-simplex and

(m —r) intervals, the self-intersection number A is obtained as the product of

1

1oy
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those of the loaded simplex and the loaded intervals. Thuhave

1-Tlpn, o™ 1=
In(Aiyeis ALi) = - q . -
(A ) = A p,)-G—a D l_[(1 Pid = vieBi,)

5. Intersection numbers of twisted cohomology groups

In this section, we review twisted cohomology groups and ititersection form
between twisted cohomology groups in our situation, andecblsome results of [10]
in which intersection numbers of twisted cocycles are etaid.

Recall that

M=cC"- <U(tk =0)uU(1—tk =0)U (v =0)),
u=J]t@a-t)% >t va

We consider the logarithmic 1-form
du
:=dlogu = —.
w g ;

We denote theC-vector space of smootk-forms onM by £X(M). We define the co-
variant differential operatoV,,: £K(M) — £K*1(M) by

Vo) :=dv + 0 Ay, ¥ e EXM).

Because ofvV, oV, = 0, we have a complex

E*(M): --- & EX(M) &) EXFL(M) &) e

and itsk-th cohomology groupH¥(M, V,,). It is called thek-th twisted de Rham co-
homology group. An element of k¥, is called a twisted cocycle. By replacigtf(M)
with the C-vector spacecX(M) of smoothk-forms on M with compact support, we
obtain the twisted de Rham cohomology groH(M, V,,) with compact support. By
[3], we haveHK(M, V,,) = 0 for all k % m. Further, by Lemma 2.9 in [1], there is a
canonical isomorphism

J: H™(M, V,) = H"(M, V,,).
By consideringu™ = 1/u instead ofu, we have the covariant differential operatér,,

and the twisted de Rham cohomology grokif(M, V_,). The intersection forml,
betweenH™(M, V,) and H™(M, V_,) is defined by

lc(w,w):/MJ(ww’, ¥ e H(M, V,), '€ H(M, V_,),
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which converges because of the compactness of the suppg(t/of

REMARK 5.1. By Lemma 2.8 and Theorem 2.2 in [1], we have

dim H(Ce(M, 1)) =0 (k # m),
dim Hyn(Co(M, u)) = dim H™(M, V,)) = (=1)"x (M) = 2™,
where x (M) is the Euler characteristic dfl. Under our assumption for the parameters

a,b andc (see Section 1), since the determinant of the intersectiatmixn(ln(A;, AY))
is not zero by Theorem 4.6, the twisted cycles, }, form a basis ofH,(C.(M, u)).

The intersection numbers of some twisted cocycles are ateduin [10]. We use
a part of these results. We considefforms

wil'“ir . dtg A« Adty
. Hp(tip _1)Hq tjq

is equal top = ¢y defined in Section 3 (and Section 4). We put
4 1
Api = A = {%:} E P St
where {11} runs sequences of subsetslo& {is, ..., i}, which satisfy
| = O 2 |(f—1)9_...2 |(2)2 |(1)7é®,
and we writel @ = {i®, ... i},

Proposition 5.2 ([10]). We have

o' o") = @I Y (ANH—ﬁgl'é’;)),
where

1 (he(Inlhu@cn1e))

B (n) := {0 (otherwisg,

~ _Jea=by—=1 (nel)
bi (n) == {bn (nel°).

Under our assumptions for the parametefg'}, form a basis of H'(M, V,)).
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6. Twisted period relations

Because of the compatibility of intersection forms and ipgs obtained by inte-
grations (see [4]), we have the following theorem.

Theorem 6.1 (Twisted period relations, [4]) We have

Iy 1 A av
(6) le(p', 9" ) = Zm} (A, A giNc- 9N

where

gi,N :/ ug', 9’ N Z/ u e,
An AY,

N

By the results in Sections 4 and 5, twisted period relatid@)scan be reduced to
guadratic relations amonga's. We write out two of them as a corollary.

Corollary 6.2. We use the notations
bitir = p+ Z(l —G,)e,, crir =c+2 Z(l —G,)e, (seeProposition 2.2),

g,.i, ;=a+r— Z Cip,
Birvic = (1,..., 1) b, gii= (2, 2)— ¢,

(i) The equality(6) for | =1’ = @ is reduced to
[1(ck—1) 1
L LN A -
(A T

Cj,—bj,—1 1 iy g
= . F ail___.r,bl r,Cl r;X
.Z[H L )

g la

- Fa(=ay,.,, —b'r, @i x)}.

(i) The equality(6) for | =@, I’ ={1,..., m} is reduced to

(=1 jqeeip g G-y xigeei
=Y - Fa@,.i, b CX) - Fa(—ay,,, B @ x),
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Proof. We prove (i). By Proposition 4.3 and Theorem 4.4, weeha
) F(qu)F(CJ’q — qu)

r
Oipei, = €Y1 2 00 TTT(g, - 1)- [ ]
p=1 q=1 Iﬂ(C]q)

i
) I1 Xil,:cip Fa@+1 =) c,, b, ¢ x),
p=1

. rl1-a)
rc,—a—-r+1

whereg,..i; = g i,,...i,}- ON the other hand, we can exprags; = gy, i, like this
by the replacement

(a,b,¢)—~ (—a,—=b, (2,...,2)—0),

sinceu~lyp is written as

u_l(p = H tkfbkfl(l — tk)_ck+bk+1 . (1 _ Z thk>a dtg A--- A dty.

Thus we obtain
9. = @ V1= 2 b +3cipr)

T (b )T =), +b,) I'(1+a)
re-c,) MY, +a+r+1)

JIra-e,)-
p=1

g=1

)

1] xii“_l- FA(—a—r + Gy, b (2, 2= x).
p=1

By the formula (5) and Theorem 4.6, we have
rl-ar@l+a)
r(Yc,—a-r+1)r(=>oc,+a+r+1)
F(qu)F(—qu) . F(qu — qu)F(Z —Cj, + qu)

[[r,-vra-g,)

p

l:[ F(ch)F(Z— qu)
1 cj, — b, —1 a
= 27/ =1)". . Ja Ja . An(Ap A-V_.; .
( ) Uck—l 1:[ bj, at+r-3xa, n(Biics i)
Hence, we obtain (i) by Proposition 5.2. A similar calcwatishows (ii). OJ
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