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Abstract
Strong and weak (1, 3) homotopies are equivalence relationson knot projections,

defined by the first flat Reidemeister move and each of two different types of the
third flat Reidemeister moves. In this paper, we introduce the cross chord number
that is the minimal number of double points of chords of a chord diagram. Cross
chord numbers induce a strong (1, 3) invariant. We show that Hanaki’s trivializing
number is a weak (1, 3) invariant. We give a complete classification of knot pro-
jections having trivializing number two up to the first flat Reidemeister moves using
cross chord numbers and the positive resolutions of double points. Two knot pro-
jections with trivializing number two are both weak (1, 3) homotopy equivalent and
strong (1, 3) homotopy equivalent if and only if they can be related by only the first
flat Reidemeister moves. Finally, we determine the strong (1, 3) homotopy equiva-
lence class containing the trivial knot projection and other classes of knot projections.

1. Introduction

Throughout this paper, we work in the smooth category. Aknot is a circle smoothly
embedded intoR3. We consider a regular projection, called aknot projectionor generic
immersed spherical curve, of the knot to a sphereS2, where the term regular projec-
tion is a projection toS2 in which the image has only transverse double points of self-
intersection. When every double point of a knot projection is specified by over-crossing
and under-crossing branches, we call the knot projection aknot diagram. In particular, a
knot projection (resp. knot diagram) which has no double point is called thetrivial knot
projection (resp.trivial knot diagram).

The first, second, and third Reidemeister moves on knot diagrams, depicted in Fig. 1,
are local moves of knot diagrams leading to an ambient isotopy of knots. Reidemeister
moves are frequently used to study knots. Two knots are ambient isotopic if and only if
two knot diagrams can be related by a finite sequence of Reidemeister moves. If a knot
diagram of an equivalence class can be related to the trivialknot diagram by a finite
sequence of Reidemeister moves, the equivalence class is called the trivial knot type.

Naturally, we often consider a flat version of the first, second, and third Reidemeister
moves on knot projections onS2 not specifying information of over/under-crossing
branches, as defined by Fig. 2, and we call three local movesthe first, second, and third
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Fig. 1. The first, second, and third Reidemeister moves.

Fig. 2. The first, second, and third homotopy moves on knot
projections.

homotopy moveson knot projections on a sphereS2.
Now, we consider every possibility, i.e., seven nonempty types ({1, 2, 3}, {1, 2},

{2, 3}, {1, 3}, {1}, {2}, {3}), of choices of flat Reidemeister moves on knot projections.
Under the first, second, and third homotopy moves corresponding to {1,2,3}, the trivial
knot projection on a sphere generates every knot projections on the sphere. The pair of
the second and third Reidemeister moves corresponding to{2, 3} has been studied as
a regular homotopy on plane curves by Whitney [13], whose rotation numbers imply
that the trivial knot projection and the knot projection that appears similar to1 gen-
erate every knot projection on the sphere. Based on regular homotopy theory, Arnold
introduced his basic invariantsJC, J�, and St [1, 2]. The sets of homotopy moves
concerned with{1}, {2}, and {1, 2} were already considered in [9]. However, basic
problems of knot projections regarding{3} and {1, 3} still remain.

In this paper, the equivalence relation generated by the first and third homotopy
moves is called the (1, 3) homotopy. To begin with, surprisingly, the equivalence class
of knot projections containing the trivial knot projectionunder (1, 3) homotopy onS2

has not been determined. We could find only one related work byHagge and Yazinski
[4] contributing to the problem. Hagge and Yazinski [4] found some knot projections
that cannot be related to the trivial knot projection. Thanks to the study of Hagge and
Yazinski, at least we know that knot projections under (1, 3)homotopy are nontrivial.
However, other equivalence classes are still unknown.

In this paper, we consider the special case of flat third Reidemeister moves shown
in Fig. 3 for knot projections onS2. The strong (resp.weak) third homotopy move is
defined by (s) (resp. (w)) of Fig. 3. We can detect a third homotopy move as either
a strong or a weak third homotopy moves by using any choice of orientations of knot
projections, as in Fig. 4. Here, we would like to remark that these local moves, de-
fined by the same parts of Fig. 3, were introduced by Viro [12] as strong and weak
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Fig. 3. Strong and weak triple point perestroikas (strong and
weak third homotopy moves for knot projections). The dotted
arcs indicate the connection of the branches.

Fig. 4. Any orientation detects which homotopy move is strong
or weak.

triple point perestroikas on plane curves in his study of generalizations of Arnold’s in-
variant J�.

For all knot projections, the equivalence relation under the first homotopy move
and the weak (resp. strong) third homotopy move is calledweak (resp.strong) (1, 3)
homotopy. In this paper, let us denote strong (resp. weak) (1, 3) homotopy equivalence

by
s
� (resp.

w

�). Strong (resp. weak) (1, 3) nonequivalence is denoted by
s
� (resp.

w

�).
One more important notion in this paper is the trivializing number of a knot pro-

jection, introduced by Hanaki [5]. Generally, Hanaki defined the trivializing number for
spatial graph projections, but in this paper, we consider only the trivializing number of
knot projections. Some definitions, facts, and notations about the notion of trivializ-
ing numbers are given following Hanaki [5]. A pseudo diagramP is a generic im-
mersed spherical curve with over/under information at someof the transverse double
points. Let S(P) be the set of all the transverse double points ofP. If a double
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Fig. 5. A cross chord.

point of P has information (resp. no information) as to over/under-crossing branches,
we call the double point acrossing(resp.pre-crossing). We consider the subsetc(P)
(resp. pr(P)) of S(P) consisting of all the crossings (resp. pre-crossings) ofP, and
then S(P) D c(P) t pr(P). The trivializing number of a knot projectionP is defined
as the minimum number of elementsc(P) whose over/under information is such that
even if we take any choice of over/under-crossing branches for all elements ofpr(P),
we have a knot diagram belonging to the trivial knot type.

A chord diagramCDP of a knot projectionP consists of a circle together with the
pre-images of each double point of the knot projection connected by a chord. Chord
diagrams are often called Gauss diagrams (cf. [3]). A cross chord is a sub-chord dia-
gram that is a pair of two chords intersecting each other, as in Fig. 5.

Now, we state the main results of the paper.

Theorem 1. Let tr(P) be the trivializing number of an arbitrary knot projection P.
(1) tr(P) is invariant under the first homotopy move,
(2) tr(P) is invariant under the weak third homotopy move,
(3) tr(P) is changed by�2 or invariant by a strong third homotopy move.
In particular, the trivializing number is a weak(1, 3) homotopy invariant for knot
projections.

In this paper, we introduceX(P) for an arbitrary knot projectionP to present
Theorem 3.

Theorem 2. Let X(P) be the number of cross chords in CDP of an arbitrary
knot projection P.
(1) X(P) is invariant under the first homotopy moves.
(2) X(P) is changed by�3 by a strong third homotopy move.
(3) X(P) is changed by�1 by a weak third homotopy move.
In particular, X(P) (mod 3) is a strong(1, 3) homotopy invariant for knot projections.

The numberX(P) is called thecross chord numberof knot projections.

Theorem 3. Consider the set of all knot projections with trivializing number two.
Two knot projections are equivalent under both weak(1, 3) homotopy and strong(1, 3)
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Fig. 6. Trefoil knot projection.

Fig. 7. (a) 1-gon, (b) coherent 2-gon, and (c)-(d) coherent 3-gons.

homotopy if and only if the two knot projections can be related by only the first homo-
topy moves.

Theorem 4. The knot projection of the strong(1, 3) homotopy equivalence class
belonging to the trivial knot projection can be representedby the connected sum of
knot projections, each of which is either the trivial knot projection❣, the knot projec-
tion that appears similar to1, or the trefoil knot projection defined byFig. 6.

Theorem 5. Let P0 be an arbitrary knot projection without1-gons, coherent2-
gons, and coherent3-gons, as shown inFig. 7. A knot projection P is equivalent to
a knot projection P0 under strong(1, 3) homotopy if and only if P is realized as the
connected sum of P0 and the knot projections. Each knot projection appears similar to
1 or the trefoil knot projection shown inFig. 6.

Here, the termcoherent2- and 3-gons implies that these faces are coherently ori-
ented if we give any orientation for a knot projection.

In Sections 2 and 3, we present proofs of Theorems 1 and 2, respectively. The-
orems 3 and 4 are proved in Sections 4 and 5, respectively. Finally, we obtain a general
result (Theorem 5) of Theorem 4 in Section 6.

2. Trivializing number is a weak (1, 3) invariant

A trivial chord diagram is a chord diagram not containing cross chords (Fig. 8).
Hanaki showed the following [6, p. 440, Theorem 13].

Theorem 6 (Hanaki). Let tr(P) be the trivializing number of a knot projection
P. We have
(1) tr(P) is the minimum number n of chords of CDP such that deleting some n chords
from CDP yields a trivial chord diagram,
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Fig. 8. Trivial chord diagrams.

(2) tr(P) is even.

REMARK 1. As a corollary of Theorem 6, a knot projectionP is the trivial knot
projection or a diagram obtained from the trivial knot projection by applying a se-
quence of the first homotopy moves if and only if tr(P) D 0.

Using Theorem 6 (1), we prove Theorem 1.

Proof of Theorem 1. The discussion proceeds by looking at Fig. 9.
(1) The first homotopy move corresponds to adding or deletinga chord not producing
cross chords. Then, Hanaki’s Theorem 6 immediately completes the proof.
(2) Let P1 (resp. P2) be the left (resp. right) knot projection of Fig. 9. Two knotpro-
jections P1 and P2 are related by a weak third homotopy move. The difference be-
tween CDP1 and CDP2 corresponds to the difference between chordsa, b, c and d,
e, f (Fig. 9). There is a one-to-one correspondence between a chord of CDP1 and a
chord of CDP2 if each of the two chords connects two dotted arcs on each ofCDP1 or
CDP2. Below, we show (I) tr(P1) � tr(P2) and (II) tr(P1) � tr(P2).

(I) Assume that when we delete tr(P1) chords, we deletem chords among the
three chordsa, b, and c. Below, we consider each case form.

• Casem D 0. In this case, the chordsb and c are left, but the two chords
become cross chords, and then,CDP1 is not a trivial chord diagram, which pro-
duces a contradiction. Then,m¤ 0, i.e., there is no need to consider the case.
• Casem D 1. It is necessary to deleteb or c. First, we chooseb. If we
deletee, cross chords consisting ofd, e, and f disappear. Recall that there
is a one-to-one correspondence between a chordxi connecting dotted arcs be-
longing toCDP1 and a chordyi of CDP2 at the location corresponding toCDP1

(i D 1, 2,: : : , tr(P1)�1). After we delete chordsb and e, we dissolve all cross
chords connecting dotted arcs ofCDP2 in the same way as those ofCDP1.
This is because a chordxi with a or c creates cross chords if and only if the
corresponding chordyi with d or f creates cross chords (Fig. 10). Below,
we frequently use the same discussion involving a one-to-one correspondence,
denoted byxi (P1) D yi (P2). Then, we express the deletion of chordsxi (P1)
as “we usexi (P1) D yi (P2).” Below, we use this expression. Now, to obtain
a trivial chord diagram ofP2, it is sufficient to use at most tr(P1) chords in
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Fig. 9. One weak third homotopy move expressed by a knot pro-
jection (upper) and a chord diagram (lower).

Fig. 10. One-to-one correspondence of chords connecting dotted arcs.

this case. Then, using the minimality of the trivializing number in Hanaki’s
Theorem 6, tr(P1) � tr(P2).
• CasemD 2. If the chordsb and c are deleted, then we choose the dele-
tion of d and f . If the chordsa and b (resp.a and c) are deleted, then we
choose the deletion ofd and e (resp. e and f ). For other chords, we use
xi (P1) D yi (P2) (i D 1, 2, : : : , tr(P1) � 2). Again, using Hanaki’s Theorem 6,
we have tr(P1) � tr(P2) in this case.
• Casem D 3. In this case, the chordsa, b, and c were deleted, so we
choose the deletion ofd, e, and f . For other chords, we usexi (P1) D yi (P2)
(i D 1, 2,: : : , tr(P1)� 3). Using Hanaki’s Theorem 6, we have tr(P1) � tr(P2).

In summary, we have tr(P1) � tr(P2).
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Fig. 11. One strong third homotopy move expressed by a knot
projection (upper) and a chord diagram (lower).

(II) The proof of this case is very similar to that of (I). Assume that when we
delete tr(P2) chords, we deletem chords among the three chordsd, e, and f . For
each case ofm, to obtain a trivial chord diagram starting fromCDP1, we show that
the deletion of at most tr(P2) chords is sufficient, which implies that tr(P1) � tr(P2)
for eachm, using the minimality of the trivializing number in Hanaki’s Theorem 6.

• Casem D 0. The cross chords are left, so there is no need to consider
the case.
• Casem D 1. In this case, the chorde should be deleted and the dele-
tion of eitherb or c is appropriate. Similarly to CasemD 1 of (I), for other
chords, we usexi (P2) D yi (P1).
• CasemD 2. If the chordsd and f are deleted, then we choose the dele-
tion of b and c. If the chordsd and e (resp.e and f ) are deleted, then we
choose the deletion ofa and b (resp. a and c). For other chords, we use
yi (P2) D xi (P1).
• CasemD 3. In this case, the chordsd, e, and f were deleted, so the dele-
tion of a, b, andc is appropriate, and for other chords, we useyi (P2) D xi (P1).

(3) The proof proceeds in the same manner as that of (2). LetP3 (resp. P4) be the
left (resp. right) knot projection of Fig. 11. Two knot projections P3 and P4 are related
by a strong third homotopy move. The difference betweenCDP3 andCDP4 corresponds
to the the difference between the three chordsa, b, c and d, e, f (Fig. 11). Similarly
to (2), there is a one-to-one correspondence between a chordof CDP3 and a chord of
CDP4, if each of the two chords connects two dot arcs onCDP3 or CDP4. Below, we
show (I) tr(P3) � tr(P4) and (II) tr(P3) � tr(P4) C 2, which imply tr(P4) � tr(P3) �
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tr(P4)C 2. Then, thanks to Hanaki’s Theorem (2), tr(P) is even, so we have tr(P3) D
tr(P4) or tr(P4)C 2.

Now let us illustrate inequalities (I) and (II). The style ofthe proofs below is very
similar to that of case (2), so we use the same symbols and notations to minimize
repetition of similar phrases.

(I) Assume that when we delete tr(P3) chords, we deletem chords among the
three chordsa, b, and c, where tr(P3) �m chords consists of chordsxi (P3) (i D
1, 2, : : : , tr(P3) � m). By this assumption, we havem � 2. Below, we consider
each case form. There is a natural one-to-one correspondence between a chord xi

of CDP3 and a chordyi of CDP4, except fora, b, c, d, e, and f . Then, induced
chords onCDP4 from chordsxi (P3) of CDP3 by the one-to-one correspondence are
denoted byyi (P3) (i D 1, 2, : : : , tr(P3) �m).

• CasemD 2. If tr(P3) chords consists ofa, b, and xi (P3) (i D 1, 2, : : : ,
tr(P3)� 2), tr(P4) is less than or equal to the number tr(P3) of chords consist-
ing of e, d, and yi (P4) (i D 1, 2,: : : , tr(P3)� 2), i.e. tr(P3) � tr(P4). The role
(a, b, e, d) can be replaced with that of either (a, c, e, f ) or (b, c, f, d).
• Casem D 3. For m chords (a, b, c) and xi (P3), we delete (d, e, f ) and
yi (P4), which implies that tr(P3) � tr(P4).

In summary, tr(P3) � tr(P4).
(II) Assume that when we delete tr(P4) on CDP4, we deletem chords in three
chordsd, e, and f where tr(P4)�m chords consists of chordsxi (P4) (i D 1, 2,: : : ,
tr(P4) �m). A one-to-one correspondence between chords ofCDP3 and CDP4, ex-
cept for a, b, c, d, e, and f , inducesyi (P3) from xi (P4) (i D 1, 2,: : : , tr(P4)�m).
Below, we consider every case for eachm.

• CasemD 0. In this case, tr(P3) is less than or equal to the number ofyi (P3)C2D
xi (P4)C2D tr(P4)C2, since cross chords consisting ofa, b, andc can be dissolved by
deleting any two chords among the three chordsa, b, andc. Then, tr(P3) � tr(P4)C2.
• CasemD 1. The number tr(P3) is less than or equal to the number ofyi (P3)C2D
xi (P4)C2D tr(P4)C1, since cross chords consisting ofa, b, andc can be dissolved by
deleting any two chords among the three chordsa, b, and c. For the case of deletion
of e, the deletion of pairs (a, b) or (a, c) is sufficient. For the case of deletion ofd
(resp. f ), the deletion of (b, a) or (b, c) (resp. (c, a) or (c, b)) is sufficient to make a
trivial chord diagram.
• CasemD 2. For the same reason as in the cases ofmD 0 andmD 1, tr(P3) is
less than or equal to the number ofyi (P3)C 2D xi (P4)C 2D tr(P4). For the deletion
of pairs (d, e), the choice of deleting (a, b) is sufficient. Similarly, for the deletion of
pairs (e, f ) (resp. (f,d)), the choice of deleting (a,c) (resp. (b,c)) is sufficient to make
a trivial chord diagram. Then, tr(P3) � tr(P4).
• CasemD 3. The number tr(P3) is less than or equal to the number ofyi (P3)C3D
xi (P4)C3D tr(P4), since all the choices of deletion of corresponding chordscontaining
a, b, and c are sufficient to make a trivial chord diagram.
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Fig. 12. Positive resolution.

3. Cross chord number modulo 3 is a strong (1, 3) homotopy invariant

In this section, we prove Theorem 2.

Proof of Theorem 2. (1) The first homotopy move is adding or deleting an iso-
lated chord. The isolated chord does not produce any cross chords and does not delete
any cross chords.
(2) Let us look at Fig. 11. One strong third homotopy move changes a cross chord
number by�3 concerned with triples of chords (a,b,c) and (d,e, f ). Chords other than
(a, b, c) produce the same cross chords as chords other than (d, e, f ). Then, checking
the increment ofX(P) in Fig.11, X(P3) D X(P4)C 3.
(3) Let us look at Fig. 9. The discussion is the same as in (2) above, so the discussion
reduces to checking the difference in the number of cross chords between (a, b, c) and
(d, e, f ). Checking the increment ofX(P) in Fig. 9, X(P1)C 1D X(P2).

(1) and (2) immediately imply thatX(P) (mod 3) is invariant under strong (1, 3)
homotopy.

A positive resolutionof a knot projection is defined as local replacements at every
double point, as in Fig. 12 (cf. [9]). This resolution definesthe map p from the set
of knot projections to the set of knot diagrams. Moreover, themap p induces the map
from the set of weak (1,3) homotopy classes to the set of knot isotopy classes, denoted
by the same symbolp, if there is no danger of confusion. The replacement of all
double points as positive resolutions does not change the knot isotopy class (Figs. 13
and 14).

Let us recall Hanaki’s theorem ([5, p. 867, Theorem 1.10] or [6, p. 441, Theorem 17]).

Theorem 7 (Hanaki). Let P be a knot projection. The knot projection P satisfies
tr(P) D 2 if and only if P is one of the knot projections defined byFig. 16 or its
versions obtained by the first homotopy moves.

Below, we consider that the knot projections shown in Fig. 16are under weak
(1, 3) homotopy. For every positive odd integern, let T(n) be the knot defined by
Fig. 15. For knotsT(n), it is well known thatT(nC i ) ¤ T(nC j ) for even integers
i , j (i ¤ j ).



STRONG AND WEAK (1, 3) HOMOTOPIES 627

Fig. 13. The first homotopy move to the first Reidemeister move.

Fig. 14. The weak third homotopy move to the third Reidemeister move.

Fig. 15. KnotsT(n).
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Fig. 16. Knot projectionsT(n).

On the other hand, for every positive odd integern, it is easy to see thatT(n) is
equivalent toT(nC 1) under weak (1, 3) homotopy where knot projectionsT(n) are
defined by Fig. 16. Then, we have

Proposition 1. For every positive integer n, let T(n) be the knot projection de-
fined byFig. 16. Under weak(1, 3) homotopy, the equivalence class[T(nC i )] is dif-
ferent from [T(nC j )], where i¤ j , and i and j are even integers. In addition, for
every positive odd integer n, each equivalence class[T(n)] containsT(nC 1).

4. Strong and weak (1, 3) homotopies on knot projections withtrivializing
number two

Proof of Theorem 3. If two knot projectionsP1 and P2 are related by only the
first homotopy moves, thenP1 is equivalent toP2 under not only weak (1,3) homotopy
but also under strong (1, 3) homotopy.

Then, we will prove the converse. Assume that two knot projections P1 and P2

are equivalent under not only weak (1, 3) homotopy but also strong (1, 3) homotopy.
Let n be an odd integer. Proposition 1 gives us that for everyn, any pair of equiva-
lence classes{[T(n)]} are different under weak (1, 3) homotopy. Then, to satisfy the
assumption, two knot projectionsP1 and P2 belong to one weak homotopy equiva-
lence class [T(n)]. Here, note that representatives of [T(n)] are expressed byT(n) and
T(nC 1) and projections obtained from these by a repeated applications of the first
homotopy moves.

ComparingCDT(n) andCDT(nC1) in Fig. 17, we obtainX(T(n))C1D X(T(nC 1)).

Then X(T(n))C 1� X(T(nC 1)) (mod 3). This impliesT(n)
s
� T(nC 1). Then, for

every weak (1, 3) homotopy class [T(n)], T(n)
s
� T(nC 1).

In summary, if two knot projectionsP1 and P2 are equivalent under not only weak
(1, 3) homotopy but also strong (1, 3) homotopy, the only possibility left is that P1

and P2 are related only by the first homotopy moves. This completes the proof of
Theorem 3.

REMARK 2. For an odd integer, it is easy to see thatT(nC 1) is equivalent to
T(nC 2) under strong (1, 3) homotopy by using one first homotopy move and one
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Fig. 17. Chord diagramsT(n) and T(nC 1).

strong third homotopy move. Then, we haveT(nC 1)
s
� T(nC 2) and T(nC i )

w

�

T(nC j ) for i ¤ j , and i and j are even integers (cf. Proposition 1).
On the other hand, for an odd integern, it is also easy to see thatT(n) is equiva-

lent to T(nC 1) under weak (1, 3) homotopy by using one first homotopy move and

one weak third homotopy move, soT(n)
w

� T(nC 1). In the proof of Theorem 3, we

showed thatT(n)
s
� T(nC 1).

Then, for example, there exist interesting sequences such as the following.

(1)
T(1)

w

� T(2)
s
� T(3)

w

� T(4)
s
�, : : : ,

T(1)
s
� T(2)

w

� T(3)
s
� T(4)

w

�, : : : .

5. Strong (1, 3) homotopy class containing the trivial knot projection

In this section, we prove Theorem 4.

Proof of Theorem 4. First, we prove Proposition 2.

Proposition 2. Let (1a) and (1b) (resp. (3a) and (3b)) be the first(resp. strong
third) homotopy moves defined byFig. 18 (resp. Fig. 19) Let P be a knot projection.
If P is equivalent to the trivial knot projection❣under strong(1, 3) homotopy, then
P is obtained from ❣by a finite sequence of moves of type(1a) and (3a).

Proof. The style of this proof follows that of [9, Proof of Lemma 1].
Let n be an arbitrary integer greater than 1. Letw be a sequence ofn� 2 moves

consisting of (1a) and (3a). We use the convention that the sequencew followed by
one (1a) move is denoted byw(1a). For the other moves, (e.g. (1b), (3a), or (3a)(1b)),



630 N. ITO, Y. TAKIMURA AND K. TANIYAMA

Fig. 18. Local move (1a) and its inverse (1b) of the first homo-
topy moves.

Fig. 19. Local move (3a) and its inverse (3b) of the strong third
homotopy move.

the same convention applies (e.g.,w(1b), w(3a), orw(3a)(1b)). LetPi be thei -th knot
projection appearing in the sequence of the first and strong third homotopy moves of
length n. In the following discussion, we often use the symbolQ, which stands for
a knot projection. We also use the convention that if the sequencew(1a)(1b) can be
replaced withw, we denoted this byw(1a)(1b)D w. We apply the same convention
to all similar cases that appear in the following.

Below, we make claims about the four cases of the first appearance of (1b) or
(3b) in the sequenceP1 ! P2 ! � � � ! Pn�1 ! Pn ! PnC1 of the first and strong
third homotopy moves.
• CASE 1: w(1a)(1b)D w(1b)(1a),
• CASE 2: w(1a)(3b)D w(3b)(1a),
• CASE 3: w(3a)(1b)D w(1b)(3a),
• CASE 4: w(3a)(3b)D w(3b)(3a).

Case 1: The last two moves (1a)(1b) can be expressed as Fig. 20. Let �x and
�y be boundaries of 1-gons as illustrated in Fig. 20.
(i) If �x \ �y ¤ ;, then there are two cases of the pair�x and �y, as in Fig. 21. In
both cases, by Fig. 21, we havew(1a)(1b)D w.
(ii) If �x \ �y D ;, by Fig. 22, we havew(1a)(1b)D w(1a)(1b)(1b)(1a)D w(1b)(1a).

Case 2: The last two moves (1a)(3b) ofw(1a)(3b) can be expressed as in Fig. 23.
Let �x be the boundary of 3-gonx and�y be the boundary of 1-gony, as in Fig. 23.
(i) Consider the case�x \ �y ¤ ;. In fact, this case does not occur.
(ii) If �x \ �y D ;, we havew(1a)(3b)D w(1a)(3b)(1b)(1a)D w(3b)(1a) by Fig. 24.

CASE 3: The last two moves (3a)(1b) are expressed as in Fig. 25. Let�x be the
boundary of 1-gonx and �y be the boundary of 3-gony, as shown in Fig. 25.
(i) If we consider the case�x \ �y ¤ ;, there is no possibility of realizing the case.
(ii) If �x \ �y D ;, w(3a)(1b)D w(3a)(1b)(3b)(3a)D w(3b)(1a), as shown in Fig. 26.
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Fig. 20. The last two moves (1a)(1b) ofw(1a)(1b) of Case 1.

Fig. 21. Case 1-(i). Sequencew(1a)(1b)D w in each case of
�x D �y (upper) and�x \ �y D {one vertex}.

Fig. 22. Case 1-(ii). The figure showsw(1a)(1b)D w(1b)(1a).
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Fig. 23. The last two moves (1a)(3b) ofw(1a)(3b) of Case 2.

Fig. 24. Case 2-(ii). The figure showsw(1a)(3b)D w(3b)(1a).

Fig. 25. The last two moves (3a)(1b) ofw(3a)(1b) of Case 3.
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Fig. 26. Case 3-(ii). The figure showsw(3a)(1b)D w(1b)(3a).

Fig. 27. The last two moves (3a)(3b) ofw(3a)(3b) of Case 4.

CASE 4: The last two moves (3a)(3b) ofw(3a)(3b) are illustrated as in Fig. 27.
Let �x be the boundary of 3-gonx and �y be the boundary of 3-gony, as shown in
Fig. 27.
(i) If �x\�y¤ ;, then there are three cases of the pairx and y, as shown in Fig. 28.
The former two cases (I) and (II) in Fig. 28 do not appear if thestarting diagram of
w(3a)(3b) is the trivial knot projection, as shown in Lemma 2.In the last case (III),
we havew(3a)(3b)D w, by Fig. 29.
(ii) If �x \ �y D ;, Fig. 30 showsw(3a)(3b)D w(3a)(3b)(3b)(3a)D w(3b)(3a).

Lemma 1. Let P be a knot projection. Define the map HW {knot projections}!
{0, 1} by setting H(P) D 1 (or 0) if and only if CDP contains(or does not contain)

the sub-chord diagram✐. The map H(P) is invariant under strong(1, 3) homotopy.

Proof. The sub-chord diagram✐is called anH chord. First, it is easy to see the
application of any first homotopy move does not create or dissolve the H chords. Sec-
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Fig. 28. Case 4-(i). Case (I)�x \ �y D {one vertex}, (II) �x \
�y D {two vertices}, and (III) �x \ �y � {three vertices}.

Fig. 29. Case 4-(i)-(III).w(3a)(3b)D w.
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Fig. 30. Case 4-(ii). The figure showsw(3a)(3b)D w(3b)(3a).

Fig. 31. Case 4-(i)-(I).

Fig. 32. Case 4-(i)-(II).

ond, from Fig. 11, we infer thatCDP3 containsH chords if and only ifCDP4 contains
H chords.

Lemma 2. Assume that P is a knot projection that results from the application
of the local moves(1a), (1b), (3a),and (3b) to the trivial knot projection ❣. Then, P
can be neither(I) nor (II) of Fig. 28.

Proof. To illustrate the claim of Lemma 2, we check the claim for each case.
(I) For the knot projectionP on the left-hand side of Fig. 31, we obtainH (P) D 1
using the right-hand side of Fig. 31.
(II) For a knot projectionP at the left of Fig. 32, we haveH (P) D 1 using Fig. 32.
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Fig. 33. Pn
(3a)
! PnC1.

Fig. 34. Double point consisting of two dotted arcs and the chord
connecting the two dotted arcs corresponding to the double point.

For the trivial knot projection ❣, we have the formulaH ( ❣) D 0. This formula com-
pletes the proof.

Lemma 2 completes the proof of Proposition 2.

Finally, we will prove the claim of Theorem 4. Below, we denote the connected
sum of the trivial knot projection❣, the knot projection that appears similar to1, and
the trefoil knot projection as #{U,1, T}. This is shown by induction on the length of
a sequence consisting of (3a) and (1a). WhennD 1, the knot projection is nothing but
the one that appears similar to1. Further, when the length is equal ton, we assume
that the abovementioned claim holds. Therefore, by this assumption of induction, the
knot projectionPn belongs to #{U,1, T}. ConsiderPnC1 and letw be a sequence of
moves (length:n) consisting of (1a) and (3a). IfPnC1 is obtained byw(1a), it is easy
to see thatPnC1 belongs to #{U,1, T}. If PnC1 is obtained byw(3a), the last (3a) can
be presented as shown in Fig. 33. Here, by using Lemma 1, we obtain H (Pi ) D 0 for
every i 2 {1, 2, 3,: : : ,n, nC1}. Then, as shown on the right-hand side of Fig. 34, there
is no chord connecting between the two dotted arcs onCDPnC1. In other words, there
is no double point that consists of two dotted arcs ofPnC1 as shown on the left-hand
side of Fig. 34.

By the assumption of induction, we conclude thatPn belongs to #{U,1, T} and
has no double point that contains the two dotted arcs shown onthe left-hand side of
Fig. 33. After applying (3a) toPn and maintaining the property thatCDPnC1 has no
chord connecting the two dotted arcs onCDPnC1, we obtain the resultPnC1 shown on



STRONG AND WEAK (1, 3) HOMOTOPIES 637

Fig. 35. Knot projectionPHY and CDPHY .

the right-hand side of Fig. 33. Therefore,PnC1 belongs to #{U,1, T}. This completes
the proof.

REMARK 3. In the last stepPn
(3a)
! PnC1 of the above proof of Theorem 4, we

provide another proof; this proof is as follows: By the assumption of induction, Pn

belongs to #{U,1, T}. Then, by using [11, Theorem 3.2], we determine thatCDPn

does not containH chords. Then, there is no double point that contains two dotted
arcs (Fig. 34). Then, from Fig. 33, we infer thatPnC1 does not containH chords.
Therefore,PnC1 belongs to #{U,1, T}.

REMARK 4. For the knot projectionPHY defined by the left image of Fig. 35,
H (PHY) D 1 (alternatively,X(PHY) � 2 (mod 3) usingCDPHY as shown in the right
image of Fig. 35). Then,PHY is not equivalent to the trivial knot projection❣under
strong (1, 3) homotopy. Hagge and Yazinski [4] claim thatPHY cannot be equivalent
to the trivial knot projection under (1, 3) homotopy withoutthe use of any numerical
invariants.

REMARK 5. Proposition 2 provides a finite sequence obtained by (1a) and (3a)
from the trivial knot projection ❣to a knot projectionP. From Theorem 4, the knot
projection P belongs to #{U,1, T}. In fact, Proposition 3 provides the relation be-
tween the sub-chord and the number of (3a) in the sequence.

Proposition 3. Let P be a knot projection that exists in a finite sequence ob-
tained by(1a) and (3a) from the trivial knot projection ❣to P. The number of(3a)
is equal to the number of the sub-chords corresponding to thetrefoil projection de-
fined byFig. 6. Moreover, the number of(3a) is equal to(JCS (P)C 2StS(P))=2 where
JCS (P) and StS(P) are Arnold invariants of spherical curves defined by[10, p.993,
Section 2.4].

Proof. The proof of the former part is shown by induction on the lengthn of a
sequenceP1! P2! � � � ! Pn consisting of (1a) and (3a). We denote the sub-chord
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Fig. 36. Sub-chord diagram (b) corresponding to (a).

diagram (Fig. 36 (b)) corresponding to Fig. 36 (a) by (�). In the casen D 1, the only
move is (1a) and the number of (3a) is 0. The number of sub-chords (�) is also 0.
Then, in this case, the claim is true. Now, we assume that the claim is established in
casen. Since the initial projection is the trivial knot projection, we obtainH (Pi ) D 0
for any i . Every sub-chord (�) is placed on the dotted arcs shown on the left-hand side
of Fig. 33. From the left to the right in Fig. 33, the number of (3a) and the number
of sub-chords (�) increase by 1. By the assumption of induction, we conclude that the
number of sub-chords (�) is equal to the number of (3a) in the case ofPn.

Next, we present the proof of the latter part. Using formula [10, p. 997, Formula (3)],
(1a) does not change (JCS C 2StS)=2. The (JCS C 2StS)=2 increases by 1 on applying one
(3a). This completes the proof.

REMARK 6. M. Polyak defined the Arnold invariantsJCS and StS for spherical
curves [10, p. 993, Section 2.4]. Readers should be careful because Theorem 1 and
Corollary 1 [10, p. 996, Theorem 1 and p. 997, Corollary 1] have typographical errors
(see [7, p. 1217]). For relations betweenJCS C 2StS and the Vassiliev knot invariant,
see [10, Section 6.4] and [11].

6. Strong (1, 3) homotopy classes of other knot projections

In this section, we obtain the proof of Theorem 5 via Lemma 3.

Lemma 3. Let P0 be a knot projection without1-gons, coherent2-gons, and 3-
gons shown inFig. 7. If a knot projection P is equivalent to P0 under strong(1, 3)
homotopy, P is the connected sum of P0 and the knot projections. Each knot projection
is equivalent to the trivial knot projection❣under strong(1, 3) homotopy.

Proof. The proof is accomplished by induction on the lengthn of a sequenceP0!

P1! � � � ! Pn consisting of (1a), (1b), (3a), and (3b). The knot projection P0 satisfies
the claim sinceP0 is the connected sum ofP0 and the trivial knot projection❣An ex-
ample is shown in Fig. 37. LetPnC1 be the knot projection that we obtain after we apply
(1a), (1b), (3a), or (3b) toPn. Assume thatPn satisfies the claim and we prove thatPnC1

also satisfies the claim under this assumption. Letx be (1a), (1b), (3a), or (3b) sending
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Fig. 37. Example ofP0.

Fig. 38. Definition of B.

Fig. 39. Definition ofr -disks.

Pn ! PnC1. From the definitions of (1a), (1b), (3a), and (3b) (Figs. 2, 3, and 4), each
of (1a), (1b), (3a), and (3b) is a local move within a diskxd that is calledx-disk. We
also consider the regular neighborhoodB of P0 (Fig. 38 (b) for (a)) and disks, called
r -disks, on each edge ofP0 apart from double points ofP0 (Fig. 39 (b) for (a)). Here,
we assume that the setsx-disk, B, andr -disks are closed sets.

Fig. 40 gives an example ofB and r -disks corresponding to Fig. 37. If there exists
r -disk r0 such thatxd � r0, then by the assumption of induction,PnC1 satisfies the claim.

First, we consider thex-disk xd that containsm double points labeled asd(P0)
that belong toP0 (m� 1).
• CasemD 1. In this case, there are three possibilities (1), (2), and (3), as shown
in Fig. 41. If xd \ Pn has exactly one double pointd(P0), then P0 also has a double
point d(P0) keeping the connection as dotted arcs as in Fig. 41 (1). By the assumption
of induction, Pn is the connected sum ofP0, the knot projection that appears similar
to1, and the trefoil projection. Therefore, if the dotted arc has double points,Pn also
has these double points, which implies a contradiction. Therefore, the dotted arc does
not have double points, and thus, we have the equality as shown in Fig. 41 (1). How-
ever, by the assumption ofP0, P0 does not have 1-gons. This implies a contradiction,
and therefore, the possibility (1) does not appear inPn.
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Fig. 40. NeighborhoodB and r -disks.

Next, let us consider possibility (2). By using the symmetryof the triangle of the
strong third move, it is sufficient to consider the left-handside figure of Fig. 41 (2)
without loss of generality. In this case, the other two double points of the triangle
are not labeled asd(p0), and the correspondingP0 has a local figure as shown in
Fig. 41 (2). Similarly to (1), by the assumption of induction, we have the equality
in Fig. 41 (2). Using the assumption forP0 again, the possibility (2) does not oc-
cur. From discussions similar to (1) and (2), the possibility (3) also does not occur.
Therefore, there is no possibility of casemD 1.
• CasemD 2. In this case, there are two possibilities as shown in Fig. 42. If xd\Pn

has exactly two double points labeled asd(P0) in Fig. 42 (1), the other point of the
triangle is in ar -disk, and we determineP0 locally as the middle figure of Fig. 42 (1)
using the assumption of induction. However, by the assumption of P0, P0 does not
have coherent 2-gons, which implies a contradiction. Therefore, the possibility (1) does
not occur.

Next, we consider case (2) by observing Fig. 42 (2). If the knot projection Pn ap-
pears as the figure on the left-hand side, the correspondingP0 keeps two double points
labeled asd(P0) shown in the middle figure. Here, we denote three dotted arcsby �,
�, and
 as shown on the right-hand side of Fig. 42 (2). There exists the double point
d0 in P0 such that the arcs� intersects� at d0 as shown in the figure on the right-hand
side. The reason is described as follows: When we start from the right of d(P0) to �,
first, if � intersects other dotted arcs� or 
 in P0, the figurePn on the left-hand side
has to be modified, which implies a contradiction. Then,P0 with B is locally drawn as
the left-hand side figure of Fig. 42 (2). By the assumption of induction,Pn still has the
local figure on the right-hand side of Fig. 42 (2). Then, threedouble points appear in
the left-hand side figure of Fig. 42 (2) and it contains the corresponding double point
d0 labeled asd(P0), which implies a contradiction. Therefore, there is no possibility
of mD 2.
• Casem D 3. We show this case observing Fig. 43. IfPn is presented as the
left column, then by the assumption of induction,P0 is presented as the right column.
However, by the assumption ofP0, P0 does not have coherent 3-gons, which implies
a contradiction. Therefore, there is no possibility ofmD 3.



STRONG AND WEAK (1, 3) HOMOTOPIES 641

Fig. 41. CasemD 1.

Fig. 42. CasemD 2.
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Fig. 43. CasemD 3.

Fig. 44. Thex-disk cannot be related to twor -disk.

Then, x-disk does not contain double points labeled asd(P0). For a setA, we denote
S2
n A by Ac. Further, we retake sufficiently smallB or x-disk if necessary. Accord-

ingly, the condition implies that

(2) x-disk�
[

(r -disk)[ Bc.

We also note that “x-disk does not contain two double points such that one belongs
to a r -disk and another belongs to the otherr -disk in Pn (?)” (Fig. 44). First, (1a) or
(1b) cannot be related to two different double points. Second, we consider coherent
3-gons appearing in (3a) and (3b). From Fig. 44, ifx-disk contains two double points
such that one belongs to oner -disk and another belongs to the otherr -disk, we have
the case as shown in Fig. 44 (a) inPn. However, by the assumption of induction, two
different r -disks have exactly one double point between them (Fig. 44 (b), see also
Fig. 40). Therefore, Fig. 44 (a) cannot correspond to Fig. 44(b), and therefore, we
have (?).
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Using (?) and (2), there existsr -disk r0 satisfying the following formula (3) that
is the refined version of (2).

(3) x-disk� r0 [ Bc.

By the assumption of induction, there is no arc in
�

S

(r -disks)[ B
�c

(e.g. Fig. 40).
This implies that (r0

c
\ x-disk xd) does not contain any arc ofPn. Then, we remove

(r0
c
\ xd) from x-disk xd. After removing it, it is still possible to locally applyx to

Pn in xd n (r0
c
\ xd). Then, we retakex-disk Qxd � r0 such thatxd is the neighborhood

of (1a), (1b), (3a), or (3b). Then, we have

(4) x-disk� r -disk r0.

Formula (4) completes the proof.

Finally, we prove Theorem 5.
Proof. If a knot projectionP is the connected sum ofP0, the trivial knot projec-

tion ❣, the knot projection that appears similar to1, and the trefoil knot projection,
we can easily find a path consisting of (1a), (1b), (3a), and (3b) from P0 to P. The
converse is implied by Lemma 3 and Theorem 4.

Fig. 45 shows a table of the reduced prime knot projections upto 7 double points
(the notion of reduced knot projections is defined in [8, p. 2]) with their trivializing
numbers “tr” (cf. Theorem 1) and cross chord numbers (cf. Theorem 2) expressed by
integers on the faces made by the knot projections shown in the figure. In this table,
every symbolnm (e.g. 31) denotes the knot projection of the prime knotnm. Symbols
7A, 7B, and 7C are knot projections that have seven double points. Every element of
{7m (1� n � 7), 7A, 7B, 7C} is different from the other elements up to isotopy onS2.
In this figure, we connect two knot projections by a line if twoknot projections are
related by finite first Reidemeister moves and one third Reidemeister move. We would
like to remark that we can show that 74 and 7B (resp. 75 and 7C) are equivalent under
strong (resp. weak) (1, 3) homotopy via a prime knot projection with 8 double points.
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Fig. 45. Table of reduced prime knot projections up to 7 double
points with trivializing numbers and cross chord numbers.



STRONG AND WEAK (1, 3) HOMOTOPIES 645

References

[1] V.I. Arnol’d: Topological Invariants of Plane Curves and Caustics, University Lecture Series5,
Amer. Math. Soc., Providence, RI, 1994.

[2] V.I. Arnol’d: Plane curves, their invariants, perestroikas and classifications; in Singularities and
Bifurcations, Adv. Soviet Math.21, Amer. Math. Soc., Providence, RI, 1994, 33–91.

[3] M. Goussarov, M. Polyak and O. Viro:Finite-type invariants of classical and virtual knots,
Topology 39 (2000), no. 5, 1045–1068.

[4] T. Hagge and J. Yazinski:On the necessity of Reidemeister move2 for simplifying immersed
planar curves, Banach Center Publ.103 (2014), 101–110.

[5] R. Hanaki: Pseudo diagrams of knots, links and spatial graphs, Osaka J. Math.47 (2010),
863–883.

[6] R. Hanaki: Trivializing number of knots, J. Math. Soc. Japan66 (2014), 435–447.
[7] N. Ito: Construction of invariants of curves and fronts using word theory, J. Knot Theory Ram-

ifications 19 (2010), 1205–1245.
[8] N. Ito and A. Shimizu:The half-twisted splice operation on reduced knot projections, J. Knot

Theory Ramifications21 (2012), 1250112.
[9] N. Ito and Y. Takimura: (1, 2)and weak(1, 3) homotopies on knot projections, J. Knot Theory

Ramifications22 (2013), 1350085.
[10] M. Polyak: Invariants of curves and fronts via Gauss diagrams, Topology37 (1998), 989–1009.
[11] M. Sakamoto and K. Taniyama:Plane curves in an immersed graph inR2, J. Knot Theory

Ramifications22 (2013), 1350003.
[12] O. Viro: Generic immersions of the circle to surfaces and the complextopology of real alge-

braic curves; in Topology of Real Algebraic Varieties and Related Topics, Amer. Math. Soc.
Transl. Ser. 2173, Amer. Math. Soc., Providence, RI, 1996, 231–252.

[13] H. Whitney: On regular closed curves in the plane, Compositio Math.4 (1937), 276–284.



646 N. ITO, Y. TAKIMURA AND K. TANIYAMA

Noboru Ito
Waseda Institute for Advanced Study
1-6-1, Nishi-Waseda, Shinjuku-ku
Tokyo, 169-8050
Japan
e-mail: noboru@moegi.waseda.jp

Yusuke Takimura
Department of Mathematics
Graduate School of Education
Waseda University
1-6-1 Nishi-Waseda, Shinjuku-ku
Tokyo, 169-8050
Japan
e-mail: max-drive@moegi.waseda.jp
Current address:
Gakushuin Boys’ Junior High School
1-5-1 Mejiro
Toshima-ku, Tokyo, 171-0031
Japan
e-mail: Yusuke.Takimura@gakushuin.ac.jp

Kouki Taniyama
Department of Mathematics
School of Education
Waseda University
1-6-1 Nishi-Waseda, Shinjuku-ku
Tokyo, 169-8050
Japan
e-mail: taniyama@waseda.jp


