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Abstract

Strong and weak (1, 3) homotopies are equivalence relatianisnot projections,
defined by the first flat Reidemeister move and each of two réiffietypes of the
third flat Reidemeister moves. In this paper, we introduae ¢toss chord number
that is the minimal number of double points of chords of a dhdiagram. Cross
chord numbers induce a strong (1, 3) invariant. We show thataldi’s trivializing
number is a weak (1, 3) invariant. We give a complete clasgifin of knot pro-
jections having trivializing number two up to the first flatiBemeister moves using
cross chord numbers and the positive resolutions of doubietg Two knot pro-
jections with trivializing number two are both weak (1, 3)nhatopy equivalent and
strong (1, 3) homotopy equivalent if and only if they can blatexl by only the first
flat Reidemeister moves. Finally, we determine the strong)homotopy equiva-
lence class containing the trivial knot projection and ottlasses of knot projections.

1. Introduction

Throughout this paper, we work in the smooth categorknétis a circle smoothly
embedded int®3. We consider a regular projection, calledkrot projectionor generic
immersed spherical curyeof the knot to a spher&?, where the term regular projec-
tion is a projection toS? in which the image has only transverse double points of self-
intersection. When every double point of a knot projectiespecified by over-crossing
and under-crossing branches, we call the knot projectiknod diagram In particular, a
knot projection (resp. knot diagram) which has no doublenipisi called thetrivial knot
projection (resp.trivial knot diagranj.

The first, second, and third Reidemeister moves on knot aiagy depicted in Fig. 1,
are local moves of knot diagrams leading to an ambient isotdknots. Reidemeister
moves are frequently used to study knots. Two knots are arnlsietopic if and only if
two knot diagrams can be related by a finite sequence of Reidézn moves. If a knot
diagram of an equivalence class can be related to the thviat diagram by a finite
sequence of Reidemeister moves, the equivalence clasidd t@etrivial knot type

Naturally, we often consider a flat version of the first, se;@nd third Reidemeister
moves on knot projections 08 not specifying information of over/under-crossing
branches, as defined by Fig. 2, and we call three local mihee$irst second and third
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Fig. 1. The first, second, and third Reidemeister moves.

ST

Fig. 2. The first, second, and third homotopy moves on knot
projections.

homotopy movesn knot projections on a sphegg.

Now, we consider every possibility, i.e., seven nonemptyesy (1, 2, 3, {1, 2},
{2,3}, {1, 3}, {1}, {2}, {3}), of choices of flat Reidemeister moves on knot projections.
Under the first, second, and third homotopy moves correspgnad {1, 2, 3, the trivial
knot projection on a sphere generates every knot projecitionthe sphere. The pair of
the second and third Reidemeister moves correspondif@,t8 has been studied as
a regular homotopy on plane curves by Whitney [13], whosatiat numbers imply
that the trivial knot projection and the knot projection ttlagpears similar tao gen-
erate every knot projection on the sphere. Based on regoleotopy theory, Arnold
introduced his basic invariantd3*, J—, and St [1, 2]. The sets of homotopy moves
concerned with{1}, {2}, and {1, 2} were already considered in [9]. However, basic
problems of knot projections regardif@} and {1, 3} still remain.

In this paper, the equivalence relation generated by the dind third homotopy
moves is called the (1, 3) homotopy. To begin with, surpghinthe equivalence class
of knot projections containing the trivial knot projectiamder (1, 3) homotopy o1$?
has not been determined. We could find only one related workldoyge and Yazinski
[4] contributing to the problem. Hagge and Yazinski [4] fdusome knot projections
that cannot be related to the trivial knot projection. Tremk the study of Hagge and
Yazinski, at least we know that knot projections under (1h8mnotopy are nontrivial.
However, other equivalence classes are still unknown.

In this paper, we consider the special case of flat third Reéalster moves shown
in Fig. 3 for knot projections or§?. The strong (resp.weal third homotopy move is
defined by 6) (resp. (v)) of Fig. 3. We can detect a third homotopy move as either
a strong or a weak third homotopy moves by using any choiceriehtations of knot
projections, as in Fig. 4. Here, we would like to remark tHase local moves, de-
fined by the same parts of Fig. 3, were introduced by Viro [1&2]s&ong and weak
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Fig. 3. Strong and weak triple point perestroikas (strong an

weak third homotopy moves for knot projections). The dotted
arcs indicate the connection of the branches.

Fig. 4. Any orientation detects which homotopy move is sfron
or weak.

triple point perestroikas on plane curves in his study ofegalizations of Arnold’s in-
variant J—.

For all knot projections, the equivalence relation under finst homotopy move
and the weak (resp. strong) third homotopy move is calledk (resp. strong (1, 3)
homotopy In this paper, let us denote strong (resp. weak) (1, 3) hopyoequivalence
by R (resp.~). Strong (resp. weak) (1, 3) nonequivalence is denotedsouyesp.fi).

One more important notion in this paper is the trivializingmber of a knot pro-
jection, introduced by Hanaki [5]. Generally, Hanaki defintbe trivializing number for
spatial graph projections, but in this paper, we considdy tire trivializing number of
knot projections. Some definitions, facts, and notationsuaithe notion of trivializ-
ing numbers are given following Hanaki [5]. A pseudo diagrémis a generic im-
mersed spherical curve with over/under information at sahéhe transverse double
points. Let S(P) be the set of all the transverse double pointsRof If a double
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Fig. 5. A cross chord.

point of P has information (resp. no information) as to over/undessing branches,
we call the double point &rossing(resp. pre-crossing. We consider the subse{P)
(resp. pr(P)) of S(P) consisting of all the crossings (resp. pre-crossings)Pofand
then S(P) = c(P) u pr(P). The trivializing number of a knot projectioR is defined
as the minimum number of elementéP) whose over/under information is such that
even if we take any choice of over/under-crossing branchealf elements ofpr(P),
we have a knot diagram belonging to the trivial knot type.

A chord diagramCDp of a knot projectionP consists of a circle together with the
pre-images of each double point of the knot projection cotete by a chord. Chord
diagrams are often called Gauss diagrams (cf. [3]). A créesccis a sub-chord dia-
gram that is a pair of two chords intersecting each otherndsig. 5.

Now, we state the main results of the paper.

Theorem 1. Lettr(P) be the trivializing number of an arbitrary knot projection P
(1) tr(P) is invariant under the first homotopy move
(2) tr(P) is invariant under the weak third homotopy mpve
(3) tr(P) is changed by+2 or invariant by a strong third homotopy move.
In particular, the trivializing number is a weakl, 3) homotopy invariant for knot
projections.

In this paper, we introduceX(P) for an arbitrary knot projectiorP to present
Theorem 3.

Theorem 2. Let X(P) be the number of cross chords in @Dof an arbitrary
knot projection P.
(1) X(P) is invariant under the first homotopy moves.
(2) X(P) is changed by+3 by a strong third homotopy move.
(3) X(P) is changed by+1 by a weak third homotopy move.
In particular, X(P) (mod 3)is a strong(1, 3) homotopy invariant for knot projections.

The numberX(P) is called thecross chord numbeof knot projections.

Theorem 3. Consider the set of all knot projections with trivializingmber two.
Two knot projections are equivalent under both wéak3) homotopy and strongl, 3)
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Fig. 6. Trefoil knot projection.
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Fig. 7. (a) 1-gon, (b) coherent 2-gon, and (c)-(d) coheregos.

homotopy if and only if the two knot projections can be ralaby only the first homo-
topy moves.

Theorem 4. The knot projection of the stron(l, 3) homotopy equivalence class
belonging to the trivial knot projection can be represent®d the connected sum of
knot projectionseach of which is either the trivial knot projectian, the knot projec-
tion that appears similar tao, or the trefoil knot projection defined byig. 6.

Theorem 5. Let R be an arbitrary knot projection without-gons coherent2-
gons and coherent3-gons as shown inFig. 7. A knot projection P is equivalent to
a knot projection B under strong(1, 3) homotopy if and only if P is realized as the
connected sum ofgRand the knot projections. Each knot projection appears lainio
oo or the trefoil knot projection shown ifig. 6.

Here, the terncoherent2- and 3-gons implies that these faces are coherently ori-
ented if we give any orientation for a knot projection.

In Sections 2 and 3, we present proofs of Theorems 1 and 2ectsgy. The-
orems 3 and 4 are proved in Sections 4 and 5, respectivelgllfiwe obtain a general
result (Theorem 5) of Theorem 4 in Section 6.

2. Trivializing number is a weak (1, 3) invariant

A trivial chord diagramis a chord diagram not containing cross chords (Fig. 8).
Hanaki showed the following [6, p.440, Theorem 13].

Theorem 6 (Hanaki) Let tr(P) be the trivializing number of a knot projection
P. We have
(1) tr(P) is the minimum number n of chords of €Buch that deleting some n chords
from CDp vyields a trivial chord diagram
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Fig. 8. Trivial chord diagrams.
(2) tr(P) is even.

REMARK 1. As a corollary of Theorem 6, a knot projectiéhis the trivial knot
projection or a diagram obtained from the trivial knot potjen by applying a se-
guence of the first homotopy moves if and only ifR)(= 0.

Using Theorem 6 (1), we prove Theorem 1.

Proof of Theorem 1. The discussion proceeds by looking at %ig
(1) The first homotopy move corresponds to adding or delatirgpord not producing
cross chords. Then, Hanaki’s Theorem 6 immediately corapléte proof.
(2) Let Py (resp.P,) be the left (resp. right) knot projection of Fig. 9. Two k-
jections P, and P, are related by a weak third homotopy move. The difference be-
tween CDp, and CDp, corresponds to the difference between choads, ¢ and d,
e, f (Fig. 9). There is a one-to-one correspondence between @ dicCDp, and a
chord of CDp, if each of the two chords connects two dotted arcs on eadDO or
CDp,. Below, we show (1) trPy) > tr(P,) and (ll) tr(Py) < tr(P,).
() Assume that when we delete By) chords, we deleten chords among the
three chords, b, andc. Below, we consider each case for.
e Casem = 0. In this case, the chords andc are left, but the two chords
become cross chords, and th€Dp, is not a trivial chord diagram, which pro-
duces a contradiction. Them s 0, i.e., there is no need to consider the case.
e Casem = 1. It is necessary to delete or c. First, we choosé. If we
deletee, cross chords consisting af, e, and f disappear. Recall that there
is a one-to-one correspondence between a cRpwbnnecting dotted arcs be-
longing toCDp, and a chordy; of CDp, at the location corresponding @Dp,
(i =1,2,...,tr(P) —1). After we delete chordb ande, we dissolve all cross
chords connecting dotted arcs 6Dp, in the same way as those @Dp,.
This is because a chorx with a or ¢ creates cross chords if and only if the
corresponding chord; with d or f creates cross chords (Fig. 10). Below,
we frequently use the same discussion involving a one-to-amrespondence,
denoted byx;(P1) = yi(P:). Then, we express the deletion of chord¢P;)
as “we usex;(P1) = yi(P2).” Below, we use this expression. Now, to obtain
a trivial chord diagram ofP,, it is sufficient to use at most #) chords in



STRONG AND WEAK (1, 3) HOMOTOPIES 623

Fig. 9. One weak third homotopy move expressed by a knot pro-
jection (upper) and a chord diagram (lower).

Fig. 10. One-to-one correspondence of chords connectittgdiarcs.

this case. Then, using the minimality of the trivializingnmper in Hanaki’s
Theorem 6, trP;) > tr(P»).
e Casem = 2. If the chordsb and c are deleted, then we choose the dele-
tion of d and f. If the chordsa andb (resp.a and c) are deleted, then we
choose the deletion off and e (resp.e and f). For other chords, we use
Xi(P)=vVvi(P) (i=1,2,...,tr(P)—2). Again, using Hanaki’s Theorem 6,
we have trP;) > tr(P,) in this case.
e Casem = 3. In this case, the chords, b, and c were deleted, so we
choose the deletion da, e, and f. For other chords, we usg(Py) = yi(P,)
(i=1,2,...,tr(P)—3). Using Hanaki's Theorem 6, we haveRgj > tr(P,).
In summary, we have tRy) > tr(P,).
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) e f

CDP3 CDP4

Fig. 11. One strong third homotopy move expressed by a knot
projection (upper) and a chord diagram (lower).

(I The proof of this case is very similar to that of (I). Asea that when we
delete trP,) chords, we deleten chords among the three chordse, and f. For
each case ofn, to obtain a trivial chord diagram starting fro@Dp,, we show that
the deletion of at most t,) chords is sufficient, which implies that B{) < tr(P.)
for eachm, using the minimality of the trivializing number in HanakiTheorem 6.
e Casem = 0. The cross chords are left, so there is no need to consider
the case.
e Casem = 1. In this case, the chord should be deleted and the dele-
tion of eitherb or c is appropriate. Similarly to Case = 1 of (l), for other
chords, we use(P2) = Vi (Py).
e Casem = 2. If the chordsd and f are deleted, then we choose the dele-
tion of b andc. If the chordsd and e (resp.e and f) are deleted, then we
choose the deletion od and b (resp.a and c). For other chords, we use
¥i (P2) = xi(Py).
e Casem = 3. In this case, the chordk e, and f were deleted, so the dele-
tion of a, b, andc is appropriate, and for other chords, we ys@P,) = x; (Py).
(3) The proof proceeds in the same manner as that of (2). Feefresp. Ps) be the
left (resp. right) knot projection of Fig. 11. Two knot projens P; and P, are related
by a strong third homotopy move. The difference betw€&p, and CDp, corresponds
to the the difference between the three chaad®, c andd, e, f (Fig. 11). Similarly
to (2), there is a one-to-one correspondence between a didtidp, and a chord of
CDg,, if each of the two chords connects two dot arcs@Dp, or CDp,. Below, we
show (1) tr(P3) > tr(Ps) and (1) tr(Ps) < tr(Ps) + 2, which imply tr(P;) < tr(P3) <
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tr(P4) + 2. Then, thanks to Hanaki's Theorem (2),R)(is even, so we have 1) =
tr(Py) or tr(Py) + 2.

Now let us illustrate inequalities (I) and (ll). The style thfe proofs below is very
similar to that of case (2), so we use the same symbols andiomgato minimize
repetition of similar phrases.

() Assume that when we delete Bf) chords, we deleten chords among the

three chordsa, b, andc, where trfP3) — m chords consists of chordg(Ps) (i =

1, 2,...,tr(P;) — m). By this assumption, we havea > 2. Below, we consider

each case fom. There is a natural one-to-one correspondence betweenrd gho

of CDp, and a chordy; of CDp,, except fora, b, c, d, e, and f. Then, induced
chords onCDg, from chordsx; (Ps) of CDg, by the one-to-one correspondence are

denoted byyi(Ps) (i =1, 2,..., tr(Ps) — m).

e Casem = 2. If tr(Ps) chords consists of, b, andx;(P3) (i =1, 2,...,
tr(P3) — 2), tr(P4) is less than or equal to the numberRg) of chords consist-
ing of e, d, andy;(Py) (i =1, 2,...,tr(P3) —2), i.e. tr(Ps) > tr(P4). The role
(a, b, e, d) can be replaced with that of eithes, (c, e, f) or (b, c, f, d).

e Casem = 3. Form chords &, b, c) and x;(Ps), we delete ¢, e, f) and
Vi (P4), which implies that trPs) > tr(Ps).

In summary, trPz) > tr(Py).

(I) Assume that when we delete RB{) on CDp,, we deletem chords in three

chordsd, e, and f where tr(P;) —m chords consists of chords(P,) (i = 1,2,...,

tr(P4) —m). A one-to-one correspondence between chord€Dp, and CDp,, ex-

cept fora, b, ¢, d, e, and f, inducesy; (P3) from x;(P) (i =1, 2,...,tr(Ps) —m).

Below, we consider every case for each
e Casem = 0. In this case, tifs) is less than or equal to the numberyptP;)+2 =
xi (P4) +2 = tr(P4) 4+ 2, since cross chords consistingayfb, andc can be dissolved by
deleting any two chords among the three chaad$, andc. Then, trP;) < tr(Py) + 2.
e Casem= 1. The number tis) is less than or equal to the numbery{Ps)+2 =
Xi (P4) +2 = tr(P4) +1, since cross chords consistingafb, andc can be dissolved by
deleting any two chords among the three chaadd, andc. For the case of deletion
of e, the deletion of pairsg, b) or (a, c) is sufficient. For the case of deletion df
(resp. f), the deletion of i§, a) or (b, ¢) (resp. €, a) or (c, b)) is sufficient to make a
trivial chord diagram.

e Casem = 2. For the same reason as in the casescf 0 andm = 1, tr(P;) is
less than or equal to the number w{Ps) + 2 = x;(P4) + 2 = tr(P4). For the deletion
of pairs @, €), the choice of deletinga b) is sufficient. Similarly, for the deletion of
pairs €, f) (resp. (f,d)), the choice of deletinga(c) (resp. b,c)) is sufficient to make
a trivial chord diagram. Then, tRg) < tr(P,).

e Casem = 3. The number tiP;) is less than or equal to the numberyptP;)+3 =
X (Ps) + 3 = tr(Py), since all the choices of deletion of corresponding chaai#taining
a, b, andc are sufficient to make a trivial chord diagram. ]
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Fig. 12. Positive resolution.

=

3. Cross chord number modulo 3 is a strong (1, 3) homotopy inv&ant

In this section, we prove Theorem 2.

Proof of Theorem 2. (1) The first homotopy move is adding oetiled an iso-
lated chord. The isolated chord does not produce any crazsi€tand does not delete
any cross chords.

(2) Let us look at Fig. 11. One strong third homotopy move ¢eana cross chord
number by+3 concerned with triples of chords,p,c) and d,e, f). Chords other than
(a, b, ¢) produce the same cross chords as chords other tha® {). Then, checking
the increment ofX(P) in Fig.11, X(P3) = X(P4) + 3.

(3) Let us look at Fig. 9. The discussion is the same as in (@8y&bso the discussion
reduces to checking the difference in the number of crossdshbetweend, b, ¢) and
(d, e, f). Checking the increment aX(P) in Fig. 9, X(Py) + 1 = X(P>).

(1) and (2) immediately imply thaX(P) (mod 3) is invariant under strong (1, 3)
homotopy. O

A positive resolutiorof a knot projection is defined as local replacements at every
double point, as in Fig. 12 (cf. [9]). This resolution defirthe mapp from the set
of knot projections to the set of knot diagrams. Moreover, rttep p induces the map
from the set of weak (1,3) homotopy classes to the set of lsatbpy classes, denoted
by the same symbop, if there is no danger of confusion. The replacement of all
double points as positive resolutions does not change tbé ikntopy class (Figs. 13
and 14).

Let us recall Hanaki’s theorem ([5, p. 867, Theorem 1.10pop[ 441, Theorem 17]).

Theorem 7 (Hanaki) Let P be a knot projection. The knot projection P satisfies
tr(P) = 2 if and only if P is one of the knot projections defined Big. 16 or its
versions obtained by the first homotopy moves.

Below, we consider that the knot projections shown in Fig.alé under weak
(1, 3) homotopy. For every positive odd integer let T(n) be the knot defined by
Fig. 15. For knotsT (n), it is well known thatT(n +i) # T(n + j) for even integers

g @ #0).
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Fig. 13. The first homotopy move to the first Reidemeister move

Fig. 14. The weak third homotopy move to the third Reideneeistove.
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Fig. 15. KnotsT(n).
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Fig. 16. Knot projectionsT (n).

On the other hand, for every positive odd integerit is easy to see that (n) is
equivalent toT(n 4+ 1) under weak (1, 3) homotopy where knot projection@) are
defined by Fig. 16. Then, we have

Proposition 1. For every positive integer ,nlet T(n) be the knot projection de-
fined byFig. 16 Under weak(1, 3) homotopy the equivalence clasl (n +i)] is dif-
ferent from[T(n + j)], where i j, and i and | are even integers. In additiofor

every positive odd integer, reach equivalence claqg (n)] containsT(n + 1).

4. Strong and weak (1, 3) homotopies on knot projections withtrivializing
number two

Proof of Theorem 3. If two knot projectionB; and P, are related by only the
first homotopy moves, theR; is equivalent toP, under not only weak (1,3) homotopy
but also under strong (1, 3) homotopy.

Then, we will prove the converse. Assume that two knot ptaes P; and P,
are equivalent under not only weak (1, 3) homotopy but alsongt (1, 3) homotopy.
Let n be an odd integer. Proposition 1 gives us that for evenany pair of equiva-
lence classe$[T (n)]} are different under weak (1, 3) homotopy. Then, to satisfy th
assumption, two knot projectionB; and P, belong to one weak homotopy equiva-
lence classT(n)]. Here, note that representatives df(h)] are expressed by (n) and
T(n+ 1) and projections obtained from these by a repeated afiplisaof the first
homotopy moves.

ComparingCDyy and CDryyy in Fig. 17, we obtainX (T (n))+1 = X(T(n + 1)).
Then X(T()) + 1 = X(T(n + 1)) (mod 3). This impliesT(n) ~ T(n + 1). Then, for
every weak (1, 3) homotopy clas$ (n)], T(n) i T(n+ 1).

In summary, if two knot projection®; and P, are equivalent under not only weak
(1, 3) homotopy but also strong (1, 3) homotopy, the only ibilty left is that P;
and P, are related only by the first homotopy moves. This complebes groof of
Theorem 3. O

REMARK 2. For an odd integer, it is easy to see tfigh + 1) is equivalent to
T(n 4+ 2) under strong (1, 3) homotopy by using one first homotopy enaad one
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Fig. 17. Chord diagram3(n) and T(n + 1).

strong third homotopy move. Then, we haVgn + 1) ~ T(n+2) and T(n +1) ~
T(n+ ) fori # j, andi and j are even integers (cf. Proposition 1).

On the other hand, for an odd integerit is also easy to see thai(n) is equiva-
lent to T(n + 1) under weak (1, 3) homotopy by using one first homotopy mow a
one weak third homotopy move, si(n) ~ T(n + 1). In the proof of Theorem 3, we
showed thaff (n) ~ T(n + 1).

Then, for example, there exist interesting sequences ssicheafollowing.

W TORTRRTERRT@R,...,
TA)»TR) »TE@) ~ T@) ~,....

5. Strong (1, 3) homotopy class containing the trivial knot pojection

In this section, we prove Theorem 4.
Proof of Theorem 4. First, we prove Proposition 2.

Proposition 2. Let (1a) and (1b) (resp. (3a) and (3b)) be the first(resp. strong
third) homotopy moves defined Byg. 18 fesp. Fig. 19) Let P be a knot projection.
If P is equivalent to the trivial knot projectio® under strong(1, 3) homotopy then
P is obtained fromD by a finite sequence of moves of tyjia) and (3a).

Proof. The style of this proof follows that of [9, Proof of Lema 1].

Let n be an arbitrary integer greater than 1. Letbe a sequence of — 2 moves
consisting of (1a) and (3a). We use the convention that tiggieseew followed by
one (1a) move is denoted hy(la). For the other moves, (e.g. (1b), (3a), or (3a)(1b)),



630 N. ITo, Y. TAKIMURA AND K. TANIYAMA

Fig. 18. Local move (1a) and its inverse (1b) of the first homo-

topy moves.
; 3a f E

Fig. 19. Local move (3a) and its inverse (3b) of the strongdthi
homotopy move.

the same convention applies (e.@(1b), w(3a), orw(3a)(1b)). LetP, be thei-th knot
projection appearing in the sequence of the first and stroitd homotopy moves of
length n. In the following discussion, we often use the symif@| which stands for
a knot projection. We also use the convention that if the esegew(1a)(1b) can be
replaced withw, we denoted this byw(la)(1lb)= w. We apply the same convention
to all similar cases that appear in the following.

Below, we make claims about the four cases of the first appearaf (1b) or
(3b) in the sequenc®; - P, — --- - P,_; - B, - P, of the first and strong
third homotopy moves.

e CaAsE 1: w(la)(1b)= w(1b)(1a),
e CASE 2: w(la)(3b)= w(3b)(1a),
e CAsSE 3: w(3a)(1b)= w(1b)(3a),
e CASE 4: w(3a)(3b)= w(3b)(3a).

Case 1: The last two moves (1a)(1b) can be expressed as Fig.e2®x and
dy be boundaries of 1-gons as illustrated in Fig. 20.

(i) If axNay # @, then there are two cases of the pair and dy, as in Fig. 21. In
both cases, by Fig. 21, we hawgla)(1b)= w.
(iiy If axNay =0, by Fig. 22, we havav(1la)(1lb)= w(1a)(1b)(1b)(1a)= w(1lb)(1a).

Case 2: The last two moves (1a)(3b)wfla)(3b) can be expressed as in Fig. 23.
Let ax be the boundary of 3-gor anday be the boundary of 1-gow, as in Fig. 23.

(i) Consider the caséx N dy # @. In fact, this case does not occur.
(i) If axNay = 0, we havew(la)(3b)= w(1a)(3b)(1b)(lax w(3b)(1a) by Fig. 24.

CAsE 3: The last two moves (3a)(1b) are expressed as in Fig. 253X dte the
boundary of 1-gorx anddy be the boundary of 3-gog, as shown in Fig. 25.

(i) If we consider the caséx N ay # @, there is no possibility of realizing the case.
(i) If axNay =@, w(3a)(1b)= w(3a)(1b)(3b)(3a)= w(3b)(1la), as shown in Fig. 26.
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Fig. 20. The last two moves (1a)(1b) ef(1a)(1b) of Case 1.

la 1b
— —
la 1b

5o

Fig. 21. Case 1-(). Sequenae(la)(lb)= w in each case of
X = dy (upper) andax N 9y = {one vertex.

PB.>R = B.>Q
o-je- | -
+>@+ >@+

~

Fig. 22. Case 1-(ii). The figure shows(1a)(1b)= w(1b)(1a).
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\ i 3b |\
—> =
la
—>

Fig. 23. The last two moves (1a)(3b) af(1a)(3b) of Case 2.

1 3b 1b
E—1 _iR > R+1 > Q

\\A/, \\@/, \\@\’/ \\/@\"
‘

la T

Fig. 24. Case 2-(ii). The figure shows(1a)(3b)= w(3b)(1a).

1b

Fig. 25. The last two moves (3a)(1b) af(3a)(1b) of Case 3.
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3 1b 3b
n1 > R —> RH —> Q

>® \*\

4@75
@
@
@

1b

Fig. 26. Case 3-(ii). The figure shows(3a)(1b)= w(1b)(3a).

Fig. 27. The last two moves (3a)(3b) af(3a)(3b) of Case 4.

CASE 4: The last two moves (3a)(3b) af(3a)(3b) are illustrated as in Fig. 27.
Let 9x be the boundary of 3-gor and dy be the boundary of 3-gog, as shown in
Fig. 27.
(i) If axNnay # B, then there are three cases of the paandy, as shown in Fig. 28.
The former two cases (I) and (I) in Fig. 28 do not appear if gtarting diagram of
w(3a)(3b) is the trivial knot projection, as shown in Lemmal@.the last case (lll),
we havew(3a)(3b)= w, by Fig. 29.
(i) If axNay =0, Fig. 30 showsw(3a)(3b)= w(3a)(3b)(3b)(3a)= w(3b)(3a).

Lemma 1. Let P be a knot projection. Define the map: Fknot projectiony —
{0, 1} by setting HP) = 1 (or 0) if and only if CD> contains(or does not contain
the sub-chord diagrandd. The map HP) is invariant under strong(1, 3) homotopy.

Proof. The sub-chord diagrad) is called anH chord First, it is easy to see the
application of any first homotopy move does not create orotlissthe H chords. Sec-
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(II)

Fig. 28. Case 4-(i). Case (hx N ay = {one vertek, (I) ax N
oy = {two vertice$, and (Ill) 9x N dy 2 {three vertices

Fig. 29. Case 4-(i)-(1l1).w(3a)(3b)= w.
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3b

3 3b
R-1—iR—>R+1—> Q

\\@’ \\@ @\ /@
g J@ V.S 5 @

Fig. 30. Case 4-(ii). The figure shows(3a)(3b)= w(3b)(3a).

Fig. 31. Case 4-(i)-(I).

Fig. 32. Case 4-(i)-(Il).

ond, from Fig. 11, we infer tha€Dp, containsH chords if and only ifCDp, contains
H chords. 0

Lemma 2. Assume that P is a knot projection that results from the @pgilbn
of the local movegla), (1b), (3a)and (3b) to the trivial knot projection). Then P
can be neither(l) nor (Il) of Fig. 28

Proof. To illustrate the claim of Lemma 2, we check the clabn éach case.
() For the knot projectionP on the left-hand side of Fig. 31, we obtai(P) = 1
using the right-hand side of Fig. 31.
(Il) For a knot projectionP at the left of Fig. 32, we havél(P) = 1 using Fig. 32.
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Pn Bl+ 1

Fig. 33. P, 2 P,.1.

Fig. 34. Double point consisting of two dotted arcs and therdh
connecting the two dotted arcs corresponding to the doutilat.p

For the trivial knot projectior0), we have the formulad (O) = 0. This formula com-
pletes the proof. ]

Lemma 2 completes the proof of Proposition 2. ]

Finally, we will prove the claim of Theorem 4. Below, we demdahe connected
sum of the trivial knot projectiorD), the knot projection that appears similardo, and
the trefoil knot projection as{#, oo, T}. This is shown by induction on the length of
a sequence consisting of (3a) and (1a). Whea 1, the knot projection is nothing but
the one that appears similar to. Further, when the length is equal tp we assume
that the abovementioned claim holds. Therefore, by thisirapton of induction, the
knot projectionP, belongs to #U, oo, T}. ConsiderP,,; and letw be a sequence of
moves (length:n) consisting of (1a) and (3a). IP,.; is obtained byw(1a), it is easy
to see thatP,,; belongs to #U,00, T}. If P, 1 is obtained byw(3a), the last (3a) can
be presented as shown in Fig. 33. Here, by using Lemma 1, wanoHt(P,) = 0 for
everyi € {1,2,3,...,n,n+1}. Then, as shown on the right-hand side of Fig. 34, there
is no chord connecting between the two dotted arcsCaw,,,. In other words, there
is no double point that consists of two dotted arcsRpf: as shown on the left-hand
side of Fig. 34.

By the assumption of induction, we conclude tht belongs to #U, oo, T} and
has no double point that contains the two dotted arcs showtheneft-hand side of
Fig. 33. After applying (3a) toP, and maintaining the property th&Dp ,, has no
chord connecting the two dotted arcs GDp,,,, we obtain the resulP,.; shown on
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Fig. 35. Knot projectionPyy and CDp,,, .

the right-hand side of Fig. 33. ThereforB, 1 belongs to #U, co, T}. This completes
the proof. U

REMARK 3. In the last stepP, (3—3) P..1 of the above proof of Theorem 4, we
provide another proof; this proof is as follows: By the asption of induction, P,
belongs to #U, co, T}. Then, by using [11, Theorem 3.2], we determine tG&p
does not contairH chords. Then, there is no double point that contains twoedott
arcs (Fig. 34). Then, from Fig. 33, we infer th&,,,; does not contairH chords.
Therefore,P,, 1 belongs to #U, oo, T}.

REMARK 4. For the knot projectiorPyy defined by the left image of Fig. 35,
H(Puvy) = 1 (alternatively, X(Puy) = 2 (mod 3) usingCDp,, as shown in the right
image of Fig. 35). ThenPyy is not equivalent to the trivial knot projectian) under
strong (1, 3) homotopy. Hagge and Yazinski [4] claim th&fy cannot be equivalent
to the trivial knot projection under (1, 3) homotopy withahe use of any numerical
invariants.

REMARK 5. Proposition 2 provides a finite sequence obtained by (td) (8a)
from the trivial knot projectionD to a knot projectionP. From Theorem 4, the knot
projection P belongs to #U, oo, T}. In fact, Proposition 3 provides the relation be-
tween the sub-chord and the number of (3a) in the sequence.

Proposition 3. Let P be a knot projection that exists in a finite sequence ob-
tained by(1a) and (3a) from the trivial knot projectionD to P. The number of3a)
is equal to the number of the sub-chords corresponding totrbi®il projection de-
fined byFig. 6. Moreover the number of(3a) is equal to(Jd (P) + 2St(P))/2 where
Jd(P) and Sg(P) are Arnold invariants of spherical curves defined [, p.993,
Section 2.4]

Proof. The proof of the former part is shown by induction oe thngthn of a
sequenceP; — P, — --- — P, consisting of (1a) and (3a). We denote the sub-chord
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(b)

Fig. 36. Sub-chord diagram (b) corresponding to (a).

diagram (Fig. 36 (b)) corresponding to Fig. 36 (a) by.(In the casen = 1, the only
move is (1a) and the number of (3a) is 0. The number of subdsh@) is also O.
Then, in this case, the claim is true. Now, we assume that ltiends established in
casen. Since the initial projection is the trivial knot projeatiowe obtainH(P) =0
for anyi. Every sub-chord«) is placed on the dotted arcs shown on the left-hand side
of Fig. 33. From the left to the right in Fig. 33, the number 8&) and the number
of sub-chords ) increase by 1. By the assumption of induction, we concli the
number of sub-chords«] is equal to the number of (3a) in the case R

Next, we present the proof of the latter part. Using formdl@, [p. 997, Formula (3)],
(1a) does not changeld + 2St5)/2. The 4 + 2St)/2 increases by 1 on applying one
(3a). This completes the proof. L]

REMARK 6. M. Polyak defined the Arnold invariantdd and Sts for spherical
curves [10, p. 993, Section 2.4]. Readers should be carefchuse Theorem 1 and
Corollary 1 [10, p.996, Theorem 1 and p.997, Corollary 1]eh&ypographical errors
(see [7, p.1217]). For relations betwedd + 2St and the Vassiliev knot invariant,
see [10, Section 6.4] and [11].

6. Strong (1, 3) homotopy classes of other knot projections

In this section, we obtain the proof of Theorem 5 via Lemma 3.

Lemma 3. Let Ry be a knot projection withoul-gons coherent2-gons and 3-
gons shown inFig. 7. If a knot projection P is equivalent togRunder strong(1, 3)
homotopy P is the connected sum of, Bnd the knot projections. Each knot projection
is equivalent to the trivial knot projectio® under strong(1, 3) homotopy.

Proof. The proof is accomplished by induction on the lengtf a sequencé®, —
P; — .- — P, consisting of (1a), (1b), (3a), and (3b). The knot projecti® satisfies
the claim sincePy is the connected sum d% and the trivial knot projectio®) An ex-
ample is shown in Fig. 37. Le®,, 1 be the knot projection that we obtain after we apply
(1a), (1b), (3a), or (3b) td’,. Assume thaP, satisfies the claim and we prove tHa{, ;
also satisfies the claim under this assumption. >.ée (1a), (1b), (3a), or (3b) sending
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Fig. 37. Example ofP,.

+ ﬂ%
alln
() (b)

Fig. 38. Definition ofB.

> —O—
(a) (b)

Fig. 39. Definition ofr-disks.

P, — Py;1. From the definitions of (1a), (1b), (3a), and (3b) (Figs. 2aBd 4), each
of (1a), (1b), (3a), and (3b) is a local move within a digkthat is calledx-disk We
also consider the regular neighborhoBdof P, (Fig. 38 (b) for (a)) and disks, called
r-disks, on each edge d% apart from double points oPy (Fig. 39 (b) for (a)). Here,
we assume that the setsdisk, B, andr-disks are closed sets.

Fig. 40 gives an example d andr-disks corresponding to Fig. 37. If there exists
r-diskro such thatxy C ro, then by the assumption of inductioR, 1 satisfies the claim.

First, we consider thex-disk x4 that containsm double points labeled ad(Pp)
that belong toPy (m > 1).
e Casem = 1. In this case, there are three possibilities (1), (2), @8)d &s shown
in Fig. 41. If x4 N P, has exactly one double poiul(Py), then Py also has a double
point d(P,) keeping the connection as dotted arcs as in Fig. 41 (1). Byalsumption
of induction, P, is the connected sum df,, the knot projection that appears similar
to oo, and the trefoil projection. Therefore, if the dotted ars limuble pointsp, also
has these double points, which implies a contradiction.r&foee, the dotted arc does
not have double points, and thus, we have the equality asrsimwig. 41 (1). How-
ever, by the assumption d®, Py does not have 1-gons. This implies a contradiction,
and therefore, the possibility (1) does not appeaPin
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Fig. 40. Neighborhoo®B andr-disks.

Next, let us consider possibility (2). By using the symmaetfythe triangle of the
strong third move, it is sufficient to consider the left-haside figure of Fig. 41 (2)
without loss of generality. In this case, the other two deupbints of the triangle
are not labeled asl(py), and the corresponding, has a local figure as shown in
Fig. 41 (2). Similarly to (1), by the assumption of inductiome have the equality
in Fig. 41 (2). Using the assumption fd? again, the possibility (2) does not oc-
cur. From discussions similar to (1) and (2), the possipi(B) also does not occur.
Therefore, there is no possibility of case= 1.

e Casem = 2. In this case, there are two possibilities as shown in F2g.l1#x4 N Py
has exactly two double points labeled @&%) in Fig. 42 (1), the other point of the
triangle is in ar-disk, and we determin®; locally as the middle figure of Fig. 42 (1)
using the assumption of induction. However, by the assuwmptif Py, P, does not
have coherent 2-gons, which implies a contradiction. Tioeee the possibility (1) does
not occur.

Next, we consider case (2) by observing Fig. 42 (2). If thetkprojection P, ap-
pears as the figure on the left-hand side, the corresporigjrigeeps two double points
labeled asd(P;) shown in the middle figure. Here, we denote three dotted bycs,
B, andy as shown on the right-hand side of Fig. 42 (2). There exigsdibuble point
do in Py such that the arcs intersects8 at dy as shown in the figure on the right-hand
side. The reason is described as follows: When we start flenright of d(Py) to «,
first, if « intersects other dotted aresor y in Py, the figure P, on the left-hand side
has to be modified, which implies a contradiction. Thep,with B is locally drawn as
the left-hand side figure of Fig. 42 (2). By the assumptionnafuiction, P, still has the
local figure on the right-hand side of Fig. 42 (2). Then, thdeeble points appear in
the left-hand side figure of Fig. 42 (2) and it contains theregponding double point
do labeled asd(P), which implies a contradiction. Therefore, there is no Silmitity
of m=2.

e Casem = 3. We show this case observing Fig. 43. Rf is presented as the

left column, then by the assumption of inductid®, is presented as the right column.

However, by the assumption d®, Py does not have coherent 3-gons, which implies
a contradiction. Therefore, there is no possibilityrof= 3.
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R R
O | X0 XC
d(P) d(P) T
:@Tﬁx - X
Ay d(Po T
o o - DT<
kd(Po) d(PO
Fig. 41. Casan = 1.

R R
SV A
d(P) d(®P)

NP

a®  a|ad) " akey

Fig. 42. Casem = 2.
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(a) (b)

Fig. 44. Thex-disk cannot be related to two-disk.

Then, x-disk does not contain double points labeledd4B,). For a setA, we denote
S\ A by A°. Further, we retake sufficiently smal or x-disk if necessary. Accord-
ingly, the condition implies that

(2) x-disk € _J(r-disk)u B°.

We also note thatxX-disk does not contain two double points such that one bslong
to ar-disk and another belongs to the othedisk in P, (x)” (Fig. 44). First, (1a) or
(1b) cannot be related to two different double points. Sdcame consider coherent
3-gons appearing in (3a) and (3b). From Fig. 44x-flisk contains two double points
such that one belongs to omedisk and another belongs to the othredisk, we have
the case as shown in Fig. 44 (a) ly. However, by the assumption of induction, two
different r-disks have exactly one double point between them (Fig. 44 qée also
Fig. 40). Therefore, Fig. 44 (a) cannot correspond to Fig.(#4 and therefore, we
have ).
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Using &) and (2), there exists-disk rqo satisfying the following formula (3) that
is the refined version of (2).

?3) x-disk C ro U BS.

By the assumption of induction, there is no arc(Ler(r-disks)U B)C (e.g. Fig. 40).
This implies that (¢ N x-disk x4) does not contain any arc d®,. Then, we remove
(ro® N xgq) from x-disk x4. After removing it, it is still possible to locally applx to
Pn in Xq \ (ro® N Xq). Then, we retake-disk Xq C rg such thatxy is the neighborhood
of (1a), (1b), (3a), or (3b). Then, we have

(4) x-disk C r-disk ro.
Formula (4) completes the proof. ]

Finally, we prove Theorem 5.

Proof. If a knot projectionP is the connected sum d¥, the trivial knot projec-
tion O, the knot projection that appears similar 4o, and the trefoil knot projection,
we can easily find a path consisting of (1a), (1b), (3a), arlg) (Bm Py to P. The
converse is implied by Lemma 3 and Theorem 4. ]

Fig. 45 shows a table of the reduced prime knot projectionsoup double points
(the notion of reduced knot projections is defined in [8, p.®&jth their trivializing
numbers “tr” (cf. Theorem 1) and cross chord numbers (cf.oféa® 2) expressed by
integers on the faces made by the knot projections showndrfighure. In this table,
every symboln,, (e.g. 3) denotes the knot projection of the prime kmg. Symbols
7a, 7g, and & are knot projections that have seven double points. Evessnemt of
{Tm (1 <N <7), 7a, 7g, Tc} is different from the other elements up to isotopy $h
In this figure, we connect two knot projections by a line if tlkoot projections are
related by finite first Reidemeister moves and one third Re&ister move. We would
like to remark that we can show thaj @and % (resp. % and %) are equivalent under
strong (resp. weak) (1, 3) homotopy via a prime knot projectiith 8 double points.
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tr=0 @ w : weak(1,3) s:strong(1,3)
|S 4 > 6 A

3
tr=4 s @ 7a
/.
)

tr=6 7

Fig. 45. Table of reduced prime knot projections up to 7 deubl
points with trivializing numbers and cross chord numbers.
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