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Abstract
In this paper, we give a new approach to find a dually flat Finsletric. As its
application, we produce many new spherically symmetricllgdlat Finsler metrics
by using known projective spherically symmetric Finslertrics.

1. Introduction

A Finsler metricF = F(x,y) on an open subséf C R" is dually flatif and only
if it satisfies the following dually flat equations:

(1.1) (Fz)x‘ yi yi - 2(F2)xi =0

wherex = (x1,...,x") e/ andy =yl (3/9x})|x € T,4. Such Finsler metrics arise from
a-flat information structures on Riemann—Finsler manifditisl4]. Recently the study
of dually flat Finsler metrics has attracted a lot of attemtja, 3, 9, 14, 15, 16, 17].

In this paper, we give a new approach to find a dually flat Finstetric. We
establish the relation between the solutions of Hamel éopstand ones of dually flat
equations (1.1). Hamel equations are the following padifierential equations:

(1.2) @ijiyj = Oy,

where®: TU — R and{ is an open subset iR". Formula (1.2) was first given by
G. Hamel, in 1903, from the study of projectively flat Finsteetrics on an open subset
U C R". By using (1.2), Finsler geometers manufacture projelgtiftat Finsler metrics.
To study and characterize projectively flat Finsler metdng/ C R" is the Hilbert’s
fourth problem in the smooth case. Funk metrics, Mo—Sherg-Yaatrics, Bryant met-
rics with one parameter and Chern—Shen metrics are initeggstojectively flat Finsler
metrics [4, 11, 13]. In the words, their geodesics are dttaliges. Furthermore, these
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notable Finsler metrics satisfy
(1.3) F(AX, Ay) = F(x,y)

for all A e O(n).

Very recently, Huang and Mo have constructed a lot of new ptivjy flat Finsler
metrics satisfying (1.3) (see Proposition 4.2 below) [7].h&N § = O, these Finsler
metrics, up to a scaling, were constructed in [6, Exampl&]4.4

According to [5], a Finsler metri¢- = F(x, y) on an open subsé C R" is pro-
jectively flat if and only if it satisfies Hamel equations (1.2 is natural to study the
relation between PDE (1.1) and (1.2). Moreover, we wondehéf solutions of Hamel
equations (1.2) produce the solutions of dually flat equatil.1).

In this paper we are going to give a positive answer of thidierm. We show
that any solution of dually flat equations produces a satutib Hamel equations and
vice versa (see Theorem 2.3). Using this correspondencegrv@ble to manufacture
new dually flat Finsler metrics from known projectively flainBler metrics.

In the rest of this paper, we investigate how to constructstilations of dually flat
equations (1.1) from a projective spherically symmetrinsiér metric and seek condi-
tions of producing Finsler metrics.

Recall that a Finsler metri€ = F(X, y) is called to bespherically symmetrigf
F satisfies (1.3) for allA € O(n), equivalently, the orthogonal group(n) act as iso-
metries ofF [9, 12, 19]. Huang—Mo proves that any spherically symmetitsieér met-
ric F = F(x, y) can be expressed by [8]

Fx,y) = |y|w(|x|, <X|’y|y>).

Hence all spherically symmetric Finsler metrics are gdngrap)-metrics [18]. First,

we give an explicit expression of the solution of dually flguations (1.1) correspond-
ing a projectively flat Finsler metric (see Proposition 3dlow). Next, we produce
many new spherically symmetric dually flat Finsler metric lging Huang—Mo met-
rics in Proposition 4.2. More precisely, we prove the follogii

Theorem 1.1. Let f(A) be a polynomial function defined by

n—1

(—1)kCr|§71)»2k+2
(1.4) f)=1+6r+2ny 201t
g 2k + 1)(X + 2)

where
Kk mMm-1)---(m-k+1)
Ch= " .
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Suppose that (1) < 0. Then the following Finsler metric on an open subset in
R"\ {0}
F = ly[{Ix*"H2na f (4) + (1= 22 /()2

is dually flat wherex = (x, y)/(Ix] |y]).

We have the following two interesting special cases:
(@) Whenn =1, then

V(X )2 + 44X ly[(x, y) + 8|x[2ly[*(x, y)?

F= x| 72

is dually flat wheres > 2.
(b) Whenn = 2, then

_ VIXPIyP® + 8x2lyI2(x, y) + 38| [y (x, ¥)2 + (8/3)(x, y)°

- MEG

is dually flat wheres > 8/3.
Finally we should point out that the notions of dual flat andjgctively flat are
not equivalent. For example, the following Finsler metric B" C R" is projectively

flat [10],

where
A Y[+ (IXIPly* = {x, y)?)? 5. A+ IXID)Ix2lyl? + (1= [x[%){x, y)?
AL+ [x|%)? C 2(1+ |x|*? ’

but F is not dually flat. This fact follows from Cheng—Shen—Zho&soposition 2.6
in [2] (if a Finsler metric is dually flat and projectively flathen it is of constant flag
curvature) and the classification theorem of projectiveesphlly symmetric Finsler
metrics of constant flag curvature due to L. Zhou and Mo—-zZhy J29. Very recently,
C. Yu has constructed the following new dually flat Finslertmes [17]

Fy) = (L+ XYyl £+ (L + X)) 4x, y).
Based on the above arguments, we obt&ims not projectively flat.

2. Dually flat equations

In this section we are going to explore some nice propertfedually flat equa-
tions. In particular, we show any solution of Hamel equatigmoduces a solution of
dually flat equations (see Theorem 2.3 below).
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Lemma 2.1. Let !/ be an open subset iR". Suppose that FTU/ — R is a
function which is positively homogeneous of degree onen Fhés a solution of dually
flat equations(1.1) if and only if it satisfies the following equatians

(21) inyj = inyiy
where L:= F?/2.

Proof. A function¢ defined onTZ/ can be expressed &$x*,...,x":y, ..., y").
We use the following notation

9
& = —i:yI

ox!
Then

(2.2) Loy = (Lxiy)y = Laiyy! + Ly

Note thatL is positively homogeneous of degree two. So dbgs i.e. Lyi(X, Ay) =
ALy (%, y). It follows that

(2.3) Lyiyiy! = 2Ly
First suppose thaF satisfies (1.1). Combining (1.1) with (2.2), we get

2Ly = (Lo)y — Lyxi,
that is

(2.4) (Lo)y = 3Ly.

Differentiating (2.4) with respect tg!, we obtain

1 1
(2.5) Lxiyi = é(LO)y‘yi = é('—o)yiy‘ = Lxiy-

Thus we obtain (2.1).
Conversely, suppose that (2.1) holds. Together with (2.8)have (1.1). O

Lemma 2.2. If F: TU — R is a solution of (1.1) wherel/ is an open subset in
R", then there exists a functio® such that

(2.6) Ox = FFyi.

Proof. Let

F2
(2.7) pi = (—) =Ly
2 ),
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Using (2.1), one obtains
(2-8) (pj)xi = I—yixi = I—inJ' = (pi)xi-

Take fixedxg € U and put
(2.9) o, ) = / pa(U, y) AUt + - + po(u, y) du
oX

whereu = Xo + t(X — Xo) andu = (ut, ..., u"). It follows that
du = (x —x))dt, j=1,...,n

wherex = (x,...,x") andxo = (x3, ..., x§). Together with (2.9), we have

1
00 3) = [ 106 = XPult(x =) + %, y) + -
0
+ (X" = Xg) Pa(t(X — Xo) + Xo, Y)] dlt.
It follows that ® is differentiable with respect tg. Moreover we have

30 0 (TN,
= Z(XJ — X3) Pj (t(X — Xo) + Xo, y) dt

Y axi

1

/ 38X. [Z(xl — )Py X — %) + %o, y)} dt

/ I L R UL,

- Z[a‘ P} (X~ 50) + %0, Y) + t0x) — X})(PyJr(t(x — X0) + x0, V)] e
-/ [p. (0= 10) o0 )+ £ D00 )P 30 + o, y)} dt

1
1 d "
= [ SR — ) + 30, 0] dt = X = X0 + 50, Y = P, )

where we have used (2.8). Then we complete the proof of themae?.2. ]

Theorem 2.3. Let U/ be an open subset iR". Suppose that FTUY — R is a
function which is positively homogeneous of degree onen Fhe F(X,y) is a solution
of (1.1) if and only if

(2.10) F2 =04y
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where®: TU — R satisfies the following Hamisl equations
(2.11) Ouiy Yy = Oy

Proof.  First suppose thdt is a solution of (1.1). According to Lemma 2.2, there
exists a function® such that (2.6) holds. Contracting (2.6) with gives

(2.12) Oy =FFuy = F?=2L.
Differentiating (2.12) with respecy!, we obtain
(2.13) Ay = (Oxy)yi = Ouyiy + Oy

Together with (2.6) yields (2.11).
Conversely, suppose that (2.10) holds, whére= ©(x, y) satisfies (2.11). Differ-
entiating (2.10) with respect t!, we have

Lyi = F2 _1®.,i
=15 xi_2 xixiy -

It follows that

1 1
(2.14) Lyiyk = §(|) + E@xkxj
where
(2.15) (:= ®><i><1'y'<yi = Oxiykxi y' = (04 ykyi)xi = Oxixi

where we have used (2.11). Plugging (2.15) into (2.14) gield

Lyiyk = Oyiyi.
Note that
Oyixk = Oykyi.

Hence we obtain (2.1). Combining this with Lemma 2.1 we gbfaiis a solution of
dually flat equations (1.1). ]

Theorem 2.3 tells us that there is a bijection between swiat® of projectively
flat equations (i.e. Hamel equations) and solutidhf dually flat equations, which
are positively homogeneous of degree one, given by (2.16)(ar®).

By definition, a Minkowski normon a vector spac& is a nonnegative function
F:V — [0, co) with the following properties:



DUALLY FLAT FINSLER METRICS 383

(i) F is positively y-homogeneous of degree one, i.e., for gng V and anyi > 0,

F(ry) = AF(y),

(i) Fis C*>® onV\ {0} and for any tangent vector € V \ {0}, the following bilinear
symmetric formg,(u, v): V x V — R is positive definite,

2

gy(u, v) 1= %%[Fz(y + Su+ tv)]s=t=o0-
Let M be a manifold. LefT M = ., TxM be the tangent bundle d#l, where

TxM is the tangent space ate M. We setT M, := TM \ {0} where {0} stands for

{(x,0)| x € M,0€e TxM}. A Finsler metricon M is a functionF: TM — [0, co) with

the following properties

(@ FisC>® onTM;;

(b) At each pointx € M, the restrictionFy := F|1, v is a Minkowski norm onTy M.
For instance, leth = ¢(y) be a Minkowski norm orRN. Define

(X, y) :=¢(y), ye RN xRN

Then ® = ®(x, y) is a Finsler metric. We cakb the Minkowski metricon RN [4, 11].
A Finsler metricF = F(x,y) on an open subséf C R™ is dually flatif and only
if it satisfies (1.1) wherex = (x*, ..., x™) e U andy = yi(3/8x})|x € LU [2].

3. Solutions from projectively flat metrics

In this section, we give an approach to manufacture solstimin(1.1) from pro-
jectively flat Finsler metrics in the form

(X, y) = Iyl[e +¢(|x|, . y>)}

lyl
wheree > 0.
Recall that a Finsler metri& = F(x, y) on an open subséf C R" is said to be
projectively flatif all geodesics are straight 1.

Proposition 3.1. Let ®(x, y) := |y|le + ¢(X[, (X, ¥}/|y])] be a projectively flat
Finsler metric on an open subsét C R". Then the following function onIT

12
(3.2) Fx.y) = |y|[w(|x|, %)]

is a solution of (1.1), whereyr is given in(3.7).
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Proof. By Hamel Lemma (see (1.2) or [11}p, is projectively flat if and only if
it satisfies®y;y;i yl = ®,. Together with Theorem 2.3 we have

(3.2) A =F2=d,y

satisfies (1.1). ’
Now let us computedg := &, y' and F. Denote® by

® = @(r, 9),

where

(3.3) r=1x|, s= M

lyl

By straightforward computations one obtains

ar ' 3s ‘
(3.4) _— = X—, —_— = L.
ax! r X! Iyl

It follows that

_ 0 {x,y)

e L Gl
B or  dpas\ (X3 Y d¢
- |y|(§ﬁ + B_SW) B |y|(r ar ly| Bs)'

Contracting (3.5) withy' yields

(3.5)

(3.6) Ouy — |y|2w(|x|, (X|'y|y>),

where we have used (3.2) and is defined by

b s9
3.7) v s) = a_ds) + ;3—‘;5

From (3.2), (3.6) and (3.7), one obtains

F=+v2L

(3.8) 3¢ sap\ Y2 x, y)\ 12
-G+ 2)] = v (e 5]

which completes the proof of Proposition 3.1. ]



DUALLY FLAT FINSLER METRICS 385

Taking ¢(r, s) = « + r#*f(s/r) in Proposition 3.1 wherg and p are constants,
we have

99

(3.9) L =),
(3.10) aa—f = () — s 2 (),
where
s (xy)
3.11 A= =2
(311) T

Plugging (3.9) and (3.10) into (3.8) we obtain the followifggmula for F

ap  0¢\Y?
= —_— A—
F |y|(85 + or )
= [YHIX[“Hur () + (1 - 23 Y2
Hence we obtain the following:

Corollary 3.2. Let ®(x,y) :=|y|le + [X|* f({X,y)/(X||¥]))] be a projectively flat
Finsler metric on an open subsét C R" \ {0}. Then the following function onZl

FOx, y) o= [yHIXP H uea £ O) + Q=22 F'()DH2
is a solution of (1.1) wherex = (X, y)/(|x| |Y])-

4. New dually flat Finsler metrics

In this section we are going to produce new dually flat Finstestrics from a
given projectively flat Finsler metric.

Lemma 4.1. Let ®(x, y) := |y|[e + [X|* T((x, Y)/(|X]| |Y]))] be a projectively flat
Finsler metric on an open subsét C R" \ {0}. Suppose that (1) < 0. Then

F(X, y) o= IYIX D2 () + (1 —22) £/ ()]
is dually flat Finsler metric wherg. > 0.
Proof. In fact,F is expressed in the form

(X, y)

F= rs), r=|x|, s=
lylo(r, s) X i
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where

(4.1) ¢ =rW 2t () + (1 —22) (),

and A satisfies (3.11). FurtheF satisfies (1.1) by Corollary 3.2. It is known thRt=
lylo(r,s) is a Finsler metric withr < bg if and only if ¢ is a positive function satisfying

d(S) —Sps(S) > 0, H(S) — Sps(S) + (2 —%)gss(S) > 0, |s| <r < by
wheren > 3 or
d(S) — Sps(S) + (12 — P)pss(S) > 0, |s| <r < by

wheren = 2 [18, Proposition 3.3]. Note thab is projectively flat. From [7], we have

(4.2) 0E—1f" —urf' +uf =0
and
(4.3) (1) = u(l—rH)H21,

Differentiating (4.1) with respect ts, we obtain
-1 dA ’ l 2\ 11
20¢ps =" g[uf +urf =221+ (214 291"
=42t prf =20 F + u(f —Af)] =202 (uf —af)
where we have used (3.11) and (4.2). It follows that

-2 _ ’
(4.4) e = W

Together with (4.1) and (3.11), we have

-1
r# £

4.5) o — Sy = d—l)w2 st — A =

Differentiating (4.4) with respect te and using (4.4) one deduces

w—1Lyr=3 oarnd o puh .
¢Ss=( ¢) f— p 7 — pe (uf —rf

Together with (3.11) and (4.2), we obtain

r n—1 n—1 r 2u—2

(7~ Sss =~~~ (1= 7] o —

5 pe (L—22)(uf — 12
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Combining this with (4.5), we get

B(S) — Sps(S) + (r* — s7)pss(S)

ru-1 ran—2
(4.6) = (1 + 22 f —anf] - e (- 2%)(uf —Af)?
2u—2
= x (1)

where

(1) =[urf + @ =22 PN+ A7) = A f]
4.7 — (A= 22)(u?f2—2urff' 4+ 22£7)
=u[@ =2 + @+ pwrff —uf?.

Plugging (4.7) into (4.6) yields

B(S) — Sps(S) + (1* — 57)pss(S)

ur 2u—2

(4.8)
= [(A=22)Ff + 2@+ p) ff —pnf?

By (4.1), (4.5) and (4.8)F = |y|¢(r, s) is a Finsler metric if and only if

(4.9) f''> 0,
(4.10) g:=urf +(1-29)f >0,
(4.11) hi=@-A)ff +121+p)ff —uf?2>0

wheren > 3 or, (4.10) and (4.11) hold when = 2. By using (3.11) and Cauchy—
Buniakowski inequality we are going to find conditions dnfor (4.9), (4.10) and
(4.11) to hold in F1, 1].

Note thaty > 0. Together with (4.3) we get
(4.12) f"(x) >0

where 1 € (—1, 1). It follows that f’(1) is a monotonically increasing function on
[-1, 1]. Thus

(4.13) f'(-1)>0
implies that (4.9) holds in{1, 1]. Plugging (4.3) into (4.2) yields

u(f=af)=@-22F" = 1= 2@ - 22>t = p(d - 122,
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It follows that
f—af = (1—2r2)H2

which immediately implies that
(4.14) f(Q)=f'(1), f(-1)=-f'(-1).

This means that (4.9) holds in-L, 1] if f(-1) <O.
Next, we are going to a find condition oh for (4.10) to hold in |1,1]. By using
(4.2) and (4.10), we have

g =2[uf@®)—rf'()]
It follows that g’'(x) = 0 if and only if
(4.15) wf@) =af'(n).
Suppose thatg € [—1, 1] such thaty'(Ag) = 0. Combining this with (4.15), we have
(4.16) 1 f(ro) = Ao f'(20).
Together with (4.10) we get
(4.17) 9(ro) = who f (o) + (L= 25 (o) = f'(R0).
On the other hand, from (4.10) and (4.14), we obtain
(4.18) 9 =nf'(1), 9(-1)=pnf'(-1).
It is known that the minimum ofy satisfies the following

k![“_ifl] g(*) = min{g(1o), 9(%1) | g'(*0) = 0}.

It is easy to see that (4.10) holds fare [—1, 1] if and only if

(4.19) Ae{r_]ﬂ] g(») > 0.

By (4.17) and (4.18), (4.19) holds if and only if
(4.20) min{w f'(=1), f'(k), nf'(1)} >0

where g € [—1, 1] satisfyingg'(Ag) = 0. Note thaty > 0 and f’ is a monotonically
increasing function. Together with the second equatiorddaf4), we obtain that (4.20)
holds if and only if f(—1) < O.
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Finally, we are going to find a condition ofi for (4.11) to hold in {1, 1]. Using
(4.2) and (4.11) we get

W) = L= w) F/(F =)+ @+ wAff” +2(1— 22§

(1_ )\2) fr
w

(4.21) =1-mf + (@ + A fE 20122

1
=P et + -1,
n

By (4.11) and the second equation of (4.14), we see that

(4.22) h(-1) = -1+ ) F (D' (-1) — [ f ()P = [f (D]~
Suppose thatf (—1) < 0. Together with (4.22) yields

(4.23) h(-1) > 0.

Moreover, (4.10) holds wherg € [—1, 1]. Combining this with (4.12) and (4.21),
we have

h() >0, »e(-1,1).

It follows that h(}) is a monotonically increasing function. Together with2@). ones
obtain that (4.11) is true. ]

In [7], authors gave an explicit construction of projecivélat spherically sym-
metric Finsler metric. Precisely, they have proved theofwihg:

Proposition 4.2. Let f(1) be a polynomial function defined by

nié (_1)ka 1)L2k—&-2
(4.24) f(A) =14+6861+2n B L —
s 2k + 1)(2k + 2)

Then the following Finsler metric on open subsetRhA\ {0}

{x, y) )}
D= €+ x> f (—
e+ ()
is projectively flat where > 0.

Proof of Theorem 1.1. Combine Lemma 4.1 with Proposition 4.2 O

REMARK. We also obtain some other dually flat Finsler metrics by Bsdpn 4.5
and Theorem 1.1 in [7] and Lemma 4.1.
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