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Abstract
We apply Forelli–Rudin construction and Nakazawa’s hodograph transformation

to prove a graph theoretic closed formula for invariant theoretic coefficients in
the asymptotic expansion of the Szegö kernel on strictly pseudoconvex complete
Reinhardt domains. The formula provides a structural analogy between the asymp-
totic expansion of the Bergman and Szegö kernels. It can be used to effectively
compute the first terms of Fefferman’s asymptotic expansionin CR invariants. Our
method also works for the asymptotic expansion of the Sobolev–Bergman kernel in-
troduced by Hirachi and Komatsu.

1. Introduction

Fefferman [14] proposed and initiated a program of expressing the asymptotic ex-
pansion of the boundary singularity of the Bergman kernelK B (the Szegö kernelK S)
for smoothly bounded strictly pseudoconvex domains� � C

n explicitly in terms of
boundary invariants. In his groundbreaking work onC1 extensibility of biholomorphic
maps, Fefferman [12] proved that

(1) K B(z) D
n!

�

n

�

'

B(z)

r (z)nC1
C  

B(z) log r (z)

�

, '

B,  B
2 C1(�),

wherer 2 C1(�) is a defining function. See [1] and [20] for important refinements of
Fefferman’s program. Graham [18] and Hirachi–Komatsu–Nakazawa [24, 25] carried
out computations of the first few terms of Fefferman’s asymptotic expansion in terms
of CR invariants. Fefferman’s program has also been extended to conformal geometry
(cf. [15, 16]).

There are many questions related to the asymptotic expansion of the Bergman ker-
nel. We only mention Ramadanov’s conjecture which asks whether� is biholomorphic
to the ball whenever (z)D 0 and Yau’s question [41, p. 679] to classify pseudoconvex
domains whose Bergman metrics are Kähler–Einstein.

In Question 3 of his book [36, p. 20], Stein posed the problem:what are the rela-
tions betweenK B and K S? In Problem 9 of [14, p. 259], Fefferman raised the question:
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how are the asymptotic expansion of the Bergman and Szegö kernels related? Inspired
by these questions, we develop a uniform method for studyingthe asymptotic expan-
sion of the Bergman and Szegö kernels on Hartogs domains using the Forelli–Rudin
construction. In particular, we prove closed formulas for coefficients in their asymp-
totic expansions as summations over graphs. Our work shows in an explicit way the
analogy of the asymptotic expansion of the Bergman and Szegökernels, at least for
strictly pseudoconvex complete Reinhardt domains.

Hirachi–Komatsu [23] (see also [22]) defined the Sobolev–Bergman kernelK s of
� for eachs 2 R with the transformation law of weightnC1�s under biholomorphic
maps and the asymptotic expansion of singularities, analogous to the Bergman kernel
(D K 0) and the Szegö kernel (D K 1). We can use the general mechanism developed
in §3 to find closed formulas for coefficients in the asymptotic expansion ofK s. We
will discuss this in a separate paper.

Other recent works exploring the relations between the Bergman and Szegö kernels
can be found in e.g. [6, 29, 42]. See [8] for the connection to the heat kernel.

Our work crucially relies on the existence of complete asymptotic expansion of
weighted Bergman kernel (appearing in the Forelli–Rudin construction), which was es-
tablished in [10] for bounded strictly pseudoconvex domains in Cn with real analytic
boundary, in the context of Berezin quantization.

The paper is organized as follows: In §2, we review the works of Graham [18]
and Hirachi–Komatsu–Nakazawa [24] on the asymptotic expansion of the Szegö ker-
nel. In §3, building on work of [9], we prove graph-theoreticclosed formulas for the
asymptotic expansion of weighted Bergman kernels. In §4, weprove a graph-theoretic
closed formula for coefficients in the asymptotic expansionof the Szegö kernel on Har-
togs domains. In the case of complete Reinhardt domains, ourformula becomes quite
explicit using Nakazawa’s hodograph transformation.

The main technical part of this paper is §3. Let� be a strongly pseudoconvex
domain inCn equipped with a strictly-plurisubharmonic function8(x). We study the
asymptotic expansion of the Bergman kernel with respect to the measuree��8g(x)C dx
as � ! 1, where C � 0 is a real number. By Forelli–Rudin construction, we will
show that the Szegö kernel corresponds toC D 1=(n C 1). We will prove a graph
theoretic formula for the asymptotic coefficients generalizing the results of [9, 38, 40],
whereC D 0 andC D 1 were treated. For the proof, we will apply the asymptotic ex-
pansion of Laplace integrals on Kähler manifolds developedin [9] and the criterion of
Weyl invariant polynomials proved in [39]. Some of the arguments are straightforward
generalization of our previous work; for the sake of completeness, we include detailed
proofs taking care of the extra weighted sum over linear subgraphs.

2. The asymptotic expansion of the Szegö kernel

Let � be a bounded strictly pseudoconvex domain inCn with smooth boundary.
Given a surface element� on ��, then the Sezgö kernelK S(z, � ) is defined as the
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reproducing kernel associated with the Hardy spaceH2
�

(�) consisting of holomorphic
functions in� having L2 boundary values with respect to� . Namely,
(1) K S(z, � ) 2 H2

�

(�) for every � 2 � fixed,

(2) K S(z, � ) D K S(� , z),
(3) f (z) D

R

��

K S(z, � ) f (� )� (� ) for any f 2 H2
�

(�) and z 2 �.

If r 2 C1(�) is a defining function in the sense� D {r > 0} with dr ¤ 0 on ��,
then by the pioneering work of Fefferman [12] (see also [5]),the boundary singularity
of the Szegö kernel has the form

(2) K S(z, z) D
(n� 1)!

2�n

�

'

S(z)

r (z)n
C  

S(z) log r (z)

�

.

As pointed out in [24], in order to make the Szegö kernel invariant under bi-
holomorphic change of coordinates, the surface element� should satisfy

(3) � ^ dr D J[r ]1=(nC1) dV(z) on ��,

wheredV(z) D (1=(�2
p

�1))n dz1^dNz1 � � �dzn^dNzn and J[r ] is the complex Monge–
Ampère operator

(4) J[r ] D (�1)n det

�

r �r =� Nzj

�r =�zi �

2r =�zi � Nzj

�

1�i , j�n

.

Starting from an arbitrary smooth defining function of�, Fefferman [13] devised a
recursive algorithm to explicitly construct another defining functionr F

2 C1(�) which
is an approximate solution to the Dirichlet problem of Monge–Ampère equation

(5) J[r F ] D 1C OnC1(r F ), r F
> 0 in �, r F

j

��

D 0,

where OnC1(r F ) denotes a term of the form (r F )nC1 f with f 2 C1(�).
Let us recall the definition of CR invariants for strictly pseudoconvex hypersurfaces

using Moser’s normal form. Let (z0,zn)D (z1,:::,zn) 2 Cn. A hypersurface 02 ��� Cn

with local equation

(6) 2u D jz0j2C
X

j�j,j�j�2,k�0

Ak
�

N

�

(v)vkz0
�

Nz0
�

, zn D uC i v

is said to be in Moser’s normal form if the coefficientsAk
�

N

�

satisfy:

(i) Ak
�

N

�

D Ak
� N�

;

(ii) tr( A2N2) D 0, i.e.
Pn�1

pD1 Ak
pi Np Nj
D 0 for all k, i , j ;

(iii) tr( A2N3) D 0, i.e.
Pn�1

p,qD1 Ak
pq NpNq Nj

D 0 for all k, j ;

(iv) tr( A3N3) D 0, i.e.
Pn�1

p,q,rD1 Ak
pqr NpNqNr D 0 for all k.
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A classical result of Chern and Moser [7] says that any real analytic hypersurface
may be placed in Moser’s normal form through a biholomorphic map.

DEFINITION 2.1 ([14, 18, 24]). Denote byN(Ak
�

N

�

) a real hypersurface in normal

form (6). A polynomial P in variables Ak
�

N

�

is said to be a CR invariant of weight

w 2 N

�0 if it satisfies the transformation lawP(Ak
�

N

�

) D jdet80(0)j2w=(nC1)P(Bk
�

N

�

) for

any biholomorphic mapping8 W N(Ak
�

N

�

)! N(Bk
�

N

�

) preserving the origin.

Let I
w

denote the set of CR invariants of weightw. Then everyP 2 I
w

is a homo-
geneous polynomial of weightw if we define the weight ofAk

�

N

�

to be (j�j C j�j)=2C

k � 1. Graham [18] proved the following:

Theorem 2.2 ([18]). (i) Let nD 2. Then I1D I2D {0} and dim I3D dim I4D 1.
Moreover, I3 and I4 are respectively spanned by A0

4N4
and jA0

2N4
j

2.

(ii) Let n� 3. Then I1 D {0} and dim I2 D 1. Moreover, I2 is spanned bykA0
2N2
k

2
D

P

jA0
�

N

�

j

2, where the summation runs overj�j D j�j D 2.

When n D 2, a basis of the two dimensionalI5 has been determined in [18, 24]
and a basis of the three dimensionalI6 has been determined by Hirachi [21].

Theorem 2.3 ([24]). (i) Let nD 2 and �1 D 4A0
4N4

. Then there exist constants

kS
1 and kS

2 independent of� such that

(7) '

S
D 1C O(r 2),  

S
D kS

1�1r C kS
2 jA

0
2N4
j

2r 2
C O(r 3).

(ii) Let n� 3. There is a constant cSn depending only on n such that

(8) '

S
D 1C cS

nkA
0
2N2
k

2r 2
C O(r 3).

Theorem 2.4 ([24]). The universal constants in(7) and (8) are given by kS1 D
�2, kS

2 D 8=15 and (n� 1)(n� 2)cS
n D 2=3.

The above theorems were proved by Hirachi, Komatsu and Nakazawa [24]. In
[25], they extended the expansion of S in (7) to weight 5. They gave two different
methods of identifying the universal constants. The first method is by using microlocal
analysis of Kashiwara [27] and Boutet de Monvel [4]. Below we will outline their
second method using explicit asymptotic expansion for Reinhardt domains.

Let � � Cn be a bounded strictly pseudoconvex complete Reinhardt domain. Its
logarithmic real representation domain is given by

� logj�j D {(x, y) 2 Rn�1
� R j (e�x1, : : : , e�xn�1, e�y) 2 �}.
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First we assumen D 2. Let f (x) WD inf{y 2 R j (x, y) 2 � logj�j}. Then � D y �
f (x)(> 0) is a defining function of�� \ {z1z2 ¤ 0}. We make change of variables
(x, y)! (�, v) with v D f 0(x) and setp(v) D f 00(x), the hodograph transformation.

Theorem 2.5 ([24]). Let nD 2. Near �� \ {z1z2 ¤ 0}, we have

(9) K S(z) D
1

�

2
J[�]2=3

�

Q'(v, �)

�

3
C

Q

 (v, �) log �

�

,

where J[�] D p=j4z1z2j
2. Let e1 D p00, e2 D (pp(3))0, e3 D (p2 p(4))00, e41D e1e3, e42D

(pe03)0 and e43D (pp(4))2. Then

(10) Q' D 1C
�

6
e1, Q

 D �

�

72
e3C

�

2

4320
(12e42C e43� e41)C O(�3).

Lemma 2.6 ([24]). Under the notation of the above theorem, we havejA0
2N4
j

2
D

J[�]4=3e43=482, r F
D J[�]�1=3(Qr C O(�4)) and �1 D J[�]( Q�1C O(�2)), where

Qr D � �
�

2

12
e1 �

�

3

36

�

e2 �
e2

1

2

�

, Q�1 D
e3

144
�

�

720

�

e42�
e41

2

�

.

Theorem 2.5 and Lemma 2.6 implykS
1 D �2, kS

2 D 8=15 in (7).
Next we consider the higher dimensional case. Letn � 3 and� � Cn a bounded

strictly pseudoconvex complete Reinhardt domain satisfying � logj�j D {� WD y �
( f1(x1)C � � � C fn�1(xn�1)) > 0} with hodograph variablesv j D f 0j (x j ) and p j (v j ) D
f 00j (x j ). We introduce

e1 D

n�1
X

jD1

p00j , e21D

n�1
X

jD1

(p j p000j )0, e22D

n�1
X

jD1

(p00j )
2, e23D

X

j¤k

p00j p00k .

Theorem 2.7 ([24]). Under the above notation, we have

kA0
2N2
k

2
D

J[�]2=(nC1)

16n(nC 1)
((n� 2)(n� 1)e22C 2e23),

r F
D J[�]�1=(nC1)

�

� �

e1�
2

2n(nC 1)
C

�n(nC 1)e21C (n2
� 1)e22� e23

6(n� 1)n2(nC 1)2
�

3
C O(�4)

�

.

The Szegö kernel has the expansion

(11) K S(z) D
(n� 1)!

�

n
J[�]n=(nC1)

�

Q'(v, �)

�

n
C

Q

 (v, �) log �

�

,



910 M. ENGLIŠ AND H. XU

where J[�] D p=(4n
jz1 � � � znj

2) and

(12) Q' D 1C
�

2(nC 1)
e1C �

2

�

1

6(n2
� 1)

e21C
n� 1

8(nC 1)2(n� 2)
e23

�

C O(�3).

Theorem 2.7 immediately implies (n� 1)(n� 2)cS
n D 2=3 in (8).

(10) and (12) were obtained by computer-aided calculationsin [24]. We will use
our graph theoretic formulas to compute them in §4.

3. The asymptotic expansion of weighted Bergman kernels

Throughout this section, both the Bergman kernelK
�

(x, y) and the Berezin trans-
form I

�

depend on a nonnegative real numberC � 0. For simplicity, we suppressC
in their notations. The following theorem was proved in [9] for C D 0, 1; the proof for
generalC is the same.

Theorem 3.1 (Engliš [9]). Let � be a strongly pseudoconvex domain inCn with
real analytic boundary, 8(x) a strictly-plurisubharmonic function on�, gi Nj (x) D

�

2
8(x)=(�xi � Nx j ) the associated Kähler metric and gD detgi Nj its volume element.

Let x2 � and assume f2 C1(�) is supported in a small neighborhood of x. Then
there is an asymptotic expansion for the Laplace integral as� !1,

Z

�

f (y)e��(8(x)C8(y)�8(x,y)�8(y,x)) jg(x, y)j2�2C

g(x)1�C
g(y)C dy

� �

n
X

j�0

�

�n� jR j ( f )(x),

where8(x,y) and g(x,y) are the almost analytic extensions of the Kähler potential8(x)
and g(x) respectively, andR j W C1(�)! C1(�) are differential operators given by

(13) R j f (x) D
1

g(x)2�C

3 j
X

kD j

1

k!(k � j )!
Lk[ f (y)jg(x, y)j2(1�C)g(y)C S(x, y)k� j ]jyDx,

where L is the(constant-coefficient) differential operator

L f (y) D gi Nj (x) �i � Nj f (y)

and the function S(x, y) satisfies

SD �
�

SD �
��

SD �i1i2���im SD �
Ni1Ni2:::Nim SD 0 at yD x,

�i Nj�1�2����m
SjyDx D ���1�2:::�mgi Nj (x), m� 1.

Here the Greek indices�, � may represent either i orNi
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Denote byK
�

(x, y) the reproducing kernel of the weighted Bergman space of all
holomorphic functions on� square-integrable with respect to the measuree��8g(x)C dx.
It was shown in [10] thatK

�

(x, y) has an asymptotic expansion in a small neighborhood
of the diagonal as� !1,

(14) K
�

(x, y) D
1

�

n
e�8(x,y)g(x, y)1�C

1

X

kD0

Bk(x, y)�n�k.

The proof used Fefferman’s expansion for the Bergman kernelin a certain Forelli–
Rudin type domain over�.

The Berezin transform is given by

(15) I
�

f (x) D
Z

�

f (y)
jK

�

(x, y)j2

K
�

(x, x)
e��8(y)g(y)C dy,

which has an asymptotic expansion as� !1 (cf. [10]),

(16) I
�

f (x) D
1

X

kD0

Qk f (x)��k.

The Berezin transform was first introduced by Berezin [3] in the context of quantiza-
tion of Kähler manifolds. The existence of the asymptotic expansion (14) on compact
Kähler manifold was proved by Karabegov–Schlichenmaier [26].

The following lemma is the key result we will use, which slightly refines the for-
mulae in [9].

Lemma 3.2. We haveQ0 D id and B0 D 1. For k � 1,

Qk f (x) D
k
X

jD0

k� j
X

iD0

R j (Bi (x, y)Bk� j�i (y, x) f (y))jyDx �

k
X

mD1

Bm(x)Qk�m f (x),(17)

Bk(x) D �
X

iC jDk
i , j�1

Bi (x)B j (x) �
X

lCiC jDk
1�l�k

Rl (Bi (x, y)B j (y, x))jyDx.(18)

Proof. By multiplying K
�

(x, x) to both sides of (15) and using (14) and (16),
we get

(19)

1

X

mD0

Bm(x, y)
1

X

iD0

Qi f (x)�n�m�i

D

1

�

n

Z

�

f (y)e��(8(x)C8(y)�8(x,y)�8(y,x))

�

jg(x, y)j2(1�C)

g(x)1�C
g(y)C

1

X

i ,mD0

Bi (x, y)Bm(y, x)�2n�m�i dy.
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By applying Theorem 3.1 to the right-hand side of the above equation and equating
the coefficients of�n�k, we get (17).

Since Q0 D id and Qk( f ) D 0 when k � 1 and f is either holomorphic or anti-
holomorphic, by substitutingf D 1 in (17), we get (18).

Before proceeding we need to introduce parallel notions forgraphs and pointed
graphs representing Weyl invariant polynomials in jets of metrics and functions.

A digraph or simply a graphG D (V, E) is defined to be a finite directed multi-
graph which may have multi-edges and loops. A vertexv of a digraphG is called
stable if deg�(v) � 2, degC(v) � 2, i.e. both the inward and outward degrees ofv are
no less than 2. A vertexv is calledsemistableif we have

deg�(v) � 1, degC(v) � 1, deg�(v)C degC(v) � 3.

The weight of a digraphG is defined to be the integerw(G) D jEj � jV j. A digraph
G is stable (semistable) if each vertex ofG is stable (semistable). The set of semi-
stable and stable graphs of weightk will be denoted byGss(k) and G(k) respectively.
A directed edgeuv of a semistable digraph is calledcontractible if u ¤ v and at least
one of the following two conditions holds:
(i) degC(u) D 1;
(ii) deg�(v) D 1.
A semistable graphG is called stabilizable if after contractions of a finite number of
contractible edges ofG, the resulting graph becomes stable, which is called thestabil-
ization graphof G and denoted byGs.

A pointed graph0 D (V [ {�}, E) is defined to be a digraph with a distinguished
vertex labeled byf . G or 0 is calledsemistable(stable) if each ordinary vertexv 2 V
is semistable (stable). The weight of a pointed graph0 D (V [ {�}, E) is defined to
be w(0) D jEj � jV j. By abuse of notation, we denoteV(0) D V [ {�}. The set of
semistable and stable pointed graphs of weightk will be denoted byGss

1 (k) and G1(k)
respectively. Denote by Aut(0) the set of all automorphisms of the pointed graph0
fixing the distinguished vertex. A directed edgeuv of a semistable pointed graph is
called contractible if u ¤ v and at least one of the following two conditions holds:
(i) u 2 V and degC(u) D 1;
(ii) v 2 V and deg�(v) D 1.
A semistable pointed graph0 is calledstabilizableif after contractions of a finite num-
ber of contractible edges of0, the resulting graph becomes stable, which is called the
stabilization graphof 0 and denoted by0s.

We can canonically associate a polynomial in the variables{gi Nj�}j�j�1 or { f
�

}
j�j�0

to a semistable graph or pointed semistable graph, such thateach ordinary vertex rep-
resents a partial derivative ofgi Nj , the distinguished vertex represents a partial derivative
of f and each edge represents the contraction of a pair of indices. Abusing notation,
we will denote this polynomial associated to a graph0 also by0.
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A linear digraph is a digraph in which degC(v) D deg�(v) D 1 for each vertexv.
We denote byL (G) the set of linear subgraphs ofG. Note that we assume the empty
graph; 2 L (G).

A digraph G is calledstrongly connectedor strong if there is a directed path from
each vertex inG to every other vertex. We call a graphquasi-strongif all of its con-
nected components are strong. A strongly connected component of a digraphG is
called asource(sink) if it has only outward (inward) edges inG. A connected graph
is strong if and only it has no proper source or sink.

A Weyl invariant polynomialis a polynomial of{gi Nj�}j�j�1 or { f
�

}
j�j�0 invariant

under the transformation of coordinates. Recall the following criterion for Weyl in-
variant polynomials.

Theorem 3.3 ([39]). Given two functions as summations over stabilizable semi-
stable (pointed) graphs,

(20) P1 D

stabilizable
X

G2Gss(k)

(�1)jV (G)jc(G)

jAut(G)j
G and P2 D

stabilizable
X

02Gss
1 (k)

(�1)jV (0)jc(0)

jAut(0)j
0,

then P1 (or P2) is a Weyl invariant polynomial if and only if c(G1) D c(G2) whenever
G1, G2 have the same stabilization graph.

DEFINITION 3.4. For convenience, a functionc(G) defined on the set of stabiliz-
able semistable graphs is called aWeyl functionif it satisfiesc(G1) D c(G2) whenever
G1, G2 have the same stabilization graph.

The following lemma gives nontrivial examples of Weyl functions.

Lemma 3.5 ([39]). For any constant C,

(21) �1(G) D
X

H2L (G)

Cn(H ) and �2(0) D
X

H2L (0
�

)

Cn(H )

are Weyl functions. Here n(H ) is the number of connected components of H and0

�

is the subgraph of0 obtained by removing the distinguished vertex� and its adjacent
edges from0. Note that when n(H ) D 0, we adopt the convention0n(H )

D 1.

Following [9], we may show thatBk, Rk, Qk all are Weyl invariant polynomials.
We now prove closed formulas for the coefficients in the expansions

(22) Bk D

stabilizable
X

G2Gss(k)

BGG, Rk f D
stabilizable
X

02Gss
1 (k)

R
0

0, Qk f D
stabilizable
X

02Gss
1 (k)

Q
0

0.
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We only need to deal with stable (pointed) graphs and use Theorem 3.3 to recover the
coefficients of stabilizable semistable (pointed) graphs.

We use the notationsG D
S

k�1 G(k) andG1 D
S

k�1 G1(k).

Lemma 3.6. Let 0 D (V [ {�}, E) 2 G1 be a stable pointed graph. Then

(23) R
0

D

(�1)jV (0)jC1

jAut(0)j

X

H2L (0
�

)

(�C)n(H ).

Proof. As noticed in [9, p. 34], in a normal coordinate systemaroundx, the op-
eratorsR j in (13) simplify to

(24) R j f (x) D
2 j
X

kD j

1

k! (k � j )!
Lk( f (y)g(y)C Sk� j )jyDx.

To connect it to the graph-theoretic picture, we regardLk as k edges,Sk� j as k � j
vertices andk! (k � j )! the symmetry factor.

We define an equivalence relation� on L (0
�

) as follows: H1 � H2 if there is an
automorphismh 2 Aut(0) such thath(H1) D H2.

Given H 2 L , denote by Aut(0)H the isotropy subgroup of Aut(0) at H . Recall
the following equation (cf. [38, Lemma 5.5])

(25)
1

g
�

�1 � � � ��r g D
X

L2L (�1,:::,�r )

(�1)n(L)CjV (L)j
� L,

where L (�1, : : : , �r ) is the set of all decorated linear digraphs with external legs
�1, : : : ,�r (i.e. attaching indices�1, : : : ,�r to vertices of linear digraphs) such that each
vertex is semistable. Two decorated linear digraphs are considered the same whenever
they differ by a graph isomorphism preserving the labeling of external legs.

We have the natural action of Aut(0) on L (0
�

). Then the orbits are in one-to-one
correspondence with the equivalence classesL (0

�

)=� and the isotropy group atH is
Aut(0)H . See [38, 40] for more detailed discussions. By the graph-theoretic interpret-
ations of (24) and (25), we have

R
0

D

X

H2L (0
�

)=�

(�1)n(H )CjV (0
�

)j

jAut(0)H j
Cn(H ),

D

(�1)jV (0)jC1

jAut(0)j

X

H2L (0
�

)=�

jorbit of H j(�C)n(H ),

which gives (23).
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Corollary 3.7. In any holomorphic coordinates, we have

(26) Rk f D
stabilizable
X

02Gss
1 (k)

(�1)jV (0)jC1

jAut(0)j

X

H2L (0
�

)

(�C)n(H )
0.

Proof. This follows from Theorem 3.3 and Lemma 3.5.

Theorem 3.8. Let G2 G and 0 2 G1. Then

BG D

8

�

<

�

:

(�1)jV (G)jCn(G)

jAut(G)j

X

H2L (G)

(�C)n(H ) if G is quasi-strong,

0 otherwise,

(27)

Q
0

D

8

�

<

�

:

(�1)jV (0)jC1

jAut(0)j

X

H2L (0
�

)

(�C)n(H ) if 0 is strong,

0 otherwise.

(28)

Proof. First we assume thatG is strong. Let us look at the right-hand side of
(18). The first term contributes disconnected graphs. In thesecond term, the two fac-
tors Bi (x, y) andB j (y, x) are sink and source respectively. SinceG is strong, we must
have i D j D 0. So it is not difficult to see from (18) and (23) that

(29) BG D �RG
`

{�} D
(�1)jV (G)jC1

jAut(G)j

X

H2L (G)

(�C)n(H ),

where G
`

{�} is the disjoint union ofG and the distinguished vertex�.
If G is quasi-strong, we can prove (27) by induction on the weightof the graph

and using [38, Lemma 3.9]. See [40, Theorem 3.6] for details.
If some connected componentGi of G D G1

`

� � �

`

Gn is not strongly con-
nected, thenGi has a proper sinkS. In order to proveBG D 0, we note that in
Rl (Bi (x, y)B j (y, x))jyDx, the sink S may either belong toBi (x, y) or Rl , actually the
contributions of these two cases toG exactly cancel out. We also need to note the fact
that if � (G) D

P

H2L (G) Cn(H ) and G has strongly connected componentsH1, : : : , Hk,

then � (G) D
Qk

iD1 � (Hi ). The detailed argument is similar to the proof of [38, Prop-
osition 3.3]. We omit the details. So we conclude the proof ofthe formula (27).

The formula forQ
0

follows from (17), (23) and (27) by using the same argument
as [38, Theorem 3.4].
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Corollary 3.9. In any holomorphic coordinates, we have

Bk D

quasi-strong
X

G2Gss(k)

(�1)jV (G)jCn(G)

jAut(G)j

X

H2L (G)

(�C)n(H )G,(30)

Qk f D
strong
X

02Gss
1 (k)

(�1)jV (0)jC1

jAut(0)j

X

H2L (0
�

)

(�C)n(H )
0.(31)

Proof. In [39, Lemma 3.4 and Lemma 4.5], it was proved that thestabilization
graph of a semistable (pointed) graphG is strong if and only ifG is strong. So the
corollary follows from Theorem 3.3 and Lemma 3.5.

REMARK 3.10. Explicit computations of the first terms ofBk when C D 0 or 1
have been carried out in [9, 40] and [9, 32, 33, 37] respectively. In the next section,
we will see that the Szegö kernel corresponds toC D 1=(nC1). There has been much
interest in the asymptotic expansion of the Szegö kernel (see e.g. [2, 19, 28, 30, 35]).

4. Forelli–Rudin construction

Let � be a domain inCn�1 and w a positive continuous weight function on�.
Consider the domain

(32) Q

� WD {(x, t) 2 � � Cm
W jt j2 < w(x)}.

Similar construction was first used by Forelli and Rudin [17]. See also [10, 31]. For
simplicity we takemD 1. Then Q� is a Hartogs domain inCn. If d� is the measure
on � Q� defined by

(33)
Z

�

Q

�

f d� WD
Z

�

Z 2�

0
f (x, ei �

p

w(x))
d�

2�
�(x) dx

for some weight function� on �, then the Szegö kernel of the Hardy subspace in
L2(� Q�, d� ) is given by (cf. [31, 11])

(34) K S((x, t), (y, s)) D
1

X

kD0

ht, sikK
�,2�wk

�

(x, y),

whereK
�,wk

�

(x,y) is the weighted Bergman kernel on� with respect to the weightwk
�,

i.e. the reproducing kernel of the subspace of holomorphic functions inL2(�,wk
�). The

formula (34) was generalized by Engliš and Zhang [11] to the situation when the fiber
of the Hartogs domain is, instead of a ball, an arbitrary irreducible bounded symmetric
domain.
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Lemma 4.1. The surface measure� in (3) corresponds to the choice� D
(1=2)J[w]1=(nC1).

Proof. As shown in (3), in order for the Szegö kernel to be invariant under bi-
holomorphic change of coordinates,� should be equal to

(35) � D J[r ]1=(nC1)
=krr k dS,

wheredS is the ordinary surface measure on the boundary (i.e. the (2n�1)-dimensional
Hausdorff measure) corresponding to the choice� D

p

w C k�wk

2. For the defining

function of Q� one can taker (x, t)D w(x)�jt j2, leading tokrr k D 2
p

w C k�wk

2 and

J[r ] D J[w] D (�1)n�1 det

�

r �r =� Nx j

�r =�xi �

2r =�xi � Nx j

�

1�i , j�n�1

on the boundary. Thus� in (35) corresponds to the choice� D (1=2)J[w]1=(nC1).

The following theorem is an analogue of [9, Theorem 10].

Theorem 4.2. Let � be a strongly pseudoconvex domain inCn�1 with real-
analytic boundary, 8 a strictly plurisubharmonic real-analytic defining function for
�, gi Nj the Kähler metric defined by the potential8, and KS(x, t) the on-diagonal
Szegö kernel of the Hartogs domain

(36) Q

� D {(x, t) 2 � � C W jt j2 < e�8(x)} � Cn.

Then
(i) as (x,t) approaches a point of� Q�n{t D 0}, the reproducing kernel KS(x,t) admits
an asymptotic expansion

(37) K S(x, t) D
1

X

lD0

cl (x) � un�1�l (jt j
2e8(x)),

in the sense that the partial sum of the first l terms of the right-hand side differs
from the left-hand side by a function which is O(un�1�l (jt j2e8(x))) if l 5 n, and is in
Cl�n�1( Q� n {t D 0}) if l � qnC 1. Here the function ul (w) is given by

ul (w) D
1

X

kDmax(0,�l )

(kC l )!

k!
w

k(38)

D

8

�

�

<

�

�

:

l !

(1� w)lC1
, l � 0,

(�w)�l
C w(1� w)�l�1

� (w � 1)�l�1 log(1� w)

(�l � 1)!
, l < 0.
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(ii) The coefficients cl (x) in (37) are given by the formula

(39) cl (x) D
1

�

n
g(x)n=(nC1)e(n=(nC1))8(x)

l
X

jD0

an�1� j ,l� jB j (x),

where am,l (m 2 Z, l � 0) are functions of n with am0 D 1, given below

�

kC
n

nC 1

�m

D

m
X

lD0

(kCm� l )!

k!
am,l

and B j (x) are the scalar invariants of gi Nj from (14) with C D 1=(nC 1).

Proof. First note that

J[e�8(x)]

D (�1)n�1e�n8(x)

� det

0

B

B

B

�

1 �

N

�18 � � � �

N

�n�18

��18 ��18 N�18 � �1 N�18 � � � ��18 N�n�18 � �1 N�n�18

...
...

.. .
...

��n�18 ��n�18 N�18 � �n�1 N�18 � � � ��n�18 N�n�18 � �n�1 N�n�18

1

C

C

C

A

D e�n8(x)g(x).

The determinant of the matrix can be computed by addingN� j8 times the first column
to the (j C 1)-th column for each 1� j � n� 1.

By (34) and Lemma 4.1, we have

(40) K S(x, t) D
1

X

kD0

Kk(x)jt j2k
D

1

X

kD0

e�k8(x)Kk(x)(jt j2e8(x))k,

where Kk(x) is the on-diagonal weighted Bergman kernel on� with respect to the
weight �e�(kCn=(nC1))8(x)g(x)1=(nC1). The convergence is uniform on compact subsets
of � (cf. [10]).

On the other hand, by (14), ask!1,

(41) Kk(x) D
(n� 1)!

�

n
e(kCn=(nC1))8(x)g(x)n=(nC1)

1

X

jD0

B j (x)

�

kC
n

nC 1

�n�1� j

,

whereB j (x) are the scalar invariants ofgi Nj from the last section withC D 1=(nC 1).
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As noted in [9, p. 36],ul is unbounded on the unit diskD for l � �1, and be-
longs to C�l�2( ND) for l � �2. Let f (w) D

P

1

0 fkw
k be a holomorphic function on

D for which

fk D AM
(kC M)!

k!
C AM�1

(kC M � 1)!

k!
C � � � C AmC1

(kCmC 1)!

k!
C O(km)

as k!1, where M, m 2 Z, m< M. Then we have

(42) f (w) D
M
X

lDmC1

Al ul (w)C h(w),

whereh(w) D O(um(w)) if m� �1, andh(w) 2 C�m�2( ND) if m � �2.
Obviously am0 D 0. Then the theorem follows from (40), (41) and (42).

Let nD 2 and Q�D {(z1,z2) 2 ��CW jz2j
2
< e�8(z1)} with 8(z1) depending only on

jz1j. By applying Theorem 4.2 to the complete Reinhardt domainQ� � C2, we get (9)
in Theorem 2.5,

(43) K S
D

1

4�2

�

p

2jz1z2j
2

�2=3
 

L0

�

2
C

L1

�

C

1

X

kD2

Lk�
k�2 log �

!

.

The following lemma is an analogue of [34, Proposition 0]. Itfollows from the
integral representation ofLk proved in [24, Proposition 3].

Lemma 4.3. Each coefficient Lk is a linear combination of

p(�1)
� � � p(�2k)

=pk with �1C � � � C �2k D 2k.

Namely Lk is homogeneous of degree k and order2k.

Let k � 0 andC be any constant. Define the functionWC,k(p) by

(44) WC,k(p) D
1

pk

quasi-strong
X

G2Gss(k)

(�1)jV (G)jCn(G)

jAut(G)j

X

H2L (G)

(�C)n(H )
Y

v2V(G)

h(deg(v) � 2),

where G runs over all quasi-strong (i.e. all connected components are strongly con-
nected) semistable graphs of weightk and n(G) is the number of components ofG;
the functionh is defined recursively by

h(1)D p0, h(k) D [ p � h(k � 1)]0, k � 2.

We can now prove a closed formula forLk by using (30).
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Theorem 4.4. The coefficients of(43) are given by

(45) Lk D

8

�

<

�

:

(1� k)! W1=3,k(p), 0� k � 1,

(�1)kC1

(k � 2)!
W1=3,k(p), k � 2.

Proof. In the notations of Theorem 2.5, for (z1, z2) 2 C2, we have

x D � logjz1j D �
1

2
(log z1C log Nz1), y D � logjz2j, f (x) D

1

2
8,

e�2�
D jz2j

2e8(z1),
�

2
8

�z1 N�z1
D

1

2jz1j
2

�

2 f

�x2
D

p

2jz1j
2
.

By using these equations, (37) becomes

(46) K S
D

1

�

2

�

e�2�p

2jz1z2j
2

�2=3 1

X

kD0

k
X

jD0

a1� j ,k� jB1=3, j (z1)u1�k(e�2�),

whereB1=3, j denotesB j for C D 1=3.
By (38), the singular part ofu1�k(e�2�) is given by

(47) u1�k(e�2�) D

8

�

�

<

�

�

:

(1� k)! C O(�)

22�k
�

2�k
, 0� k � 1,

[(�1)kC12k�2
�

k�2
C O(�k�1)] log(�)

(k � 2)!
, k � 2.

Note that the derivatives ofp satisfy

(48)
� p

�z1
D �

pp0

2z1
,

� p

� Nz1
D �

pp0

2Nz1
.

By (30), we expressB j (z1) as a summation of rational differential functions ofp,

B1=3, j (z1) D
quasi-strong
X

G2Gss( j )

(�1)jV (G)jCn(G)

jAut(G)j

X

H2L (G)

�

�

1

3

�n(H )

�

Y

v2V(G)

�

deg(v)�2

�zdegC(v)�1
1 � Nzdeg�(v)�1

1

�

p

2jz1j
2

�

�

�

�

�

jz1j
2
Dp=2

.

(49)

Note thatB1=3, j is of degree no more thanj . The top degree is achieved only when
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all derivatives are taken on the numeratorp. It is not difficult to see from (49) that

B1=3, j (z1) D
quasi-strong
X

G2Gss( j )

(�1)jV (G)jCn(G)

jAut(G)j

X

H2L (G)

�

�

1

3

�n(H )

�

1

2 j p j

Y

v2V(G)

1

p
�

�

deg(v)�2 p

�zdegC(v)�1
1 � Nzdeg�(v)�1

1

C Low

D

quasi-strong
X

G2Gss( j )

(�1)jV (G)jCn(G)

jAut(G)j

X

H2L (G)

�

�

1

3

�n(H )

�

1

2 j p j

Y

v2V(G)

h(deg(v) � 2)C Low

D

W1=3, j (p)

2 j
C Low,

whereLow denotes the terms of rational differential functions ofp with degree strictly
less than j , which may be discarded according to Lemma 4.3. It also implies that
in the summation (46), we can discard all terms except whenj D k, i.e. the term
a1�k,0B1=3,k(z1) D B1=3,k(z1). In view of (47), Equation (45) follows immediately.

EXAMPLE 4.5. From

h(1)D p0, h(2)D (p0)2
C pp00, h(3)D (p0)3

C 4pp0 p00 C p2 p(3),

h(4)D (p0)4
C 11p(p0)2 p00 C 7p2 p0p(3)

C 4p2(p00)2
C p3 p(4),

h(5)D (p0)5
C 26p(p0)3 p00 C 32p2(p0)2 p000 C 34p2 p0(p00)2

C 11p3 p0p(4)

C 15p3 p00p000 C p4 p(5),

h(6)D (p0)6
C 57p(p0)4 p00 C 122p2(p0)3 p000 C 180p2(p0)2(p00)2

C 76p3(p0)2 p(4)

C 192p3 p0p00p000 C 16p4 p0p(5)
C 34p3(p00)3

C 26p4 p00p(4)

C 15p4(p000)2
C p5 p(6).

We get the following formulas forWC,k, 0� k � 3,

WC,0(p) D 1, WC,1(p) D

�

1

2
� C

�

p00, WC,2(p) D

�

1

6
�

1

2
C

�

(pp(3))0,

WC,3(p) D

�

1

24
�

1

6
C

�

(p2 p(4))00 C

�

1

6
C �

1

2
C2

�

(pp00p(3))0,
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WC,4(p) D

�

�

1

24
C C

1

120

�

(p(p2 p(4))000)0 C

�

�

2

3
C2
C

5

24
C C

1

240

�

(pp(4))2

C

�

�

1

3
C2
C

1

8
C �

1

240

�

p00(p2 p(4))00

C

�

�

1

2
C3
�

1

12
C2
C

1

12
C

�

(p0(p00)2 p000 C p(p00)2 p(4)
C 2pp00(p000)2)

C

�

�

1

4
C2
C

1

12
C

�

(2(p0)2(p000)2
� p0(p00)2 p000 � p(p00)2 p(4)

C 4p2 p000p(5)
C 12pp0 p000p(4)).

The computation is routine. For example, there are two quasi-strong semistable graphs
of weight 1 inGss(1),

�

2
�

"

Æ Æ

 

!

2

 

!

1

#

So by (44), we haveWC,1(p) D (1=p)[(1=2)(1 � 2C)h(2) � (1=2)(1 � 2C)h(1)2] D
((1=2)� C)p00.

The cardinality ofjGss(k)j increases very rapidly with the growth ofk. There are
19 quasi-strong graphs inGss(2), among which 4 are stable. There are 300 quasi-strong
graphs inGss(3), among which 14 are stable. There are 8696 quasi-strong graphs in
Gss(4), among which 71 are stable.

The 19 quasi-strong graphs inGss(2) are depicted in Table 0. They are grouped
according to their stabilization graphs. Also listed are the values of

(�1)jV (G)jCn(G)

jAut(G)j

X

H2L (G)

(�C)n(H )

for each graphG. Let � (G) D
P

H2L (G)(�C)n(H ). By [39, Lemma 3.8], ifG1 and G2

have the same stabilization graph, then� (G1) D � (G2).
We can now getLk, 0� k � 3 by using Theorem 4.4.

L0 D W1=3,0(p) D 1, L1 D W1=3,1(p) D
1

6
p00,

L2 D �W1=3,2(p) D 0, L3 D W1=3,3(p) D �
1

72
(p2 p(4))00,

L4 D �
1

2
W1=3,4D

1

360
(p(p2 p(4))000)0 C

1

4320
((pp(4))2

� p00(p2 p(4))00).
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Table 0. The 19 quasi-strong semistable graphs of weight 2.

3 1 Æ

 

!

2

 

!

1

Æ Æ

 

!

3

 

!

1
1 Æ

 

!

1

 

!

2

Æ

Æ Æ

 

! 1
 

!1

 

!

2

 

!1

�

1

2
cC

1

6

3

2
c�

1

2

1

2
c�

1

6

3

2
c�

1

2
�

3

2
cC

1

2

Æ

Æ Æ

 

! 1
 

!1

 

!

1
 

!

1

 

!1

Æ

1 Æ

 

!

1

 

!

1

 

!2

Æ

Æ Æ

 

! 1
 

!1

 

!

1

 

!2

Æ Æ

Æ Æ

 

!

1

 

!1
 

!

2

 

!1

 

!

1

Æ Æ

Æ Æ

 

!

1

 

!

1

 

!1

 

!

1

 

!

1
 

!

1

�3c� 1 �

3

2
cC

1

2
�

3

2
cC

1

2

3

2
c�

1

2
3c� 1

1 1
 

!

1

 

!

1

Æ

Æ 1

 

! 1
 

!1

 

!

1

 

!1

Æ Æ

Æ Æ

 

!1

 

!1

 

!1

 

!

1

 

!

1
 

!

1

�

1

2
c2
C

3

2
c�

1

2
c2
� 3cC 1 �

1

2
c2
C

3

2
c�

1

2

Æ Æ

 

!

2

 

!

2

Æ

Æ Æ

 

!

1

 

!

2

 

!2

Æ Æ

Æ Æ

 

!

1

 

! 2 

!2

 

!1

1

2
c�

1

8
�cC

1

4

1

2
c�

1

8

2 j 2 Æ Æ

 

!

2

 

!

1
j 2 Æ Æ

 

!

2

 

!

1
j Æ Æ

 

!

2

 

!

1

1

2
c2
�

1

2
cC

1

8
�c2
C c�

1

4

1

2
c2
�

1

2
cC

1

8
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Now we consider the higher dimensional Reinhardt domains. Let n � 2. Under
the notations of Theorem 2.7, denote

(50) K S
D

(n� 1)!

�

n

�

p1 � � � pn�1

4n
jz1 � � � znj

2

�n=nC1
 

n�1
X

kD0

Lk

�

n�k
C

1

X

kDn

Lk�
k�n log �

!

.

Theorem 4.6. Let k� 0. Then the coefficients of(50) are given by

(51) Lk D

8

�

�

�

�

�

�

<

�

�

�

�

�

�

:

(n� k � 1)!

(n� 1)!

X

kDm1C���Cmn�1
mi �0

n�1
Y

iD1

W1=(nC1),mi (pi ), 0� k � n� 1,

(�1)n�k�1

(n� 1)! (k � n)!

X

kDm1C���Cmn�1
mi �0

n�1
Y

iD1

W1=(nC1),mi (pi ), k � n,

where W1=(nC1),mi (pi ) is the function defined in(44) with pD pi and CD 1=(nC 1).

Proof. Under the notations of Theorem 2.7, (37) becomes

K S
D

1

�

n

�

e�2�p1 � � � pn�1

2n�1
jz1 � � � znj

2

�n=(nC1)

�

1

X

kD0

k
X

jD0

an�1� j ,k� jB1=(nC1), j (z1, : : : , zn�1)un�k�1(e�2�).

Note that we have the analogue of Lemma 4.3 for anyn � 2. So we can use the same
argument as Theorem 4.4. The singular part ofun�k�1(e�2�) is given by

un�k�1(e�2�) D

8

�

�

<

�

�

:

(n� k � 1)!C O(�)

2n�k
�

n�k
, 0� k � n� 1,

[(�1)n�k�12k�n
�

k�n
C O(�k�nC1)] log(�)

(k � n)!
, k � n.

Finally, (51) is clear since the Bergman kernel of a product domain D1 � D2 is the
product of the Bergman kernels ofD1 and D2.

EXAMPLE 4.7. Assumen � 3, we can easily computeL1, L2 by using (51) and
Example 4.5.

L1 D
1

n� 1

n�1
X

iD1

W1=(nC1),1(pi ) D
1

2(nC 1)

n�1
X

iD1

p00i
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and

L2 D
1

(n� 1)(n� 2)

0

�

n�1
X

iD1

W1=(nC1),2(pi )C
1

2

X

i¤ j

W1=(nC1),1(pi )W1=(nC1),1(p j )

1

A

D

1

(n� 1)(n� 2)

0

�

n� 2

6(nC 1)

n�1
X

iD1

(pi p(3)
i )0 C

1

2
�

(n� 1)2

4(nC 1)2
X

i¤ j

p00i p00j

1

A

D

1

6(n2
� 1)

n�1
X

iD1

(pi p(3)
i )0 C

n� 1

8(nC 1)2(n� 2)

X

i¤ j

p00i p00j ,

which agrees with (12).
Assumen � 4, we can computeL3 by using (51) and Example 4.5.

L3 D
1

(n� 1)(n� 2)(n� 3)

X

m1Cm2Cm3D3
mi�0

n�1
Y

iD1

W1=(nC1),mi (pi )

D

1

24(nC 1)(n� 1)(n� 2)

n�1
X

iD1

(p2
i p(4)

i )00 C
1

6(nC 1)2(n� 1)(n� 3)

n�1
X

iD1

(pi p00i p(3)
i )0

D

1

12(nC 1)2(n� 3)

X

i¤ j

(pi p(3)
i )0p00j C

(n� 1)2

48(nC 1)3(n� 2)(n� 3)

X

i¤ j¤k

p00i p00j p00k .
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