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Abstract

We give a formula on the rotation number of a sequence of pvienivectors,
which is a generalization of the formula on the rotation nembf a unimodular
sequence in [2].

1. Introduction

Let vy,...,v4 € Z% be a sequence of primitive vectors such that det(;, vi;1) #

Oforalli=1,...,d, and leta; = ¢ 15 ldet@i;1,vi—1), wherevy = vq andvg,1 = vs.
The rotation numberRot(vl, ..., vq) of the sequencenq, ..., vg around the origin is
defined by

—ydx+xdy
2712/ Cox24y2

where L; is the line segment fromy; to vi,;. The sequence is callegnimodular if

leil = 1 for alli = 1,...,d. Recently A. Higashitani and M. Masuda [2] proved
the following:
Theorem A ([2]). If vy, ..., vq iS @ unimodular sequencéhen

d
1
Rot(vy, ..., vg) = o § (e + &).
i=1

Wheneg; = 1 for all i and the rotation number is one, Theorem A is well known
and formulated as®B+ Zidzla,- =12. It can be proved in an elementary way, but in-
terestingly it can also be proved using toric geometry, tartmee precise, by applying
No6ther's formula to complete non-singular toric varietiglscomplex dimension two,
see [1]. Wheng; = 1 for all i but the rotation number is not necessarily one, The-
orem A was proved in [4] using toric topology. The proof is angelization of the
proof above using toric geometry. The original proof of Tieen A by Higashitani and
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Masuda was a slight modification of the proof in [4] but thenytfieund an elementary
proof. Another elementary proof of Theorem A is given by RZialjevi¢ [3].

Theorem A does not hold when the unimodularity condition igpged. In this
paper, we give a formula on the rotation number of a (not reagédg unimodular) se-
guence of primitive vectorsy,...,vq With g # 0 for all i, see Theorem 6. In this case,
a’s are rational numbers but are not always integers. Thefpmaone by adding
primitive vectors in an appropriate way to the given seqeese that the enlarged se-
quence is unimodular and then by applying Theorem A to thargatl unimodular
sequence. This combinatorial process, that is, making itren gequence to a unimod-
ular sequence by adding primitive vectors corresponds solugon of singularity by
blow-up in geometry, see [1].

The structure of the paper is as follows: In Section 2, wewdisdHirzebruch—Jung
continued fractions used in our proof of the main theoremSéttion 3, we state the
main theorem and give an example. In Section 4, we give a wbtfe main theorem.

2. Continued fractions

Let m> 2 andx (< m) be a positive integer prime tm, and let
m 1
— =Nq —
X ! 1

n —
2 1

nL(m,x)

be the continued fraction expansion. This continued foactxpansion is unique, and
is called aHirzebruch—Jung continued fractiotWe defineL (1, 0) = 0.

Lemma 1. Let m> 2 and x (< m) be a positive integer prime to nand let

m 1
- =M— , Njp=2
X

n —
2 1

nL(m,x)

be the continued fraction expansion. Let(y m) be a unique positive integer such
that xy=1 (modm). Then the following identity holds

1-—xy
(o —1)(0 —1)_”(0 -1 )_ = X
1 m 1 np 1 NL(m,x) y m

Proof. We prove this by induction oh(m, x).




ROTATION NUMBER OF PRIMITIVE VECTOR SEQUENCES 851

If L(m,x) =1, then we must havg =1, n; = m andy = 1. So the lemma holds
when L(m, x) = 1.
Suppose that (m, x) > 2 and the lemma holds fdc(m, x) — 1. We have

X 1

‘ nL(m,x)

SinceL(m, x) > 2, we havex > 2. Since the right hand side in the identity above is
greater than 1, we have © n;x —m < x. Sincem and x are relatively primex and
nix —m are relatively prime. Moreovewxf/—1)/m is a positive integer less thanand
(nix —m)(xy —1)/m = 1 (mod x). Hence by the hypothesis of induction, we obtain

1—(nix —m)(xy—1)/m

0 -1 0 -1 - —(nx —m)
(1 nZ)”‘(l nL(m,x))_ Xy_l X
m
xy—1
- y—ng ym —(n1x —m)
xy—1 «
m

Therefore we have

(0 —1)”‘(0 -1 )
1 nl 1 nL(m’x)

xy—1

_(O _1) y—m - —(n1x —m) ~ 1—xy Ly
1 m xy—1 r;r; m |

m

proving the lemma forL(m, x). ]
Proposition 2. The following identity holds

1

m n
— =N myx) —
y X

nL(m,x)—l - 1

Ny

Proof. Let f: M(Z) — My(Z) be the antihomomorphism defined by

((2a)=(579)
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By Lemma 1, we have
(3 ) (2 0= (2 05 i)
1 NLm,x) 1 m 1 m 1 NL(m,x)

1—xy 1-—xy
= m ,
X

= f m =
y m m
proving the proposition.

REMARK 3. A similar assertion holds for regular continued fracsiohet

m 1
_:n1+—|
X

nz +

be a continued fraction expansion, and ye{< m) be a unique positive integer such
that xy = (—=1)'*! (mod m). Then the following identity holds:

_
(o 1)(0 1) (o 1)_ xy+ED

1 n 1 np 1 n r)r/w m '
The proof is similar to Lemma 1. The following identity can deduced by taking

transpose at the identity above:

m 1
y N 1
n_
1-1 . 1
n

3. The main theorem

Let vy, ..., vg € Z? be a sequence of vectors such that= det(;, vi;1) # 0 for
ali =1,...,d. We definevg = vg and vg+1 = v;. We assume that each vector is

primitive, i.e. its components are relatively prime.

Lemma 4. For each i=1,...,d, there exists a unique non-negative integerx
lei| such that x and |g;| are relatively prime and

-1
P = (v, Ui+l)(é |_:i )
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is a unimodular matrix.

Proof. Letuy = (g) and vj,, = (8) We assume that; > 0. Sincev; is
primitive, there existp, q € Z such thatap + bg = 1. Then we have

p g (1 cp+dq
(5 en= (s “0)

There exists a uniqua € Z satisfying—|¢j| < cp+ dg + n|sj| < 0. So we putx, =
—(cp+ dg + nlegi|). Then we have

(5 (5 Donw=(5 )
(3 96 7)

is a unimodular matrix. Wheg; < 0, we can show that the assertion holds by a similar

Hence

argument. Since( m ) = P~1vj,1 is primitive, x; and |&;| are relatively prime. [

Note that detP) = i /|ei|. Similarly, there exists a unique non-negative integer

Yi < |&i] such that

1 —y\ !
(3.1) Qi = (viy1, vi)(o Y )

|&i

iS a unimodular matrix.

Lemma 5. Let a = &~} det@i 41, vi—1). Then a satisfies
(3.2) & 4vic1 + & iy +av =0,

Proof. It is easy to check that

det@i, vi+1)vi—1 + det@i_1, vi)vi41 + det@; 1, vi—1)v = 0.

Dividing both sides by _1¢5; = det(j_1, vi) det(;, vi+1), we obtain (3.2). O

Let m> 2 andx (< m) be a positive integer prime tm, and let

m 1
— =N1— , Np=2
X

Ny —
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be the Hirzebruch—Jung continued fraction expansion. WeNgen, X) = nj + --- +
NLmx and N(1, 0)= 0. The following is our main theorem:

Theorem 6. Letuvs,...,vq be a sequence of primitive vectors and= det(;,vi1),
a = e Y& detit, vi—1). Let % and y be the integers defined i,emma 4and (3.1).
ThenRot(vy, ..., vq) is given by

d

1 e X + Vi
(3.3) = 3(GE el x) + 1) - NQeil x) o+ — 2 ),
12 —~ lei | &
In particular, the value of(3.3) is an integer.
Fori such that|ei| > 2, let
Xi ) 1
ny’ —
. 1
a0
ML)

be the Hirzebruch—Jung continued fraction expansion.

EXAMPLE 7. Letd =5 and

() () o3 we(2) ()

Then we have the following:

il a | a | x|yv|L@alhx) | n® [ nd [ NQal %)
1 3 -2 2| 2 2 2 2 4
2| 5 |1/15| 2| 3 2 2 | 3 5
3|-4|7/20| 1 1 1 4 4
4| 1 |1174({0]| 0 0 0
5/ 3|13 |11 1 3 3
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Fig. 1. A sequence of primitive vectors.

So we have

d _
>l %) + 1)~ Nl X)),
i=1 |
=B2+1D-49+B2+1D-5-CB(1+1)-49+3+@B(1+1)-3) =13,

Saz-2r i liti18
— 15 20 4 3 2
d

X +y 2+2 243 141 0+0 1+1
e 3 5 Tz tT1 T3~

5
. 2
i=1

Therefore the value (3.3) is (12)(13+ 3/2—5/2) = 1, while the rotation number of
the sequence;, ..., vs in Fig. 1 is clearly one.

4. Proof of Theorem 6

In this section, we give a proof of Theorem 6. We will use théation in Section 3

freely. We need the following lemma.
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Lemma 8. For each i=1,...,d, the following identity holds

1—X%V
(0 _1)(0 _1) (0 -1 ) |8X||y| —X
0 0 e (i) = i .
1 nl 1 nd 1 0e1x) yi lei|

Proof. If |gj| = 1, thenx; = yi = L(J&|, %) = 0 and the left hand side above is
understood to be the identity matrix. Assurag| > 2. By Lemma 4,x; and || are

relatively prime. Since
1 —y 1 %)\ "
“1p _ —Vi , N1 —Xi
Qi P = (0 |€i )(UH—L vl) (Uln U|+1)(0 |8i| )

D D-( e

is a unimodular matrixx;y; is congruent to 1 modulde;i|. Therefore the lemma fol-
lows from Lemma 1. O

Proof of Theorem 6. Foij =0,..., L(|&], %) + 1, we define

. p((l) ;(11))(‘1) ;51,)(3) (0= =< L(al x).

0 -1 0 -1 0 .
H(l ng>)"'(1 n&)(l) (1= = L(eil, %) +1).

Note that both expressions at the right hand side of (4.1pqual if 1< j < L(|&i[,X).
By the definition ofwﬁ'), it follows that

(4.2) detw, wl,) = det() det(( é) ((1))) - ﬁ € (+1)

forany j =0,..., L(ls], X)- So the sequence
(4.3) o,y = wg), wg), R wl(_iZISil,xi)H = Vit1,---

is unimodular.
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2
Vg = w((; )

Fig. 2. Adding w?) to the given vector sequence.

Hence by Theorem A, the rotation numberaf . . ., vq is given by
L(leil,xi) d -1)
1 1 de‘(wl ’wL(|s )
22 2 detwlwly)+ 550 Srs—(
J+1
41z i=0 12 i=1 det(wL(\s. 1%-1)? vi) det(v;, g))

(4.4) Lol

d

1

1 ) det(w(') EI) 1)
1

(
j+10
TP

il,
Xi
= o detwl), w") detw!, wl)))

As for the first summand in (4.4), it follows from (4.2) that

L(l&il,xi)

Z det(w J+1) = (L(|&l, %) + :I_)m

As for the second summand in (4.4), we first observe that itoia from
Lemma 5 that

-1
1 —Xx_ _ 1 —x%
IR = (o |s)i(_1|1 )(“il, vi) v, vi+1)( 0 |8?(| )

(o et o+ an( g )

|&i—1]

_i(l —xi_l)(o _5i8i__11)(|5i| Xi)
leil\ 0 leical J\ 1  —a&e 0 1

i(—|8||xu -1 —8i8f_11—Xi—1Xi +818iXi—1)
lei| \ leia| l&il lei—1|(X — &&i) '
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So it follows from (4.3), (4.1), (4.2), and Lemma 8 that

det(wl ’ wl—(\;)ll y 1)) |
det(wl ) |, o vi) detlvi, w)
det(wl (=D )

“’L(\e. 11X 1)
(-1 WD O .0
de'(wL(\s. 1%i-1)? L(|s.71|,x.71)+1) det{wg’, wi’)

lei 1l lei | 0 0 -1 o - 1
= — d t P ) P, i—
aae o) n{ Y 1 ”(L'ual.)ﬂ x J\0
. . 1—X_1Yi-1
= lei-al leil det(P_y) det|{ P3P ( O), |&i—1]
Ei_16i 1 Vi1

i 1—X_1yi-
S_I_Xiflxi fasX — Lt
= —det g1 lei—al

lei—1|(% — &j&) Yi-1

As for the last summand in (4.4), it follows from (4.1) and24that

det(wg')ﬂ, El)l)

deuT, wf’) deo]? u{T)

(3 ) () )-(0 1))
=det(ﬂ)det(<2 ;51))((1’)(3))
Z%det<;(ji1) é)z (,"|2|

Therefore (4.4) reduces to

_Z(L(|s|x)+1) 1i(ai_ﬁ_b)+iiuim( (|)8|)
TRy o ea) 24 4 TN ]
d . A
112 ((3(L(|e.| X)+ 1) = N(ai |, x)) 7 +a — = fy'),
|ei | &

proving the theorem. ]
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REMARK 9. It sometimes happens that a sequence of primitive veotors. , vy
is not unimodular but is unimodular with respect to the stiie of Z? generated by
vectorsvy, ..., vg. Such a sequence is called bmeflexive loop and studied in [5].
Theorem A can be applied to asfreflexive loop with respect to the sublattice generated
by the vectors in thé-reflexive loop, but it is unclear whether the resulting fatencan
be obtained from Theorem 6.
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