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Abstract
We give a different proof of a theorem of O. Loos [5] which characterizes max-

imal tori of extrinsically symmetric spaces. On the way we show some facts on cer-
tain symmetric subspaces, so called meridians, which previously have been known
only using classification.

1. Introduction

Our aim in this paper is to give a geometric proof of the following theorem of
Ottmar Loos [5]:

Theorem 1. Let X � R

n be a compact extrinsically symmetric space. Then a
maximal torus of X is rectangular, i.e. a Riemannian product of circles.

Recall that a submanifoldX � R

n is called extrinsically symmetricif it is fixed
by the euclidean reflectionsx across the affine normal spacex C Nx X (where Nx X D
(Tx X)?) for everyx 2 X. Thensx preserves the second fundamental form�W S2(Tx X)!
Nx X and its derivativer� W S3(Tx X)! Nx X which must be zero sincesx changes the
sign onS3(Tx X) but not onNx X. Clearly, an extrinsically symmetric submanifold with
its induced Riemannian metric is a symmetric space. In particular it is an orbit of a
subgroupG of the isometry group ofRn. If X is compact, its center of mass is fixed
by G. Choosing the origin at the center of mass,X is contained in a sphere around
the origin, andG � On. It has been shown by Ferus ([4], also cf. [3]) that compact
extrinsically symmetric submanifolds are particular orbits of the isotropy representation
of other symmetric spaces. However we will not make use of this classification.

To prove Theorem 1, we will show the following alternative for any compact sym-
metric spaceX: Either X is a Riemannian product of euclidean spheres and flat tori
or it contains a certain totally geodesic subspace, a so called meridian (Theorem 10).
Further, a meridianM of a compact symmetric spaceX has the same rank asX (The-
orem 5), and whenX is extrinsically symmetric, then so isM (Corollary 6). Thus
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passing to meridians again and again, we will lower the dimension while preserving
a maximal torus until we reach an extrinsic symmetric space which is a Riemannian
product of spheres and flat tori. By Theorem 4, a maximal torusof such a space is
rectangular which finishes the proof of Theorem 1.

2. Extrinsic reflective subspaces

We start with a simple principle how to reduce the dimension of an extrinsic sym-
metric spaceX � Rn. An extrinsic reflective subspaceof X is a connected component
of the fixed point set ofr jX wherer is an isometry ofRn of order 2 (extrinsic reflec-
tion) with r (X) D X.

Theorem 2. Let X � R

n be an extrinsic symmetric space. Then any extrinsic
reflective subspace is again extrinsic symmetric.

Proof. LetY � X be a connected component of the fixed point set of an extrinsic
reflectionr 2 On. Let V

�

be the (�1)-eigenspaces ofr . ThenRn
D V

C

�V
�

, andY is
a connected component ofX \ V

C

. Sincer jX is an isometry,Y is totally geodesic in
X. For anyy 2 Y, the symmetrysy of X at y extends to the ambient space. Moreover,
sy commutes withr sincey is fixed by r and hencersyr D sr y D sy. Thussy preserves
the eigenspaceV

C

of r and decomposesV
C

into eigenspaces,V
C

D VC

C

� V�

C

. Since
VC

C

� V
C

\ Ny X and V�

C

� V
C

\ Ty X, we have equality in both inclusions and in
particular V�

C

D V
C

\ Ty X D TyY. Thus Y � V
C

is extrinsic symmetric.

3. Extrinsic symmetric products of tori and spheres

Theorem 3 ([4, Theorem 3]). Let F � R

n be an extrinsic symmetric flat torus.
Then F splits extrinsically as a product of round circles, F D S1

r1
�� � ��S

1
rm
� R

2m
� R

n.

Proof. We have an isometric immersionf W Rm
! R

n with f (Rm) D F , namely
the universal covering of the torusF . Its partial derivativesfi are parallel vector fields
on F , and since the second fundamental form� W S2T F ! N F is also parallel, the
normal vectors�i j D �( fi , f j ) are parallel, too. Thus the normal bundle is parallel and
by Ricci equation, the corresponding shape operatorsA

�i j commute with each other.
Therefore they allow for a common parallel eigenspace decomposition T F D E1 �

� � � � Er . By compactness, each maximal integral leaf of theE j is a sphere, but since
F is flat, its dimension must be one. ThusF is a product of perpendicular circles
S

1
r j
� R

2
j � R

n.

Theorem 4. Let X� Rn be an extrinsic symmetric space which is intrinsically a
Riemannian product

X D S1 � � � � � Sk � F(�)
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where the Si are round spheres and F is a flat torus. Then a maximal torus of X
is rectangular.

Proof. We proceed by induction overk. For k D 0 the statement follows from
Theorem 3. Now letk � 1. First we can split off every even-dimensional sphere factor.
In fact, suppose thatS1 is even dimensional. PutX0

D S2 � � � � � Sk � F . Choose
p1 2 S1 and lets1 be the symmetry ofS1 at p1. Then{p1} � X0 is a fixed component
of the involution s1 � id. Since S1 is an even dimensional sphere,s1 belongs to the
transvection group ofS1 and s1 � id lies in the transvection group ofX. Hence it
extends to a reflection of the ambient space. Thus its fixed component{p1} � X0 is a
reflective submanifold ofX, and hence it is extrinsically symmetric in the fixed space
of s1 � id (see Theorem 2). By induction hypothesis,X0 has a rectangular maximal
torus, and thus the same property follows forX D S1 � X0.

Now we may assume that every sphere factor is odd-dimensional. We choose great
circles Ci in every Si ; then a maximal torus ofX is OF D C1� � � � �Ck � F . Let r i be
the reflection acrossCi in Si . Since Si is odd dimensional,r i lies in the transvection
group of Si . Thus r D r1 � � � � � rk � id lies in the transvection group ofX and has
OF as fixed set; sincer extends to the ambient space,OF is extrinsic symmetric (see

Theorem 2) and we are done by Theorem 3 on extrinsic symmetrictori.

REMARK . Though all factors of the product (�) are extrinsic symmetric, we were
not able to conclude that the splitting is extrinsic. In fact, for local products this is false as
shown by the extrinsic symmetric space (S

p
�S

q)=�idD Sp

S

q
� R

pC1

R

qC1. How-
ever, for global products it follows from the classificationof extrinsic symmetric spaces.

4. Polars and meridians

Recall from [1] that apolar of a point o in a symmetric spaceX is a positive
dimensional connected component of the fixed set of the symmetry so of X while an
isolated fixed point ofso is called apole of o. Polars and poles can also be char-
acterized as certain orbits ofK (the connected component of the isotropy group ofo)
through a fixed point ofso. Elements of polars as well as poles are midpoints of closed
geodesics starting and ending ato (see [1]). By definition a polarP is reflective, being
a component of the fixed set ofso. Through anyp 2 P there is an orthogonal com-
plementary reflective submanifoldM which is the connected component throughp of
the fixed set of the involutionsosp (note thatso and sp commute). ThisM is called a
meridian of X (see [1]).

Theorem 5 ([1, Lemma 2.3], [7, Theorem 1.8]). If X is a compact symmetric
space of rank k, any meridian M� X has the same rank k.

Proof. Let P � X be a polar corresponding to the base pointo 2 X. Consider a
geodesic segment
 from o to p 2 P. By the first variation formula,
 meetsP D K p
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perpendicularly atp, since allk
 , k 2 K , start ato and end inP and have the same
length as
 . Therefore
 lies in M. It extends beyondp to a geodesic circle starting
and ending ato with midpoint p. Let F be a maximal torus ofX with 
 � F . Then
p is a pole or an element of a polar not only inX but also in F . Since a torus does
not have polars,p is a pole foro in F . In other words,sp D so along F . Thus F
belongs to the fixed component ofsosp through p; this is the meridianM.

If X � Rn happens to be extrinsic symmetric andP, M � X denote a polar and a
meridian of o 2 X through a common pointp 2 X, then so, sp extend to commuting
reflections on the ambient spaceRn. Thus we conclude immediately from Theorem 2:

Corollary 6. A polar P and a meridian M in an extrinsically symmetric space
X are extrinsically symmetric.1

Any compact symmetric spaceX is finitely covered by a Riemannian productQX D
Y� F whereY is a simply connected symmetric space of compact type andF a torus.
When there are no polars, the covering is trivial:

Lemma 7. If X has no polars, then X itself is a Riemannian product of a simply
connected symmetric space of compact type and possibly a torus.

Proof. Let Qo, Qo0 2 QX be two points in a fibre of the projection� W QX ! X. Let
Q
 W [0, 1]! QX be a shortest geodesic inQX joining Qo to Qo0. Then
 D � Æ Q
 is a closed
geodesic starting and ending atoD �(Qo) D �(Qo0). Its midpoint pD 
 (1=2) is either a
pole or an element of a polar ofX, but the second case is excluded by our assumption.
Let K be the connected isotropy subgroup atQo on QX (which is the same as that ofX
at o). Applying K to Q
 we obtain a variation of shortest geodesics{k Q
 W k 2 K } from Qo
to Qo0. All k Q
 pass throughQpD Q
 (1=2) which is fixed byK since pD �( Qp) is a pole.
Since Q
 j[0,1) has no conjugate points, being a shortest geodesics, we conclude that Q
 is
fixed by K . Hence the initial vectorQ
 0(0) is a fixed vector ofK , thus tangent to the
torus factorF . This shows that the covering map� can be nontrivial only on the torus
factor. Since a symmetric space covered by a torus is a torus again, we have proved
our claim.

Lemma 8. Let 6 � V� be an irreducible root system(not necessarily reduced,
i.e. the BC-type is allowed) with 6 ¤ A1. Let Æ 2 6 be any of the longest roots. Let

1This theorem was mentioned already in [8], Lemma 3.1.
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H 2 V with H ? kerÆ and Æ(H ) D 2. Then{�1,�2} � {�(H )W � 2 6} � {0,�1,�2}.

Proof. Since only two rootsÆ, � are involved, it suffices to look at the simple
root systems of dimension� 2 where the statement is obvious from the figures.

Theorem 9. Let X be an irreducible simply connected compact symmetric space
without a polar. Then X is a round sphere.

Proof. LetgD kCp be the Cartan decomposition ofX at some pointo; we view
p as the tangent spaceToX. Choose a maximal flat subspacea � p and let6 � a� be
the corresponding root system. LetÆ 2 6 be any of the longest roots andH 2 a with
H ? kerÆ and Æ(H ) D 2. Then the geodesic
 (t) D exp(t H )o in X lies in the totally
geodesic rank-one subspaceP

Æ

� X with root system6\RÆ, hence it is closed. Since
X is simply connected, its cut locus and its first conjugate locus are the same, by a
well known theorem of Crittenden [2]. The first conjugate point along
 can be easily
computed from the curvature tensor ofX: We have the orthogonal decomposition

p D
X

�26[{0}

p
�

,

and for anyX
�

2 p
�

,

R(X
�

, H )H D � ad(H )2X
�

D �(H )2X
�

.

Thus eachX
�

is an eigenvector of the Jacobi operatorR( � , H )H with eigenvalue 4
(corresponding toX

Æ

) or 1 or 0, according to Lemma 8; for the root systemA1 we
have� D Æ and the only eigenvalue is 4. Thus the first conjugate point along 
 both
in P

Æ

and in X occurs at�=2, the first zero of f (t) D sin(2t) solving f 00 C 4 f D 0.
The midpoint p D 
 (to) of the simply closed geodesic
 in the rank-one symmetric
spaceP

Æ

occurs not later than the first conjugate point, henceto � �=2 in our case (in
fact to D �=4 when P

Æ

� RP

k with curvature 4 whileto D �=2 in all other cases).
Therefore
 has period 2to � � . Since the midpoint of a closed geodesic starting and
ending ato is fixed by so, it is a pole or an element of a polar. In our case polars
are excluded, so it must be a pole. Hence all Killing fields along 
 vanishing atoD

 (0) also vanish atp D 
 (to). But when6 contains a root� with �(H ) D 1, then
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R(X
�

, H )H D X
�

. Thus the Jacobi fieldJ along 
 with J(0) D 0 and J 0(0) D X
�

does not vanish beforet D � . This is the Killing field corresponding toY
�

2 k where
Z
�

D X
�

C

p

�1Y
�

is the complex root vector, that is [H, Z
�

] D
p

�1�(H )Z
�

for all
H 2 a. Thus we have got a Killing field vanishing ato but not at
 (to), a contradiction.
Hence such a root� cannot exist, and by Lemma 8 the whole root system ofX must
be of type A1. Consequently,X (being simply connected) is a sphere.

Theorem 10. Let X be a compact symmetric space without a polar. Then X is
the Riemannian product of round spheres and tori.

Proof. By Lemma 7, we haveX D Y � F where F is a flat torus andY a sim-
ply connected symmetric space of compact type. ThusY splits into irreducible simply
connected factors each of which is a round sphere by Theorem 9.

By the classification of polars (see [1, 6]) this result is known, but here we have given
a conceptional proof.
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