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Abstract
We give a different proof of a theorem of O. Loos [5] which ciaerizes max-
imal tori of extrinsically symmetric spaces. On the way wewlsome facts on cer-
tain symmetric subspaces, so called meridians, which puely have been known
only using classification.

1. Introduction

Our aim in this paper is to give a geometric proof of the foilogvtheorem of
Ottmar Loos [5]:

Theorem 1. Let X C R" be a compact extrinsically symmetric space. Then a
maximal torus of X is rectangular.e. a Riemannian product of circles.

Recall that a submanifolK c R" is called extrinsically symmetridf it is fixed
by the euclidean reflectios, across the affine normal spaget+ Ny X (where Ny X =
(TxX)*4) for everyx € X. Thens, preserves the second fundamental ferms?(T,X) —
Ny X and its derivativeVa : S3(Ty X) — Ny X which must be zero sincg changes the
sign onS3(T, X) but not onN, X. Clearly, an extrinsically symmetric submanifold with
its induced Riemannian metric is a symmetric space. In qdai it is an orbit of a
subgroupG of the isometry group oR". If X is compact, its center of mass is fixed
by G. Choosing the origin at the center of masg§,is contained in a sphere around
the origin, andG C O. It has been shown by Ferus ([4], also cf. [3]) that compact
extrinsically symmetric submanifolds are particular tstof the isotropy representation
of other symmetric spaces. However we will not make use af ¢hassification.

To prove Theorem 1, we will show the following alternative fmy compact sym-
metric spaceX: Either X is a Riemannian product of euclidean spheres and flat tori
or it contains a certain totally geodesic subspace, a secaikridian (Theorem 10).
Further, a meridiarM of a compact symmetric spacé has the same rank as (The-
orem 5), and wherX is extrinsically symmetric, then so iM (Corollary 6). Thus
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passing to meridians again and again, we will lower the dsimnwhile preserving
a maximal torus until we reach an extrinsic symmetric spabé&hvis a Riemannian
product of spheres and flat tori. By Theorem 4, a maximal taiusuch a space is
rectangular which finishes the proof of Theorem 1.

2. Extrinsic reflective subspaces

We start with a simple principle how to reduce the dimensibaroextrinsic sym-
metric spaceX C R". An extrinsic reflective subspaad# X is a connected component
of the fixed point set of |x wherer is an isometry ofR" of order 2 éxtrinsic reflec-
tion) with r(X) = X.

Theorem 2. Let X C R" be an extrinsic symmetric space. Then any extrinsic
reflective subspace is again extrinsic symmetric.

Proof. LetY C X be a connected component of the fixed point set of an extrinsic

reflectionr € O,,. Let V1 be the (1)-eigenspaces af. ThenR" =V, ®V_, andY is

a connected component of N V,. Sincer|x is an isometry,Y is totally geodesic in

X. For anyy €Y, the symmetrys, of X at y extends to the ambient space. Moreover,
sy commutes withr sincey is fixed byr and hencesyr = sy =s,. Thuss, preserves
the eigenspac¥, of r and decompose¥. into eigenspacesy; = V; & VI. Since

Vi c Vi N NgX and VI C V, NTyX, we have equality in both inclusions and in
particularVy =V, N TyX = T,Y. ThusY C V, is extrinsic symmetric. ]

3. Extrinsic symmetric products of tori and spheres

Theorem 3 ([4, Theorem 3]) Let F c R" be an extrinsic symmetric flat torus.
Then F splits extrinsically as a product of round cirglés= Srll X+ -xSrlm CR?™CR".

Proof. We have an isometric immersidn: R™ — R" with f(R™) = F, namely
the universal covering of the torus. Its partial derivativesf; are parallel vector fields
on F, and since the second fundamental fosm S’TF — NF is also parallel, the
normal vectorsy; = «(f;, f;) are parallel, too. Thus the normal bundle is parallel and
by Ricci equation, the corresponding shape operafgys commute with each other.
Therefore they allow for a common parallel eigenspace deosition TF = E; &
---@ E,. By compactness, each maximal integral leaf of Beis a sphere, but since
F is flat, its dimension must be one. This is a product of perpendicular circles
St CR} CR". O

Theorem 4. Let X C R" be an extrinsic symmetric space which is intrinsically a
Riemannian product

(%) X=§ x:---x&xF
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where the Sare round spheres and F is a flat torus. Then a maximal torus of X
is rectangular.

Proof. We proceed by induction ové&: For k = 0 the statement follows from
Theorem 3. Now lek > 1. First we can split off every even-dimensional sphereoiact
In fact, suppose tha§, is even dimensional. PUK' = S x --- x § x F. Choose
p: € § and lets; be the symmetry of5 at p;. Then{p;} x X’ is a fixed component
of the involutions; x id. Since § is an even dimensional spherg, belongs to the
transvection group ofS and s; x id lies in the transvection group oK. Hence it
extends to a reflection of the ambient space. Thus its fixedpoosmt{p;} x X' is a
reflective submanifold ofX, and hence it is extrinsically symmetric in the fixed space
of s; x id (see Theorem 2). By induction hypothesis, has a rectangular maximal
torus, and thus the same property follows #r= S x X’.

Now we may assume that every sphere factor is odd-dimerisigvechoose great
circlesC; in every S; then a maximal torus oK is F=Cyx---xCyxF. Letr; be
the reflection acros€; in §. Since S is odd dimensionalr; lies in the transvection
group of §. Thusr =r; x --- xry x id lies in the transvection group ok and has
F as fixed set; since extends to the ambient spacé, is extrinsic symmetric (see
Theorem 2) and we are done by Theorem 3 on extrinsic symmtetiic ]

REMARK. Though all factors of the produck) are extrinsic symmetric, we were
not able to conclude that the splitting is extrinsic. In fdot local products this is false as
shown by the extrinsic symmetric spa&® & S9)/+id = SP®SY C RPT@RI*TL. How-
ever, for global products it follows from the classificatiohextrinsic symmetric spaces.

4. Polars and meridians

Recall from [1] that apolar of a pointo in a symmetric spaceX is a positive
dimensional connected component of the fixed set of the syrgnsg of X while an
isolated fixed point ofs, is called apole of 0. Polars and poles can also be char-
acterized as certain orbits & (the connected component of the isotropy grouppf
through a fixed point o&,. Elements of polars as well as poles are midpoints of closed
geodesics starting and endingaafsee [1]). By definition a polaP is reflective, being
a component of the fixed set &f. Through anyp € P there is an orthogonal com-
plementary reflective submanifoll which is the connected component throughof
the fixed set of the involutios,s, (note thats, ands, commute). ThisM is called a
meridian of X (see [1]).

Theorem 5 ([1, Lemma 2.3], [7, Theorem 1.8]) If X is a compact symmetric
space of rank kany meridian MC X has the same rank k.

Proof. LetP C X be a polar corresponding to the base paird X. Consider a
geodesic segment from o to p € P. By the first variation formulay meetsP = Kp
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perpendicularly atp, since allky, k € K, start ato and end inP and have the same
length asy. Thereforey lies in M. It extends beyond to a geodesic circle starting
and ending ab with midpoint p. Let F be a maximal torus oX with y C F. Then
p is a pole or an element of a polar not only ¥ but also inF. Since a torus does
not have polarsp is a pole foro in F. In other words,sp = S along F. Thus F
belongs to the fixed component afs, through p; this is the meridianM. ]

If X C R" happens to be extrinsic symmetric aRdM C X denote a polar and a
meridian ofo € X through a common poinp € X, thens,, s, extend to commuting
reflections on the ambient spa®¥. Thus we conclude immediately from Theorem 2:

Corollary 6. A polar P and a meridian M in an extrinsically symmetric space
X are extrinsically symmetrit.

Any compact symmetric spack is finitely covered by a Riemannian produét=
Y x F whereY is a simply connected symmetric space of compact typeFradtorus.
When there are no polars, the covering is trivial:

Lemma 7. If X has no polarsthen X itself is a Riemannian product of a simply
connected symmetric space of compact type and possiblyua. tor

Proof. Letd, & € X be two points in a fibre of the projectiom: X — X. Let
7:[0,1] - X be a shortest geodesic ¥ joining  to &. Theny =7 o7 is a closed
geodesic starting and ending @t= 7 (0) = 7 (9). Its midpoint p = y(1/2) is either a
pole or an element of a polar of, but the second case is excluded by our assumption.
Let K be the connected isotropy subgroupdabn X (which is the same as that of
at0). Applying K to 7 we obtain a variation of shortest geodesfks: k € K} from 0
to &. All ky pass throughp = 7(1/2) which is fixed byK since p = #(p) is a pole.
Sincey |j0,1) has no conjugate points, being a shortest geodesics, wéudenthaty is
fixed by K. Hence the initial vecto’(0) is a fixed vector ofK, thus tangent to the
torus factorF. This shows that the covering mapcan be nontrivial only on the torus
factor. Since a symmetric space covered by a torus is a tayam,awe have proved
our claim. O

Lemma 8. Let ¥ C V* be an irreducible root systertnot necessarily reduced
i.e. the BC-type is allowgdwith ¥ # A;. Let§ € £ be any of the longest roots. Let

1This theorem was mentioned already in [8], Lemma 3.1.
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H eV with H L kers and 8(H) = 2. Then{%1,£2} C {a(H): @ € £} C {0,£1,£2}.

B, BC,, BC,

Proof. Since only two root$, « are involved, it suffices to look at the simple
root systems of dimensior 2 where the statement is obvious from the figures[]

Theorem 9. Let X be an irreducible simply connected compact symmepaces
without a polar. Then X is a round sphere.

Proof. Letg = t+p be the Cartan decomposition &f at some poinb; we view
p as the tangent spack X. Choose a maximal flat subspage p and letX C a* be
the corresponding root system. L&E X be any of the longest roots ard € a with
H L1 ker$§ and§(H) = 2. Then the geodesig(t) = expgH)o in X lies in the totally
geodesic rank-one subspaBgC X with root systemX NR§, hence it is closed. Since
X is simply connected, its cut locus and its first conjugateudoare the same, by a
well known theorem of Crittenden [2]. The first conjugatermalongy can be easily
computed from the curvature tensor ¥f We have the orthogonal decomposition

b= P

«e3U{0}

and for anyX, € p,,
R(Xq, HYH = —adH)?X, = a(H)?X,.

Thus eachX, is an eigenvector of the Jacobi operatf-, H)H with eigenvalue 4
(corresponding toXs) or 1 or 0, according to Lemma 8; for the root systekn we
havea = § and the only eigenvalue is 4. Thus the first conjugate poiohgl both

in P; and in X occurs atr/2, the first zero off (t) = sin(2) solving f” + 4f = 0.
The midpointp = y(t,) of the simply closed geodesig in the rank-one symmetric
spaceP; occurs not later than the first conjugate point, heace 7 /2 in our case (in
fact t, = /4 when Py = RPX with curvature 4 whilet, = /2 in all other cases).
Thereforey has period & < 7. Since the midpoint of a closed geodesic starting and
ending ato is fixed by s, it is a pole or an element of a polar. In our case polars
are excluded, so it must be a pole. Hence all Killing fieldsnglgr vanishing ato =
y(0) also vanish atp = y(t,). But when X contains a rootx with a(H) = 1, then
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R(Xq, HYH = X,. Thus the Jacobi field alongy with J(0) = 0 and J'(0) = X,
does not vanish before= n. This is the Killing field corresponding t¥, < ¢ where
Z, = X4 + v/—1Y, is the complex root vector, that id] Z,] = v—1x(H)Z, for all
H € a. Thus we have got a Killing field vanishing atbut not aty (t,), a contradiction.
Hence such a roat cannot exist, and by Lemma 8 the whole root systenXafust
be of type A;. ConsequentlyX (being simply connected) is a sphere. O

Theorem 10. Let X be a compact symmetric space without a polar. Then X is
the Riemannian product of round spheres and tori.

Proof. By Lemma 7, we havX = Y x F where F is a flat torus andr a sim-
ply connected symmetric space of compact type. TYiusplits into irreducible simply
connected factors each of which is a round sphere by Theorem 9 ]

By the classification of polars (see [1, 6]) this result is \kno but here we have given
a conceptional proof.
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