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Abstract
Sections 7 and 8 of “The Dorfmeister–Neher theorem on isoparametric hyper-

surfaces”, (Osaka J. Math.46, 695–715) are the heart of the paper, but a lack of
clear argument causes some questions, although the statement is true. The purpose
of the present paper is to make it clear.

1. Dim E D 2 (§7 [2])

We follow the notation and the argument in [2]. First, we correct a typo in the
last term of the displayed formula right above (35) of [2]: (3

3
63)

2 should be (34
63)

2.
We call a vector fieldv(t) along L6 parametrized byp(t) evenwhen v(t C �) D

v(t), and odd when v(t C �) D �v(t). Note thatE consists ofrk
e6

e3(t), k D 0, 1, : : :

which are all odd or all even, andW consists ofrk
e6
re3e6(t) of which evenness and

oddness is the opposite ofE, since L(t C �) D �L(t).

Proposition 7.1 ([2]) dim E D 2 does not occur at any point of M
C

.

Proof. dimE D 2 implies dimW D 1, and soW consists of even vectors (re3e6

never vanish by Remark 5.3 of [2]). ThusE consists of odd vectors. ForX1, Z1, X2,
Z2 on p. 709,X1 is parallel tore6e3 at p0 D p(0) and p(�), and so has opposite sign
at p(0) and p(�). Note thatZ1 2W is a constant unit vector parallel tore3e6(t). Also,
span{X2, Z2} is parallel since this is the orthogonal complement ofE �W. Because
D1(�) D D5(0) and D2(�) D D4(0) etc. hold, four cases occur;

(e1C e5)(�) D (e1C e5)(0) and (e2C e4)(�) D (e2C e4)(0),

(e1C e5)(�) D (e1C e5)(0) and (e2C e4)(�) D �(e2C e4)(0),

(e1C e5)(�) D �(e1C e5)(0) and (e2C e4)(�) D (e2C e4)(0),

(e1C e5)(�) D �(e1C e5)(0) and (e2C e4)(�) D �(e2C e4)(0).
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In the first case,�(�) D ��(0) and �(�) D ��(0) follow. Then X2 becomes even
and Z2 becomes odd, which contradicts that span{X2, Z2} is parallel. In the second
case,�(�) D ��(0) and�(�) D �(0) hold, and soX2 is odd, andZ2 is even, again a
contradiction. Other cases are similar.

2. Dim E D 3 (§8 [2])

When dimE D 3, e3(t) is an even vector, sinceE is parallel alongL6. Using
Proposition 8.1 [2], we extende1, e2, e4, e5 as follows: Taking the double coverQc(t)
of c(t), i.e., t 2 [0, 4�), if necessary, we choose a differentiable frameei (t) as follows:
First takee1(t), e2(t) continuously fort 2 [0, 4�). Then we definee5(t) D e1(t C �)
and e4(t) D e2(t C �) for t 2 [0, 3�). Thus we have a differentiable frameei (t) for
t 2 [0, 3�), though we only needt 2 [0, 2� ].

With respect to this frame, we can take a differentiable orthonormal frame ofE
and E? by

(1)

e3(t), X1 D �(t)(e1C e5)(t)C �(t)(e2C e4)(t),

X2(t) D
1

p

� (t)

�

�(t)
p

3
(e1 � e5)(t) �

p

3�(t)(e2 � e4)(t)

�

and

(2)
Z1(t) D

1
p

� (t)

�

p

3�(t)(e1 � e5)(t)C
�(t)
p

3
(e2 � e4)(t)

�

,

Z2(t) D �(t)(e1C e5) � �(t)(e2C e4)(t),

where�(t), �(t), � (t) are differentiable fort 2 [0, 3� ], satisfying

(3) �

2(t)C �2(t) D
1

2
, � (t) D 2

�

3�2(t)C
�

2(t)

3

�

.

Note that� (t)D � (tC�) holds, since� (t) is an eigenvalue ofT(t)D t RR(t) (see (45)
[2] and the statement after it).

Proposition 8.2 ([2]) � (t) is constant and takes values1=3 or 3.

REMARK . We need not distinguish the case� D 1 in the proof.

Proof of Proposition 8.2 ([2]). From (3), the conclusion follows if we show
�(t)�(t) � 0. Suppose�(t)�(t) 6� 0. By definition, we have

e1(�) D e5(0), e2(�) D e4(0).(4)



REMARKS ON THE DORFMEISTER–NEHER THEOREM 375

We must be careful for

e5(�) D e1(2�) D �1e1(0), e4(�) D e2(2�) D �2e2(0),

where�i D �1. However, sincee3 is even and by (4), we obtain

� WD �1 D �2.

CASE 1 � D 1. In this case, we have

(5)
X1(�) D �(�)(e1(�)C e5(�))C �(�)(e2(�)C e4(�))

D �(�)(e5(0)C e1(0))C �(�)(e4(0)C e2(0)),

which belongs toE, and is orthogonal toe3(0) and X2(0). Thus we obtain

(6) X1(�) D N�X1(0), namely, �(�) D N��(0), �(�) D N��(0),

where N� D �1. On the other hand, we have

(7)

X2(�) D
1

p

� (�)

�

�(�)
p

3
(e1(�) � e5(�)) �

p

3�(�)(e2(�) � e4(�))

�

D

1
p

� (0)

�

�(�)
p

3
(e5(0)� e1(0))�

p

3�(�)(e4(0)� e2(0))

�

,

where we use� (�) D � (0). Thus from (6), we obtain

X2(�) D �N�X2(0).

However, becauseE is parallel, X1 and X2 should be both even or both odd, a
contradiction.

CASE 2 � D �1. In this case, we have

(8)
X1(�) D �(�)(e1(�)C e5(�))C �(�)(e2(�)C e4(�))

D �(�)(e5(0)� e1(0))C �(�)(e4(0)� e2(0)),

which belongs toE, and is orthogonal toe3(0) and X1(0). Thus we obtain

(9) X1(�) D N�X2(0), namely, �(�) D �N�
�(0)
p

3� (0)
, and �(�) D N�

p

3�(0)
p

� (0)
,

for N� D �1. On the other hand, we see that

(10)

X2(�) D
1

p

� (�)

�

�(�)
p

3
(e1(�) � e5(�)) �

p

3�(�)(e2(�) � e4(�))

�

D

1
p

� (0)

�

�(�)
p

3
(e5(0)C e1(0))�

p

3�(�)(e4(0)C e2(0))

�
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where we use� (�) D � (0). Because it belongs toE and is orthogonal toe3(0) and
X2(0), and further because (X1(0), X2(0)) 7! (X1(�), X2(�)) should be orientation pre-
serving, we obtain,

(11) X2(�) D �N�X1(0), namely,
�(�)
p

3� (0)
D �N��(0) and �

p

3�(�)
p

� (0)
D �N��(0).

However, then (9) and (11) have no solution.

These contradictions are caused by the assumption�(t)�(t)¥ 0. Thus�(t)�(t)� 0
follows. Now, by the argument in §9 [2], we obtain

Theorem 2.1 ([1], [2]) Isoparametric hypersurfaces with(g, m) D (6, 1) are
homogeneous.
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