

Title	REMARKS ON "THE DORFMEISTER-NEHER THEOREM ON ISOPARAMETRIC HYPERSURFACES"
Author(s)	Miyaoka, Reiko
Citation	Osaka Journal of Mathematics. 2015, 52(2), p. 373–376
Version Type	VoR
URL	https://doi.org/10.18910/57657
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

REMARKS ON "THE DORFMEISTER-NEHER THEOREM ON ISOPARAMETRIC HYPERSURFACES"

REIKO MIYAOKA

(Received June 12, 2013, revised November 7, 2013)

Abstract

Sections 7 and 8 of "*The Dorfmeister–Neher theorem on isoparametric hypersurfaces*", (Osaka J. Math. **46**, 695–715) are the heart of the paper, but a lack of clear argument causes some questions, although the statement is true. The purpose of the present paper is to make it clear.

1. Dim E = 2 (§7 [2])

We follow the notation and the argument in [2]. First, we correct a typo in the last term of the displayed formula right above (35) of [2]: $(\Lambda_{63}^3)^2$ should be $(\Lambda_{63}^4)^2$.

We call a vector field v(t) along L_6 parametrized by p(t) even when $v(t + \pi) = v(t)$, and odd when $v(t + \pi) = -v(t)$. Note that E consists of $\nabla_{e_6}^k e_3(t)$, $k = 0, 1, \ldots$ which are all odd or all even, and W consists of $\nabla_{e_6}^k \nabla_{e_3} e_6(t)$ of which evenness and oddness is the opposite of E, since $L(t + \pi) = -L(t)$.

Proposition 7.1 ([2]) dim E = 2 does not occur at any point of M_+ .

Proof. dim E = 2 implies dim W = 1, and so W consists of even vectors ($\nabla_{e_3}e_6$ never vanish by Remark 5.3 of [2]). Thus E consists of odd vectors. For X_1 , Z_1 , X_2 , Z_2 on p. 709, X_1 is parallel to $\nabla_{e_6}e_3$ at $p_0 = p(0)$ and $p(\pi)$, and so has opposite sign at p(0) and $p(\pi)$. Note that $Z_1 \in W$ is a constant unit vector parallel to $\nabla_{e_3}e_6(t)$. Also, span{ X_2, Z_2 } is parallel since this is the orthogonal complement of $E \oplus W$. Because $D_1(\pi) = D_5(0)$ and $D_2(\pi) = D_4(0)$ etc. hold, four cases occur;

$$(e_1 + e_5)(\pi) = (e_1 + e_5)(0)$$
 and $(e_2 + e_4)(\pi) = (e_2 + e_4)(0)$,
 $(e_1 + e_5)(\pi) = (e_1 + e_5)(0)$ and $(e_2 + e_4)(\pi) = -(e_2 + e_4)(0)$,
 $(e_1 + e_5)(\pi) = -(e_1 + e_5)(0)$ and $(e_2 + e_4)(\pi) = (e_2 + e_4)(0)$,
 $(e_1 + e_5)(\pi) = -(e_1 + e_5)(0)$ and $(e_2 + e_4)(\pi) = -(e_2 + e_4)(0)$.

²⁰⁰⁰ Mathematics Subject Classification. 53C40.

Partly supported by Grants-in-Aid for Scientific Research, 23340012, The Ministry of Education, Japan.

R. MIYAOKA

In the first case, $\alpha(\pi) = -\alpha(0)$ and $\beta(\pi) = -\beta(0)$ follow. Then X_2 becomes even and Z_2 becomes odd, which contradicts that span{ X_2, Z_2 } is parallel. In the second case, $\alpha(\pi) = -\alpha(0)$ and $\beta(\pi) = \beta(0)$ hold, and so X_2 is odd, and Z_2 is even, again a contradiction. Other cases are similar.

2. Dim E = 3 (§8 [2])

When dim E = 3, $e_3(t)$ is an even vector, since E is parallel along L_6 . Using Proposition 8.1 [2], we extend e_1 , e_2 , e_4 , e_5 as follows: Taking the double cover $\tilde{c}(t)$ of c(t), i.e., $t \in [0, 4\pi)$, if necessary, we choose a differentiable frame $e_i(t)$ as follows: First take $e_1(t)$, $e_2(t)$ continuously for $t \in [0, 4\pi)$. Then we define $e_5(t) = e_1(t + \pi)$ and $e_4(t) = e_2(t + \pi)$ for $t \in [0, 3\pi)$. Thus we have a differentiable frame $e_i(t)$ for $t \in [0, 3\pi)$, though we only need $t \in [0, 2\pi]$.

With respect to this frame, we can take a differentiable orthonormal frame of E and E^{\perp} by

(1)

$$e_{3}(t), \quad X_{1} = \alpha(t)(e_{1} + e_{5})(t) + \beta(t)(e_{2} + e_{4})(t),$$

$$X_{2}(t) = \frac{1}{\sqrt{\sigma(t)}} \left(\frac{\beta(t)}{\sqrt{3}}(e_{1} - e_{5})(t) - \sqrt{3}\alpha(t)(e_{2} - e_{4})(t) \right)$$

and

(2)
$$Z_1(t) = \frac{1}{\sqrt{\sigma(t)}} \left(\sqrt{3}\alpha(t)(e_1 - e_5)(t) + \frac{\beta(t)}{\sqrt{3}}(e_2 - e_4)(t) \right),$$
$$Z_2(t) = \beta(t)(e_1 + e_5) - \alpha(t)(e_2 + e_4)(t),$$

where $\alpha(t)$, $\beta(t)$, $\sigma(t)$ are differentiable for $t \in [0, 3\pi]$, satisfying

(3)
$$\alpha^{2}(t) + \beta^{2}(t) = \frac{1}{2}, \quad \sigma(t) = 2\left(3\alpha^{2}(t) + \frac{\beta^{2}(t)}{3}\right).$$

Note that $\sigma(t) = \sigma(t + \pi)$ holds, since $\sigma(t)$ is an eigenvalue of $T(t) = {}^{t}RR(t)$ (see (45) [2] and the statement after it).

Proposition 8.2 ([2]) $\sigma(t)$ is constant and takes values 1/3 or 3.

REMARK. We need not distinguish the case $\sigma = 1$ in the proof.

Proof of Proposition 8.2 ([2]). From (3), the conclusion follows if we show $\alpha(t)\beta(t) \equiv 0$. Suppose $\alpha(t)\beta(t) \neq 0$. By definition, we have

(4)
$$e_1(\pi) = e_5(0), \quad e_2(\pi) = e_4(0).$$

We must be careful for

$$e_5(\pi) = e_1(2\pi) = \epsilon_1 e_1(0), \quad e_4(\pi) = e_2(2\pi) = \epsilon_2 e_2(0),$$

where $\epsilon_i = \pm 1$. However, since e_3 is even and by (4), we obtain

$$\epsilon := \epsilon_1 = \epsilon_2.$$

CASE 1 $\epsilon = 1$. In this case, we have

(5)
$$X_1(\pi) = \alpha(\pi)(e_1(\pi) + e_5(\pi)) + \beta(\pi)(e_2(\pi) + e_4(\pi)) \\ = \alpha(\pi)(e_5(0) + e_1(0)) + \beta(\pi)(e_4(0) + e_2(0)),$$

which belongs to E, and is orthogonal to $e_3(0)$ and $X_2(0)$. Thus we obtain

(6)
$$X_1(\pi) = \overline{\epsilon} X_1(0)$$
, namely, $\alpha(\pi) = \overline{\epsilon} \alpha(0)$, $\beta(\pi) = \overline{\epsilon} \beta(0)$,

where $\overline{\epsilon} = \pm 1$. On the other hand, we have

(7)
$$X_{2}(\pi) = \frac{1}{\sqrt{\sigma(\pi)}} \left(\frac{\beta(\pi)}{\sqrt{3}} (e_{1}(\pi) - e_{5}(\pi)) - \sqrt{3}\alpha(\pi)(e_{2}(\pi) - e_{4}(\pi)) \right)$$
$$= \frac{1}{\sqrt{\sigma(0)}} \left(\frac{\beta(\pi)}{\sqrt{3}} (e_{5}(0) - e_{1}(0)) - \sqrt{3}\alpha(\pi)(e_{4}(0) - e_{2}(0)) \right),$$

where we use $\sigma(\pi) = \sigma(0)$. Thus from (6), we obtain

$$X_2(\pi) = -\overline{\epsilon} X_2(0).$$

However, because E is parallel, X_1 and X_2 should be both even or both odd, a contradiction.

CASE 2 $\epsilon = -1$. In this case, we have

(8)
$$X_1(\pi) = \alpha(\pi)(e_1(\pi) + e_5(\pi)) + \beta(\pi)(e_2(\pi) + e_4(\pi))$$
$$= \alpha(\pi)(e_5(0) - e_1(0)) + \beta(\pi)(e_4(0) - e_2(0)),$$

which belongs to E, and is orthogonal to $e_3(0)$ and $X_1(0)$. Thus we obtain

(9)
$$X_1(\pi) = \overline{\epsilon} X_2(0)$$
, namely, $\alpha(\pi) = -\overline{\epsilon} \frac{\beta(0)}{\sqrt{3\sigma(0)}}$, and $\beta(\pi) = \overline{\epsilon} \frac{\sqrt{3}\alpha(0)}{\sqrt{\sigma(0)}}$

for $\bar{\epsilon} = \pm 1$. On the other hand, we see that

(10)
$$X_{2}(\pi) = \frac{1}{\sqrt{\sigma(\pi)}} \left(\frac{\beta(\pi)}{\sqrt{3}} (e_{1}(\pi) - e_{5}(\pi)) - \sqrt{3}\alpha(\pi)(e_{2}(\pi) - e_{4}(\pi)) \right)$$
$$= \frac{1}{\sqrt{\sigma(0)}} \left(\frac{\beta(\pi)}{\sqrt{3}} (e_{5}(0) + e_{1}(0)) - \sqrt{3}\alpha(\pi)(e_{4}(0) + e_{2}(0)) \right)$$

where we use $\sigma(\pi) = \sigma(0)$. Because it belongs to *E* and is orthogonal to $e_3(0)$ and $X_2(0)$, and further because $(X_1(0), X_2(0)) \mapsto (X_1(\pi), X_2(\pi))$ should be orientation preserving, we obtain,

(11)
$$X_2(\pi) = -\bar{\epsilon}X_1(0)$$
, namely, $\frac{\beta(\pi)}{\sqrt{3\sigma(0)}} = -\bar{\epsilon}\alpha(0)$ and $-\frac{\sqrt{3}\alpha(\pi)}{\sqrt{\sigma(0)}} = -\bar{\epsilon}\beta(0)$.

However, then (9) and (11) have no solution.

These contradictions are caused by the assumption $\alpha(t)\beta(t) \neq 0$. Thus $\alpha(t)\beta(t) \equiv 0$ follows. Now, by the argument in §9 [2], we obtain

Theorem 2.1 ([1], [2]) Isoparametric hypersurfaces with (g, m) = (6, 1) are homogeneous.

ACKNOWLEDGMENT. The author thanks to U. Abresch and A. Siffert for their questions and indication.

References

- [1] J. Dorfmeister and E. Neher: *Isoparametric hypersurfaces, case* g = 6, m = 1, Comm. Algebra **13** (1985), 2299–2368.
- R. Miyaoka: The Dorfmeister-Neher theorem on isoparametric hypersurfaces, Osaka J. Math. 46 (2009), 695–715.

Mathematical Institute Graduate School of Sciences Tohoku University Sendai, 980-8578 Japan e-mail: r-miyaok@m.tohoku.ac.jp

376