

| Title        | A COMPARISON PRINCIPLE AND APPLICATIONS TO ASYMPTOTICALLY p-LINEAR BOUNDARY VALUE PROBLEMS |
|--------------|--------------------------------------------------------------------------------------------|
| Author(s)    | Hai, Dang Dinh                                                                             |
| Citation     | Osaka Journal of Mathematics. 2015, 52(2), p. 393-408                                      |
| Version Type | VoR                                                                                        |
| URL          | https://doi.org/10.18910/57658                                                             |
| rights       |                                                                                            |
| Note         |                                                                                            |

# The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

# A COMPARISON PRINCIPLE AND APPLICATIONS TO ASYMPTOTICALLY p-LINEAR BOUNDARY VALUE PROBLEMS

### DANG DINH HAI

(Received January 16, 2013, revised November 18, 2013)

#### **Abstract**

Consider the problems

$$\begin{cases} -\Delta_p u = f \text{ in } \Omega, & u = 0 \text{ on } \partial \Omega, \\ -\Delta_p v = g \text{ in } \Omega, & v = 0 \text{ on } \partial \Omega, \end{cases}$$

where  $\Omega$  is a bounded domain in  $\mathbb{R}^n$  with smooth boundary  $\partial \Omega$ ,  $\Delta_p z = \operatorname{div}(|\nabla z|^{p-2}\nabla z)$ , p>1. We prove a strong comparison principle that allows f-g to change sign. An application to singular asymptotically p-linear boundary problems is given.

#### 1. Introduction

Consider the problems

(1.1) 
$$\begin{cases} -\Delta_p u = f \text{ in } \Omega, & u = 0 \text{ on } \partial \Omega, \\ -\Delta_p v = g \text{ in } \Omega, & v = 0 \text{ on } \partial \Omega, \end{cases}$$

where  $\Omega$  is a bounded domain in  $\mathbb{R}^n$  with a smooth boundary  $\partial \Omega \in C^{2,\alpha}$  for some  $\alpha \in (0, 1), \ \Delta_p z = \operatorname{div}(|\nabla z|^{p-2} \nabla z), \ p > 1, \ \text{and} \ f, g \colon \Omega \to \mathbb{R}.$ 

In this paper, we shall establish a strong comparison principle

$$u > v$$
 in  $\Omega$  and  $\frac{\partial u}{\partial v} < \frac{\partial v}{\partial v}$  on  $\partial \Omega$ ,

without requiring that  $f \geq g$  a.e. in  $\Omega$ . Here  $\nu$  denotes the outer unit normal vector on  $\partial\Omega$ . It should be noted that the assumptions  $f \geq g$  and  $f \not\equiv g$  in  $\Omega$  are needed in previous literature (see e.g. [9] and the references therein). We also provide an application to the existence of positive solutions for a class of singular p-Laplacian boundary value problems with asymptotically p-linear nonlinearity.

Let  $d(x) = d(x, \partial \Omega)$  be the distance from x to  $\partial \Omega$ , we prove the following result:

<sup>2010</sup> Mathematics Subject Classification. 35J95, 35J70.

**Theorem 1.1.** Let  $f, g, g_0 \in L^1(\Omega)$  with  $g \ge g_0 \ge 0$ , and  $g_0 \not\equiv 0$ . Suppose there exist constants C > 0 and  $\gamma \in (0, 1)$  such that

$$|f(x)|, g(x) \le \frac{C}{d^{\gamma}(x)}$$

for a.e.  $x \in \Omega$ , and there exist a function  $h \in C(\Omega)$ , h > 0, and constants  $\varepsilon \ge 0$ , m, M > 0 with  $m \le M$  such that

$$f-g\geq m\left(h-\frac{\varepsilon}{d^{\gamma}}\right)$$
 in  $\Omega$ .

Let  $u, v \in W_0^{1,p}(\Omega)$  be solutions of (1.1). Then there exists a positive constant  $\varepsilon_0$  depending on n,  $\Omega$ , p,  $\gamma$ , C, M, h,  $g_0$  (but not on m), such that

$$u > v$$
 in  $\Omega$  and  $\frac{\partial u}{\partial v} < \frac{\partial v}{\partial v}$  on  $\partial \Omega$ 

for  $\varepsilon < \varepsilon_0$ . If  $\varepsilon = 0$ , the result holds under the weaker condition that h is a nonnegative nontrivial measurable function in  $\Omega$ .

REMARK 1.1. When  $g \equiv 0$ , the conclusion of Theorem 1.1 holds under the weaker assumption that h is a nonnegative nontrivial measurable function in  $\Omega$ . In this case,  $\varepsilon_0$  is independent of M. Indeed, let  $\bar{u}$ ,  $\bar{v}$  be the solutions of

$$-\Delta_{p}\bar{u} = \tilde{h} - \frac{\varepsilon}{d^{\gamma}} \text{ in } \Omega, \quad \bar{u} = 0 \text{ on } \partial\Omega,$$
$$-\Delta_{p}\bar{v} = \tilde{h} \text{ in } \Omega, \quad \bar{v} = 0 \text{ on } \partial\Omega,$$

respectively, where  $\tilde{h} = \min(h, 1/d^{\gamma})$ . By the strong maximum principle [12, 14], there exists a constant  $\delta > 0$  such that  $\bar{v} \geq \delta d$  in  $\Omega$ . Using Lemma 2.3 in Section 2, we deduce that

$$\bar{u} \ge \bar{v} - \frac{\delta}{2}d \ge \frac{\delta}{2}d$$

if  $\varepsilon$  is sufficiently small. This implies

$$u \ge m^{1/(p-1)}\overline{u} > m^{1/(p-1)}\frac{\delta}{2}d > 0$$
 in  $\Omega$ 

and  $\partial u/\partial v < 0$  on  $\partial \Omega$ .

As an application of Theorem 1.1, consider the boundary value problem

(1.2) 
$$\begin{cases} -\Delta_p u = \frac{q(x)}{u^{\beta}} + \lambda f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where  $\beta \in (0, 1)$ , q, f satisfy the following assumptions:

(A1)  $f:(0,\infty)\to\mathbb{R}$  is continuous and there exists a constant k>0 such that

$$\lim_{u \to \infty} \frac{f(u)}{u^{p-1}} = k.$$

(A2) There exists a constant  $\delta \in (0, 1)$  such that

$$\limsup_{u\to 0^+} u^{\delta}|f(u)| < \infty.$$

(A3) There exist constants A,  $\varepsilon_0 > 0$  such that

$$f(u) \ge ku^{p-1} + \varepsilon_0$$
 for  $u > A$ .

(A4)  $q: \Omega \to \mathbb{R}$  is measurable and there exist constants  $\eta$ , L > 0 with  $\beta + \eta < 1$ , such that

$$|q(x)| \le \frac{L}{d^{\eta}(x)}$$

for a.e.  $x \in \Omega$ .

Let  $\lambda_1$  be the first eigenvalue of  $-\Delta_p$  with Dirichlet boundary condition, and let  $\phi_1$  be the corresponding positive eigenfunction with  $\|\phi_1\|_{\infty} = 1$ . Note that, since  $\partial \phi_1/\partial \nu < 0$  on  $\partial \Omega$ , Theorem 1.1 holds if d is replaced by  $\phi_1$ . Let  $\lambda_{\infty} = \lambda_1/k$ . Then we have

**Theorem 1.2.** Let (A1)–(A4) hold. Then there exists a constant  $\tilde{\varepsilon} > 0$  such that for  $\lambda_{\infty} - \tilde{\varepsilon} < \lambda < \lambda_{\infty}$ , problem (1.2) has a positive solution  $u_{\lambda} \in C^{1,\kappa}(\bar{\Omega})$  for some  $\kappa \in (0,1)$  with

$$(*) u_{\lambda} \geq \left(\frac{\lambda_{\infty} \varepsilon_0}{4k(\lambda_{\infty} - \lambda)}\right)^{1/(p-1)} \phi_1 \quad in \quad \Omega.$$

**Theorem 1.3.** Let  $q \ge 0$ ,  $q \ne 0$ . Suppose  $f \ge 0$ , (A2), (A4) hold, and

$$\limsup_{u \to \infty} \frac{f(u)}{u^{p-1}} = k$$

for some  $k \in (0, \infty)$ . Then problem (1.2) has a positive solution  $u_{\lambda}$  for  $\lambda < \lambda_{\infty}$ . If, in addition,

$$f(u) > ku^{p-1}$$
 for all  $u > 0$ ,

then (1.2) has no positive solution for  $\lambda \geq \lambda_{\infty}$ , and

$$\|u_{\lambda}\|_{\infty} \to \infty$$
 as  $\lambda \to \lambda_{\infty}^{-}$ .

EXAMPLE 1.1. (i) Let  $f(u) = -1/u^{\delta} + u^{p-1} + u^q$ , where  $\delta \in (0, 1)$  and  $0 \le q < p-1$ . Then f satisfies (A1)–(A3) with k = 1, and so (1.2) has a positive solution when  $\lambda$  is sufficiently close to  $\lambda_1$  and  $\lambda < \lambda_1$ , by Theorem 1.2.

(ii) Let  $f(u) = 1/u^{\delta} + u^{p-1}(m|\sin u| + e^{1/(1+u)})$ , where  $\delta \in (0,1)$ ,  $m \ge 0$ . Then it follows from Theorem 1.3 that, if m > 0, (1.2) has a positive solution for  $\lambda < \lambda_1/(m+1)$ , and, if m = 0, (1.2) has a positive solution if and only if  $\lambda < \lambda_1$ .

REMARK 1.2. It should be noted that Theorem 1.2 may not be true when  $\varepsilon_0 = 0$ . Indeed, by multiplying the equation in (1.2) by u and integrating, we see that (1.2) has no positive solution for  $\lambda < \lambda_{\infty}$  when  $q \leq 0$  and  $f(u) = ku^{p-1}$ .

REMARK 1.3. In [15], assuming that f is continuous and nonnegative on  $[0,\infty)$ ,  $\lim_{u\to\infty} f(u)/u = k \in (0,\infty)$ , and f satisfies some additional conditions at 0, Zhang showed via variational method that (1.2) with p=2 has a positive solution for  $\lambda \in (0,\lambda_1/k)$ , provided that  $q \geq 0$ ,  $q \not\equiv 0$ ,  $q\phi_1^{-\beta} \in L^r(\Omega)$ , where n/2 < r. The result in [15] was improved by Hai in [4], using sub- and super solutions approach. The proof in [4] depends on the linearity of the Laplacian and can not be applied to the general case where p>1, except for radial solutions in a ball [6]. Related results on the case where f is nonsingular can be found in Ambrosetti, Arcoya, and Buffoni [1], Ambrosetti and Hess [2], and Ambrosetti, Garcia Azorero, and Peral [3]. The approach in [1, 2, 3] was via bifurcation theory for p=2 in [1, 2] and p>1 in [3]. Thus, Theorems 1.2 and 1.3 provide extensions of corresponding results in [1, 2, 3, 4, 6, 15] to the singular p-Laplacian case. Note that the precise lower bound estimate (\*) has not been obtained in previous literature.

## 2. Preliminary results

Let D be a bounded domain in  $\mathbb{R}^n$  with a smooth boundary  $\partial D$ .

We shall denote the norm in  $C^{k,\alpha}(\bar{D})$  and  $L^k(D)$  by  $|\cdot|_{k,\alpha}$  and  $||\cdot||_k$  respectively. The distance from x to  $\partial D$  is denoted by  $d(x, \partial D)$ .

We first recall the following regularity result in [5, Lemma 3.1], which plays an important role in the proofs of our main results.

**Lemma A.** Let  $h \in L^{\infty}_{loc}(\Omega)$  and suppose there exist numbers  $\gamma \in (0,1)$  and C > 0 such that

$$(3.1) |h(x)| \le \frac{C}{d^{\gamma}(x)}$$

for a.e.  $x \in \Omega$ . Let  $u \in W_0^{1,p}(\Omega)$  be the solution of

(3.2) 
$$\begin{cases} -\Delta_p u = h & in \quad \Omega, \\ u = 0 & on \quad \partial \Omega. \end{cases}$$

Then there exist constants  $\alpha \in (0,1)$  and  $\tilde{M} > 0$  depending only on C,  $\gamma$ ,  $\Omega$  such that  $u \in C^{1,\alpha}(\bar{\Omega})$  and  $|u|_{1,\alpha} < \tilde{M}$ .

Let

$$Lu = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left( a_{ij}(x) \frac{\partial u}{\partial x_j} \right),$$

where  $a_{ij} \in C^{0,\alpha}(\bar{D})$ ,  $1 \le i, j \le n$ , for some  $\alpha \in (0,1)$ , and suppose there exist constants  $m_0, m_1 > 0$  such that

$$(2.1) |a_{ij}|_{0,\alpha} \le m_1$$

for  $1 \le i, j \le n$ , and

(2.2) 
$$\sum_{i,j=1}^{n} a_{ij} \xi_{i} \xi_{j} \ge m_{0} |\xi|^{2}$$

for all  $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ .

**Lemma 2.1.** Let  $h \in L^1(D)$  and suppose there exist constants C > 0 and  $\gamma \in (0, 1)$  such that

$$(2.3) |h(x)| \le \frac{C}{d^{\gamma}(x, \partial D)}$$

for a.e.  $x \in D$ . Let  $w \in H_0^1(D)$  be the solution of

(2.4) 
$$\begin{cases} Lw = h & in \quad D, \\ w = 0 & on \quad \partial D. \end{cases}$$

Then there exist constants  $\beta \in (0, 1)$  and  $\tilde{M} > 0$  depending only on  $m_0$ ,  $m_1$ , C,  $\gamma$ , D, n, such that  $w \in C^{1,\beta}(\bar{D})$  and

$$|w|_{1,\beta} \leq \tilde{M}$$
.

Proof. Let  $\phi \in C^1(\bar{D})$  be the solution of

$$L\phi = 1$$
 in  $D$ ,  $\phi = 0$  on  $\partial D$ .

Then there exists a constant  $C_0 > 0$  independent of  $a_{ij}$  such that  $\phi(x) \leq C_0 d(x, \partial D)$  for all  $x \in D$ . Let  $a = 2^{1/(1-\gamma)} \|\phi\|_{\infty}$  and  $h_0 \colon [0, a] \to \mathbb{R}$  satisfy

$$\begin{cases} -h_0'' = \frac{1}{t^{\gamma}}, & 0 < t < a, \\ h_0(0) = 0, & h_0'(a) = 0. \end{cases}$$

Note that  $h_0(t) = (t/(1-\gamma))(a^{1-\gamma} - t^{1-\gamma}/(2-\gamma))$ . A calculation shows that

$$L(h_0(\phi)) = -h_0''(\phi) \sum_{i,j=1}^n a_{ij} \frac{\partial \phi}{\partial x_i} \frac{\partial \phi}{\partial x_j} + h_0'(\phi)$$

$$\geq \frac{m_0}{\phi^{\gamma}} |\nabla \phi|^2 + \frac{a^{1-\gamma} - \phi^{1-\gamma}}{1-\gamma} \geq \frac{m_0}{\phi^{\gamma}} |\nabla \phi|^2 + \frac{a^{1-\gamma}}{2(1-\gamma)} \geq \frac{m_2}{d^{\gamma}(x, \partial D)},$$

where  $m_2$  is independent of  $a_{ij}$ . By the weak comparison principle ([11, Lemma A.2], [13, Lemma 3.1]),

$$|w| \leq \frac{C}{m_2} h_0(\phi)$$
 in  $D$ ,

i.e. w is bounded in D. By Lemma A, the problem

$$\begin{cases} -\Delta z = h & \text{in } D, \\ z = 0 & \text{on } \partial D, \end{cases}$$

has a solution  $z \in C^{1,\alpha}(\bar{D})$  for some  $\alpha \in (0, 1)$ . Since w satisfies

$$-\operatorname{div}(A(x, \nabla w) - \nabla z) = 0$$
 in  $D$ ,

where  $A = (A_1, \ldots, A_n)$ ,  $A_i(x, \eta) = \sum_{j=1}^n a_{ij}(x)\eta_j$ ,  $\eta = (\eta_1, \ldots, \eta_n)$ , the result now follows from Lieberman [8, Theorem 1].

**Lemma 2.2.** Let h satisfy (2.3),  $h \ge 0$ ,  $h \ne 0$ , and let  $w \in H_0^1(D)$  be the solution of (2.4). Then there exists a constant  $k_0 > 0$  depending only on h,  $m_0$ ,  $m_1$ , C,  $\gamma$ , D, n such that

$$w(x) \ge k_0 d(x, \partial D)$$

for all  $x \in D$ .

Proof. Let  $\Lambda$  be the set of all solutions w of (2.4) among the coefficients  $a_{ij}$  that satisfy (2.1) and (2.2). By the strong maximum principle, w > 0 in  $\Omega$  and  $\partial w/\partial v < 0$  on  $\partial D$ . By Lemma 2.1,  $w \in C^{1,\beta}(\bar{D})$  and there exists a constant  $\tilde{M} > 0$  such that  $|w|_{1,\beta} \leq \tilde{M}$  for all  $w \in \Lambda$ . Since  $\Lambda$  is closed in  $C^1(\bar{D})$ ,  $\Lambda$  is compact in  $C^1(\bar{D})$ . Define  $G: \Lambda \to \mathbb{R}$  by

$$Gw = \inf_{x \in D} \frac{w(x)}{d(x, \partial D)}.$$

Then G is continuous and positive on  $\Lambda$ , and therefore has a positive minimum, which completes the proof.

**Lemma 2.3.** Let  $f, g \in L^1(D)$  satisfy

$$|f(x)|, |g(x)| \le \frac{C}{d^{\gamma}(x, \partial D)}$$

for a.e.  $x \in \Omega$  for some constant C > 0. Let u, v be the solutions of (1.1). Then  $|u - v|_{0,1} \to 0$  as  $||f - g||_1 \to 0$ .

Proof. Note that  $f, g \in L^1(\Omega)$  (see [7, p.6]). By Lemma A,  $u, v \in C^{1,\alpha}(\bar{D})$  for some  $\alpha \in (0,1)$ , and there exists a constant  $\tilde{M} > 0$  independent of u, v, such that  $|u|_{1,\alpha}, |v|_{1,\alpha} \leq \tilde{M}$ . Multiplying the equation

$$-(\Delta_p u - \Delta_p v) = f - g \quad \text{in} \quad \Omega$$

by u - v and integrating, we obtain

$$\int_{\Omega} (|\nabla u|^{p-2} \nabla u - |\nabla u|^{p-2} \nabla u) \cdot \nabla (u-v) \, dx = \int_{\Omega} (f-g)(u-v) \, dx.$$

Using the inequality [10, Lemma 30.1],

$$(|x| + |y|)^{2 - \min(p, 2)} (|x|^{p-2}x - |y|^{p-2}y) \cdot (x - y) \ge c|x - y|^{\max(p, 2)}$$

for  $x, y \in \mathbb{R}^n$ , where c is a positive constant depending only on p, we obtain

$$\int_{\Omega} |\nabla (u-v)|^r dx \le c_1 \|f-g\|_{L^1} \|u-v\|_{\infty} \le c_2 \|f-g\|_{L^1},$$

where  $r = \max(p, 2)$  and  $c_1$ ,  $c_2$  are constants depending only on p,  $\tilde{M}$ . Hence

$$\|u-v\|_2 \to 0$$

as  $||f - g||_1 \to 0$ , and since  $C^{1,\alpha}(\bar{D})$  is compactly imbedded in  $C^1(\bar{D})$ , Lemma 2.3 follows.

# 3. Proofs of the main results

Proof of Theorem 1.1. By the strong maximum principle, there exists a constant  $\delta > 0$  such that  $v \geq \delta d$  in  $\Omega$ . Let  $\varepsilon \in [0, 1)$ ,  $m_{\varepsilon} = \min(m, \varepsilon)$  and  $\tilde{h} = \min(h, 1/d^{\gamma})$ . Then

$$f \geq g + m_{\varepsilon} \tilde{h} - \frac{M\varepsilon}{d^{\gamma}} \equiv \tilde{f}$$
 in  $\Omega$ .

Let  $\tilde{u}$  satisfy

$$-\Delta_p \tilde{u} = \tilde{f}$$
 in  $\Omega$ ,  $\tilde{u} = 0$  on  $\partial \Omega$ .

Then  $u \geq \tilde{u}$  in  $\Omega$ , by the weak comparison principle. Since

$$|\tilde{f}| \le \frac{C+1+M}{d\gamma} \equiv \frac{\tilde{C}}{d\gamma}$$

and

$$\int_{\Omega} |\tilde{f} - g| \, dx \le \varepsilon (1 + M) \int_{\Omega} \frac{1}{d^{\gamma}} \, dx,$$

it follows that  $\tilde{f} \to g$  in  $L^1(\Omega)$  as  $\varepsilon \to 0$ . Here we have used the fact that  $1/d^{\gamma} \in L^1(\Omega)$  (see e.g. [7, p.6]). Using Lemma 2.3, we see that  $\tilde{u} \to v$  in  $C^1(\bar{\Omega})$  as  $\varepsilon \to 0$ . Hence

$$u \ge \tilde{u} \ge \frac{\delta d}{2}$$
 in  $\Omega$ 

if  $\varepsilon$  is sufficiently small, which we shall assume.

By Lemma A, there exist constants  $\tilde{M} > 0$  and  $\alpha \in (0,1)$  independent of u, v such that  $|u|_{1,\alpha}$ ,  $|v|_{1,\alpha} \leq \tilde{M}$ . Thus

(3.1) 
$$\frac{\delta d}{2} \le u, \quad v \le \tilde{M}d \quad \text{in} \quad \Omega,$$

and therefore

$$u \geq c_0 v$$
 in  $\Omega$ ,

where  $c_0 = \delta/(2\tilde{M})$ .

Let c be the largest number such that  $u \ge cv$  in  $\Omega$ , and suppose that  $c \le 1$ . From (3.1), it follows that

$$\frac{\partial u}{\partial v}, \frac{\partial v}{\partial v} \leq -\frac{\delta}{2}$$
 on  $\partial \Omega$ .

For  $t \in [0, 1]$ , let  $w_t = t \nabla u + (1 - t)c \nabla v$ . Then

$$\begin{split} w_t \cdot v &= t \frac{\partial u}{\partial v} + (1-t)c \frac{\partial v}{\partial v} \leq -\frac{tc\delta}{2} - \frac{(1-t)c\delta}{2} \\ &= -\frac{c\delta}{2} \leq -\frac{c_0\delta}{2} \quad \text{on} \quad \partial \Omega, \end{split}$$

which implies

$$|w_t| \ge \frac{c_0 \delta}{2} \equiv c_1 \quad \text{on} \quad \partial \Omega$$

for all  $t \in [0, 1]$ .

Let  $x \in \Omega$  and  $x_0 \in \partial \Omega$  be such that  $d(x) = |x - x_0|$ . Since  $|w_t|_{0,\alpha} \leq \tilde{M}$ , it follows that

$$|w_t(x) - w_t(x_0)| \le \tilde{M} d^{\alpha}(x),$$

which, together with (3.2), implies

$$|w_t(x)| \ge c_1 - \tilde{M} d^{\alpha}(x) \ge \frac{c_1}{2} \equiv c_2$$

for  $x \in \Omega_{\eta} \equiv \{x \in \Omega : d(x) < \eta\}$ , where  $\eta = (c_1/2\tilde{M})^{1/\alpha}$ . Next, we have

$$(3.4) -(\Delta_p u - \Delta_p(cv)) = f - c^{p-1}g in \Omega,$$

and the left hand side of (3.4) can be linearized as L(u-cv), where

$$Lw = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left( a_{ij}(x) \frac{\partial w}{\partial x_j} \right)$$

and  $a_{ij}(x) = \int_0^1 (\partial a^i/\partial z_j)(t\nabla u + (1-t)c\nabla v) dt$ ,  $a^i(z) = |z|^{p-2}z$ .

Note that, in view of (3.3) and the fact that  $|w_t|_{0,\alpha} \leq \tilde{M}$  for  $t \in [0, 1]$ , the coefficients  $a_{ij}$  satisfy (2.1) and (2.2) in  $\Omega_{\eta}$  with  $m_0 = (p-1) \min(\tilde{M}^{p-2}, c_2^{p-2})$ .

Let  $w_0$ ,  $w_1$  be the solutions of

$$Lw_0 = \tilde{h} \text{ in } \Omega_{\eta}, \quad w_0 = 0 \text{ on } \partial \Omega_{\eta},$$

and

$$Lw_1=rac{1}{d^\gamma(x,\,\partial\Omega_\eta)}$$
 in  $\Omega_\eta,\quad w_1=0$  on  $\partial\Omega_\eta$ 

respectively. By Lemmas 2.1 and 2.2, there exist positive constants  $M_0$  and  $k_0$  such that

(3.5) 
$$w_0 \ge k_0 d(x, \partial \Omega_n), \quad w_1 \le M_0 d(x, \partial \Omega_n) \quad \text{in} \quad \Omega_n.$$

Since  $c \le 1$  and  $d(x) \ge d(x, \partial \Omega_{\eta})$  for  $x \in \Omega_{\eta}$ ,

$$L(u-cv) \ge f-g \ge m \left( \tilde{h} - \frac{\varepsilon}{d^{\gamma}(x, \partial \Omega_n)} \right)$$
 in  $\Omega_{\eta}$ ,

and since  $u \ge cv$  on  $\partial \Omega_{\eta}$ , it follows from the weak comparison principle and (3.5) that, for  $x \in \Omega_{\eta/2}$ ,

(3.6) 
$$u - cv \ge m(w_0 - \varepsilon w_1) \ge m(k_0 - \varepsilon M_0)d(x, \partial \Omega_{\eta}) = m(k_0 - \varepsilon M_0)d(x)$$
$$\ge m\left(\frac{k_0}{2}\right)d(x)$$

if  $\varepsilon < k_0/2M_0$ . In particular,

$$u - cv \ge m\left(\frac{k_0}{2}\right)\frac{\eta}{2} \equiv mk_1$$
 when  $d(x) = \frac{\eta}{2}$ .

If  $\varepsilon = 0$  then it follows from

$$-\Delta_p u = f \ge c^{p-1} g = -\Delta_p (cv + mk_1)$$
 in  $\Omega$ 

and  $u \ge cv + mk_1$  on  $\partial(\Omega \setminus \Omega_{n/2})$  that

$$(3.7) u \ge cv + mk_1 \quad \text{in} \quad \Omega \setminus \Omega_{n/2}.$$

Suppose  $\varepsilon > 0$  and  $h \ge a > 0$  in  $\Omega \setminus \Omega_{n/2}$ . Then we have

$$-\Delta_p u = f \ge g + m \left( a - \frac{\varepsilon}{d^\gamma(x)} \right) \ge g + m \left( a - \frac{\varepsilon}{(\eta/2)^\gamma} \right) \ge g \quad \text{in} \quad \Omega \setminus \Omega_{\eta/2},$$

if  $\varepsilon$  is sufficiently small. Hence (3.7) holds by the weak comparison principle. This, together with (3.6), gives the existence of a constant  $\tilde{c} > c$  such that  $u \ge \tilde{c}v$  in  $\Omega$ , a contradiction. Hence c > 1 and therefore u > v in  $\Omega$  and

$$\frac{\partial (u-v)}{\partial v} \le (c-1)\frac{\partial v}{\partial v} < 0 \quad \text{on} \quad \partial \Omega,$$

which completes the proof.

Proof of Theorem 1.2. Let  $\lambda>0$  be such that  $\lambda_{\infty}/2<\lambda<\lambda_{\infty}$ . Let  $c=(\lambda_{\infty}\varepsilon_0/(4k(\lambda_{\infty}-\lambda)))^{1/(p-1)}$  and M be a constant such that M>c. Define

$$\mathbf{K} = v \in C(\overline{\Omega}): c\phi_1 < v < M\phi_1 \text{ in } \Omega$$
.

For each  $v \in \mathbf{K}$ , it follows from Lemma A that the problem

$$\begin{cases} -\Delta_p u = \frac{q(x)}{v^{\beta}} + \lambda f(v) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

has a unique solution  $u \equiv Tv \in C^{1,\alpha}(\bar{\Omega})$  for some  $\alpha \in (0, 1)$  such that  $|u|_{1,\alpha} < \tilde{M}$ , where  $\alpha$ ,  $\tilde{M}$  are independent of  $v \in \mathbf{K}$ . We shall show that  $T \colon \mathbf{K} \to C(\bar{\Omega})$  is a compact operator. In view of the compact embedding of  $C^{1,\alpha}(\bar{\Omega})$  into  $C^{1}(\bar{\Omega})$ , we need only to show that T is continuous. Let  $(v_n)$  be a sequence in  $\mathbf{K}$  such that  $v_n \to v$  in  $C(\bar{\Omega})$ , and let  $u_n = Tv_n$ , u = Tv. Let  $G(w) = q(x)/w^{\beta} + \lambda f(w)$  for  $w \in \mathbf{K}$ . Then

$$G(v_n) \to G(v)$$
 pointwise in  $\Omega$ ,

and it follows from (A2) and (A4) that there exist constants  $K, C_0 > 0$  such that

$$|G(v_n)| \le \frac{q(x)}{(c\phi_1)^{\beta}} + \frac{\lambda_{\infty}K}{(c\phi_1)^{\delta}} \le \frac{C_0}{d^{\gamma}}$$

for all n, where  $\gamma = \max(\beta + \eta, \delta)$ . Hence  $G(v_n) \to G(v)$  in  $L^1(\Omega)$ , and Lemma 2.3 implies  $u_n \to u$  in  $C^1(\bar{\Omega})$ , i.e., T is continuous on K.

Next, we shall show that if  $\lambda$  is sufficiently close to  $\lambda_{\infty}$  and M is large enough then T maps  $\mathbf{K}$  into  $\mathbf{K}$ . By (A2) and (A3), there exists a constant  $M_0 > 0$  such that

$$(3.8) f(z) \ge kz^{p-1} + \varepsilon_0 - \frac{M_0}{z^{\delta}}$$

for all z > 0. Let  $v \in \mathbf{K}$  and u = Tv. Then (3.8) and (A4) imply

$$-\Delta_p u \ge -\frac{L}{(c\phi_1)^\beta d^\eta} + \lambda \left( k(c\phi_1)^{p-1} + \varepsilon_0 - \frac{M_0}{(c\phi_1)^\delta} \right) \quad \text{in} \quad \Omega.$$

Consequently,

$$-\Delta_p \left( \frac{u}{c} \right) \ge -\frac{L_1}{c^{p-1+\beta} \phi_1^{\gamma}} - \frac{\lambda_{\infty} M_0}{c^{p-1+\delta} \phi_1^{\gamma}} + \lambda \left( k \phi_1^{p-1} + \frac{\varepsilon_0}{c^{p-1}} \right) \equiv f_{c,\lambda} \quad \text{in} \quad \Omega,$$

where  $L_1$  is a positive constant such that  $d/\phi_1 \ge (L/L_1)^{1/\eta}$ .

Let  $\bar{u}_c$ ,  $\bar{z}_c$  be the solutions of

$$-\Delta_p \bar{u}_c = f_{c,\lambda}$$
 in  $\Omega$ ,  $\bar{u}_c = 0$  on  $\partial \Omega$ ,

and

$$-\Delta_p \bar{z}_c = \lambda \left( k \phi_1^{p-1} + \frac{\varepsilon_0}{2c^{p-1}} \right) \equiv g_{c,\lambda} \text{ in } \Omega, \quad \bar{z}_c = 0 \text{ on } \partial\Omega,$$

respectively. Then  $u \ge c\bar{u}_c$  in  $\Omega$ . Note that

$$|f_{c,\lambda}|, |g_{c,\lambda}| \leq \frac{\tilde{C}}{\phi_1^{\gamma}},$$

where  $\tilde{C} > 0$  depends only on  $\varepsilon_0$ , k, p,  $L_1$ ,  $\lambda_{\infty}$ ,  $M_0$ . Since

$$f_{c,\lambda} - g_{c,\lambda} \ge \frac{1}{c^{p-1}} \left[ \frac{\lambda_\infty \varepsilon_0}{4} - \left( \frac{L_1}{c^\beta} + \frac{\lambda_\infty M_0}{c^\delta} \right) \frac{1}{\phi_1^{\gamma}} \right] \quad \text{in} \quad \Omega,$$

and

$$c^{1-p} \le \frac{2k}{\varepsilon_0},$$

it follows from Theorem 1.1 with  $m=c^{1-p},\ M=2k/\varepsilon_0,\ h=\lambda_\infty\varepsilon_0/4,\ g_0=(\lambda_\infty/2)k\phi_1^{p-1},$  that  $\bar u_c>\bar z_c$  in  $\Omega$  for  $c\gg 1$ , which implies

$$(3.9) u \ge c\overline{z}_c \equiv \tilde{z}_c \quad \text{in} \quad \Omega.$$

By the choice of c,

$$(\lambda_1 - \lambda k)c^{p-1} = \frac{\lambda_\infty \varepsilon_0}{4} \le \frac{\lambda \varepsilon_0}{2}.$$

Hence

$$-\Delta_p \tilde{z}_c = \lambda k \left( (c\phi_1)^{p-1} + \frac{\varepsilon_0}{2k} \right) \ge \lambda_1 (c\phi_1)^{p-1} \quad \text{in} \quad \Omega,$$

and since

$$-\Delta_p(c\phi_1) = \lambda_1(c\phi_1)^{p-1} \quad \text{in} \quad \Omega,$$

it follows that

(3.10) 
$$\tilde{z}_c \geq c\phi_1$$
 in  $\Omega$ .

Hence, if  $\lambda$  is sufficiently close to  $\lambda_{\infty}$ , it follows from (3.9) and (3.10) that  $u \geq c\phi_1$  in  $\Omega$ .

Next, let  $\tilde{\lambda}_{\infty} > 0$  and b > 1 be such that  $\lambda b < \tilde{\lambda}_{\infty} < \lambda_{\infty}$ . In view of (A1) and (A2), there exists a constant D > 0 such that

$$f(z) \le kbz^{p-1} + \frac{D}{z^{\delta}}$$

for all z > 0. Hence

$$-\Delta_p u \le \lambda k b (M\phi_1)^{p-1} + \frac{\lambda_\infty D + L_1}{\phi_1^{\gamma}} \quad \text{in} \quad \Omega,$$

for c > 1, which implies

$$-\Delta_p\left(\frac{u}{M}\right) \leq \lambda k b \phi_1^{p-1} + \frac{\lambda_\infty D + L_1}{M^{p-1} \phi_1^{\gamma}} \equiv f_M \quad \text{in} \quad \Omega.$$

Let  $\bar{u}_M$  be the solution of

$$-\Delta_p(\bar{u}_M) = f_M \text{ in } \Omega, \quad \bar{u}_M = 0 \text{ on } \partial\Omega.$$

Then  $u \leq M\bar{u}_M$  in  $\Omega$ . Since

$$-\Delta_p \phi_1 = \lambda_1 \phi_1^{p-1} \quad \text{in} \quad \Omega,$$

and

$$\lambda_{1}\phi_{1}^{p-1} - f_{M} = (\lambda_{1} - \lambda kb)\phi_{1}^{p-1} - \frac{\lambda_{\infty}D + L_{1}}{M^{p-1}\phi_{1}^{\gamma}}$$

$$\geq k(\lambda_{\infty} - \tilde{\lambda}_{\infty})\phi_{1}^{p-1} - \frac{\lambda_{\infty}D + L_{1}}{M^{p-1}\phi_{1}^{\gamma}},$$

it follows from Theorem 1.1 with  $u = \phi_1$ ,  $v = \bar{u}_M$ , m = 1,  $h = k(\lambda_\infty - \tilde{\lambda}_\infty)\phi_1^{p-1}$  that  $\bar{u}_M \le \phi_1$  in  $\Omega$  for  $M \gg 1$ . Hence  $u \le M\phi_1$  in  $\Omega$  for  $M \gg 1$ . Thus  $T: \mathbf{K} \to \mathbf{K}$  and the result now follows from the Schauder fixed point theorem.

Proof of Theorem 1.3. Let  $z \in C^1(\bar{\Omega})$  be the solution of

$$-\Delta_p z = \frac{cq(x)}{\phi_1^{\beta}} \text{ in } \Omega, \quad z = 0 \text{ on } \partial\Omega,$$

where  $c \in (0, 1)$ . By Lemma 2.3,  $z \le \phi_1$  in  $\Omega$  if c is sufficiently small, which we assume. Let M > 1 be a large constant to be determined later and define

$$\mathbf{C} = \{ v \in C(\overline{\Omega}) \colon v \le M\phi_1 \text{ in } \Omega \}.$$

Fix  $\lambda \in (0, \lambda_{\infty})$  and choose b > 1 so that  $\lambda b < \lambda_{\infty}$ . For each  $v \in \mathbb{C}$ , the problem

$$\begin{cases} -\Delta_p u = \frac{q(x)}{\max^{\beta}(v, z)} + \lambda f(\max(v, z)) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

has a unique solution  $u \equiv Sv \in C^{1,\alpha}(\bar{\Omega})$  for some  $\alpha \in (0, 1)$  such that  $|u|_{1,\alpha} < \tilde{M}$ , where  $\alpha$ ,  $\tilde{M}$  are independent of  $v \in \mathbb{C}$ . Since  $z \geq \varepsilon_1 d$  in  $\Omega$  for some  $\varepsilon_1 > 0$ , it follows as in the proof of Theorem 1.2 that  $S \colon \mathbb{C} \to C(\bar{\Omega})$  is a compact operator. We shall show that  $S \colon \mathbb{C} \to \mathbb{C}$  if M is large enough. Note that any fixed point of S is positive in  $\Omega$ , by the strong maximum principle. Let  $v \in \mathbb{C}$  and u = Sv. Since there exists a constant D > 0 such that

$$f(t) \le kbt^{p-1} + \frac{D}{t^{\delta}}$$

for t > 0, it follows that

$$-\Delta_p u \leq \frac{L_1}{z^{\beta+\eta}} + \lambda \left( kb(M\phi_1)^{p-1} + \frac{D}{z^{\delta}} \right) \quad \text{in} \quad \Omega,$$

where  $L_1$  is defined in the proof of Theorem 1.2. This implies

$$-\Delta_p\left(\frac{u}{M}\right) \leq \lambda k b \phi_1^{p-1} + \left(\frac{L_1 + \lambda_\infty D}{M^{p-1}}\right) \frac{1}{z^{\gamma}} \equiv g_M,$$

where  $\gamma = \max(\beta + \eta, \delta)$ . Let  $u_M$  be the solution of

$$-\Delta_p(u_M) = g_M \text{ in } \Omega, \quad u_M = 0 \text{ on } \partial\Omega.$$

Then  $u \leq Mu_M$  in  $\Omega$ . Since

$$\lambda_1 \phi_1^{p-1} - g_M \ge k(\lambda_\infty - \lambda b) \phi_1^{p-1} - \left(\frac{L_1 + \lambda_\infty D}{M^{p-1}}\right) \frac{1}{\tau^\gamma},$$

it follows from Theorem 1.1 that  $u_M \leq \phi_1$  in  $\Omega$  for  $M \gg 1$ , which implies

$$u \leq Mu_M \leq M\phi_1$$
 in  $\Omega$ 

i.e.  $u \in \mathbb{C}$  for  $M \gg 1$ . By the Schauder fixed point theorem, S has a fixed point  $u_{\lambda}$  in  $\mathbb{C}$ . We claim that  $u_{\lambda} \geq z$  in  $\Omega$ . Let  $D = \{x \in \Omega : u_{\lambda}(x) < z(x)\}$  and suppose that  $D \neq \emptyset$ . Then, since  $f \geq 0$ ,

$$-\Delta_p u_{\lambda} \ge \frac{q(x)}{u_{\lambda}^{\beta}} \ge \frac{q(x)}{z^{\beta}} \ge \frac{q(x)}{\phi_1^{\beta}} \ge -\Delta_p z$$
 in  $D$ .

Since  $u_{\lambda} = z$  on  $\partial D$ , this implies  $u_{\lambda} \geq z$  in D, a contradiction. Hence  $D = \emptyset$  and therefore  $u_{\lambda} \geq z$  in  $\Omega$  as claimed. Thus  $u_{\lambda}$  is a positive solution of (1.2).

Next, suppose  $f(u) \ge ku^{p-1}$  for u > 0. Let  $\lambda \ge \lambda_{\infty}$  and let u be a positive solution of (1.2). Then u > 0 in  $\Omega$  and  $\partial u/\partial v < 0$  on  $\partial \Omega$  by the strong maximum principle. Let c > 0 be the largest number so that  $u \ge c\phi_1$  in  $\Omega$ . Then

$$-\Delta_p u \ge \frac{q(x)}{\|u\|_{\infty}^{\beta}} + \lambda k (c\phi_1)^{p-1} \ge \frac{q(x)}{\|u\|_{\infty}^{\beta}} + \lambda_1 (c\phi_1)^{p-1} \quad \text{in} \quad \Omega,$$

and since

$$-\Delta_p(c\phi_1) = \lambda_1(c\phi_1)^{p-1}$$
 in  $\Omega$ ,

it follows from Theorem 1.1 with  $\varepsilon = 0$  that  $u > c\phi_1$  in  $\Omega$  and

$$\frac{\partial u}{\partial v} < \frac{\partial (c\phi_1)}{\partial v} < 0$$
 on  $\partial \Omega$ .

Hence there exists a constant  $\tilde{c} > c$  such that  $u \geq \tilde{c}\phi_1$  in  $\Omega$ , a contradiction. Thus (1.2) has no positive solution for  $\lambda \geq \lambda_{\infty}$ . We shall verify next that  $\lim_{\lambda \to \lambda_{\infty}^{-}} \|u_{\lambda}\|_{\infty} = \infty$ . Suppose otherwise, then there exist a sequence  $(\lambda_n) \subset (0, \lambda_{\infty})$  and a constant C > 0 such that  $\lambda_n \to \lambda_{\infty}^{-}$  and  $\|u_n\|_{\infty} < C$  for all n, where  $u_n \equiv u_{\lambda_n}$ . Since

$$-\Delta_p u_n \ge \frac{q(x)}{u_n^{\beta}} \ge \frac{q(x)}{C^{\beta}}$$
 in  $\Omega$ ,

it follows that there exists a constant  $\tilde{k} > 0$  such that  $u_n \ge \tilde{k}\phi_1$  in  $\Omega$  for all n. Hence there exists a constant  $\tilde{C} > 0$  such that

$$\frac{q(x)}{u_n^{\beta}} + \lambda f(u_n) \le \frac{\tilde{C}}{\phi_1^{\gamma}} \quad \text{in} \quad \Omega$$

for all n. By Lemma A, there exist constants  $\alpha \in (0, 1)$  and  $\tilde{M} > 0$  such that  $u_n \in C^{1,\alpha}(\bar{\Omega})$  and  $|u_n|_{1,\alpha} < \tilde{M}$  for all n. By going to a subsequence, we assume that there

exists  $u \in C^1(\bar{\Omega})$  such that  $u_n \to u$  in  $C^1(\bar{\Omega})$ . Let  $\psi \in W_0^{1,p}(\Omega)$ . Then

(3.11) 
$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla \psi \ dx = \int_{\Omega} \left( \frac{q(x)}{u_n^{\beta}} + \lambda_n f(u_n) \right) \psi \ dx$$

for all n. Let  $n \to \infty$  in (3.11) and using the Lebesgue dominated convergence theorem, we obtain

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \psi \ dx = \int_{\Omega} \left( \frac{q(x)}{u^{\beta}} + \lambda_{\infty} f(u) \right) \psi \ dx$$

i.e. u is a positive solution of

$$\begin{cases} -\Delta_p u = \frac{q(x)}{u^{\beta}} + \lambda_{\infty} f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

a contradiction. This completes the proof of Theorem 1.3.

ACKNOWLEDGEMENT. The author thanks the referee for pointing out some errors in the original manuscript along with suggestions for improvement.

#### References

- [1] A. Ambrosetti, D. Arcoya and B. Buffoni: *Positive solutions for some semi-positone problems via bifurcation theory*, Differential Integral Equations 7 (1994), 655–663.
- [2] A. Ambrosetti and P. Hess: Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (1980), 411–422.
- [3] A. Ambrosetti, J. Garcia Azorero and I. Peral: Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219–242.
- [4] D.D. Hai: On an asymptotically linear singular boundary value problems, Topol. Methods Nonlinear Anal. 39 (2012), 83–92.
- [5] D.D. Hai: On a class of singular p-Laplacian boundary value problems, J. Math. Anal. Appl. 383 (2011), 619–626.
- [6] D.D. Hai and J.L. Williams: Positive radial solutions for a class of quasilinear boundary value problems in a ball, Nonlinear Anal. 75 (2012), 1744–1750.
- [7] A.C. Lazer and P.J. McKenna: On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), 721–730.
- [8] G.M. Lieberman: Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219.
- [9] M. Lucia and S. Prashanth: Strong comparison principle for solutions of quasilinear equations, Proc. Amer. Math. Soc. 132 (2004), 1005–1011.
- [10] T. Oden: Qualitative Methods in Nonlinear Mechanics, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1986.
- [11] S. Sakaguchi: Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 403–421.

- [12] P. Tolksdorf: Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126–150.
- [13] P. Tolksdorf: On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations 8 (1983), 773–817.
- [14] J.L. Vázquez: A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.
- [15] Z. Zhang: Critical points and positive solutions of singular elliptic boundary value problems,J. Math. Anal. Appl. 302 (2005), 476–483.

Department of Mathematics and Statistics Mississippi State University Mississippi State MS 39762 U.S.A.