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Abstract
Consider the problems

—Apu=finQ, u=00n0%Q,
—Apv=g0inQ, v=00n93L,

where @ is a bounded domain irR" with smooth boundarydQ, A,z =

div(|Vz|P~2Vz), p > 1. We prove a strong comparison principle that allofvs g to
change sign. An application to singular asymptoticgihiinear boundary problems
is given.

1. Introduction

Consider the problems
—Apu=fin Q, u=0o0n9<,
(1) {—Apv =gin Q, v=0o0n3g,

where Q is a bounded domain iR" with a smooth boundargQ € C2* for some
a € (0, 1), Apz =div(|VZ|P?Vz), p> 1, and f,g: @ > R.
In this paper, we shall establish a strong comparison gi@ci

au

u>v in  and — < —
ov ov

on 9%,

without requiring thatf > g a.e. inQ2. Here v denotes the outer unit normal vector
on 9L2. It should be noted that the assumptiohs> g and f # g in Q are needed in
previous literature (see e.g. [9] and the references therbie also provide an applica-
tion to the existence of positive solutions for a class ofyslar p-Laplacian boundary
value problems with asymptoticallp-linear nonlinearity.

Let d(x) = d(x, 9€2) be the distance from to 9<2, we prove the following result:
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394 D.D. Hal

Theorem 1.1. Let f, g, go € LY() with g> go > 0, and @ # 0. Suppose there
exist constants G- 0 and y € (0, 1) such that

1001900 = gress

for a.e. xe @, and there exist a function & C(2), h > 0, and constantg > 0, m,M >
0 with m < M such that

£ .
f—gzm(h—d—V) in Q.

Let u v e WS"’(Q) be solutions of(1.1). Then there exists a positive constagtde-
pending on n 2, p, ¥, C, M, h, go (but not on nj, such that
. au ov
u>v in  and — < — on 9Q
ov ov
for ¢ < eo. If ¢ =0, the result holds under the weaker condition that h is a noatieg
nontrivial measurable function if2.

REMARK 1.1. Wheng = 0, the conclusion of Theorem 1.1 holds under the
weaker assumption thdt is a nonnegative nontrivial measurable functionn In
this casegq is independent oM. Indeed, letl, v be the solutions of

in 2, 0=0o0n9d%,

respectively, wheré = min(h, 1/d). By the strong maximum principle [12, 14], there
exists a constand > 0 such thatv > 8d in Q. Using Lemma 2.3 in Section 2, we
deduce that

d>_d

N o
NI >

0d>v—
if ¢ is sufficiently small. This implies
u>mveP-g > ml/(p’l)gd >0 in @
and du/dv < 0 on 9.

As an application of Theorem 1.1, consider the boundaryevaltwblem

(1.2) — pu=¥+kf(u) in Q,

u=20 on 9%,
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where g € (0, 1), g, f satisfy the following assumptions:
(A1) f: (0,00) — R is continuous and there exists a constient 0 such that

u—oo YP—

k.

(A2) There exists a constaidte (0, 1) such that

lim supu’| f (u)| < oo.

u—0+

(A3) There exist constants, eg > 0 such that
f(u >kuPt4+g for us A

(A4) g: @ — R is measurable and there exist constamtsL > 0 with g + n < 1,
such that

la()| = IS

for a.e.x € Q.

Let 1, be the first eigenvalue of A, with Dirichlet boundary condition, and lef;
be the corresponding positive eigenfunction with ||.o = 1. Note that, sincé¢,/dv <
0 on 92, Theorem 1.1 holds ifl is replaced byp;. Let A, = A1/k. Then we have

Theorem 1.2. Let (A1)—(A4) hold. Then there exists a constant- 0 such that
for Apo — & < A < Aoo, problem (1.2) has a positive solution ;ue C*() for some
k € (0, 1) with

bty VOV
> [
*) bz (22s) wnoa

Theorem 1.3. Let q> 0, q # 0. Suppose £ 0, (A2), (A4) hold, and

fu _

limsup—— =k
pupfl

uU—o00

for some ke (0, 00). Then problem(1.2) has a positive solution ufor A < A. If, in
addition,

f(u)>kuP! forall u=>0,
then (1.2) has no positive solution fok > A.,, and

[Uiloo =00 as A —Ag.
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EXAMPLE 1.1. (i) Let f(u) = —1/u® + uP~t + u9, wheres € (0, 1) and 0<
g < p—1. Thenf satisfies (A1)—(A3) withk = 1, and so (1.2) has a positive solution
when A is sufficiently close tov; and A < A3, by Theorem 1.2.
(i) Let f(u) = 1/u’+uP~t(m|sinu|+e+W) wheres € (0,1), m> 0. Then it follows
from Theorem 1.3 that, im > 0, (1.2) has a positive solution for < A;/(m+ 1), and,
if m=0, (1.2) has a positive solution if and only if < ;.

REMARK 1.2. It should be noted that Theorem 1.2 may not be true whenO.
Indeed, by multiplying the equation in (1.2) land integrating, we see that (1.2) has
no positive solution fo. < Ao, whenqg < 0 and f (u) = kuPL.

REMARK 1.3. In [15], assuming thaf is continuous and nonnegative on ¢0),
limy_e f(U)/u =k e (0,00), and f satisfies some additional conditions at 0, Zhang
showed via variational method that (1.2) with= 2 has a positive solution fok e
(0,A1/Kk), provided thatg > 0, g # 0, qul”g € L"(2), wheren/2 <r. The result in [15]
was improved by Hai in [4], using sub- and super solutionsr@ggh. The proof in [4]
depends on the linearity of the Laplacian and can not be egpb the general case
where p > 1, except for radial solutions in a ball [6]. Related resoltsthe case where
f is nonsingular can be found in Ambrosetti, Arcoya, and Buiffid], Ambrosetti and
Hess [2], and Ambrosetti, Garcia Azorero, and Peral [3]. HEpproach in [1, 2, 3]
was via bifurcation theory fop =2 in [1, 2] andp > 1 in [3]. Thus, Theorems 1.2
and 1.3 provide extensions of corresponding results in,[3, 2, 6, 15] to the singular
p-Laplacian case. Note that the precise lower bound estifrathas not been obtained
in previous literature.

2. Preliminary results

Let D be a bounded domain iR" with a smooth boundaryD.

We shall denote the norm i6%<(D) and LX(D) by |- [k, and|| - ||k respectively.
The distance fronx to dD is denoted byd(x, 9D).

We first recall the following regularity result in [5, Lemmal3 which plays an
important role in the proofs of our main results.

Lemma A. Let he L (€2) and suppose there exist numbers (0,1)and C> 0
such that

(3.1 lh(x)| =

dr (x)

for a.e. xe Q. Let ue W;"P(Q) be the solution of

(3.2) {—Apu=h in ,

u=2~0 on 02Q.
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Then there exist constanise (0, 1) and M > 0 depending only on Cy, € such that
ue C(Q) and |ul1, < M.

Let

9 au
==Y (a0 )

i,j=1

wherea;; € C%(D), 1<i,j <n, for somex € (0,1), and suppose there exist constants
mp, My > 0 such that

(2.1) |aij loe = My
for 1<i,j <n, and
n
(2.2) > ajgig = molg |
ij=1
for all £ = (&1,...,&) e R".

Lemma 2.1. Let he LYD) and suppose there exist constants>00 and y €
(0, 1) such that

C
(2.3) Ih(x)| < @7 (x, 9D)

for a.e. xe D. Letw € H}(D) be the solution of

2.4) {Lw:h in D,

w=20 on 0D.

Then there exist constangse (0, 1) and M > 0 depending only on g my, C, y, D,
n, such thatw € C#(D) and

lwlys < M.
Proof. Let¢ € C1(D) be the solution of
Lp=1inD, ¢=0o0naD.

Then there exists a consta@ > 0 independent o&;j such thatp(x) < Cod(x, dD)
for all x € D. Let a = 2Y47)||¢||o, andho: [0, a] — R satisfy

1

—hg=—, O0<t<a,
ty

ho(0) =0, hy(a) = 0.
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Note thathg(t) = (t/(1— y))(@"" —t¥7/(2—y)). A calculation shows that

: dp 0
(o) = ~ge) " a2 22 4y
i,j=1 A
> Moy |2+M>@|V 24 ay M
= Ve 1=y~ "t i) @(x D)’

wherem; is independent of;;. By the weak comparison principle ([11, Lemma A.2],
[13, Lemma 3.1]),

C
< —nh in D
] = ho(9) ,
i.e. w is bounded inD. By Lemma A, the problem

—Az=h in D,
z=0 on aD,

has a solutiorz € C1#(D) for somea € (0, 1). Sincew satisfies
—div(A(X, Vw)—Vz) =0 in D,

where A = (Aq, ..., Ay, A(x, n) = Z?:l aj(X)nj, n = (1, ..., n), the result now
follows from Lieberman [8, Theorem 1]. O

Lemma 2.2. Let h satisfy(2.3),h >0, h# 0, and letw € Hj(D) be the solution
of (2.4). Then there exists a constarg k¥ 0 depending only on hmg, my, C, y, D,
n such that

w(x) = kod(x, 3D)

for all x € D.

Proof. LetA be the set of all solutions of (2.4) among the coefficients; that
satisfy (2.1) and (2.2). By the strong maximum principle> 0 in Q anddw/dv <0
on 9D. By Lemma 2.1,w € C1#(D) and there exists a constaM > 0O such that
lw|1s <M for all w e A. SinceA is closed inCY(D), A is compact inC'(D). Define
G: A—>R by

. w(X)
Gw = 3x aD)°

Then G is continuous and positive o, and therefore has a positive minimum, which
completes the proof. O
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Lemma 2.3. Let f, g e LY(D) satisfy

C
O 19(X)] = d7(x, aD)

for a.e. xe @ for some constant G- 0. Let u v be the solutions of(1.1). Then
|U—v|0'1—)0 as ||f —g||1—>0

Proof. Note thatf, g € LX) (see [7, p.6]). By Lemma Ay, v € C¥(D) for
somex € (0,1), and there exists a constavit> 0 independent ofi, v, such thafu|,,
lv|1o < M. Multiplying the equation

—(Apu—Apy)=f—-g in Q

by u— v and integrating, we obtain

/(|Vu|”’2Vu — |[VulP2Vu)- V(u—v)dx = /(f —g)(u—v)dx.
Q Q
Using the inequality [10, Lemma 30.1],

(x| + [y ™ P2 x|P2x — |y[P2y) - (x — y) = c|x — y|"=®:2)

for x, y € R", wherec is a positive constant depending only @nwe obtain
/ Vu—v)["dx = cifl f —glliaflu—vlle = C2ll f = gllLs,
Q

wherer = max(p, 2) andc;, ¢, are constants depending only gn M.
Hence

Ju—v]2—0

as | f — gl — 0, and sinceC*¥(D) is compactly imbedded if€'(D), Lemma 2.3
follows. O

3. Proofs of the main results

Proof of Theorem 1.1. By the strong maximum principle, thexets a constant
8 > 0 such thatv > 8d in Q. Let ¢ € [0, 1), m, = min(m, ) and h = min(h, 1/d?).
Then

-~ Me s
fzg—i—mgh—d—y:f in Q.
Let O satisfy

—Api=finQ, 0=0ondQ.
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Thenu > 0 in 2, by the weak comparison principle. Since

- C+1+M
= ———
dv

@
dr
and

~ 1
/|f—g|dx§s(l+M)/ — dXx,
Q Qdy

it follows that f — g in L1(Q) ase — 0. Here we have used the fact thatdl €
LX) (see e.g. [7, p.6]). Using Lemma 2.3, we see that v in C(Q) ase — 0.
Hence

u>0>6d in Q
-0 2

if ¢ is sufficiently small, which we shall assume.
By Lemma A, there exist constanid > 0 and« € (0, 1) independent ofi, v such
that |u|1q, |v]1e < M. Thus

(3.1) — <u, v<Md in

and therefore

wherecy = §/(2M).
Let ¢ be the largest number such that cv in ©, and suppose that< 1. From
(3.1), it follows that
ou Jv )
—, — =<—- on 9.
dv Jv 2

Fort € [0, 1], let w; = tVu + (1 —t)cVv. Then

au v tcé  (1-—-t)cs
wv=t—4+1-t)c— < — - —2=
Wy ov +( ) ov — 2 2
cé Cod
=—-——<-—— on 9%,
2 2
which implies
)
(3.2) wy| = % —c on 9Q

for all t € [0, 1].
Let x € Q and Xo € 92 be such thatd(x) = |[x — Xo|. Since|wijo. < M, it fol-
lows that

lwe(X) — we(Xo)| < Md*(x),
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which, together with (3.2), implies
~ C
(33) ()] = &1~ Md“(x) > 2 =2
for x € @, = {x € Q: d(x) < n}, wheren = (c/2M)Y?.
Next, we have
(3.4) —(Apu—Ap(cv)) = f —cP?g in Q,
and the left hand side of (3.4) can be linearizedLgs — cv), where
ad ow
I_ = - D i (X)) ——
v ijz::l X (a”( )3Xj )

and a; (x) = fol(aai/azj)(tVu + (1 —t)cVu)dt, a(2) = |z|P 2z
Note that, in view of (3.3) and the fact théi|o, < M for t € [0, 1], the co-

efficientsa; satisfy (2.1) and (2.2) irf2, with mg = (p — 1) min(MP-2, c§*2).
Let wg, w1 be the solutions of

Lwo=hin Q,, wo=0 onaQ,,

and
1

Lur=———inQ,
T a0,y

wy =0 on o,

respectively. By Lemmas 2.1 and 2.2, there exist positivestamtsMy andky such that
(3.5) wo > kod(X, 9€2,), w1 < Mod(x, 9€2,) in €,.

Sincec < 1 andd(x) > d(x, 9%2,) for x € €,,

~ & .
— > f—_q> - Q
Llu—cv)>f—-g> m(h @ (X, 852,7)) in -

and sinceu > cv on 9%, it follows from the weak comparison principle and (3.5)
that, forx € ,2,

u—cv > m(wo — ewi) = M(ko — eMo)d(x, 9€2,)) = m(kg — e Mg)d(X)

59 zm(%)mm

if & <ko/2Mp. In particular,

u—cv > m(%)

=mk when d(x) = g

NI



402 D.D. Hal
If ¢ =0 then it follows from
—Apu=f>cPlg=—-A (cv +mk) in @
andu > cv + mk on 3(22\ ,/2) that
(3.7) u>cv+mk in Q\Q)m.

Supposes > 0 andh >a > 0 in 2\ €,,2. Then we have

& £ .
_Apu:fzg—|—m(a—dy(x))zg+m(a—(n/2)y)zg in Q\Q,p,

if ¢ is sufficiently small. Hence (3.7) holds by the weak commariprinciple. This,
together with (3.6), gives the existence of a constast ¢ such thatu > ¢v in @, a
contradiction. Hence > 1 and thereforas > v in Q and

a(u—v)
av

d
< (c—l)—v <0 on 9%,
av
which completes the proof. O

Proof of Theorem 1.2. Let > 0 be such thati,/2 < A < A,. Letc =
(Aoot0/(Bk(Aoe — M))Y(P-D) and M be a constant such thal > c. Define

K =veC(Q): cp1 <v < Mgy in Q.
For eachv € K, it follows from Lemma A that the problem

{—Apu = % +Af(v) in

u= 0 on 39,

has a unique solutiom = Tv € C1*(Q) for somea € (0, 1) such thatu|;, < M,
wherea, M are independent of € K. We shall show thal: K — C() is a compact
operator. In view of the compact embedding ®F*(Q) into C1($2), we need only to
show thatT is continuous. Leti,) be a sequence iK such thatv, — v in C(Q),
and letu, = Tv,, U= Tu. Let G(w) = q(x)/w? + A f(w) for w € K. Then

G(vn) — G(v) pointwise in £,
and it follows from (A2) and (A4) that there exist constamtsCy > 0 such that

C](X) )"ooK CO
|G(vn)| < W + W = d_V
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for all n, wherey = max(8 + n, §). HenceG(v,) — G(v) in L(), and Lemma 2.3
implies u, — u in CXQ), i.e., T is continuous orK.

Next, we shall show that if. is sufficiently close tor,, and M is large enough
then T mapsK into K. By (A2) and (A3), there exists a constall; > 0 such that

M
(3.8) f(2) > k2"t 4 g0 — Z_SO

for all z> 0. Letv e K andu = Tv. Then (3.8) and (A4) imply

L Mo .
—Apu>——— + A k(C p‘1+e——) in
R R CC I -
Consequently,

WA L1 AMo
P\c) — Cp71+ﬁ¢i’ Cp71+5¢i’

where L, is a positive constant such thdf¢; > (L/L1)Y".
Let U, Z. be the solutions of

—1 [20) .
+/\(k¢{’ +F)Ef“ in Q,

—Aplc = ¢ in 2, 0Oc =0 onagQ,
and

€0
2cp-1

—ApZe = A(kqblpl + ) =g in Q, 2z =0 onde,

respectively. Theru > ci. in . Note that

C
[ferls I9eal < E,

whereC > 0 depends only omg, k, p, L1, A, Mo. Since

1 )\.0080 L]_ )‘-oo Mo 1 .
fC,)» - gC,A Z F[T - (g + T)E} In Q:

and

cl-P < 2_k

€o

it follows from Theorem 1.1 withm = c'™P, M = 2k/eg, h = Asg0/4, Qo =
(hoo/2)kpP ™, that e > Z; in Q for ¢ > 1, which implies

3.9 u>cz=2 Iin Q.
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By the choice ofc,

_ )»0080 )\80
A1 — Ak)cP T = 2222 < T2
(A1 ) 7 =5
Hence
- &€ .
—ApZC = )\.k((C(f)]_)pl + E(i) > )\.1(04)1)"71 in
and since

—Ap(Chr) = M(cp)Pt in Q,
it follows that
(3.10) Z.>cpy in Q.
Hence, if A is sufficiently close to)., it follows from (3.9) and (3.10) thati > c¢,
in Q.

Next, let Ao > 0 andb > 1 be such thatb < iy < Ae. In view of (A1) and
(A2), there exists a constam > 0 such that

D
-1
f(2) <kb2™' +

for all z> 0. Hence

AoD + L
—Apu < Akb(Mg)P1 + # Q,
b1
for ¢ > 1, which implies
_ i p—1 )"ooD + L]_ _ .
Let Uy be the solution of
—Ap(L_JM) = fm in Q, iy =0 onoQ.
Thenu < Miy in Q. Since
—~Appr =gl in R,
and
_ _ AoocD + L
p—-1 _ p-1 00 1
Moy = fv = (A1 — Akb)p; T — W
AeoD + L1

Z k()\-oo - Xm)¢f_l - M p_l¢y ’
1
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it follows from Theorem 1.1 withu = ¢1, v = Uy, M= 1, h = k(A — Xoo)¢lp_1 that
Uy < ¢1in Q for M > 1. Henceu < M¢, in  for M > 1. ThusT: K — K and
the result now follows from the Schauder fixed point theorem. ]

Proof of Theorem 1.3. Let € C1(2) be the solution of

&(ﬂx) in, z=0o0n09%,
¢

1

—Apz =
wherec € (0, 1). By Lemma 2.3z < ¢, in Q if c is sufficiently small, which we
assume. LetM > 1 be a large constant to be determined later and define

C={veC(Q):v=<M¢in Q}.
Fix A € (0, 1) and choosé > 1 so thatib < A.,. For eachv € C, the problem
_ 9

TP T ma(v, 2)
u=2~0 on 9,

+ Af(max@e, 2) in ,

has a unique solutiom = Sv € C1%(Q) for somew € (0, 1) such thatlu;, < M,
wherea, M are independent of € C. Sincez > ¢;d in © for someg; > 0, it follows
as in the proof of Theorem 1.2 th&: C — C(Q) is a compact operator. We shall
show thatS: C — C if M is large enough. Note that any fixed point 8fis positive
in ©, by the strong maximum principle. Lete C andu = Sv. Since there exists a
constantD > 0 such that
D
HOSkm“L+F
for t > O, it follows that

L1 ., DY .
—Apu = S+ +)\(kb(M¢1)p Ly 5) in €,

where L; is defined in the proof of Theorem 1.2. This implies

u . [Li+asD)\ 1

wherey = max@ + n, 8). Let uy be the solution of
—Ap(um) =0gm in Q, uy =0o0noQ.
Thenu < Mupy in Q. Since

L1+AOOD) 1

AP — g > k(Ao — Ab)PP T — ( Mt )z

7z’
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it follows from Theorem 1.1 thatiy < ¢ in  for M > 1, which implies
u<Muy <M¢; in Q

i.,e.ue C for M » 1. By the Schauder fixed point theorer§,has a fixed poinu;
in C. We claim thatu;, >z in Q. Let D = {x € Q: u;(X) < z(x)} and suppose that
D # @. Then, sincef > 0,

—Apu

> q(/>3<) S A al) —Ayz in D.

u; Zﬁ_‘bf_

Sinceu; = z on dD, this impliesu, > z in D, a contradiction. Henc® = @ and
thereforeu, > z in Q@ as claimed. Thus, is a positive solution of (1.2).

Next, supposef (u) > kuP~? for u > 0. Leti > 1., and letu be a positive solution
of (1.2). Thenu > 0 in 2 and du/dv < 0 on Q2 by the strong maximum principle.
Let c > 0 be the largest number so that> cg; in Q. Then

~Apuz A5 ke 2 A e n

and since
—Ap(cdr) = M(cp)P ! in Q,

it follows from Theorem 1.1 withe = 0 thatu > c¢, in Q and

du _ d(ce1)
<

— <0 on 0Q.
ov ov

Hence there exists a constabt- ¢ such thatu > ¢¢; in €, a contradiction. Thus
(1.2) has no positive solution for > A,,. We shall verify next tha:c\ I){rr1|uk||Oo = oo.
=A%

Suppose otherwise, then there exist a sequehged (0, A») and a constan€C > 0
such thath, — A, and ||uy|l < C for all n, whereu, = u,,. Since

a9 . a0
W — CP

n

—ApUn > in Q,

it follows that there exists a constakt> 0 such thatu, > R¢1 in @ for all n. Hence
there exists a constad > 0 such that

q(x) c .
+Af(u)) < — In
uﬁ ( n) ¢]Jf

for all n. By Lemma A, there exist constantse (0, 1) andM > 0 such thatu, €
C1%(Q) and |un|1, < M for all n. By going to a subsequence, we assume that there
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existsu € CY(S) such thatu, — u in CY(Q). Let ¥ € W,"P(R). Then

(3.11) /Q|Vun|p’2Vun-Vw dx = /Q(% +Anf(un))1// dx

for all n. Let n — oo in (3.11) and using the Lebesgue dominated convergence
theorem, we obtain

/Q|Vu|p’2Vu-Vzp dx=fg(% +Aoof(u))1p dx

i.e. u is a positive solution of

_ 9(x) :
—Apu_F+Amf(u) in
u=20 on 0%,
a contradiction. This completes the proof of Theorem 1.3. ]
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