|

) <

The University of Osaka
Institutional Knowledge Archive

Tale UNIQUENESS OF THE DIRECT DECOMPOSITION OF TORIC
MANIFOLDS

Author(s) |Hatanaka, Miho

Osaka Journal of Mathematics. 2015, 52(2), bp.

Citation 439-451

Version Type|VoR

URL https://doi.org/10.18910/57666

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Hatanaka, M.
Osaka J. Math.
52 (2015), 439-451

UNIQUENESS OF THE DIRECT DECOMPOSITION OF
TORIC MANIFOLDS

MiHO HATANAKA

(Received March 5, 2013, revised December 9, 2013)

Abstract

In this paper, we study the uniqueness of the direct decoitipof a toric
manifold. We first observe that the direct decomposition ¢dric manifold asalge-
braic varietiesis unique up to order of the factors. An algebraically indeposable
toric manifold happens to decompose as smooth manifold ancriterion is known
for two toric manifolds to be diffeomorphic, so the uniquecdeaposition prob-
lem for toric manifolds asmooth manifoldss highly nontrivial and nothing seems
known for the problem so far. We prove that this problem israffitive if the com-
plex dimension of each factor in the decomposition is lesmtbr equal to two.
A similar argument shows that the direct decomposition ofreath manifold into

copies ofC P! and simply connected closed smooth 4-manifolds with smaotions
of (SY)? is unique up to order of the factors.

1. Introduction

A toric variety is a normal algebraic variety of complex dimensiowith a com-
plex torus action having an open dense orbit. The family ofttwarieties one-to-one
corresponds to that of fans which are objects in combinegorVia this correspond-
ence, we can describe geometrical properties of toric tkesien terms of the corres-
ponding fans. A toric variety may not be compact and nondarghowever, this paper
deals with compact nonsingular toric varieties, caledc manifolds

We say that a toric manifold ialgebraically indecomposablé it does not decom-
pose into the product of two toric manifolds of positive dim&n as varieties Using
the bijective correspondence between toric varieties and,fone can see that the dir-
ect decomposition of a toric manifold into algebraicallgétomposable toric manifolds
as algebraic varieties is unique up to order of the factofe¢fem 2.2).

If two toric manifolds are isomorphic as varieties, thenytlage diffeomorphic, but
the converse is not true in general and no criterion is knoamtWo toric manifolds
to be diffeomorphic. One intriguing problem in this direatiis the following problem
posed in [7].

Cohomological rigidity problem for toric manifolds ([7]). Are two toric mani-
folds diffeomorphic (or homeomorphic) if their cohomologgngs with integer
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coefficients are isomorphic as graded rings?

No counterexample and some partial affirmative solutiors kavown to the prob-
lem above, see [3] for the recent development.

An algebraically indecomposable toric manifold happensdé@ompose into the
product of two toric manifolds of positive dimension ssiooth manifoldsHirzebruch
surfaces excepC P! x CP! with vanishing second Stiefel-Whitney classes are such
examples. We say that a toric manifold déferentially indecomposablé it does not
decompose into the product of two toric manifolds of positdimensionas smooth
manifolds

Unigue decomposition problem for toric manifolds ([6]). Is the direct decom-
position of a toric manifold into the product of differerdtjaindecomposable toric
manifolds unique up to order of the factors?

It has recently been shown in [2] that the unique decommositroperty holds for
real Bott manifolds which are a special classreél toric manifolds. Real Bott mani-
folds are compact flat manifolds and it is shown in [1] thatr¢hare non-diffeomorphic
compact flat manifolds whose products wigh are diffeomorphic. This means that the
unique decomposition property does not hold for generalpamhflat manifolds while
it does for the special class of compact flat manifolds ceoingiof real Bott manifolds.

As far as the author knows, nothing is known for the uniqueodgmsition prob-
lem for toric manifolds. In this paper, we show that it is affative if the complex
dimension of every factor in the product is less than or eqoawo (Theorem 3.1).
We also prove that the cohomological rigidity problem isratffitive for those prod-
ucts. Note that a toric manifold of complex dimension one iffedmorphic to C P!
and that of complex dimension two is diffeomorphic @P* x CP! or CP?2 ¢ qC P2
(g=0).

Simply connected closed smooth 4-manifolds with smootioastof (St)? are of
the form

(1.1) S'# pCP?£qCP24r(CPxCPY) (p+q+r >0)

(see [9]). These manifolds are not diffeomorphic to the pobdbf two manifolds of
positive dimension unlesp = g = 0 andr = 1. Our method used to prove The-
orem 3.1 can be applied to products of copies@®! and manifolds in (1.1) and
yields a more general result (Theorem 4.4) than Theorem 3.1.

This paper is organized as follows. In Section 2, we proveuhigueness of the
direct decomposition of a toric manifold into algebraigalhdecomposable toric mani-
folds as algebraic varieties. The key fact used to prove thi two toric manifolds
are isomorphic as algebraic varieties if and only if the egponding two fans are iso-
morphic. Unlike this, a useful criterion for two toric maoiifis to be diffeomorphic is
not known. In Section 3, we prove that the direct decompasitif a toric manifold
into differentially indecomposable toric manifolds is gné up to order of the factors



UNIQUENESS OF THEDIRECT DECOMPOSITION 441

if the complex dimension of each factor is less than or eqaaiwo. In Section 4,
we apply the idea developed in Section 3 to products of copie&P! and manifolds
in (1.1).

2. Direct decomposition of toric manifolds as algebraic vaeties

We briefly review toric geometry and refer the reader to [4 8] for details. A
toric variety is a normal algebraic variety of complex dimensiorwith an algebraic
action of a complex torusd*)" having an open dense orbit. The fundamental theorem
in toric geometry says that the category of toric varietiegcomplex) dimensiom is
isomorphic to the category of fans of (real) dimension Here, afan A of dimen-
sionn is a collection of rational strongly convex polyhedral cene R" satisfying the
following conditions:

e Each face of a cone i is also a cone iMA.

e The intersection of two cones in is a face of each.

A rational strongly convex polyhedral cone R" is a cone with apex at the origin,
generated by a finite number of vectors; “rational” means itha generated by vectors
in the latticeZ", and “strong” convexity that it contains no line through thrégin. The
union of cones in the fam\ coincides withR" if and only if the corresponding toric
variety is compact, and the generators of each con& sre a part of a basis &" if
and only if the corresponding toric variety is nonsingulbr.this paper, we will treat
only compact nonsingular toric varieties and call thtaric manifolds

The fundamental theorem in toric geometry implies that tarictmanifoldsM and
N of complex dimensiom are weakly equivariantly isomorphic as algebraic vargetfe
and only if the corresponding fans are isomorphic, i.e.rehg an automorphism d&"
sending cones to cones in the corresponding fans. Here afmlip— N is said to be
weakly equivariant if there is an automorphignof (C*)" such thatf (gx) = p(g) f (x)
for any g € (C*)" andx € M.

Proposition 2.1. Two toric manifolds are isomorphic as algebraic varietiésmnd
only if they are weakly equivariantly isomorphic as algeébraarieties. Thereforetwo
toric manifolds are isomorphic as algebraic varieties ifdaanly if their corresponding
fans are isomorphic.

Proof. This proposition is well-known but since there seemmditerature, we shall
sketch the proof.

It suffices to prove the “only if” part in the former statemdrgcause the “if” part
is trivial and the latter statement follows from the form&atement and the fundamen-
tal theorem in toric geometry as remarked above. Let Mytpe the group of auto-
morphisms of a toric manifold/. This is a (finite dimensional) algebraic group, and the
torus Ty = (C*)" acting onM is a subgroup of Auf{l), in fact, it is a maximal torus
in Aut(M). Now, let f be an isomorphism (as algebraic varieties) frivinto another
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toric manifold N. Then f induces a group isomorphisift Aut(N) — Aut(M) mapping
g Aut(N) to fLogo f € Aut(M). Since f(Ty) is a maximal torus in Aut{l) and all
maximal tori in an algebraic group are conjugate to eachrpthere existh € Aut(M)
satisfying f(TN) = hTuh™%. Then f o h is a weakly equivariant isomorphism froivi
to N. O

We say that a toric manifold ialgebraically indecomposabl¢ it does not decom-
pose into the product of two toric manifolds of positive dim®n as algebraic vari-
eties. Again, the fundamental theorem in toric geometryliespthat a toric manifold
is algebraically indecomposable if and only if the correxpng fan isindecomposable
i.e., it does not decompose into the product of two fans oftipesdimension.

Theorem 2.2. The direct decomposition of a toric manifold into algebedig in-
decomposable toric manifolds as algebraic varieties isquaiup to order of the fac-
tors. Namelyif Mj (1<i <k) and M; (1< j <I) are algebraically indecomposable
toric manifolds and]_[ik=1 M; and H|j=1 M]f are isomorphic as algebraic varieticthen
k =1 and there exists an element in the symmetric group Son k letters such that
Mi is isomorphic to M, as algebraic varieties for alll <i < k.

Proof. Denote the fan oM; by A; and that ofM; by A’, and lety be an iso-
morphism from[T¥_, A; to [T,_; A}. Let p; be the projection fron{];_, A’ onto
A’j. Since an edge im\; maps to an edge ilﬂ'j=l A’j by ¢, the imagey(A;) co-
incides with the producl‘['j:1 Pj (¥ (Aj)). This together with the indecomposability of
A; implies that p;(y¥(A;)) consists of only the origin except for orje namelyy(A;)
is contained in some\|. Applying the same argument t¢—, one concludes that
¥(Ai) = Aj. This together with Proposition 2.1 proves the theorem. O

The following corollary follows from Theorem 2.2.

Corollary 2.3 (cancellation) Let M, M’ and M’ be toric manifolds. If the direct
products Mx M” and M x M” are isomorphic as varietieghen so are M and K

3. Direct decomposition of toric manifolds as smooth maniftals

In this section, we will consider the direct decompositiodntaric manifolds as
smooth manifolds. We say that a toric manifol is differentially indecomposable
if M does not decompose into two toric manifolds of positive digien as smooth
manifolds. We note that the algebraic indecomposabilitgsdoot imply the differential
indecomposability for toric manifolds. For example, thezébruch surfacé-,; (a € Z)
corresponding to the fan described below is algebraicalliecomposable unless= 0
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but diffeomorphic toC P! x CP? as smooth manifolds i is even.

(_11 a)

Y

acz

Toric manifolds of complex dimension one are diffeomorptocC P!, and those
of complex dimension two are diffeomorphic @P!xCP?! or CP?24qCP2 (q € Z=o).
The purpose of this section is to prove the following thearem

Theorem 3.1. Let M (1 =i < k) and M; (1 = j =) be differentially
indecomposable toric manifolds of complex dimension laas tor equal to two. If
H*(TTE_; Mi; Z) and H*(I—['j:l M:;Z) are isomorphic as graded ringshen k= |
and there exists an element in the symmetric group (Son k letters such that M
and M, are diffeomorphic for alll <i < k. Therefore the cohomological rigidity
problem and the unique decomposition problem mentionefiénrtroduction are both
affirmative for products of differentially indecomposalbdeic manifolds of complex di-
mension less than or equal to two.

For the proof of this theorem, we consider
(3.1) A(X; R) = {u e H*(X; R)\ {0} | u? = 0}
for a topological spaceX and a commutative ringr.

Lemma 3.2. Let R beZ or a field and let X (1 <i <Kk) be a connected topo-
logical space such that M{X;: R) is finitely generated for any q and ¥X;; R) =
H3(Xi; R) = 0. Moreover when R= Z, we suppose that H{X;:Z) (q < 4) is a
free module. (Toric manifolds satisfy these conditionsThen there exists a natural
identification

k k
A<H Xi: R) ~ [ AXi: R).
i=1 i=1
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Proof. By the Kiinneth formulad 2(JT¥_, Xi; R) is isomorphic taBf_; H2(Xi; R).
So an element in HZ(]_[ik:l Xi;R) can be written asi = uy +- - -+ Uy (Ui € H*(Xi;R)).
Again, by the Kunneth formula,

k k
H4<H Xi; R) =~ (EB H4(Xi: R)) o < B H(X: R ® HA(X;: R))
i=1 i=1

1<i<j<k

and via this isomorphism

k
u2:Zui2+2 Z U ® Uj.
i—1

1<i<j=k
So if u?> = 0, thenu; = 0 except ond. Therefore, the lemma holds. O

Differentially indecomposable toric manifolds of compldimension less than or
equal to two are diffeomorphic t&€ P! or CP?#qCP2 (q € Z-0). Their cohomology
rings are as follows:

H*(CP; R) = R[x]/(x? = 0),
(3.2) H*(CP?% qCP2% R)
= R[X, Y1, ..., Ygl/(X* = Y7, xy =0 (¥i), yiy; =0 (i # j)).

Lemma 3.3. (1) A(CPYR) =z {ae R\{0}}. In particular, A(CP*;R) consists of
two one dimensional connected componeatsl AC P*;Z/2) consists of one element.
(2) A(CP?£qCP2%R) = {(a,by,...,by) € RI*\ {0} | a2 = bf +--- 4+ b2}. In partic-
ular, A(CP?;R) and ACP?;Z/2) are empty A(CP?# CP2;R) consists of four one

dimensional connected componerasid AC P? ¢ CP2; Z/2) consists of one element.
When g> 2, A(CP?4qCP2;R) consists of two q dimensional connected components.

Proof. (1) This easily follows from the former isomorphism (3.2).
(2) Using the latter isomorphism in (3.2), one can write aen@nt u in
H?(CP?#qCP% R) as
u=ax+biyr+---+byyg (@b, ..., bgeR),

so we haveu® = (@ — bZ — - -- — b)x?, which implies (2). O]

Proof of Theorem 3.1. Lemn (resp.mq) be the number ofVii’s diffeomorphic
to CP* (resp. CP? £ qCP?). Similarly, let m' (resp.m;) be the number ofM}’s
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diffeomorphic toCP? (resp,CP?# qCP2). Then

k
M:=]]M =(@CPY" x[][(CP?sqCP)™,
(3.3) |:|1 420
M =[] M| = (€PY" x [(CP?zqCP2)™.
j=1

q=0

By assumptionH*(M; Z) and H*(M’; Z) are isomorphic as graded rings, and an
isomorphism between them induces an isomorphism betwEdM; R) and H*(M’; R)
for any commutative ringR and a bijection betwee®\(M; R) and A(M’; R). When
R =R, we compare the number of connected components of dimensiomA(M; R)
and A(M’;R). Since the bijection betweeA(M;R) and A(M’;R) is a homeomorphism,
we obtain

(3.4) n+4m; =2m' +4m;, 2m; =2m; (t >2)

from Lemmas 3.2 and 3.3. Moreover, comparing the number ofehs inA(M;Z/2)
and A(M’; Z/2), we obtain

(3.5) m+m=m +m;

from the factm; = m{ (t > 2) in (3.4), Lemmas 3.2 and 3.3. The identities (3.4) and
(3.5) imply m=m" andm; = m; (t > 1). These together with the equality of the
dimensions ofM and M’ (which are respectivelyn +23% " m; andm' + 23 ,m
by (3.3)) imply mg = my. Therefore the theorem is proved. ]

The following corollary follows from Theorem 3.1.

Corollary 3.4 (cancellation) Let M, M’ and M’ be products of toric manifolds
of complex dimension less than or equal to two. IxMM” and M x M” are diffeo-
morphig then so are M and M

4. Simply connected compact 4-manifolds with $)?-actions

In this section, we show that the idea developed to prove fEmed.1 works for
products ofC P! and simply connected compact smooth 4-manifolds with smaat
tions of compact torusS)?. By Orlik—Raymond ([9]), these 4-manifolds are diffeo-
morphic to

(4.1) S't pCP28qCP2tr(CPxCPY (p+q+r >0).
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Proposition 4.1. A manifold in(4.1) is diffeomorphic to one of the following
S, pCP?4qCP2 (p>q=>0,p+q=>1), r(CPxCPY (r >1).
Moreover these manifolds are not diffeomorphic to each rothe

Proof. This proposition must be known but since there seeméterature, we
shall give a proof.

Claim. CP? ¢ (CP! x CP?') and CP2 ¢ (CP! x CP?') are diffeomorphic to
CP2¢2C P2,

The fan corresponding to the blow-up 6fP! x CP* and that ofCP2? ¢ CP? are
isomorphic, soCP2 ¢ (CP! x CPY) and CP2 ¢ 2CP? are isomorphic as algebraic va-
rieties, in particularC P2 ¢ (C P x CPY) is diffeomorphic toC P2 ¢ 2C P2.

Moreover CP? ¢ (CP! x CPY) and CP2 ¢ (CP! x CP?) are diffeomorphic, and
since there is an orientation preserving diffeomorphisomfiC P x CP! to CP?* x
CP?! (i.e., an orientation reversing diffeomorphism fra&P! x C P! to itself), CP2 ¢
(CPIx CPY) is diffeomorphic toCP2 # (CP! x CPY). SoCP2¢ (CP! x CPY) and
CP2# (CP! x CPY) are diffeomorphic. Therefore the claim is proved.

From the Claim above and the fact thpCP? ¢ qCP2 and qCP2 ¢ pCP2 are
diffeomorphic, we see that a manifold in (4.1) is diffeonfuigpto one of the manifolds

in Proposition 4.1.

We shall prove that the manifolds in Proposition 4.1 are nffié@morphic to each
other. The manifoldpC quqﬁ are not spin manifolds (i.e., their second Stiefel—
Whitney classes do not vanish) whit¢C P! x CP?) are spin manifolds. Therefore,
they are not homotopy equivalent, in particular, not diffesphic. Euler characteristic
x and the absolute value of signatureare homotopy invariants, and

x(PCP?£qCP2) = p+q+2, o(pCP?£qCP?) = p—q,
x((CPLxCPY)=2r +2, o(r(CP*xCPY) =0,
x(sh =2

so the manifolds in Proposition 4.1 are not homotopy eqgeiMato each other, in par-
ticular, they are not diffeomorphic to each other. ]
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We find A(M; R) in (3.1) for the manifoldsM in Proposition 4.1 and any com-
mutative ringR. Since
H*(pCP?£qCP%R)
= R[Xl,...,Xp,y]_,...,yq]/(xi2=_yj2, X|yj =0 (Vll ])l XiX] =01 ylyj =0 (VI ;é J))'
H*(r (CP! x CPY):R)
;R[Zl ..... Zr, Wy, ..., wr]/(ZiwiZZJ‘u}j,ZiZj=wiw]‘=0(Vi,j),ZiijO(Vi7éj)),
H*(S% R) = R[x]/(x*=0),

we see that
A(pCP21qCP2? R)
~ {(a, ..., ap, b, ..., bq) e RPtd \ {0} | af I a%
A(r (CP* x CPY): R)
=~{(CL ... G, 0y, d) € RT\ {0} | cadh + -+ + G d =0},
A(S: R) = 0.

(4.2) , ,
= b+ + b,

Lemma 4.2. (1) A(pCP? R) is empty.
(2) When p>q > 1, A(pCP? £ qCP2R) is homeomorphic to 5 x St-1 x R.
(3) A(r(CP!x CPY;R) is homeomorphic to 'St x S~ x R.

Proof. (1) This easily follows from (4.2).
(2) For each positive real number the set

{(aa, ..., ap, by, ..., bg) €eRPTIN(O} [af +---+a&f =b+---+bf =c)
is homeomorphic to the product of spher®&* x 1. So, A(pCP? t qCP2; R) is
homeomorphic taSP~! x 1 x R.o by (4.2) and hence t&P~1 x S11 x R.
(3) For eachi, we change the variables in (4.3) as follows:
G =a+h, d=a-—b.
Then one sees thak(r (CP* x CPY);R) is homeomorphic toA(r CP?4rCP2;R). [
Lemma 4.3. For a finite set Awe denote the cardinality of A byA|. Then

(1) |A(pCP?¢ pCP% Z/2)| = 22P1 -1,
(2) |AC(CPYx CPY);Z/2)| =221t 4211
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Proof. (1) By (4.2), we count the number of elemerds (.., ap, by, ..., bp) €
(Z/2)?° \ {0} satisfying

a4 t+ai=bl+--+Db}

This equation is equivalent to the existence of even numiierldin ay, ..., ap,
by, ..., bp. Therefore,
— 2 2 2
|A(pCP? £ pCP2;Z/2)| + 1 = (Op) + ( zp) +--+ (zg) =221

(2) By (4.3), it is enough to show the following:
4.4) w6 0y, o) € (Z/27 [ Cath 4+ Gd =0} =271 427 L

We show this by induction. When = 1, we can check (4.4) easily. Suppose that
(4.4) holds wherr =k, and we consider the case= k+ 1. Whency,1dk+1 =0 (i.e.,
(Cka1, dks1) is (0,0), (1, 0) or (0, 1)), the number of elements,(..,Ck,ds,...,dy) in
(z/2)* satisfying cid; + - -- + ¢t = 0 is 21 4 2k-1 py assumption of induction.
When ¢10kr1 = 1 (i.e., €k+1, k1) = (1, 1)), the number of elementsy(..., ¢,

di, ..., dy) in (Z/2)%* satisfyingcydy + -+ + cklk = 1 is 2k — (2%1 4+ 21). So

(L -+ s st O, - - -, Ohgr) € (27278 | €4y + - -+ + CeraCiyr = O}
— 3(22k71 + 2k71) + 22k _ (22k71 + 2kfl) — 22k+l + 2k_

Therefore (4.4) also holds when= k + 1. O

Note that the manifolds in Proposition 4.1 exc&pP! x CP! do not decompose
into the product of two manifolds of positive dimension. Tlolowing theorem gen-
eralizes Theorem 3.1.

Theorem 4.4. Let M (1<i<k)and M (1=<] <I) be CP* or the manifolds
in Proposition4.1 exceptCP! x CPL. If H*([Tf_, Mi; Z) and H*([Tj_, M{: Z) are
isomorphic as graded ringghen k=1 and there exists an elemeatin the symmetric
group & on k letters such that Mand Mj,(i) are diffeomorphic for alll <i <Kk.

Proof. Letm (resp.mpgq, Ny or n) be the number ofV};’s diffeomorphic toC P!
(resp. pCP?#qCP2 (p>q >0, p+qg=>1), r(CP:xCPY (r >2) or S*. Simi-

/ ) H H 1
larly, let m" (resp. mj o, n; or n’) be the number ofMi’s diffeomorphic to CP
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(resp. pCP24qCP2 (p>q>0, p+q>1), r(CP!xCPY (r > 2) or S*). Therefore,
(4.5)

k
M =[] M = (CPY" x [[(pCP?qCP?)™= x [ [(r(CP* x CPY)™ x (SH",

i=1 p=q r=2

M = ]‘[ M; = (CPY)™ x [ [(pCP? # qCP2)™a x [ [(r(CP* x CPY)™ x (SH".

j=1 p>q r>2

By assumptionH*(M; Z) and H*(M’; Z) are isomorphic as graded rings, and an
isomorphism ¢ between them induces an isomorphism betwddfi(M; R) and
H*(M’; R) for any commutative ringR and induces a bijection betweeX(M; R) and
A(M’; R). When R = R, the bijection is a homeomorphism. Comparing the homeo-
morphism type and the number of connected componentd(d; R) and A(M’; R)
using Lemmas 3.2 and 4.2, we obtain
2m+4mg g =2m' +4my,, mpq=m,, (p>q=>1),

(4.6) ) )
Mp,p + Np =M, + N (p=2).

The linear subspace spanned by all one dimensional comhedmponents in
A(M:R) (resp. A(M’: R)) is H2((CPY)M x (CP? ¢ CP2)™z1; R) (resp. H2((CPY)™ x
(C PZﬁW)mil; R)). Therefore, the isomorphism induces an isomorphism between
H2((CPYHYM x (CP2 ¢ CP2)M™:1; Z) and HA((CPY)™ x (CP2 % CP2)™1; Z). In particu-
lar, ¢ induces an isomorphism between the cohomology rings &ijth coefficients. It
follows from Lemma 3.2 that

m|A(CP; Z/2)| + my 1| ACCP? £ CP2; Z/2)|
= m|ACPY Z/2)| + m|,|ACP?1 CP2; Z/2)|

and hence we haver+ my 1 =m + m’Ll by Lemma 3.3. This together with the first
identity in (4.6) implies that

4.7 m=m, myi=m,.

The linear subspace spanned by all connected componentsohoonphic toSP~* x
SPL xR (p>2)in A(M;R) (resp. A(M’; R)) is H2((pC P?  pCP2)™.»r x (p(CP?* x
CPY)™:R) (resp.HZ((pC P2 pC P2)™» x (p(C P1x CPL)"™;R)). Therefore, it follows
from Lemma 3.2 that

mp,pl A(PC P? £ pC P2; Z/2)| + np| A(p(C P! x CPY); Z/2)|
= m), ,|A(pCP? ¢t pCP2; Z/2)| + ni,| A(p(CP* x CPY): Z/2)|
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and hence we have

Mp p(22P~1 — 1) + np(22P~t +2P71 - 1)

(4.8)
=m, (2Pt = 1) + (2Pt 2Pt 1)

by Lemma 4.3. So by (4.6), (4.7), and (4.8), we have
(4.9) m=m, mpg=m,,(p=qg=1), np=n, (p=2).

It remains to proven = n’ andmp o = mj, , (p > 1). SinceH*(M:Z) andH*(M";Z)
are isomorphic by assumption, the Poincaré polynomial#lodnd M’ must coincide.
So, the Poincaré polynomials o8{)" x [],.,(pCP?)™° and )" x [],-1(pC P2)Mpo
must coincide by (4.5) and (4.9). It follows that

L+ 33" x [J@+ px+x3)™0 = @+ x3)" x [@ + px + x2)o
p>1 p>1

wherex is a variable. This implies that =n" andmpo = n, O

p.0

Similarly to Corollary 3.4, the following corollary follog from Theorem 4.4.

Corollary 4.5 (cancellation) Let M, M’ and M’ be products of copies dof P*
and manifolds inProposition 4.11f M x M” and M x M” are diffeomorphigcthen so
are M and M.

A topological toric manifoldintroduced by Ishida—Fukukawa—Masuda ([5]) is a
compact smooth manifold of real dimension @ith a smooth action of complex torus
(C*" that is locally equivariantly diffeomorphic to a smoothtfdul representation
space of C*)". A toric manifold regarded as a smooth manifold is a topalabtoric
manifold. A topological toric manifold of real dimension dws diffeomorphic toC P*
and the manifolds in Proposition 4.1 exce$ft are topological toric manifolds. There-
fore, it follows from Theorem 4.4 that Theorem 3.1 holds fopdlogical toric mani-
folds, so we may ask the cohomological rigidity problem amel inique decomposition
problem for topological toric manifolds and no counterepéaris known even to these
extended problems.
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