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Abstract
In this paper we prove that if6 is a properly embedded constant mean curvature

H D 1=2 surface which is asymptotic to a horocylinderC �

ePSL2(R, � ), in one side
of C, such that the mean curvature vector of6 has the same direction as that of the
C at points of6 converging toC, then6 is a subset ofC.

1. Introduction

In this paper we study complete constant mean curvatureH D 1=2 surfaces im-

mersed inePSL2(R, � ). Recall that in [5] the authors generalized toH2
� R the half-

space theorem of Hoffman and Meeks which ensures that a properly immersed minimal
surface inR3 that lies in a half-space must be a plane. The main theorem in [5] says
that, if a properly embedded constant mean curvatureH D 1=2 surface inH2

�R which
is asymptotic to a horocylinderC and on one side ofC; such that the mean curva-
ture vector of the surface has the same direction as that ofC at points of the surface
converging toC, then the surface is equal toC (or a subset ofC if the surface has
non-empty boundary).

We extend this result to the spaceePSL2(R,� ). Remember that the spaceePSL2(R,� )
is one of the eight Thurston’s geometries. Indeed it is well known there exists a clas-
sification due to W. Thurston of simply connected homogeneous 3-manifolds (see [8,
Chapter eight]). Such a manifold has an isometry group of dimension 3, 4 or 6.
• When the manifold has 6-dimensional isometry group, we havethe 3-dimensional
space-forms: the Euclidean spaceR3, the Euclidean sphereS3(�) (having sectional curva-
ture � > 0) and the hyperbolic spaceH3(�) (having sectional curvature� < 0).
• When the manifold has 3-dimensional isometry group, we havethe Lie groupSol3.
• When the manifold has 4-dimensional isometry group (we label by E(�, � ) these
manifolds), there exists a Riemannian fibration over a 2-dimensional space formM2(�).

The manifoldsE(�, � ) are classified, up to isometry, by the curvature� of the
base surface and by the bundle curvature of the fibration� , where � and � can be
any real numbers satisfying� ¤ 4� 2. When � D 0 we have the metric product spaces
M2(�)�R. When� D 0 and� ¤ 0 we have the 3-dimensional Heisenberg group. The
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948 C. PEÑAFIEL

spaceePSL2(R, � ) is given when we consider� ¤ 0 and � D �1, that is E(�1, � ) D
ePSL2(R, � ).

We extend the aforementioned result to the spaceePSL2(R, � ). In order to do that,
note that, since exists a Riemannian submersion

� W

ePSL2(R, � )! H

2

over the half-plane model for the 2-dimensional hyperbolicspaceH2, we call a horo-
cylinder the inverse image��1(h), whereh is a horocycle inH2. We also denote by

�t the tangent field to the fibers onePSL2(R, � ).

Let C be a complete horocylinder inePSL2(R, � ), we say that the surface6 is
asymptotic toC if 6 contain a open subsetU � 6 (with U \ C D ;), such that, for
each� > 0, there exists a compact setK � U , where the distanced(p, C) < � for all

p 2 (U � K ), hered( � , � ) denotes the distance function in the spaceePSL2(R, � ).
Following the same spirit as in [5], we show an analogous result in the space
ePSL2(R, � ). More precisely, our main theorem is the following.

Theorem 1.1. Let 6 be a properly embedded constant mean curvature HD 1=2

surface inePSL2(R, � ). Suppose6 is asymptotic to a horocylinder C, and on one side
of C. If the mean curvature vector of6 has the same direction as that of C at points
of 6 converging to C, then6 is equal to C.

As a consequence of Theorem 1.1, we obtain (in the same sense as in [5]) the
Theorem 1.2. Note that, the Theorem 1.2 is well known, see forinstance [1] or [3,
Corollary 4.6.3].

Theorem 1.2. Let 6 be a complete immersed surface inePSL2(R, � ) of constant
mean curvature HD 1=2. If 6 is transverse to the vertical Killing field E3 D �t , then
6 is an entire vertical graph overH2.

Observe that the valueH D 1=2 for constant mean curvatureH surfaces is special

in the spaceePSL2(R, � ). In fact, a constant mean curvatureH surface in the homo-
geneous spaceE(�, � ) has critical constant mean curvature if the relationH2

D ��=4
holds. This terminology comes from the fact that it separates the caseH2

> ��=4, in
which compact constant mean curvature exists, from the caseH2

< ��=4, in which no
compact constant mean curvature can exists.

2. The spaceePSL2(R, � )

The 3-dimensional spaceePSL2(R, � ) is a complete homogeneous simply connected
Riemannian manifold. Each such a manifold (depending on� ) is the total space of a
Riemannian submersion over the 2-dimensional hyperbolic spaceH2 (here the Gaussian
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curvature of the hyperbolic space is� D �1). The bundle curvature of the submersion

is the number� such that NrX E3 D �X�E3 for any vector fieldX onePSL2(R,� ) (here
N

r denotes the Riemannian connection ofePSL2(R, � )). And each fiber is a complete

geodesic tangent to a Killing fieldE3. When� D 0, we obtain the spaceePSL2(R, 0)�
H

2
� R.
From now on, we choice and fix a value for� different from zero. More precisely,

the Riemannian manifold is (ePSL2(R, � ), g), whereePSL2(R, � ) is topologicallyH2
�R

(R the real line), that is

ePSL2(R, � ) D {(x, y, t) 2 R3
I y > 0}

endowed with the metric

g D �2(dx2
C dy2)C (�2�� dxC dt)2, � D

1

y
.

There is a natural orthonormal frame{E1,E2,E3} given by (in coordinates{�x,�y,�t })

E1 D
�x

�

C 2��t , E2 D
�y

�

, E3 D �t .

E3 is the Killing field tangent to the fibers. The metricg induces a Riemannian con-
nection Nr given by

N

rE1 E1 D �
�y

�

2
E2, N

rE1 E2 D
�y

�

2
E1C �E3, N

rE1 E3 D ��E2,

N

rE2 E1 D
�x

�

2
E2 � �E3, N

rE2 E2 D �
�x

�

2
E1, N

rE2 E3 D �E1,

N

rE3 E1 D ��E2, N

rE3 E2 D �E1, N

rE3 E3 D 0.

We also have

[E1, E2] D
�y

�

2
E1 �

�x

�

2
E2C 2�E3, [E1, E3] D 0, [E2, E3] D 0.

For more details see [6], [2], [8].

2.1. Graphs inePSL2(R,� ). Now we give the definition of vertical and horizon-

tal graphs inePSL2(R, � ).

2.1.1. Vertical graph. A section of the Riemannian submersion

� W

ePSL2(R, � )! H

2
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is a mapsW � � H2
!

ePSL2(R, � ), where� is a domain, such that

� Æ sD id
H

2
j

�

being id
H

2
j

�

the identity map onH2 restrict to�.

DEFINITION 2.1 (Vertical graph). A vertical graph inePSL2(R, � ) is the image of

a section of the Riemannian submersion� W ePSL2(R, � )! H

2.

Given a domain� � H2 we also denote by� its lift to H

2
� {0}, with this iden-

tification we have that the vertical graph6(u) of u 2 C0(��) \ C1(�) is given by

6(u) D {(x, y, u(x, y)) 2ePSL2(R, � )I (x, y) 2 �}.

If the vertical graph6(u) has constant mean curvatureH , then u satisfies the
following partial differential equation

(2.1) L H (u) WD div
H

2

�

�

W
e1C

�

W
e2

�

� 2H D 0,

where H is the mean curvature function with respect to the upward pointing normal

vector andW D
p

1C �2
C �

2,
• � D ux=�C 2��y=�

2,
• � D uy=� � 2��x=�

2.

2.1.2. Horizontal graph. Following the ideas presented in [5], we consider a
C2-function y D f (x, t), f > 0.

DEFINITION 2.2 (Horizontal graph). We denote by6h( f )D graph( f ), the hori-
zontal graph of the functionf , that is

6h( f ) D {(x, f (x, t), t) 2ePSL2(R, � )I (x, t) 2 Dom( f )}.

We denote byN the natural normal vector to6h( f ) (see equation (2.2)), and by
H the length of the mean curvature vector of6h( f ) with respect toN. The mean
curvature equation for horizontal graphs is given in the following lemma.

Lemma 2.3. Suppose that H is the mean curvature function of6h( f ). Then, the
function f satisfies the equation

2HW3

f 2
D ( f 2

C f 2
t ) fxx � 2( fx ft � 2� f ) fxt

C ((1C 4� 2)C f 2
x ) ft t C f (1C f 2

x )C 2� fx ft ,
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where WD
p

f 2
C f 2

t C f 2( fx C 2� ft= f )2. In particular the horocylinders f(x, t) D
constant, has constant mean curvature.

Proof. The surface6h( f ) is parameterized by'(x, t) D (x, f (x, t), t), so the
adapted frame to6h( f ) is given by

'x D �(E1C fx E2 � 2�E3),

't D � ft E2C E3,

N D
�( fx C 2�� ft )E1C E2 � � ft E3
p

1C ( fx C 2�� ft )2
C �

2 f 2
t

,(2.2)

where N is the unit normal to6h( f ), observe thathN, �yi > 0. Denoting bygi j and
bi j the coefficients of the first and second fundamental form respectively we have that
the function H satisfies the equation

2H D
b11g22C b22g11� 2b12g12

g11g22� g2
12

.

Since

N

r

'x'x D ��
2 fx(2C 4� 2)E1C [� fxx C �

2((1C 4� 2) � fx)]E2C 2��2 fx E3,

N

r

't'x D [�� fx D �
2 ft (1C 2� 2)]E1C [� fxt � �

2 fx ft � �� ]E2C �
2
� ft E3,

N

r

't't D 2�� ft E1C (� ft t � �
2 f 2

t )E2,

with

b11D � fxx C �
2(1C 4� 2) f 2

x C 2��3(1C 4� 2) fx ft C �
2(1C 4� 2),

b12D � fxt � �� f 2
x C 2��3

�

1

2
C 2� 2

�

f 2
t � ��,

b22D � ft t � 2�� fx ft � �
2 f 2

t (1C 4� 2),

and

g11D �
2[(1C 4� 2)C f 2

x ],

g12D �
2 fx ft � 2��,

g22D 1C �2 f 2
t ,

a straightforward computation gives the result.

An interesting formula for the Laplacian is given in the nextlemma.
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Lemma 2.4. Considering HD 1=2, the function f satisfies

1

6h( f ) f D
f 2

W

�

1�
f

W
C

f f 2
x C 2� ft fx

W

�

,

1

6h( f )

�

1

f

�

D

W � f

f W
C

f 2
t C 2� ( f fx ft C 2� f 2

t )

W
.

Proof. The proof follows from a hard computation by considering

1

6h( f ) D
1
p

g

X

i j

�xi (
p

ggi j
�x j ),

where g is the determinant of the first fundamental form and (gi j ) D (gi j )�1.
Observe that

1s f D
1

p

gW3
[ f 2[( f 2

C f 2
t ) fxx C 2(2� f � fx ft ) fxt C ( f 2

x C (1C 4� 2)) ft t ]

C (a3
C f 3 fx) fx C (a fx � (1C 4� 2) f ft ) ft ],

wherea D f fx C 2� ft and W2
D f 2

C f 2
t C ( f fx C 2� ft )2.

REMARK 2.5. In the case� � 0, that is, when the ambient space isH2
� R, it

was proved in [5] that

1

6h( f ) f > 0,

1

6h( f )

�

1

f

�

> 0,

which is surprising and plays an important role. Note that, we do not have this property
when � ¤ 0.

3. The main theorem

In order to prove the main theorem (Theorem 3.6), first we construct an H D 1=2
annulus. Which is an horizontal graph, this is the goal of theProposition 3.2. Since
we deal with horizontal graphs, theH D 1=2 mean curvature equation is given in the
following lemma.

Lemma 3.1. Considering HD 1=2, the mean curvature equation for a horizontal
graph is given by

1D
f 2

W3
[( f 2
C f 2

t ) fxx � 2( fx ft � 2� f ) fxt

C ((1C 4� 2)C f 2
x ) ft t C f (1C f 2

x )C 2� fx ft ],
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which we can write in the form

(3.1)

( f 2
C f 2

t ) fxx � 2( fx ft � 2� f ) fxt C ( f 2
x C (1C 4� 2)) ft t

�

�

W

f 2
C

1

WC f

�

[(1C 4� 2) ft C 4� f fx] ft C

�

2� ft �
W2

WC f
fx

�

fx D 0.

Proof. ConsideringH � 1=2 in Lemma 2.4, we obtain

( f 2
C f 2

t ) fxx � 2( fx ft � 2� f ) fxt C ( f 2
x C (1C 4� 2)) ft t

D � f (1C f 2
x ) � 2� fx ft C

W3

f 2
,

which we can write in the form

( f 2
C f 2

t ) fxx � 2( fx ft � 2� f ) fxt C ( f 2
x C (1C 4� 2)) ft t

�

�

W2

f 2(WC f )
C

1

f

�

[(1C 4� 2) ft C 4� f fx] ft �
W2

f 2(WC f )
f 2 f 2

x C 2� fx ft D 0.

After a straightforward computation, we obtain the equation (3.1).

3.1. H D 1=2 horizontal annuli. Consider the horocylinderC(1)�ePSL2(R, � ),
given by

C(1)D {(x, 1, t) 2ePSL2(R, � )}.

Let R> 0 be a positive constant. We define the subsetBR� C(1) of the horocylinder, by

BR D {(x, 1, t) 2ePSL2(R, � )I x2
C t2

< R2}.

Proposition 3.2 (H D 1=2 annuli). Let U be the annulus UD NBR2 n BR1 with
R2 � 4R1. Then for � > 0 sufficiently small(depending on R1), there exist constant
mean curvature HD 1=2 horizontal graphs fC and f�, satisfying equation(3.1) in U
with Dirichlet boundary data f� D 1� � on �BR1, f � D 1 on �BR2. Moreover f�

tends to1� � uniformly on compact subsets as R2 tends to1.

REMARK 3.3. Note that the equation (3.1) implies that any solutionf � solving
the Dirichlet problem of Proposition 3.2 satisfies 1� � � f � � 1 and 1� f C � 1C �
on U .

Proof. LetU D NBR2 n BR1 be an annulus withR2 � 4R1 and fix

h D 1�
�

log(R2=R1)
log

�

R2

r

�

,
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wherer 2
D x2

C t2.
We define the weightedC2,� norm:

jvj

�

2,�IU D sup
X

{jv(X)j C r (X)jDv(X)j C r 2(X)jD2
v

(X)j C r 2C�(X)[D2
v]
�

(X)},

where X D (x, t) and [D2
v]
�

(X) is the Hölder coefficient of D2
v at X.

We expect the solutionf to be close toh. Thus we consider the following definition.

DEFINITION 3.4. We say f is an admissible solution of (3.1) iff 2 A
�

, where

A
�

D { f 2 C2,�(U ), f D h on �U W j f � hj�2,�IU �
p

�}.

We note thatA
�

is convex and compact subset of the Banach spaceB D C2,�(U ),
� < �. We will reformulate our existence problem as a fixed point ofa continuous
operatorT W A

�

! A
�

.
We now define the operatorw D T f as follows: if f 2 C2,�(U ), we setT f D w,

wherew is the solution of the linear Dirichlet problem
�

L fw WD awxx C 2bwxt C cwt t C dwx C ewt D 0, in U I
w D h, on �U ,

where:

a D f 2
C f 2

x ,

bD 2� f � fx ft ,

cD f 2
x C (1C 4� 2),

d D �

�

W

f 2
C

1

WC f

�

[(1C 4� 2) ft C 4� f fx],

eD

�

2� ft �
W2

WC f
fx

�

.

Proposition 3.5. If � is sufficiently small, then T f 2 A
�

for every f 2 A
�

.

Proof. Setu D w � h, then

(3.2) L f u D [(1 � f 2
� f 2

t )hxx C 2 fx ft hxt � f 2
x ht t � dhx � eht ] WD F .

By the maximum principle [4, Theorem 3.1 (p. 32)], 1� w � 1C � (or 1� � � w � 1)
so juj � �.

Applying Schauder interior or boundary estimates toL f u D F in U , we obtain
(see [4, Theorem 6.6 (p. 98)], [4, Corollary 6.7 (p. 100)])

juj2,�IU � C(juj0IU C jF j0,�IU ).
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Observe thatjuj � � implies juj0IU � �. From equation (3.2) followsjF j0,�IU � C�3=2.
This implies

(3.3) juj2,�IU � C(juj0IU C jF j0,�IU ) � C�.

Now, from [4, formula 4.17’(p. 60)], we obtain

juj�2,�IU � C�.

Sinceu D w� h, it follows that for � small enough,w 2 A
�

, from Schauder estimates
and for R2 big enough� depends only onR1, thus the proposition is proved.

Applying the Schauder fixed point theorem to the operatorw D T f , we obtain a
solution f � 2 A

�

which satisfies equation (3.1).
Now we prove thatf C converges to the horocylinderC(1C �) uniformly on com-

pact subsets asR2 tends toC1, the f � case is similar. TakeK a compact set inU .
Now enlargeU by making R2 tend to infinity, this produces a family of functionsh
(one for each suchR2). Note that the restriction of this sequences of functions to the
fixed compact setK converges uniformly to the value 1C �.

On the other hand, given� > 0 and some compactK � (C(1) � BR1), by the
definition of A

�

and the existence part, there is someR2 large enough and some�1

small enough (depending only onR1 and�, not on R2 or K ) such that for any� < �1,
the function f associated to suchh is �-close to 1C�, that is, whenR2 tend to infinity
the functions f C converges uniformly to 1C �.

3.2. The main theorem. Now we prove the main theorem.

Theorem 3.6 (Main theorem). Let 6 be a properly embedded constant mean

curvature HD 1=2 surface inePSL2(R, � ). Suppose6 is asymptotic to a horocylinder
C, and one side of C. If the mean curvature vector of6 has the same direction as
that of C at points of6 converging to C, then6 is equal to C (or a subset of C if
�6 ¤ ;).

Proof. Assume that6 is not a subset ofC. After an isometry, we can assume
that, there is a sequence of pointspi D (xi , yi , ti ) 2 6 with yi ! 1. First, we suppose
that6 is contained in the set{y > 1}, the other case is treated analogously. We denote

by C(� ) the horocylinder inePSL2(R,� ) given by{yD �}. For � > 0 small we consider
the slabSC bounded byC(1) and C(1C �). Then by the maximum principle6C

D

6 \ SC has a non compact component with boundary�6 � C(1C �).
Let D(� , R) denote the disk inC(� ) defined byD(� , R)D {(x,� , t)I x2

C t2
� R2}.

By considering vertical translation, we can find a diskD(1, 3R1) such that:

(D(1, 3R1) � [1, 1C �]) \6C

D ;.
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By Theorem 3.2, for eachR � 4R1, there exist a horizontal graphf CR defined on the
annulusU D NBR2 n BR1, this horizontal graph converge toC(1 C �), when R goes
to C1.

Now, considerR large, such that the graph off CR (which we denote by0C), sat-
isfies 6C

\ 0

C

¤ ;. By considering vertical translations and translations along the
geodesic{x D 0, t D 0}, the translated surface of0C does not touch6C, that is, there
is a translated surface of0C (which we denote by0C1 ) such that0C1 and6C has an
interior contact point. Since the mean curvature vectors are pointing up, this violates
the maximum principle and6C cannot exist.

In the second case, we redo exactly the same argument exchanging the roles of
C(1C �) and C(1� �).

4. The second theorem

In this section our second result concerns completeH D 1=2 surfaces inePSL2(R,� )
transverse to the vertical Killing fieldE3 D �t , we use Theorem 1.1 in order to prove
such surfaces are entire graphs. This result was proved in a totally different way in [1]
and [3].

Theorem 4.1. Let 6 be a complete immersed surface inePSL2(R, � ) of constant
mean curvature HD 1=2. If 6 is transverse to E3 then6 is an entire vertical graph
overH2.

The proof of this theorem is analogous to this one in [5, Theorem 1.2] taking into
account [7]. It was showed in [5, Theorem 1.2], that, there is� > 0 and a horocylinder

such that, a graphG � 6 (over a domain inH2
� {0} �ePSL2(R, � )) is in the �-tubular

neighborhood of the cylinder. SinceG is proper the proof of the half-space theorem
shows that this graph can not exist.
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