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Abstract
In this paper we prove that i is a properly embedded constant mean curvature

H = 1/2 surface which is asymptotic to a horocylinderc I5\SJL2(R, ), in one side
of C, such that the mean curvature vectorX»fhas the same direction as that of the
C at points ofX converging toC, then X is a subset ofC.

1. Introduction

In this paper we study complete constant mean curvaklire: 1/2 surfaces im-
mersed in5§L2(R, 7). Recall that in [5] the authors generalized i x R the half-
space theorem of Hoffman and Meeks which ensures that a fpydpenersed minimal
surface inR® that lies in a half-space must be a plane. The main theorerb]isdys
that, if a properly embedded constant mean curvaklire 1/2 surface inH?xR which
is asymptotic to a horocylinde€ and on one side o€; such that the mean curva-
ture vector of the surface has the same direction as th& af points of the surface
converging toC, then the surface is equal © (or a subset ofC if the surface has
non-empty boundary).

We extend this result to the spaPSLy(R,). Remember that the spaBSLy (R, t)
is one of the eight Thurston’s geometries. Indeed it is walbwn there exists a clas-
sification due to W. Thurston of simply connected homogease®umanifolds (see [8,
Chapter eight]). Such a manifold has an isometry group ofedsion 3, 4 or 6.

e When the manifold has 6-dimensional isometry group, we hhee3-dimensional
space-forms: the Euclidean sp&R% the Euclidean sphe®?(k) (having sectional curva-
ture x > 0) and the hyperbolic spad&3(x) (having sectional curvature < 0).

e When the manifold has 3-dimensional isometry group, we thlagelie groupSok.
e When the manifold has 4-dimensional isometry group (welldlyeE(«x, ) these
manifolds), there exists a Riemannian fibration over a 2edisional space forrM?(x).

The manifoldsE(x, 7) are classified, up to isometry, by the curvatureof the
base surface and by the bundle curvature of the fibratiomvherex and t can be
any real numbers satisfying # 4r2. Whent = 0 we have the metric product spaces
M?2(k) xR. Whenk =0 andt # 0 we have the 3-dimensional Heisenberg group. The
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948 C. PENAFIEL

space%b(R, 7) is given when we consider # 0 andx = —1, that iISE(-1, 1) =
IE’\SJLQ(R, 7).

We extend the aforementioned result to the snég&z(R, 7). In order to do that,
note that, since exists a Riemannian submersion

T |5\SJL2(]R, ) —> H?

over the half-plane model for the 2-dimensional hyperbspaceH?, we call a horo-
cylinder the inverse image ~1(h), whereh is a horocycle inH?. We also denote by
3 the tangent field to the fibers dPSLy(R, 7).

Let C be a complete horocylinder i@b(R, 7), we say that the surfac& is
asymptotic toC if X contain a open subsét C ¥ (with U N C = @), such that, for
eache > 0, there exists a compact skt C U, where the distancd(p, C) < ¢ for all
p e (U —K), hered(-, -) denotes the distance function in the sp&3L(R, 7).

Following the same spirit as in [5], we show an analogous Irdsuthe space
F’>\S’L2(R, 7). More precisely, our main theorem is the following.

Theorem 1.1. Let ¥ be a properly embedded constant mean curvature= /2
surface inF?SJLg(]R, 7). SupposeX is asymptotic to a horocylinder Gand on one side
of C. If the mean curvature vector & has the same direction as that of C at points
of ¥ converging to Cthen X is equal to C.

As a consequence of Theorem 1.1, we obtain (in the same sense [8]) the
Theorem 1.2. Note that, the Theorem 1.2 is well known, seeirfstance [1] or [3,
Corollary 4.6.3].

Theorem 1.2. Let ¥ be a complete immersed surface@h(]R, t) of constant
mean curvature H= 1/2. If T is transverse to the vertical Killing field &= o, then
¥ is an entire vertical graph oveH?.

Observe that the valuel = 1/2 for constant mean curvatuité surfaces is special
in the spacePF\S/Lg(]R, 7). In fact, a constant mean curvatuk¢ surface in the homo-
geneous spacg(x, t) has critical constant mean curvature if the relatldd = —« /4
holds. This terminology comes from the fact that it separdhe caseH? > —« /4, in
which compact constant mean curvature exists, from the e#se —« /4, in which no
compact constant mean curvature can exists.

2. The spacePSL,(R, 7)

The 3-dimensional spad'é\S/Lg(R, 7) is a complete homogeneous simply connected
Riemannian manifold. Each such a manifold (dependingrpiis the total space of a
Riemannian submersion over the 2-dimensional hyperbplceaH? (here the Gaussian
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curvature of the hyperbolic space#s= —1). The bundle curvature of the submersion
is the numberr such thatVy E3 = ©X x E3 for any vector fieldX on F”\S/LQ(R, 7) (here
V denotes the Riemannian connection ﬁLg(R, 7)). And each fiber is a complete
geodesic tangent to a Killing fiel&s;. Whent = 0, we obtain the spadé\S/Lg(R, 0)=
H? x R.

From now on, we choice and fix a value fordifferent from zero. More precisely,
the Riemannian manifold i§5\6/L2(R, 7), g), where I%L(R, 1) is topologically H? x R
(R the real line), that is

PSL(R, 7) = {(X, y, 1) € R®; y > 0}
endowed with the metric
g = 22(dx® + dy?) + (=2tadx +dt)%, A= )—1/

There is a natural orthonormal framiE;, E,, E3} given by (in coordinate$oy, dy,d;})

3 3
Ei= = +218, Ey=-2

, Esz=a0.
X X 3 t

Es is the Killing field tangent to the fibers. The metricinduces a Riemannian con-
nectionV given by

_ Ly _ Ly _

Vg, B1 = 2 Ex, Vg Ex= pEl +1tE3, Vg E3=-1E;,

- A - A -
Ve,Br = 5B —1Bs, Ve,Br=—3F1, VeEs=1Ey,

?53 E]_ = -7 E2, ?Es Ez = ‘L'E]_, ?E3 E3 =0.
We also have

A A
[E]_, Ez] = )L—;IE]_ — )L—)z(Ez + 27 Ej3, [El, E3] =0, [Ez, E3] =0.

For more details see [6], [2], [8].

2.1. Graphs in |5§I/_2(R,r). Now we give the definition of vertical and horizon-
tal graphs in|5\SJL2(]R, 7).

2.1.1. \Vertical graph. A section of the Riemannian submersion

T 5§L2(]R, 7) > H?
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is a maps: Q C H? — I5\S/L2(]R, 7), whereQ is a domain, such that
7 oS =idg|q

beingidy:|q the identity map orH? restrict to Q.

DEerFINITION 2.1 (Vertical graph). A vertical graph iﬁ§L2(R,r) is the image of
a section of the Riemannian submersion I%L(]R, T) — HZ

Given a domain C H? we also denote by its lift to H? x {0}, with this iden-
tification we have that the vertical graph(u) of u € C°(3) N C>(Q) is given by

() = (X, ¥, u(x, ¥)) € PSL(R, 7); (X, y) € Q.

If the vertical graphX(u) has constant mean curvatuté, then u satisfies the
following partial differential equation

2.1) Ly (u) := divge (%e1 + %ez) —2H =0,

where H is the mean curvature function with respect to the upwardtpa normal

vector andW = /1 + o2 + 82,
o o =Uy/h+ 2thy/A%
o B =uUy/h—2t)x/A%

2.1.2. Horizontal graph. Following the ideas presented in [5], we consider a
C2functiony = f(x,t), f > 0.

DEFINITION 2.2 (Horizontal graph). We denote 3 (f) = graph(f), the hori-
zontal graph of the functiorf, that is

Th(f) = {(x, f(x,1),t) € PSL(R, 7); (X, t) € Dom(f)}.

We denote byN the natural normal vector t&y(f) (see equation (2.2)), and by
H the length of the mean curvature vector Bf(f) with respect toN. The mean
curvature equation for horizontal graphs is given in thdofeing lemma.

Lemma 2.3. Suppose that H is the mean curvature functiorXg{ f). Then the
function f satisfies the equation

2HW?

= (F2 4 £2) fux — 2(fx fr — 20 F) fi

+ (L + 41D + £ f + T(L+ £D) + 20y fy,
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where W= /f2 + f2 + f2(f, + 2r f;/f)2. In particular the horocylinders (x,t) =
constant has constant mean curvature.

Proof. The surfacezy(f) is parameterized by(x, t) = (x, f(x, t), t), so the
adapted frame ta&(f) is given by
ox = ME1 + fxEz — 27 E3),
o = AfEx + Eg,
N — —(fx +2tAf)Es + Ex — A fiE3
V14 (fx+2ta )2 4+ 222

2.2)

where N is the unit normal toXn(f), observe thafN, dy) > 0. Denoting byg;; and
bi; the coefficients of the first and second fundamental formeetsgely we have that
the functionH satisfies the equation

_ b11922 + b22011 — 2012012

2H 5
011022 — 97>

Since

Voox = =22 x(2 + 4t2)Ex + [1 fux + A3((L + 47%) — £)] B2 + 202 fxEs,

Vaox = [thfx = A2 (L + 20%)]Eq + [A fur — A2 fx fy — AT] E2 + A%7 T Es,
Vaor = 2tAfEq + (A fy — A2 T2 Ey,

with
D11 = A fux + 221 + 4t2) 12 + 2023(1 + 472) fy £y + A2(1 + 477),
1
bip = Afx — TA 7 + 21,\3(5 + 212) f2— 1A,
b22 =A ftt —2TA fx ft — )\.2 ftz(l + 4‘[2),
and
O = A°[(1 + 472 + £2],
g2 = A2 fy fy — 272,
022 = 1+ )\2 ft2'
a straightforward computation gives the result. ]

An interesting formula for the Laplacian is given in the néxnma.
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Lemma 2.4. Considering H= 1/2, the function f satisfies

£2 foff242cf, f
e
1 W—f 2+ 2c(ffcfe + 2012
Aa\ F) = Fw W '

Proof. The proof follows from a hard computation by consiaigr
Az () = L > 0 (vad )
h \/g ij i j

whereg is the determinant of the first fundamental form agd (= (g;;)~*.
Observe that

1
At = W[fZ[(fer £2) fxx + 220 f — fy f) fxe + (£2 + (L + 472)) fy ]
+ @+ 31 ) fx + (@fy — (1 + 472 Ff) f1],
wherea = ffy + 2t f, and W2 = 2 4 2 + (ff, + 27 f;)2% O

REMARK 2.5. In the case = 0, that is, when the ambient spaceHg x R, it
was proved in [5] that

As(f) f >0,

1
As(f) (?) > 0,

which is surprising and plays an important role. Note that,d@ not have this property
when t # 0.

3. The main theorem

In order to prove the main theorem (Theorem 3.6), first we toosanH = 1/2
annulus. Which is an horizontal graph, this is the goal of Fmeposition 3.2. Since
we deal with horizontal graphs, thd = 1/2 mean curvature equation is given in the
following lemma.

Lemma 3.1. Considering H= 1/2, the mean curvature equation for a horizontal
graph is given by

f2
1= W[(f2+ £2) fux — 2(fx fr — 27 ) fyq

(A + 4D+ A f + T+ £2) + 20 f ],
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which we can write in the form

(F2 4 £2) fox — 2(Fx fe — 20 ) F + (£2 + (1 + 412)) fy
(3.1) [W 1

W2
2t W—H][(1+472)ft + 4t ff] f + |:27fI_W—+ffX:| fx =0.

Proof. ConsideringH = 1/2 in Lemma 2.4, we obtain
(2 4+ £2) fxx = 2(Fc fo — 20 F) Fur + (£ + (1 + 42%) fu
W3

:—f(l+ fxz)—ZTfot—f-ﬁ,

which we can write in the form

(F2 4 £2) fux — 2(Fx fr — 20 F) e + (£2 4+ (1 + 429)) fyy

- W +1 [(1 + 472) fy + 4c F 1] f — w2 f2f2 42t f, =0
f2(W+ f) ' f ! T Wt £y X e
After a straightforward computation, we obtain the equat{8.1). L]

3.1. H = 1/2 horizontal annuli. Consider the horocylinde€(1) c PSLy(R, 1),
given by

C(1) = {(x, 1,1) € PSL(R, 7)}.
Let R > 0 be a positive constant. We define the suligetC C(1) of the horocylinder, by
Br = {(X, 1,1) € PSL(R, 7); X? + t2 < R%}.

Proposition 3.2(H = 1/2 annuli) Let U be the annulus U= BRZ \ Bg, with
R, > 4R,. Then fore > 0 sufficiently small(depending on B, there exist constant
mean curvature H= 1/2 horizontal graphs f and f, satisfying equatior{3.1) in U
with Dirichlet boundary data ¥ =1+ € on dBg,, f* =1 on 9Bg,. Moreover f*
tends tol + ¢ uniformly on compact subsets as fnds tocc.

REMARK 3.3. Note that the equation (3.1) implies that any solutfoh solving
the Dirichlet problem of Proposition 3.2 satisfies- < f- <l and 1< f* <1+e¢

on U.

Proof. LetU = Bg, \ Br, be an annulus wittR, > 4R; and fix

h=1+— < o (&)
=T log(Ry/R) T )’
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wherer? = x2 + t2,
We define the weighte@€? norm:

Ve = s)12|p[|v(X)| +1(X)Du(X)] + r2(X)DZ(X)| + r#(X)[D?v]u(X)},

where X = (x, t) and [D?v],(X) is the Holder coefficient of D?v at X.
We expect the solutiori to be close tdh. Thus we consider the following definition.

DEFINITION 3.4. We sayf is an admissible solution of (3.1) if € A, where
A ={f eC?(U), f=hondU:|f—hl},, < e

We note thatA, is convex and compact subset of the Banach spaee C%#(U),
B < a. We will reformulate our existence problem as a fixed pointaoc€ontinuous
operatorT: A, — A..

We now define the operatan = T f as follows: if f € C2¢(U), we setTf = w,
wherew is the solution of the linear Dirichlet problem

Liw = awyx + 2bwyt + Cwyt + dwy +ewy =0, in U;
w=h, on aU,

where:
a= f24 f2,
b=2rf— ffi,
c= f2+ (1+ 477,

d=—|:W+ ! i|[(1+412)ft+4tffx],

f2 T W f
W2
e = |:2‘[ft_W——|—fin|

Proposition 3.5. If ¢ is sufficiently smajithen T fe A, for every fe A..
Proof. Setu = w — h, then
(3.2) Liu=[(1— f2— fAhy + 21y fthy — f2hy —dhy —eh] := F.
By the maximum principle [4, Theorem 3.1 (p.32)]<lw <1+¢€ (or 1—e <w <1)
SO |u| < e.

Applying Schauder interior or boundary estimateslipu = F in U, we obtain
(see [4, Theorem 6.6 (p.98)], [4, Corollary 6.7 (p.100)])

|u|2,a:U =< C(|U|O:U + |F|0,o¢:U)-



1/2 SURFACES IN 5\S/L2(R, 7) 955

Observe thatu| < € implies |ujoy < €. From equation (3.2) followsF |g..u < Ce®/2.
This implies

(3.3) lul2e:u = C(lulou + [Floeu) = Ce.
Now, from [4, formula 4.17’(p. 60)], we obtain
|u|;,o¢:U = Ce.

Sinceu = w — h, it follows that fore small enoughw € A, from Schauder estimates
and for R, big enoughe depends only orR;, thus the proposition is proved. [

Applying the Schauder fixed point theorem to the operatos T f, we obtain a
solution f* € A, which satisfies equation (3.1).

Now we prove thatf * converges to the horocylind€®(1 + ¢) uniformly on com-
pact subsets aR, tends to+oo, the f~ case is similar. Tak&k a compact set ifJ.
Now enlargeU by making R, tend to infinity, this produces a family of functiors
(one for each suclR;). Note that the restriction of this sequences of functiamshe
fixed compact seK converges uniformly to the valuef ¢.

On the other hand, givep > 0 and some compad C (C(1) — Bg,), by the
definition of A, and the existence part, there is soRg large enough and somg
small enough (depending only dR, and p, not on R, or K) such that for any < ¢,
the function f associated to such is p-close to ¢, that is, whenR, tend to infinity
the functionsf* converges uniformly to ¥ e. O

3.2. The main theorem. Now we prove the main theorem.

Theorem 3.6 (Main theorem) Let ¥ be a properly embedded constant mean
curvature H=1/2 surface inF?S/Lg(]R, 7). Supposex is asymptotic to a horocylinder
C, and one side of C. If the mean curvature vector3dfhas the same direction as
that of C at points of: converging to C then X is equal to C(or a subset of C if
X # 0).

Proof. Assume thak is not a subset oC. After an isometry, we can assume
that, there is a sequence of poirgs= (x, Vi, tj) €  with y; — 1. First, we suppose
that X is contained in the sdty > 1}, the other case is treated analogously. We denote
by C(£) the horocylinder inPSLy(R, 7) given by {y = &}. Fore > 0 small we consider
the slabS"™ bounded byC(1) andC(1 + €). Then by the maximum principl&* =
¥ N St has a non compact component with boundasy c C(1 + €).

Let D(£, R) denote the disk irC(£) defined byD(£, R) = {(x,£,t); x> +12 < R?}.

By considering vertical translation, we can find a didkl, 3R;) such that:

(D@, 3R) x [1, 1+ €]) N B+ = 0.
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By Theorem 3.2, for eaclR > 4Ry, there exist a horizontal grapfhi defined on the
annulusU = Bg, \ Bg,, this horizontal graph converge ©(1 + ¢), when R goes
to +o0.

Now, considerR large, such that the graph dfi (which we denote by ), sat-
isfies Xt N I'" # . By considering vertical translations and translationsngl the
geodesic{x = 0,t = 0}, the translated surface &f* does not touchz*, that is, there
is a translated surface af* (which we denote by";") such thatl';” and ©* has an
interior contact point. Since the mean curvature vectoes painting up, this violates
the maximum principle an&™* cannot exist.

In the second case, we redo exactly the same argument excbathg roles of
C(l+¢€) andC(1— ). 0

4. The second theorem

In this section our second result concerns complé¢te 1/2 surfaces ir15\SJL2(]R,r)
transverse to the vertical Killing fiel&Es = 9;, we use Theorem 1.1 in order to prove
such surfaces are entire graphs. This result was proved otalytdifferent way in [1]
and [3].

Theorem 4.1. Let ¥ be a complete immersed surface RELQ(R, 7) of constant
mean curvature H= 1/2. If ¥ is transverse to Ethen X is an entire vertical graph
over H?,

The proof of this theorem is analogous to this one in [5, Teepd.2] taking into
account [7]. It was showed in [5, Theorem 1.2], that, there is0 and a horocylinder
such that, a grapks ¢ X (over a domain inH? x {0} C IS\S/LZ(R, 7)) is in the e-tubular
neighborhood of the cylinder. Sind8 is proper the proof of the half-space theorem
shows that this graph can not exist.
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