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Abstract

The study of the hypercyclicity of an operator is an old peoblin mathematics;
it goes back to a paper of Birkhoff in 1929 proving the hypelicity of the trans-
lation operators in the space of all entire functions witke topology of uniform
convergence on compact subsets. This article studies therdyclicity of transla-
tion operators in some general reproducing kernel Hilbpaices of entire functions.
These spaces are obtained by duality in a complex separalilertHspace? by
means of an analytié{-valued kernel. A link with the theory of de Branges spaces
is also established. An illustrative example taken from Haenburger moment prob-
lem theory is included.

1. Introduction

The goal in this paper is to study the hypercyclicity of thanslation operators
in a reproducing kernel Hilbert space of entire functioig obtained by duality by
means of a kerneK. Namely, let# be a complex, separable Hilbert space with inner
product ( -, =), and suppose& is an analyticH-valued function defined ol€. For
eachx € H, define the functionfy(z) = (K(2), X)» on C, and letHx denote the
collection of all such functionsfy. One can transfer the hilbertian structure %fto
obtain a reproducing kernel Hilbert spagk of entire functions since the kern#l is
analytic onC (see, for instance, [14]).

These space§{x are ubiquitous in mathematics; see [14] and the references
therein. These spaces are also familiar in sampling theseg, (for instance, [7, 10]).
In particular, choosing<: C — L?[—x,7] as K (2)(w) := €2* /27, w € [-x,7], the
correspondingHk space coincides with the well-known Paley—Wiener spB&#, of
bandlimited functions to =, x].

Recall that a vectorf is said to be hypercyclic for a continuous linear operator
T in a Fréchet spac& (a complete metrizable convex space) if its orfdit” f}°°; is
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dense inF. In this case the operatdr is also said to be hypercyclic. The first example
of a hypercyclic operator was obtained by Birkhoff [3] whoosled that the translation
operatorsT,: f — f(- —w), w e C, w # 0, are hypercyclic in the space of all entire
functions with the topology of uniform convergence on contpaubsets of the plane. It
was shown by MacLane [13] that the differentiation operasoalso hypercyclic in this
space, and in Shapiro—Godefroy [11] this result was exigndell operators commut-
ing with differentiation except the scalar multiples of mdi¢y. Thus, spaces of entire
functions have proved to be an important source of hypdamwygerators.

Besides, Chan and Shapiro studied in [5] the hypercyclioftyranslations in the
setting of Hilbert spaces of entire functions of “slow grbtin [5] the posed ques-
tion was whether translations in a “reasonable” space afesffiinctions are always
hypercyclic, and it was shown that this is not true. For eXamgifferentiation and
translation operators in the Paley—Wiener spB3#&, are bounded but not hypercyclic;
in particular, T,, is an isometry ofPW, if w € R.

In the present paper we prove, under appropriate hypothlegesrcyclicity of trans-
lation operatorsl,,, w # 0, in an? space (see Theorem 2.12 in Section 2). In so doing
we apply a result from Chan—Shapiro [5] requiring the dgnsitthe set of polynomials
P(C) in H; also, the well-definedness and boundedness of the diffatiem operator
on Hg are needed. All these preliminaries are included in Se@ion

Translations’ hypercyclicity in a de Branges spafgE) has been studied by Baranov
in [2]; this study is carried out in the case that the polyralmare dense if{(E), obtain-
ing sufficient conditions for special structure functiofs In Section 3, we study when
a spaceHg is equal isometrically to a de Branges sp&¢€E) where the set of poly-
nomialsP(C) is dense; under suitable hypotheses we give a necessapufiitient con-
dition (see Theorem 3.2). We also prove a result on the hypkeity of the translation
operatorsT,,, w # 0, in these spaces (see Corollary 3.6).

Finally, in Section 4 we illustrate our results with an exdnfaken from the in-
determinate Hamburger moment problem theory.

2. Hypercyclicity of translation operators in #x spaces

In order to prove our result on the hypercyclicity of tratisla operators in spaces
Hy we first introduce these spaces, and we derive some needpdriies.

2.1. Some preliminaries o spaces. Suppose we are given a separable com-
plex Hilbert space and an abstract kerieWhich is a?{-valued function orC. For each
z e C, set fx(2) := (K(2), X)% and denote by the collection of all such functions
fx, X € H, and let7¢ be the mapping

2.1) s xS f, e Hy
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Notice that the mappin@k is an antilinear mapping frorfi onto Hx and kerjk is
a closed subspace @f. The norm||f |y, = inf{||x|l%: f = Tkx} defined inHx,
induces the inner product

(f, g)'HK = (P(kel'TK)ly’ P(kerTK)LX)H

where Pyer7y)1 is the orthogonal projection on (k&k)*, Tkx = f and7xy =g. The
closed linear subspace (Kg)* equipped with the inner product induced by the inner
product of H is a Hilbert space. By this way we obtain thatk is a reproducing
kernel Hilbert space whose reproducing kernel is given by

k(z, w) = (K(2), K(w))x, 2z wecC.

(See [14] for the details). It is one-to-one if and only if thet {K(2)},c is complete
in H. In this case, the mappin@x is an anti-linear isometry from{ onto H .

The convergence in the norip ||, implies pointwise convergence which is uni-
form on those subsets @ where the functiorz — ||K(2)||% is bounded; in particular,
in compact subsets af wheneverK is a continuous kernel. As a consequence, the
topology inHg is stronger than the topology which induces the uniform eogence
on compact subsets.

The spaceHk is a reproducing kernel Hilbert space of entire functionarifl only
if the H-valued kernelK is analytic inC ([16, p.266]). A characterization of the an-
alyticity of the functions inHk in terms of Riesz bases can be found in [9].

From now on,Hk will denote a reproducing kernel Hilbert space of entirecfun
tions associated with an analyti-valued kernelK. Next, we obtain some properties
of the Hilbert spaceHk derived from the sequence of Taylor coefficients of the entir
kernel K at a pointa € C, saya = 0. Indeed, fora = 0 we have the Taylor expansion

K@ =) " zeC,
n=0

where the coefficient, € H for eachn € Ny. By using Cauchy’s integral formula for
derivatives (see [16, p.268] we have

1 1 K (2)
K(“) = / dz n=0,1,...,
Ch = 0 =5~ o 21 97

from which

1 ©)
Ienlle < gz SURIK @l = .

Taking R > 1, the above inequality shows that the sequefip& |}:>, belongs to
I%(No) C 1?(Np) (from now onNp := N U {0}).



584 A.G. RRCIA, M.A. HERNANDEZ-MEDINA AND A. PORTAL

Proposition 2.1. Assume that the anti-linear operat@ik in (2.1) is one-to-one.
Then the sequencge,}i?, of Taylor coefficients of K a0 is a complete sequence
in H.

Proof. Suppose thdt,,x) = 0 for all n € Ny; for the function f (2) := (K(2),x),
ze C, we havef(z) = Y 12 o(cn, x)2" = 0 for all ze C. Since the anti-linear mapping
Tk is one-to-one we deduce that= 0. 0

From now on we assume that the anti-linear operdfoiis injective; consequently,
the sequencdc,}®, of Taylor coefficients ofK at O will be a complete sequence
in H.

2.2. Polynomials andHg spaces. Here, we give a necessary and sufficient con-
dition for the inclusion of the set of polynomial®(C) in H, and also we give a neces-
sary and sufficient condition for its density # . This is done via the Taylor coefficients
{ca}2, of the kernelK at O.

DEFINITION 2.2. A sequence{c,}°, is said to be minimal inH if cn ¢
SparCn}nzm for eachm e No.

Each complete and minimal sequen@a} X, in H# admits a unique biorthogonal
sequence(ci}, in H, i.e., {Ch, C) = dhm- Note that the sequence;};°, is also
minimal (see [12, p.29]). Obviously, each minimal sequefGg;’, is linearly in-
dependent irfH.

Proposition 2.3. The set of polynomial®(C) is contained inH if and only if
the sequencec, )i, of Taylor coefficients of K ab is minimal inAH.

Proof. For eachn € Ny the monomialz" belongs toH if and only if there exists
Xn € H such that(Cm, Xn) = dmn, Wheredn, denotes the Kronecker delta. Equiva-
lently, {z"}°, C Hk if and only if there exists a biorthogonal sequerieg}s”, C H
of {Ca}p2,. This is known to be equivalent to the minimality ff,}5> , (see [17]). [

The density of the set of polynomial®(C) in Hk involves the concept of
Markusevich basis (M-basis) (see [12, p.30]):

DEFINITION 2.4. An M-basis for#H is a complete, minimal sequeng¢e,}>, in
‘H such that its biorthogonal sequenfgl}> ; is also complete ir.

Proposition 2.5. Assume that the anti-linear operat@i given in(2.1) is inject-
ive. Then the set of polynomial$(C) is dense inHk if and only if the sequence
{cn}, is an M-basis forH.
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Proof. Assume that the set of polynomid®C) is dense inHy. By Propos-
ition 2.3 the sequencee, )i, is minimal in H. Since{c,} 2, is complete there exists
a unigue sequencéc;}i?, biorthogonal to{c,}i®,. Consequently{c,}io, is an M-
basis for’H. Reciprocally, assume that the sequencgly’, is an M-basis forH.
For anyn € Ny we have thatz" = (K(2), ¢i). As a consequence of completeness of
the sequencéc;}> , we have that set of polynomial®(C) = spar{z"}>°, is dense
in Hg. O

2.3. The differentiation operator in Hy spaces. This section is devoted to the
differentiation operatoD(f) = f’ in H; concretely we study whe®: Hx — Hg is
a well-defined bounded operator. To this end, febe a function inHy; there exists
x € H such thatf (z) = (K(2),x), for anyz e C, and f(z) = Y - (cn,x)2". Therefore,

f'(2) = i(cn, x)n"t zec.

n=1

The derivative f’ of the entire functionf belongs toHk if and only if there exists
y € H such that

(2.2) (Cny Y) = (n+ 1)(Chy1, X) for any n e No.

For the sake of completeness we include the following geémecanent problem result
whose proof can be found in [17, p. 126]:

Theorem 2.6. Let{fq, fy, f3,...} be a sequence of vectors belonging to a Hilbert
spaceH and {d;,d»,ds,...} a sequence of scalars. In order that the system of equations

(f, fn)zdn, nGN

has at least one solution &€ H with || f|| < M for some positive constant Mt is
necessary and sufficient that

Y ads| =M

n

> ants
n

for every finite sequence of scalafsa,}. If the sequencé fy, fo, f3,...} is complete
in H, then the solution is unique.

Assume that the sequende,}>’, is complete and minimal if{. As a conse-
guence of the above result the differentiation operadgif) = f’ is a well-defined
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operatorD: Hyx — Hy if and only if, for eachx € H the linear functionaluy defined
on spaffic,}p2, as

x (Z ancn) = Z an((N + 1)cn+1, X)

for every finite sequence of scalafa,}, is bounded. For each fixed € #, the lin-
ear functionaluy: sparica}32, — C can be decomposed as the prodiigh, where
Ty : sparicy}2, — C is the linear operator given by

Ty (Z ancn> = an(cn, X)

n

and®: sparic,}, — sparica}2,, is the linear operator given by

(2.3) ) (Z ancn) =Y an(n+ 1)cnsa

for every finite sequence of scalafa,}. Observe that the operat® is well-defined
since the sequencigs}nen, IS Minimal (consequently, linearly independent).
The operatorTy is obviously bounded since

Tx (Zﬂ: ancn) = zn: an(Cn, X) = <Zn: anCn, x>.

Thus, if the operato® given by (2.3) is bounded, then the differentiation oparato
a well-defined operatoP: Hx — Hk. Moreover, the boundedness of the operafor
implies the boundedness of the differentiation operd®orindeed, if® is bounded on
sparica}s2, then it can be extended by continuity to the whole spaceln this case,
the adjoint operator o, ©*: H — # is bounded and it is straightforward to prove
that D = TKD*TK—l where 7x : H — Hg is the anti-linear isometry defined in (2.1).

Next we give a sufficient condition for the boundedness ofdifierentiation oper-
ator D: Hx — Hx assuming the minimality of the sequen®};®, in H. Following
[12, p.27], the minimality of the sequende,}’, in H implies that the numbersy
given by

. iog Ck ——
2.4 Sk = inf p[ €% —, , ke Ny,
(2.4) k ;QR ,0( ol Spaﬂcn}nyék) € No

are strictly positive for everk € Np; here p denotes the distance with respect to the
metric given by the norm ir{. Note that the numbesy measures the inclination in
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H of the straight line spanned by to the closed subspa@paric,}n.k. Besides, for
any x = Y o (finite or convergent sum) the inequality

Il

2.5 ak| <
(29) ol = 5 e

holds for each k € N.

(See [12] for the details)

Proposition 2.7. Suppose that the sequenp&}>°, is complete and minimal in
‘H. Suppose that

26 Z (+Dlenal _

n |Cn||

where {8,}2° , is the sequence of positive numbers given(ly). Then the differenti-
ation operatorD is a well-defined bounded operator Gt .

Proof. Proceeding as above, the differentiation oper®idr) = f’ is well-defined
and bounded orH if and only if the operato®: sparic,} >, — sparic,}>, defined
by (2.3) is bounded. Lex = Zn 0 @nCn € sparicn}, with [|x|l4, = 1. By using in-
equality in (2.5), we obtain

n+1)Jc
[Dx] = < Z(n + Do [ICnsall < Z ( ) || n+l||

S lleall

Z an(n + 1)Chi1

Hence, the convergence of the serfes o((n+1)/8n)(l|Ch+1ll/lICa]l) implies continuity
of the operator® in sparfc,} X ,; by density it will be continuous orH. 0

2.4. The hypercyclicity of translation operators in #y. First, recall that a
translation operatof,,: Hx — Hk, w # 0, is a hypercyclic operator iftix if there
exists a vectorf in Hx whose orbit{T,) f}> ; is dense inHk.

In order to prove that, under suitable hypotheses, any lgbms T, w # O, is
hypercyclic onHk we will use a result from Chan—Shapiro [5] whose statement is
included below. It involves an auxiliary Hilbert spa&#(y) associated with an admis-
sible comparison functiory: An entire functiony(z) = Y .., ¥n2" is said to be an
admissible comparison function i, > 0 for eachn € Ny, and the sequencey,/yn_1
decreases when tends to infinity. For an admissible comparison functjanlet E2(y)
be the set of all entire function§(z) = > o2, faz" for which

o | fal?
If15, =) —5 <oo
n=0 Yn
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Endowed with the norn| - |2, the spaceE?(y) becomes a Hilbert space of entire
functions.

Theorem 2.8 (Chan—Shapiro [5]) Suppose that X is a Fréchet space of entire
functions with the following properties
(1) P(C) c X andP(C) = X;
(2) the topology of X is stronger than the topology of uniformvawgence on compact
subsets ofC;
(3) the translation operator ,J is continuous on X for every # 0;
(4) E%(y) c X for some admissible comparison functign
Then any translation operator J, w # 0, is hypercyclic in X.

Lemma 2.9. Suppose that the differentiation operatbrdefined asD(f) = f’ is
a well-defined bounded operat@®: Hx — Hg. Then for eachw € C, the translation
operator T,: Hx — Hk is a well-defined bounded operator. Moreqvere have the
following expansion for [J converging in the operator norm

2.7) T, = i (_:'))HD”.
n=0 '

Proof. It is a well-known result that (2.7) holds &) the space of entire functions
endowed with the topology of the uniform convergence on carhpsets (see, for in-
stance, [5]). Since the differentiation operafris bounded on the Hilbert spadé,
the series on the right side of (2.7) converges absolutelg, lzence in the operator
norm to a bounded operator ddx. As the convergence iff{x implies convergence
in the spacef, this operator must bé&,,. ]

Next, we give a criterion to ensuring when an entire functipbelongs toH:

Lemma 2.10. Assume that the sequen®};° , of Taylor coefficients of K & is
minimal inH. Let o(z) =Y .- ,0.2" be an entire function such that > 5|gn|/(nllcnll) <
oo where the sequendg, )}, of positive numbers is given I§g.4). Then the function
g belongs toH .

Proof. The entire functiom(z) = Y 2, 9.2" belongs to#x if and only if there
existsx € H such that

(Ch, X) =0, for each n e Ny.

Following Theorem 2.6, this is equivalent to the boundedrasthe linear functional

g <Xn: ancn) = Xn: an0n
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defined on spdt,} . Lety =) anc, be a vector in spde,}o° o; by using inequal-
ities (2.5) we obtain

g1 = Ylanllonl = 30 122 iyl = (30 2220 iy,
n . Sullcol 2 Salal

Hence, the linear functionaly is bounded on spdo,}° , and consequently, the entire
function g belongs toHx . 0

In order to apply Theorem 2.8 ttx we need to prove the existence of an auxil-
iary Hilbert spaceE?(y) C Hx

Lemma 2.11. Assume that the sequen¢e,}>>, is minimal in#. There exists
an admissible comparison functign such that E(y) C Hg.

Proof. Lety(z) = Y ooy 2" be an admissible comparison function such that,
in addition, the sequencgy/(Snllcall)}e2, belongs tol?(No), where the sequence of
positive numbergén}ie, is defined in (2.4).

Let g(2) = Y ooy On2" be an entire function belonging t&%(y). By using the
Cauchy—Schwarz inequality we obtain

~ - - N o\ 12
Z |On| _ Vn @ < Z( Vn ) Z(M)
s SnllCall — nllCall va ) — o Snllcall o\

o o /2
n

= lglly 2

<§(5nucnn)) "2

Hence, by Lemma 2.10 we obtain thgitbelongs toHy . ]

Thus, we can prove the following hypercyclicity result ftiettranslation operators
T, on Hg:

Theorem 2.12. Let K: C — H be an analytic kernel whose Taylor expansion
around z=0is K(2) = Y ., CaZ". Assume that
i) the sequencgc,}X, is an M-basis forH, and
i) the sequencé((n + 1)/8n)(|cn+all/ICnl)}nZo belongs to H(No).
Then for any w € C \ {0}, the translation operator J: Hx — Hg is hypercyclic.

Proof. This result is a corollary of Theorem 2.8. Proposith5 guarantees that
the set of complex polynomial®(C), is dense irH{k. The topology ofHk is stronger
than the topology of uniform convergence on compact set€.oBy Proposition 2.7
and Lemma 2.9 the translation operafyy is continuous onfHk. Lemma 2.11 gives
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us the last condition in Theorem 2.8. As a consequence, welwim that for each
w # 0 in C the translation operatof, is hypercyclic onH . 0

3. The spacesHk as de Branges spaces

In [10] one can find some characterizations of a spHgeas a de Branges space;
this means that the spa@éx is equal isometrically to some de Branges space. In this
section the goal is to characterize a spéte as a de Branges space where the set of
polynomialsP(C) is dense. First, we introduce a de Branges sp&(€) with structure
function E: Let E be an entire function verifyingge(x —iy)| < |E(x +iy)| for all y > 0.

The de Branges spadé(E) is the set of all entire function$§ such that

2 _ (7110
2= [ g0

and such that both ratio§/E and f*/E, where f*(z) := f(2), z < C, are of bounded
type and of non-positive mean type in the upper half-planee $tructure function or
de Branges functiorE has no zeros in the upper half plane. A de Branges fundiion
is said to be strict if it has no zeros on the real axis. We meqfiyE and f*/E to
be of bounded type and nonpositive mean typeCih. A function is of bounded type
if it can be written as a quotient of two bounded analytic fioes inC* and it is of
nonpositive mean type if it grows no faster thail ér eache > 0 asy — oo on the
positive imaginary axiqiy: y > 0}. Note that the Paley—Wiener spa&a\, is a de
Branges space with strict structure functien (z) = expirz).

It is known that any de Branges spagfE) can be considered as Hy space
where the kerneK is given by

2
dt < oo,

B(w)A(z) — A(w)B(2)
m(w —2)

[K@)l(w) = , ZweC,
where E(z) = A(z) —iB(2), ze C (see [10]).

We will use the following classical characterization of a Bieanges space which
can be found in [4, p.57]: A Hilbert spack of entire functions is equal isometrically
to some de Branges spag¢dE) if and only if the following conditions hold:

B1l. Wheneverf € # andw is a nonreal zero off, the function

02 = =2 1)
Z—w
belongs toH and ||g|| = || f ||
B2. For eachw ¢ R the linear mappingd > f — f(w) € C is continuous.
B3. For any f € H the function f* defined asf*(z) := f(2), z € C, belongs to the
space, and f*| = || f||.
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The main result in this section depends on the symmetry ofntbdéiplication by z
operator on the spacH:

Lemma 3.1. Assume thaP(C) = Hk. Then the densely defined closed operator

S: Ds —> HK
f(2) — z1(2),

where D := {f(2) = 9(2)/z € Hk | 9 € Hk}, is symmetric if and only if the Gram
matrix associated with the biorthogonal sequericg}>®, of {cn}22,, is a semi-infinite
Hankel matrix i.e., (cy,1, C) = {(Cq Cnyq) fOr any mn € No.

Proof. SinceP(C) = Hx and P(C) c Ds the operatorS is a densely defined
closed operator. For the closedness, note that the comarge Hyx implies point-
wise convergence iI€. Since operatolS is injective, let7 := S™* be defined in the
rangeRs. Clearly, S is a symmetric operator if and only i is a symmetric operator.
Assume that the Gram matrix associated with the sequégige® , is a semi-infinite
Hankel matrix and letp(z) = >, anz" andq(z) = Y, bmz™ be two polynomials in
the range ofS, Rs. We have

(7p.q Zanbm 2", 2" Zanb = (p, J0).

Since Rs is included inHg := {f € Hx | f(0) =0} andHy = 7}{0&} = Sparic;}
we have that for anyf € Rs there exists a sequence of polynomiggs ,} with constant
coefficient zero such that = limn_~ Psn. Using a density argument it is straightfor-
ward to prove that, for anyf, g € Rs one gets(J f, g) = (f, 7).

On the other hand, if7 is a symmetric operator then for amym =1, 2,...
we have

(Zn_l, Zm> — (JZ“, Zm> — (Zn, jzm) — (Zn, Zm_1>.

Since 2" = Tk ¢ and z" = Tk, for any n, m € No, we obtain that the Gram matrix
associated with the sequenfg };2, is a semi-infinite Hankel matrix. [

Theorem 3.2. Consider anHy space such that &) = Y 7 ,c,z" where the se-
quence(cy}o2, forms an M-basis forH. Then the spacek is equal isometrically
to a de Branges space where the set of polynon#¥§) is dense if and only if the
two following requirements hoid
1) The Gram matrix associated with the sequefcgl , is a semi-infinite Hankel
matrix, i.e., (Cr, 1, Cy) = (Ch, Chyq)s M, N € Np;

2) For any f inHk such that {w) =0, wherew € C\R, the function {2)/(z—w)

belongs toH .
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Proof. For the sufficiency part: From Lemma 3.1 it followstttiee multiplication
by z operator,S, is a densely defined symmetric operator definedDan:= {f(2) =
0(2)/z € Hk | 9 € Hk}. Moreover, for anyw € C\ R we have thatR(S—wl) = H
where H,, = {f € Hx | f(w) = 0}. We denote byU,, := (S— wl)(S— wl)™? the
Cayley transform associated @ Property 2) implies that the domain of the operator
(S—wl)™?tis Hy. Let f € H,, then

Z—w
Z—

fH U fl = 1]

Hence, property B1 is fullfilled by the spaGé .
Let f = Tk (x) be in Hk with x € H. Then, f*(2) = }_2, (cn, X)Z", z€ C. As
a consequencef * belongs toHk if and only if there existsy € H such that

(€, y) = (Cn,X), Nn=0,1,....

Consider the anti-linear operatbt: sparic;}oC , — sparic;}s2, defined by

U(Z anc;;> =Y ag,
n n
for every finite sequence of scalafa,}. For anyp =), a.c} € sparic;}o, we have

{Up, Up) = Zaman Zaman = (p, P,

where we are used that the Gram matrix associated with theeseg{c;}>° , is a semi-
infinite Hankel matrix. Therefore, the operatdis an anti-linear isometry on spgsf} >,
and sincesparic;}>° , = H the operatolU can be extended to an anti-linear isometry
defined on#H which we also denote dd. Thus, for anyp € sparic;}>2, andn € N
we have that(c,, Up) = (cn, p). Now, letx € H, sincesparic;}>°, = H, there exists

a sequencgpym} C sparic;}, such thatx = limm_s Pxm. It is straightforward to
prove that(c,, Ux) = (cn, X). Hence, givenf € Hy the entire functionf * also belongs
to Hy, sincef = Tk (x) implies f* = Tx (Ux). Moreover, sincdJ is a isometry|| f | =

IX|| = |JUX|| = || f*|l. This proves the property B3. Since the spagte is a RKHS, the
property B2 is clearly satisfied.

The necessity part is straightforward: If the spa¢e is a de Branges space and the
set of polynomials is dense then the multiplicationzgperator is closed and symmetric
[4, p. 314] and, therefore, from Lemma 3.1 we have that therGreatrix associated with
the sequencéc;}o°  is a semi-infinite Hankel matrix.
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Moreover, if f € Hx and w is a nonreal zero off then from condition B1 the
function ¢ — w)/(z— w) f(2) belongs toHk and hence, the function

f@ _ 1 (i:Zf(z)— f(z))

Z—w w—w

belongs toHk . O

Closing this section we carry out a deeper study of propejtinZTheorem 3.2.
This property concerns the stability of the functions bgliog to the space{x on
removing a finite number of their zeros (this property appear[11] under the name
of division property. The connection between this property and sampling theary
be found in [6, 7].

DEFINITION 3.3 (Zero-removing property). A sefl of entire functions has the
zero-removing property (ZR property hereafter) if for agye A and any zerow of
g the functiong(z)/(z — w) belongs toA. A set A of entire functions has the zero-
removing property at a fixed point € C (ZR,, property hereafter) if for ang € A
with g(w) = 0 the functiong(z)/(z — w) belongs to.A.

Firstly, we study conditions under which gRproperty holds inx. Reducing
the ZR, property to a moment problem, a sufficient condition asgutimat the ZRg
property holds involves the continuity of a shift relatedecator.

Consider a functionf € Hg, i.e., f(2) = (K(2),X)«, z € C, for somex € H, such
that f(0) = 0. Then(cy, X) = 0 and

@ = i(cnﬂ, x)z", zeC.

n=0

As a consequence, the spagk satisfies the property ZRif and only if for each
X € {Co}* there existsy € H such that

(cn, Y} = (Cnt1, X), N € No.
Proceeding as in the study of the differentiation operatoSéction 2.3 we obtain:
Proposition 3.4. Consider an}k space such that &) = Y ,c,z" where the

sequence(ch}X, is complete and minimal ir{. If the operator R sparic,}°, —
sparica 2, given by

(3.1) R(Z ancn> = Z AnCn1,
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for every finite sequenda,}, is boundedthen the spacé{x satisfies th&ZR, property.

Now, proceeding as in Proposition 2.7, we give a sufficiemtdition on the con-
tinuity of the operatorR involving the sequence of positive numbe )}, defined
in (2.4).

Theorem 3.5. Assume that the sequenf& };° , is complete and minimal if.
The convergence of the series

>\ 1 ol
3.2 =
(3:2) 25 Tl

implies that the operator R is bounded @h

Proof. For any finite sunx = Zr';zo anCp, inequalities (2.5) give

L

L
1 Jlcnsall
IRX| < Y “lanlllcasall < (E 8_—||c+|| [IXIF= MIIxl,
n=0 n n

n=0

where M denotes the sum of the series in (3.2). This proves that teeaty R is
bounded on spdon}i ; the completeness dic, )y, proves thatR is bounded or#.
[

It remains the open question whether, in general, thg BRperty at the point
0 implies the ZR, property for eachw # 0. However, the result is true under the
hypothesis of well-definedness of the translation opesator# . Suppose that, for
every w € C, the translation operatof,, defined asT,,f(z) = f(z—w), ze C, is a
well-defined operatof,,: Hxk — Hk. Then, the ZR property implies the global ZR
property inHg. Indeed, assume that the gRroperty holds; forw € C, let g be an
entire function inHk such thatg(w) = 0. The entire functionf = T_,g belongs to
Hg and f(0) = g(w) = 0. Since the ZR property holds we have

f(2) _ g(z + w) c

Ne)=—"=">3

Hyg -
Henceg(2)/(z— w) = (T,h)(2) € Hk.

A sufficient condition for the well-definedness (and boundess) of the translation
operatorT,,: Hx — Hg for eachw € C is given in Lemma 2.9. This results involves
the boundedness of the differentiation operafdy,on Hyx. A sufficient condition as-
suring that the differentiation operat@ is a well-defined bounded operator # is
given in Proposition 2.7. As a consequence we obtain theviallg result:
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Corollary 3.6. Consider anHk space such that &) = >, cn,z" where the se-
guence{cy} X, forms an M-basis fof{. Assume that the two following statements hold
(1) The Gram matrix associated with the sequericg}? , is a semi-infinite Hankel
matrix, i.e., (Cr.1, Ch) = (Ch» Chia)s M, N € No;

(2) The sequencé(n + 1)||cnsall/(nllcall)}p, belongs to H(No).
Then the spaceHk is equal isometrically to a de Branges spaead any translation

Tw: Hk = Hk, w # 0, is hypercyclic.

4. An illustrative example

In what follows we show an example taken from the Hamburgemert prob-
lem theory (see, for instance, [1, 15]). Let= {s:}2, be an indeterminate Hamburger
moment sequence and I8t be the set of positive Borel measurgson R satisfy-
ing ffzo x"du(x) = sy, n > 0. The functionalZ defined on the vector spadg[x] of

polynomials p(x) = Y p_, px¥ by
n 00
£ =Y psc= [ P00 o)
k=0 -
is independent ofx € Vs. Let {P,}7°, be the corresponding orthonormal polynomials
satisfying

/ Pn(X) Pm(X) diu(X) = 8nm, for each u € V.

o0

We assume thaP, has degreen with positive leading coefficient. Recall that
{Pa(x)} satisfy the three—term recurrence relation

XPa(X) = anPns1(X) + b Pa(X) + @1-1Pa-a(x), n=0
where P_;(x) = 0 and Py(x) = 1. The two sequenced,} X, and {a,}° , of real and

positive numbers, respectively, form the semi-infinitealbdanatrix associated with the
indeterminate Hamburger moment problem (see, for instgld&a):

bo a@ O O
a b a 0

(4.2) A=[0 a b a
0

0 a bs

For the sequence of momer{ts}22 , we haves, = (09,.A"0p), N € Ng, whereop stands
for the sequence (1,0, 0,.) [15, p.93]. Since we are dealing with an indeterminate
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Hamburger moment problem it is known that,_o|Pm(2)|? < oo for eachz € C [15,
p.94]. Thus, we can consider the analytic kernel

C 525 K(2) = {Pu(@)}350 € 1°(No),

and its correspondin@{x space. Assume that

m-1

Pn(2) = amnmZ" + amm-12" " +--- +amo With amm > 0.

In order to obtain the Taylor expansidf(z) = > -, cnz" of the kernelK atz=0
we have:

[K@I(M) = Pu(2) = ammz™ + 8nm-12"" + -+ ano = ) &a(M)2",
n=0

from which we derive the sequence of Taylor coefficiefis}> , of K at 0. Writing
the sequences, € I2(Np), n € Ny, as the rows of a semi-infinite matrix we obtain

A, a0 A0 3o

0 a1 a1 a1

c=1] 0 0 a2 asp»
0 0 0 as 3

where its columns are the coefficients of the polynomigls m € Ny. Clearly, the
sequence(cy}32, is minimal in 12(Ng) and, as a consequence, there exists a unique
biorthogonal sequencge;}2°, in I2(Ng). Sinceamm > 0 for all m € Ny, by using an
inductive argument we can get a semi-infinite matfixwith entries inR, and having
the form:

®p,0 (1,0 020 O30

0 o011 a1 a3

C* — 0 0 22 032
0 0 0 o33

with amm # 0 for all m € Ny, such thatCC* = Z. Hence, the columns of the matriX
are precisely the sequences n € No. Hence, the sequende; )X, is also minimal
and complete in?(Np). As a consequence, the sequericg}?®, is an M-basis for
12(Ng), and Proposition 2.5 says us that the set of polynonf(8) is dense inHg
(see [8] for another proof).

Besides, the Gram matrik(c;;, Ci)i2} is a semi-infinite Hankel matrix. Indeed, let
A be the operator defined by means of the Jacobi matrix (4.1)O4), the set of se-
guences with finite support. This operator is closable sihéesymmetric and densely
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defined; we denote again by its closure. Let4d* be its adjoint operator whose domain
D(A*) is the set of sequencess |2(Np) such that the formal product of the Jacobi ma-
trix by s belongs tol?(Np) [15, p.105]. If the Hamburger moment problem is indeter-
minate thenk (z) € 12(Np) for eachz € C, and A*K(z) = zK(2) [15, p. 94]. Therefore,

(K(2), A"ag)12 = ((A*)"K(2), o0)i2 = 2" (K(2), o) = 2" Po(2) = 2",

whereog := (1, 0, 0,...). Hence, A"og = ¢}, n € Ng. As a consequence, the Gram
matrix associated to the sequeri@g}>? ; is the semi-infinite Hankel matrix associated
to the moments. Indeed, since the operatois symmetric

(Ch g, Cidiz = (A" oo, AMog) 2 = (00, A" ™ og)2 = Siimer = (G, Chyghiz.

Thus, having in mind Theorem 3.2 we deduce thgt is equal isometrically to a
de Branges space; for property 2 in Theorem 3.2, see [6, 8]afemmpletely different
proof of the fact thatHk is a de Branges space, see [10].

In order to establish a condition assuring the hypercygliof the translations in

Hk following Theorem 2.12, next we obtain the value of the canttsy := (c, LX),
that is, the inclination in?(Ny) of the straight line spanned by to the closed sub-
spacelLX := sparfcy, C1, . . ., Ck_1, Ck41, - . - }. First note that

Lk = Spariey, €y, . .., &1, &+1, ...} Where, for j € Ng, € := {§jn}nco-

Thus, by using the orthogonal projection, we get

. ig Ck K Ak
S = inf ,O(ég—, L ) = — keN
feR llckll l|ckll

Hence, by using Theorem 2.12, if the sequetifle + 1)|/ckt1ll/ak}fe, belongs to
I1(Np), then any translation operatdi,, w # 0, in Hx is hypercyclic. Certainly, the
above condition is not easy to evaluate. It remains an opestigun to give a sufficient
condition for the hypercyclicity of the translation openat in H involving either the
coefficients of the Jacobi matrid or the measures solution of the indeterminate Ham-
burger moment problem.
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