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Abstract
The study of the hypercyclicity of an operator is an old problem in mathematics;

it goes back to a paper of Birkhoff in 1929 proving the hypercyclicity of the trans-
lation operators in the space of all entire functions with the topology of uniform
convergence on compact subsets. This article studies the hypercyclicity of transla-
tion operators in some general reproducing kernel Hilbert spaces of entire functions.
These spaces are obtained by duality in a complex separable Hilbert spaceH by
means of an analyticH-valued kernel. A link with the theory of de Branges spaces
is also established. An illustrative example taken from theHamburger moment prob-
lem theory is included.

1. Introduction

The goal in this paper is to study the hypercyclicity of the translation operators
in a reproducing kernel Hilbert space of entire functionsHK obtained by duality by
means of a kernelK . Namely, letH be a complex, separable Hilbert space with inner
product h � , –iH and supposeK is an analyticH-valued function defined onC. For
each x 2 H, define the functionfx(z) D hK (z), xiH on C, and letHK denote the
collection of all such functionsfx. One can transfer the hilbertian structure ofH to
obtain a reproducing kernel Hilbert spaceHK of entire functions since the kernelK is
analytic onC (see, for instance, [14]).

These spacesHK are ubiquitous in mathematics; see [14] and the references
therein. These spaces are also familiar in sampling theory (see, for instance, [7, 10]).
In particular, choosingK W C! L2[�� ,� ] as K (z)(w) WD ei zw

=

p

2� , w 2 [�� ,� ], the
correspondingHK space coincides with the well-known Paley–Wiener spacePW

�

of
bandlimited functions to [�� , � ].

Recall that a vectorf is said to be hypercyclic for a continuous linear operator
T in a Fréchet spaceF (a complete metrizable convex space) if its orbit{Tn f }1nD0 is
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dense inF . In this case the operatorT is also said to be hypercyclic. The first example
of a hypercyclic operator was obtained by Birkhoff [3] who showed that the translation
operatorsT

w

W f 7! f ( � �w), w 2 C, w ¤ 0, are hypercyclic in the space of all entire
functions with the topology of uniform convergence on compact subsets of the plane. It
was shown by MacLane [13] that the differentiation operator is also hypercyclic in this
space, and in Shapiro–Godefroy [11] this result was extended to all operators commut-
ing with differentiation except the scalar multiples of identity. Thus, spaces of entire
functions have proved to be an important source of hypercyclic operators.

Besides, Chan and Shapiro studied in [5] the hypercyclicityof translations in the
setting of Hilbert spaces of entire functions of “slow growth”; in [5] the posed ques-
tion was whether translations in a “reasonable” space of entire functions are always
hypercyclic, and it was shown that this is not true. For example, differentiation and
translation operators in the Paley–Wiener spacePWa are bounded but not hypercyclic;
in particular,T

w

is an isometry ofPWa if w 2 R.
In the present paper we prove, under appropriate hypotheses, hypercyclicity of trans-

lation operatorsT
w

, w ¤ 0, in anHK space (see Theorem 2.12 in Section 2). In so doing
we apply a result from Chan–Shapiro [5] requiring the density of the set of polynomials
P(C) in HK ; also, the well-definedness and boundedness of the differentiation operator
on HK are needed. All these preliminaries are included in Section2.

Translations’ hypercyclicity in a de Branges spaceH(E) has been studied by Baranov
in [2]; this study is carried out in the case that the polynomials are dense inH(E), obtain-
ing sufficient conditions for special structure functionsE. In Section 3, we study when
a spaceHK is equal isometrically to a de Branges spaceH(E) where the set of poly-
nomialsP(C) is dense; under suitable hypotheses we give a necessary andsufficient con-
dition (see Theorem 3.2). We also prove a result on the hypercyclicity of the translation
operatorsT

w

, w ¤ 0, in these spaces (see Corollary 3.6).
Finally, in Section 4 we illustrate our results with an example taken from the in-

determinate Hamburger moment problem theory.

2. Hypercyclicity of translation operators in HK spaces

In order to prove our result on the hypercyclicity of translation operators in spaces
HK we first introduce these spaces, and we derive some needed properties.

2.1. Some preliminaries onHK spaces. Suppose we are given a separable com-
plex Hilbert space and an abstract kernelK which is aH-valued function onC. For each
z 2 C, set fx(z) WD hK (z), xiH and denote byHK the collection of all such functions
fx, x 2 H, and letTK be the mapping

(2.1) H 3 x
TK
7! fx 2 HK
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Notice that the mappingTK is an antilinear mapping fromH onto HK and kerTK is
a closed subspace ofH. The normk f kHK WD inf{kxkH W f D TK x} defined inHK ,
induces the inner product

h f, giHK D hP(kerTK )? y, P(kerTK )?xiH

where P(kerTK )? is the orthogonal projection on (kerTK )?, TK x D f andTK yD g. The
closed linear subspace (kerTK )? equipped with the inner product induced by the inner
product of H is a Hilbert space. By this way we obtain thatHK is a reproducing
kernel Hilbert space whose reproducing kernel is given by

k(z, w) D hK (z), K (w)iH, z, w 2 C.

(See [14] for the details). It is one-to-one if and only if theset {K (z)}z2C is complete
in H. In this case, the mappingTK is an anti-linear isometry fromH onto HK .

The convergence in the normk � kHK implies pointwise convergence which is uni-
form on those subsets ofC where the functionz 7! kK (z)kH is bounded; in particular,
in compact subsets ofC wheneverK is a continuous kernel. As a consequence, the
topology inHK is stronger than the topology which induces the uniform convergence
on compact subsets.

The spaceHK is a reproducing kernel Hilbert space of entire functions ifand only
if the H-valued kernelK is analytic inC ([16, p. 266]). A characterization of the an-
alyticity of the functions inHK in terms of Riesz bases can be found in [9].

From now on,HK will denote a reproducing kernel Hilbert space of entire func-
tions associated with an analyticH-valued kernelK . Next, we obtain some properties
of the Hilbert spaceHK derived from the sequence of Taylor coefficients of the entire
kernel K at a pointa 2 C, sayaD 0. Indeed, foraD 0 we have the Taylor expansion

K (z) D
1

X

nD0

cnzn, z 2 C,

where the coefficientcn 2 H for eachn 2 N0. By using Cauchy’s integral formula for
derivatives (see [16, p. 268] we have

cn D
1

n!
K (n)(0)D

1

2� i

Z

jzjDR

K (z)

znC1
dz, n D 0, 1, : : : ,

from which

kcnkH �
1

RnC1
sup
jzjDR
kK (z)kH D

MR(0)

RnC1
.

Taking R > 1, the above inequality shows that the sequence{kcnk}
1

nD0 belongs to
l 1(N0) � l 2(N0) (from now onN0 WD N [ {0}).



584 A.G. GARCÍA , M.A. HERNÁNDEZ-MEDINA AND A. PORTAL

Proposition 2.1. Assume that the anti-linear operatorTK in (2.1) is one-to-one.
Then the sequence{cn}

1

nD0 of Taylor coefficients of K at0 is a complete sequence
in H.

Proof. Suppose thathcn, xi D 0 for all n 2 N0; for the function f (z) WD hK (z), xi,
z 2 C, we have f (z) D

P

1

nD0hcn, xizn
D 0 for all z 2 C. Since the anti-linear mapping

TK is one-to-one we deduce thatx D 0.

From now on we assume that the anti-linear operatorTK is injective; consequently,
the sequence{cn}

1

nD0 of Taylor coefficients ofK at 0 will be a complete sequence
in H.

2.2. Polynomials andHK spaces. Here, we give a necessary and sufficient con-
dition for the inclusion of the set of polynomialsP(C) in HK , and also we give a neces-
sary and sufficient condition for its density inHK . This is done via the Taylor coefficients
{cn}

1

nD0 of the kernelK at 0.

DEFINITION 2.2. A sequence{cn}
1

nD0 is said to be minimal inH if cm �

span{cn}n¤m for eachm 2 N0.

Each complete and minimal sequence{cn}
1

nD0 in H admits a unique biorthogonal
sequence{c�n}1nD0 in H, i.e., hc�m, cni D Æn,m. Note that the sequence{c�n}1nD0 is also
minimal (see [12, p. 29]). Obviously, each minimal sequence{cn}

1

nD0 is linearly in-
dependent inH.

Proposition 2.3. The set of polynomialsP(C) is contained inHK if and only if
the sequence{cn}

1

nD0 of Taylor coefficients of K at0 is minimal inH.

Proof. For eachn 2N0 the monomialzn belongs toHK if and only if there exists
xn 2 H such thathcm, xni D Æm,n, where Æm,n denotes the Kronecker delta. Equiva-
lently, {zn}1nD0 � HK if and only if there exists a biorthogonal sequence{xn}

1

nD0 � H

of {cn}
1

nD0. This is known to be equivalent to the minimality of{cn}
1

nD0 (see [17]).

The density of the set of polynomialsP(C) in HK involves the concept of
Markusevich basis (M-basis) (see [12, p. 30]):

DEFINITION 2.4. An M-basis forH is a complete, minimal sequence{cn}
1

nD0 in
H such that its biorthogonal sequence{c�n}1nD0 is also complete inH.

Proposition 2.5. Assume that the anti-linear operatorTK given in (2.1) is inject-
ive. Then, the set of polynomialsP(C) is dense inHK if and only if the sequence
{cn}

1

nD0 is an M-basis forH.
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Proof. Assume that the set of polynomialsP(C) is dense inHK . By Propos-
ition 2.3 the sequence{cn}

1

nD0 is minimal in H. Since{cn}
1

nD0 is complete there exists
a unique sequence{c�n}1nD0 biorthogonal to{cn}

1

nD0. Consequently{cn}
1

nD0 is an M-
basis forH. Reciprocally, assume that the sequence{cn}

1

nD0 is an M-basis forH.
For any n 2 N0 we have thatzn

D hK (z), c�ni. As a consequence of completeness of
the sequence{c�n}1nD0 we have that set of polynomialsP(C) D span{zn}1nD0 is dense
in HK .

2.3. The differentiation operator in HK spaces. This section is devoted to the
differentiation operatorD( f ) D f 0 in HK ; concretely we study whenDW HK ! HK is
a well-defined bounded operator. To this end, letf be a function inHK ; there exists
x 2H such that f (z)D hK (z),xi, for any z2 C, and f (z)D

P

1

nD0hcn,xizn. Therefore,

f 0(z) D
1

X

nD1

hcn, xinzn�1, z 2 C.

The derivative f 0 of the entire function f belongs toHK if and only if there exists
y 2 H such that

(2.2) hcn, yi D (nC 1)hcnC1, xi for any n 2 N0.

For the sake of completeness we include the following general moment problem result
whose proof can be found in [17, p. 126]:

Theorem 2.6. Let { f1, f2, f3, : : :} be a sequence of vectors belonging to a Hilbert
spaceH and {d1,d2,d3,:::} a sequence of scalars. In order that the system of equations

h f, fni D dn, n 2 N

has at least one solution f2 H with k f k � M for some positive constant M, it is
necessary and sufficient that

�

�

�

�

�

X

n

andn

�

�

�

�

�

� M
















X

n

an fn
















for every finite sequence of scalars{an}. If the sequence{ f1, f2, f3, : : : } is complete
in H, then the solution is unique.

Assume that the sequence{cn}
1

nD0 is complete and minimal inH. As a conse-
quence of the above result the differentiation operatorD( f ) D f 0 is a well-defined
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operatorDW HK ! HK if and only if, for eachx 2 H the linear functional�x defined
on span{cn}

1

nD0 as

�x

 

X

n

ancn

!

D

X

n

anh(nC 1)cnC1, xi

for every finite sequence of scalars{an}, is bounded. For each fixedx 2 H, the lin-
ear functional�x W span{cn}

1

nD0 ! C can be decomposed as the productTxD, where
Tx W span{cn}

1

nD0! C is the linear operator given by

Tx

 

X

n

ancn

!

D

X

n

anhcn, xi

andD W span{cn}
1

nD0! span{cn}
1

nD0, is the linear operator given by

(2.3) D

 

X

n

ancn

!

D

X

n

an(nC 1)cnC1

for every finite sequence of scalars{an}. Observe that the operatorD is well-defined
since the sequence{cn}n2N0 is minimal (consequently, linearly independent).

The operatorTx is obviously bounded since

Tx

 

X

n

ancn

!

D

X

n

anhcn, xi D

*

X

n

ancn, x

+

.

Thus, if the operatorD given by (2.3) is bounded, then the differentiation operator is
a well-defined operatorD W HK ! HK . Moreover, the boundedness of the operatorD

implies the boundedness of the differentiation operatorD. Indeed, ifD is bounded on
span{cn}

1

nD0 then it can be extended by continuity to the whole spaceH. In this case,
the adjoint operator ofD, D� W H ! H is bounded and it is straightforward to prove
that D D TKD

�T �1
K whereTK W H! HK is the anti-linear isometry defined in (2.1).

Next we give a sufficient condition for the boundedness of thedifferentiation oper-
ator D W HK ! HK assuming the minimality of the sequence{cn}

1

nD0 in H. Following
[12, p. 27], the minimality of the sequence{cn}

1

nD0 in H implies that the numbersÆk

given by

(2.4) Æk WD inf
�2R

�

�

ei � ck

kckk
, span{cn}n¤k

�

, k 2 N0,

are strictly positive for everyk 2 N0; here� denotes the distance with respect to the
metric given by the norm inH. Note that the numberÆk measures the inclination in
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H of the straight line spanned byck to the closed subspacespan{cn}n¤k. Besides, for
any x D

P

k �kck (finite or convergent sum) the inequality

(2.5) j�kj �
kxk

Ækkckk
holds for each k 2 N0.

(See [12] for the details)

Proposition 2.7. Suppose that the sequence{cn}
1

nD0 is complete and minimal in
H. Suppose that

(2.6)
1

X

nD0

(nC 1)

Æn

kcnC1k

kcnk
<1,

where{Æn}
1

nD0 is the sequence of positive numbers given by(2.4). Then the differenti-
ation operatorD is a well-defined bounded operator onHK .

Proof. Proceeding as above, the differentiation operatorD( f )D f 0 is well-defined
and bounded onHK if and only if the operatorDW span{cn}

1

nD0! span{cn}
1

nD0 defined

by (2.3) is bounded. Letx D
PL

nD0 �ncn 2 span{cn}
1

nD0 with kxkH D 1. By using in-
equality in (2.5), we obtain

kDxk D
















L
X

nD0

�n(nC 1)cnC1
















�

L
X

nD0

(nC 1)j�njkcnC1k �

L
X

nD0

(nC 1)

Æn

kcnC1k

kcnk
.

Hence, the convergence of the series
P

1

nD0((nC1)=Æn)(kcnC1k=kcnk) implies continuity
of the operatorD in span{cn}

1

nD0; by density it will be continuous onH.

2.4. The hypercyclicity of translation operators in HK . First, recall that a
translation operatorT

w

W HK ! HK , w ¤ 0, is a hypercyclic operator inHK if there
exists a vectorf in HK whose orbit{Tn

w

f }1nD0 is dense inHK .
In order to prove that, under suitable hypotheses, any translation T

w

, w ¤ 0, is
hypercyclic onHK we will use a result from Chan–Shapiro [5] whose statement is
included below. It involves an auxiliary Hilbert spaceE2(
 ) associated with an admis-
sible comparison function
 : An entire function
 (z) D

P

1

nD0 
nzn is said to be an
admissible comparison function if
n > 0 for eachn 2 N0, and the sequencen
n=
n�1

decreases whenn tends to infinity. For an admissible comparison function
 , let E2(
 )
be the set of all entire functionsf (z) D

P

1

nD0 fnzn for which

k f k22,
 WD

1

X

nD0

j fnj
2




2
n

<1.
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Endowed with the normk � k2,
 , the spaceE2(
 ) becomes a Hilbert space of entire
functions.

Theorem 2.8 (Chan–Shapiro [5]). Suppose that X is a Fréchet space of entire
functions with the following properties:
(1) P(C) � X andP(C) D X;
(2) the topology of X is stronger than the topology of uniform convergence on compact
subsets ofC;
(3) the translation operator T

w

is continuous on X for everyw ¤ 0;
(4) E2(
 ) � X for some admissible comparison function
 .
Then, any translation operator T

w

, w ¤ 0, is hypercyclic in X.

Lemma 2.9. Suppose that the differentiation operatorD defined asD( f )D f 0 is
a well-defined bounded operatorDW HK !HK . Then, for eachw 2 C, the translation
operator T

w

W HK ! HK is a well-defined bounded operator. Moreover, we have the
following expansion for T

w

converging in the operator norm

(2.7) T
w

D

1

X

nD0

(�w)n

n!
Dn.

Proof. It is a well-known result that (2.7) holds inE , the space of entire functions
endowed with the topology of the uniform convergence on compact sets (see, for in-
stance, [5]). Since the differentiation operatorD is bounded on the Hilbert spaceHK ,
the series on the right side of (2.7) converges absolutely, and hence in the operator
norm to a bounded operator onHK . As the convergence inHK implies convergence
in the spaceE , this operator must beT

w

.

Next, we give a criterion to ensuring when an entire functiong belongs toHK :

Lemma 2.10. Assume that the sequence{cn}
1

nD0 of Taylor coefficients of K at0 is
minimal inH. Let g(z)D

P

1

nD0 gnzn be an entire function such that
P

1

nD0jgnj=(Ænkcnk)<
1 where the sequence{Æn}

1

nD0 of positive numbers is given by(2.4). Then the function
g belongs toHK .

Proof. The entire functiong(z) D
P

1

nD0 gnzn belongs toHK if and only if there
exists x 2 H such that

hcn, xi D gn for each n 2 N0.

Following Theorem 2.6, this is equivalent to the boundedness of the linear functional

�g

 

X

n

ancn

!

D

X

n

angn
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defined on span{cn}
1

nD0. Let yD
P

n ancn be a vector in span{cn}
1

nD0; by using inequal-
ities (2.5) we obtain

j�g(y)j �
X

n

janjjgnj �

 

X

n

jgnj

Ænkcnk

!

kyk �

 

1

X

nD0

jgnj

Ænkcnk

!

kyk.

Hence, the linear functional�g is bounded on span{cn}
1

nD0 and consequently, the entire
function g belongs toHK .

In order to apply Theorem 2.8 toHK we need to prove the existence of an auxil-
iary Hilbert spaceE2(
 ) � HK

Lemma 2.11. Assume that the sequence{cn}
1

nD0 is minimal in H. There exists
an admissible comparison function
 such that E2(
 ) � HK .

Proof. Let 
 (z) D
P

1

nD0 
nzn be an admissible comparison function such that,
in addition, the sequence{
n=(Ænkcnk)}1nD0 belongs tol 2(N0), where the sequence of
positive numbers{Æn}

1

nD0 is defined in (2.4).
Let g(z) D

P

1

nD0 gnzn be an entire function belonging toE2(
 ). By using the
Cauchy–Schwarz inequality we obtain

1

X

nD0

jgnj

Ænkcnk
D

 

1

X

nD0


n

Ænkcnk

jgnj


n

!

�

 

1

X

nD0

�


n

Ænkcnk

�2
!1=2 

1

X

nD0

�

jgnj


n

�2
!1=2

D

 

1

X

nD0

�


n

Ænkcnk

�2
!1=2

kgk

 ,2.

Hence, by Lemma 2.10 we obtain thatg belongs toHK .

Thus, we can prove the following hypercyclicity result for the translation operators
T
w

on HK :

Theorem 2.12. Let K W C ! H be an analytic kernel whose Taylor expansion
around zD 0 is K(z) D

P

1

nD0 cnzn. Assume that
i) the sequence{cn}

1

nD0 is an M-basis forH, and
ii) the sequence{((nC 1)=Æn)(kcnC1k=kcnk)}1nD0 belongs to l1(N0).
Then, for any w 2 C n {0}, the translation operator T

w

W HK ! HK is hypercyclic.

Proof. This result is a corollary of Theorem 2.8. Proposition 2.5 guarantees that
the set of complex polynomials,P(C), is dense inHK . The topology ofHK is stronger
than the topology of uniform convergence on compact sets ofC. By Proposition 2.7
and Lemma 2.9 the translation operatorT

w

is continuous onHK . Lemma 2.11 gives
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us the last condition in Theorem 2.8. As a consequence, we conclude that for each
w ¤ 0 in C the translation operatorT

w

is hypercyclic onHK .

3. The spacesHK as de Branges spaces

In [10] one can find some characterizations of a spaceHK as a de Branges space;
this means that the spaceHK is equal isometrically to some de Branges space. In this
section the goal is to characterize a spaceHK as a de Branges space where the set of
polynomialsP(C) is dense. First, we introduce a de Branges spaceH(E) with structure
function E: Let E be an entire function verifyingjE(x� iy)j < jE(xC iy)j for all y > 0.
The de Branges spaceH(E) is the set of all entire functionsf such that

k f k2E WD
Z

1

�1

�

�

�

�

f (t)

E(t)

�

�

�

�

2

dt <1,

and such that both ratiosf =E and f �=E, where f �(z) WD f (z), z 2 C, are of bounded
type and of non-positive mean type in the upper half-plane. The structure function or
de Branges functionE has no zeros in the upper half plane. A de Branges functionE
is said to be strict if it has no zeros on the real axis. We require f =E and f �=E to
be of bounded type and nonpositive mean type inC

C. A function is of bounded type
if it can be written as a quotient of two bounded analytic functions inCC and it is of
nonpositive mean type if it grows no faster than e"y for each" > 0 as y!1 on the
positive imaginary axis{iy W y > 0}. Note that the Paley–Wiener spacePW

�

is a de
Branges space with strict structure functionE

�

(z) D exp(�i�z).
It is known that any de Branges spaceH(E) can be considered as aHK space

where the kernelK is given by

[K (z)](w) D
B(w)A(z) � A(w)B(z)

�(w � z)
, z, w 2 C,

where E(z) D A(z) � i B(z), z 2 C (see [10]).
We will use the following classical characterization of a deBranges space which

can be found in [4, p. 57]: A Hilbert spaceH of entire functions is equal isometrically
to some de Branges spaceH(E) if and only if the following conditions hold:
B1. Whenever f 2 H and! is a nonreal zero off , the function

g(z) WD
z� !

z� !
f (z)

belongs toH and kgk D k f k.
B2. For each! 62 R the linear mappingH 3 f 7! f (!) 2 C is continuous.
B3. For any f 2 H the function f � defined as f �(z) WD f (z), z 2 C, belongs to the
space, andk f �k D k f k.
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The main result in this section depends on the symmetry of themultiplication by z
operator on the spaceHK :

Lemma 3.1. Assume thatP(C) D HK . Then the densely defined closed operator

SW DS ! HK

f (z) 7! z f(z),

where DS WD { f (z) D g(z)=z 2 HK j g 2 HK }, is symmetric if and only if the Gram
matrix associated with the biorthogonal sequence{c�n}1nD0 of {cn}

1

nD0 is a semi-infinite
Hankel matrix, i.e., hc�mC1, c�ni D hc

�

m, c�nC1i for any m, n 2 N0.

Proof. SinceP(C) D HK and P(C) � DS the operatorS is a densely defined
closed operator. For the closedness, note that the convergence in HK implies point-
wise convergence inC. Since operatorS is injective, letJ WD S�1 be defined in the
rangeRS. Clearly, S is a symmetric operator if and only ifJ is a symmetric operator.
Assume that the Gram matrix associated with the sequence{c�n}1nD0 is a semi-infinite
Hankel matrix and letp(z) D

P

n anzn and q(z) D
P

m bmzm be two polynomials in
the range ofS, RS. We have

hJ p, qi D
X

n,m

anbmhz
n�1, zm

i D

X

n,m

anbmhz
n, zm�1

i D hp, J qi.

Since RS is included inH0 WD { f 2 HK j f (0)D 0} andH0 D TK {c?0 } D span{c�n}1nD1
we have that for anyf 2 RS there exists a sequence of polynomials{p f,n} with constant
coefficient zero such thatf D limn!1 p f,n. Using a density argument it is straightfor-
ward to prove that, for anyf, g 2 RS one getshJ f, gi D h f, J gi.

On the other hand, ifJ is a symmetric operator then for anyn, m D 1, 2, : : :
we have

hzn�1, zm
i D hJ zn, zm

i D hzn, J zm
i D hzn, zm�1

i.

Since zn
D TK c�n and zm

D TK c�m for any n, m 2 N0, we obtain that the Gram matrix
associated with the sequence{c�n}1nD0 is a semi-infinite Hankel matrix.

Theorem 3.2. Consider anHK space such that K(z) D
P

1

nD0 cnzn where the se-
quence{cn}

1

nD0 forms an M-basis forH. Then, the spaceHK is equal isometrically
to a de Branges space where the set of polynomialsP(C) is dense if and only if the
two following requirements hold:
1) The Gram matrix associated with the sequence{c�n}1nD0 is a semi-infinite Hankel
matrix, i.e., hc�mC1, c�ni D hc

�

m, c�nC1i, m, n 2 N0;
2) For any f in HK such that f(w) D 0, wherew 2 C nR, the function f(z)=(z�w)
belongs toHK .
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Proof. For the sufficiency part: From Lemma 3.1 it follows that the multiplication
by z operator,S, is a densely defined symmetric operator defined onDS WD { f (z) D
g(z)=z 2 HK j g 2 HK }. Moreover, for anyw 2 C nR we have thatR(S�w I ) D H

w

,
whereH

w

D { f 2 HK j f (w) D 0}. We denote byU
w

WD (S� w I )(S� w I )�1 the
Cayley transform associated toS. Property 2) implies that the domain of the operator
(S� w I )�1 is H

w

. Let f 2 H
w

, then













z� w

z� w
f













D kU
w

f k D k f k.

Hence, property B1 is fullfilled by the spaceHK .
Let f D TK (x) be in HK with x 2 H. Then, f �(z) D

P

1

nD0 hcn, xizn, z 2 C. As
a consequence,f � belongs toHK if and only if there existsy 2 H such that

hcn, yi D hcn, xi, n D 0, 1, : : : .

Consider the anti-linear operatorU W span{c�n}1nD0! span{c�n}1nD0 defined by

U

 

X

n

anc�n

!

D

X

n

anc�n ,

for every finite sequence of scalars{an}. For any pD
P

n anc�n 2 span{c�n}1nD0 we have

hUp, Upi D
X

m,n

amanhc
�

m, c�ni D
X

m,n

amanhc
�

n, c�mi D hp, pi,

where we are used that the Gram matrix associated with the sequence{c�n}1nD0 is a semi-
infinite Hankel matrix. Therefore, the operatorU is an anti-linear isometry on span{c�n}1nD0
and sincespan{c�n}1nD0 D H the operatorU can be extended to an anti-linear isometry
defined onH which we also denote asU. Thus, for anyp 2 span{c�n}1nD0 and n 2 N0

we have thathcn, Upi D hcn, pi. Now, let x 2 H, sincespan{c�n}1nD0 D H, there exists
a sequence{px,m} � span{c�n}1nD0 such thatx D limm!1 px,m. It is straightforward to

prove thathcn, Uxi D hcn, xi. Hence, givenf 2 HK the entire functionf � also belongs
to HK , since f D TK (x) implies f � D TK (Ux). Moreover, sinceU is a isometry,k f k D
kxk D kUxk D k f �k. This proves the property B3. Since the spaceHK is a RKHS, the
property B2 is clearly satisfied.

The necessity part is straightforward: If the spaceHK is a de Branges space and the
set of polynomials is dense then the multiplication byz operator is closed and symmetric
[4, p. 314] and, therefore, from Lemma 3.1 we have that the Gram matrix associated with
the sequence{c�n}1nD0 is a semi-infinite Hankel matrix.
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Moreover, if f 2 HK and w is a nonreal zero off then from condition B1 the
function (z� Nw)=(z� w) f (z) belongs toHK and hence, the function

f (z)

z� w
D

1

w � Nw

�

z� w

z� w
f (z) � f (z)

�

belongs toHK .

Closing this section we carry out a deeper study of property 2) in Theorem 3.2.
This property concerns the stability of the functions belonging to the spaceHK on
removing a finite number of their zeros (this property appears in [11] under the name
of division property). The connection between this property and sampling theorycan
be found in [6, 7].

DEFINITION 3.3 (Zero-removing property). A setA of entire functions has the
zero-removing property (ZR property hereafter) if for anyg 2 A and any zerow of
g the functiong(z)=(z� w) belongs toA. A set A of entire functions has the zero-
removing property at a fixed pointw 2 C (ZR

w

property hereafter) if for anyg 2 A

with g(w) D 0 the functiong(z)=(z� w) belongs toA.

Firstly, we study conditions under which ZR0 property holds inHK . Reducing
the ZR0 property to a moment problem, a sufficient condition assuring that the ZR0
property holds involves the continuity of a shift related operator.

Consider a functionf 2HK , i.e., f (z)D hK (z), xiH, z2 C, for somex 2H, such
that f (0)D 0. Thenhc0, xi D 0 and

f (z)

z
D

1

X

nD0

hcnC1, xizn, z 2 C.

As a consequence, the spaceHK satisfies the property ZR0 if and only if for each
x 2 {c0}

? there existsy 2 H such that

hcn, yi D hcnC1, xi, n 2 N0.

Proceeding as in the study of the differentiation operator in Section 2.3 we obtain:

Proposition 3.4. Consider anHK space such that K(z) D
P

1

nD0 cnzn where the
sequence{cn}

1

nD0 is complete and minimal inH. If the operator RW span{cn}
1

nD0 !

span{cn}
1

nD0 given by

(3.1) R

 

X

n

ancn

!

D

X

n

ancnC1,
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for every finite sequence{an}, is bounded, then the spaceHK satisfies theZR0 property.

Now, proceeding as in Proposition 2.7, we give a sufficient condition on the con-
tinuity of the operatorR involving the sequence of positive numbers{Æn}

1

nD0 defined
in (2.4).

Theorem 3.5. Assume that the sequence{cn}
1

nD0 is complete and minimal inH.
The convergence of the series

(3.2)
1

X

nD0

1

Æn

kcnC1k

kcnk

implies that the operator R is bounded onH.

Proof. For any finite sumx D
PL

nD0 �ncn, inequalities (2.5) give

kRxk �
L
X

nD0

j�njkcnC1k �

 

L
X

nD0

1

Æn

kcnC1k

kcnk

!

kxk � Mkxk,

where M denotes the sum of the series in (3.2). This proves that the operator R is
bounded on span{cn}

1

nD0; the completeness of{cn}
1

nD0 proves thatR is bounded onH.

It remains the open question whether, in general, the ZR0 property at the point
0 implies the ZR

w

property for eachw ¤ 0. However, the result is true under the
hypothesis of well-definedness of the translation operators in HK . Suppose that, for
everyw 2 C, the translation operatorT

w

defined asT
w

f (z) D f (z� w), z 2 C, is a
well-defined operatorT

w

W HK ! HK . Then, the ZR0 property implies the global ZR
property inHK . Indeed, assume that the ZR0 property holds; forw 2 C, let g be an
entire function inHK such thatg(w) D 0. The entire functionf D T

�w

g belongs to
HK and f (0)D g(w) D 0. Since the ZR0 property holds we have

h(z) D
f (z)

z
D

g(zC w)

z
2 HK .

Henceg(z)=(z� w) D (T
w

h)(z) 2 HK .
A sufficient condition for the well-definedness (and boundedness) of the translation

operatorT
w

W HK ! HK for eachw 2 C is given in Lemma 2.9. This results involves
the boundedness of the differentiation operator,D, on HK . A sufficient condition as-
suring that the differentiation operatorD is a well-defined bounded operator inHK is
given in Proposition 2.7. As a consequence we obtain the following result:
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Corollary 3.6. Consider anHK space such that K(z) D
P

1

nD0 cnzn where the se-
quence{cn}

1

nD0 forms an M-basis forH. Assume that the two following statements hold:
(1) The Gram matrix associated with the sequence{c�n}1nD0 is a semi-infinite Hankel
matrix, i.e., hc�mC1, c�ni D hc

�

m, c�nC1i, m, n 2 N0;
(2) The sequence{(nC 1)kcnC1k=(Ænkcnk)}1nD0 belongs to l1(N0).
Then, the spaceHK is equal isometrically to a de Branges space, and any translation
T
w

W HK ! HK , w ¤ 0, is hypercyclic.

4. An illustrative example

In what follows we show an example taken from the Hamburger moment prob-
lem theory (see, for instance, [1, 15]). LetsD {sn}

1

nD0 be an indeterminate Hamburger
moment sequence and letVs be the set of positive Borel measures� on R satisfy-
ing

R

1

�1

xn d�(x) D sn, n � 0. The functionalL defined on the vector spaceC[x] of
polynomials p(x) D

Pn
kD0 pkxk by

L(p) D
n
X

kD0

pksk D

Z

1

�1

p(x) d�(x)

is independent of� 2 Vs. Let {Pn}
1

nD0 be the corresponding orthonormal polynomials
satisfying

Z

1

�1

Pn(x)Pm(x) d�(x) D Ænm, for each � 2 Vs.

We assume thatPn has degreen with positive leading coefficient. Recall that
{Pn(x)} satisfy the three–term recurrence relation

x Pn(x) D an PnC1(x)C bn Pn(x)C an�1Pn�1(x), n � 0

where P
�1(x) D 0 and P0(x) D 1. The two sequences{bn}

1

nD0 and {an}
1

nD0 of real and
positive numbers, respectively, form the semi-infinite Jacobi matrix associated with the
indeterminate Hamburger moment problem (see, for instance, [15]):

(4.1) A D

0

B

B

B

B

B

B

B

B

�

b0 a0 0 0 � � �

a0 b1 a1 0 � � �

0 a1 b2 a2
. ..

0 0 a2 b3
. ..

...
...

.. .
. ..

. ..

1

C

C

C

C

C

C

C

C

A

.

For the sequence of moments{sn}
1

nD0 we havesn D h�0,An
�0i, n 2N0, where�0 stands

for the sequence (1, 0, 0,: : : ) [15, p. 93]. Since we are dealing with an indeterminate
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Hamburger moment problem it is known that
P

1

mD0jPm(z)j2 <1 for eachz 2 C [15,
p. 94]. Thus, we can consider the analytic kernel

C 3 z
K
7! K (z) WD {Pm(z)}1mD0 2 l 2(N0),

and its correspondingHK space. Assume that

Pm(z) D am,mzm
C am,m�1zm�1

C � � � C am,0 with am,m > 0.

In order to obtain the Taylor expansionK (z) D
P

1

nD0 cnzn of the kernelK at z D 0
we have:

[K (z)](m) D Pm(z) D am,mzm
C am,m�1zm�1

C � � � C am,0 D

1

X

nD0

cn(m)zn,

from which we derive the sequence of Taylor coefficients{cn}
1

nD0 of K at 0. Writing
the sequencescn 2 l 2(N0), n 2 N0, as the rows of a semi-infinite matrix we obtain

C WD

0

B

B

B

B

B

B

�

a0,0 a1,0 a2,0 a3,0 � � �

0 a1,1 a2,1 a3,1 � � �

0 0 a2,2 a3,2 � � �

0 0 0 a3,3 � � �

...
...

...
...

.. .

1

C

C

C

C

C

C

A

where its columns are the coefficients of the polynomialsPm, m 2 N0. Clearly, the
sequence{cn}

1

nD0 is minimal in l 2(N0) and, as a consequence, there exists a unique
biorthogonal sequence{c�n}1nD0 in l 2(N0). Sinceam,m > 0 for all m 2 N0, by using an
inductive argument we can get a semi-infinite matrixC� with entries inR, and having
the form:

C� D

0

B

B

B

B

B

B

�

�0,0 �1,0 �2,0 �3,0 � � �

0 �1,1 �2,1 �3,1 � � �

0 0 �2,2 �3,2 � � �

0 0 0 �3,3 � � �

...
...

...
...

. ..

1

C

C

C

C

C

C

A

with �m,m¤ 0 for all m2 N0, such thatCC� D I. Hence, the columns of the matrixC�

are precisely the sequencesc�n , n 2 N0. Hence, the sequence{c�n}1nD0 is also minimal
and complete inl 2(N0). As a consequence, the sequence{cn}

1

nD0 is an M-basis for
l 2(N0), and Proposition 2.5 says us that the set of polynomialsP(C) is dense inHK

(see [8] for another proof).
Besides, the Gram matrix{hc�n, c�mil 2} is a semi-infinite Hankel matrix. Indeed, let

A be the operator defined by means of the Jacobi matrix (4.1) onD(A), the set of se-
quences with finite support. This operator is closable sinceit is symmetric and densely
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defined; we denote again byA its closure. LetA� be its adjoint operator whose domain
D(A�) is the set of sequencess 2 l 2(N0) such that the formal product of the Jacobi ma-
trix by s belongs tol 2(N0) [15, p.105]. If the Hamburger moment problem is indeter-
minate thenK (z) 2 l 2(N0) for eachz 2 C, andA�K (z) D zK(z) [15, p. 94]. Therefore,

hK (z), An
�0il 2

D h(A�)nK (z), �0il 2
D zn
hK (z), �0il 2

D zn P0(z) D zn,

where�0 WD (1, 0, 0,: : : ). Hence,An
�0 D c�n, n 2 N0. As a consequence, the Gram

matrix associated to the sequence{c�n}1nD0 is the semi-infinite Hankel matrix associated
to the moments. Indeed, since the operatorA is symmetric

hc�nC1, c�mil 2
D hAnC1

�0, Am
�0il 2

D h�0, AnCmC1
�0il 2

D snCmC1 D hc
�

n , c�mC1il 2.

Thus, having in mind Theorem 3.2 we deduce thatHK is equal isometrically to a
de Branges space; for property 2 in Theorem 3.2, see [6, 8]. For a completely different
proof of the fact thatHK is a de Branges space, see [10].

In order to establish a condition assuring the hypercyclicity of the translations in

HK following Theorem 2.12, next we obtain the value of the constantsÆk WD
2(ck, Lk),

that is, the inclination inl 2(N0) of the straight line spanned byck to the closed sub-
spaceLk

WD span{c0, c1, : : : , ck�1, ckC1, : : : }. First note that

Lk
D span{e0, e1, : : : , ek�1, ekC1, : : : } where, for j 2 N0, ej WD {Æ j ,n}

1

nD0.

Thus, by using the orthogonal projection, we get

Æk D inf
�2R

�

�

ei � ck

kckk
, Lk

�

D

ak,k

kckk
, k 2 N0.

Hence, by using Theorem 2.12, if the sequence{(k C 1)kckC1k=ak,k}
1

kD0 belongs to
l 1(N0), then any translation operatorT

w

, w ¤ 0, in HK is hypercyclic. Certainly, the
above condition is not easy to evaluate. It remains an open question to give a sufficient
condition for the hypercyclicity of the translation operators in HK involving either the
coefficients of the Jacobi matrixA or the measures solution of the indeterminate Ham-
burger moment problem.
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