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Abstract

Let S be a smooth minimal surface of general type with a (ratiopaijcil of
hyperelliptic curves of minimal genus We prove that ifKZ < 4x (Os)—6, theng is
bounded. The surfac8 is determined by the branch locus of the coveriig> Sy/i,
wherei is the hyperelliptic involution ofS. For K2 < 3x(0s) — 6, we show how
to determine the possibilities for this branch curve. As ppliaation, giveng > 4
and Kg — 3x(0s) < —6, we compute the maximum value fgn(Os). This list of
possibilities is sharp.

1. Introduction

For a smooth minimal hyperelliptic surfa&of general type, Xiao [8, Theorem 1]
has proved that if

4g
K§ < gTl()(((’)s) —€g—2),

where eithere = 1 if x(Os) > (2g—1)(g + 1)+ 2, ore = 9/8, thenS has a pencil of
hyperelliptic curves of genus g. This result is not very useful fog > 4 and x(Os)
small. For example, in [1] Ashikaga and Konno consider sig$sS of general type
with K3 = 3x(0s) — 10. For these surfaces the canonical map is of degree 1 or 2. In
the degree 2 case, the canonical image is a ruled surface,fti8uiis regular, it has a
pencil of hyperelliptic curves. By the above inequalityxifOs) > 47, thenS has such
a hyperelliptic pencil of curves of genus 4. But for x(Os) < 46 this result gives no
information (for x (Os) = 46 the slope formula [7, Theorem 2] impligs<5v g>9;
we show that in this cas& has a hyperelliptic pencil of minimal gengs< 10 and
the casegy = 9, g = 10 do occur). Ashikaga and Konno study only the cgse 4
(there is an infinite number of possibilities). Nothing iddséor the possibilities with
g > 5 and x(Os) < 46. A similar situation occurs in [5].

In this paper we study smooth minimal surfacéof general type which have a
pencil of hyperelliptic curves (bpencilwe mean a linear system of dimension 1). We
say thatS has such a pencil ahinimal genus df it has a hyperelliptic pencil of genus
g and all hyperelliptic pencils o8 are of genus> g. For S such thatKg < 4x(0g)—6,
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930 C. RTO AND M.M. SANCHEZ

we give bounds for the minimal genwgs(Theorem 1), improving Xiao's inequality in
the caseg > 4 and x(Os) small.

The surfaceS is the smooth minimal model of a double cover of an Hirzebruch
surfaceF, ramified over a curveB (which determinesS). We prove that ifK2 <
3x(Os)—6, thenB has at most points of multiplicity 8 and we show how to deteeni
the possibilities forB (Proposition 2).

As an application, gively > 4 andK2—3x(Os) < —6, we compute the maximum
value for x (Og); this list of possibilities is sharp (Theorem 3).

The paper is organized as follows. In Section 2 we presentnthin results of
the paper. The hyperelliptic involutions of the fibres $finduce an involutioni of
S, so in Section 3 we review some general facts on involutioBsce the quotient
S/i is a rational surface, a smooth minimal model f is not uniqgue. We make a
choice for this minimal model in Section 4 (which is due to Xif]) and we show
some consequences of it. Section 5 contains the key resuhteopaper, which allow
us to compute bounds for the minimal genus of the hyperalijftration. We perform
a careful analysis of the possibilities for the branch loofighe coveringS — S/i
considering the restrictions imposed by the choice of matimodel. Finally this is
used in Section 6 to prove the main results, stated in Se&ion

Several calculations are made using a computational algebystem.
The respective code lines are available ftt p: // hone. utad. pt/ ~crito/
magma_code. htm .

Notation. We work over the complex numbers; all varieties are assurnedet
projective algebraic. A«{2)-curveor nodal curve Aon a surface is a curve isomorphic
to P! such thatA? = —2. An (m¢,m,,...)-point of a curve, or point of typenf;,my,...),
is a singular point of multiplicitym;, which resolves to a point of multiplicityn, after
one blow-up, etc. Bydouble coverwe mean a finite morphism of degree 2. The rest
of the notation is standard in algebraic geometry.

2. Main results

Theorem 1. Let S be a smooth minimal surface of general type with a pexficil
hyperelliptic curves of minimal genus g. If3k 4x(Os)—6, then g is not greater than

8x(0s) 14 8x(0s) — 16
4x(0s) —KEZ—6' 4x(0s) — KZ—6’

8x(0s) 3+ «/1+8Xi(935}
4)(((95)—K§—3’ 2 .

max{—l +

Let B C W be the branch locus of a double cowér— W, whereV and W are
smooth surfaces (thuB is also smooth). Lep: W — P be the projection oW onto
a minimal model and denote bB the projectionp(B).
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Suppose thaB has singular pointss, . .., x, (possibly infinitely near). For each
X there is an exceptional divisd; and a number; € 2N such that

E? = -1,
Kw = p*(Kp) + Z E,
B=p*(B)—ZriEi.

Notice thatr; is not the multiplicity of the singular point;, it is the multiplicity of
the corresponding singularity in treanonical resolutionsee [2, Ill. 7]). For example,
in the case of a point of type(2-1, 2 — 1) one hag; = 2r — 2 andr, = 2r.

Since, from Theorem 1, we have a bound for the gegus/e also have a bound
for the multiplicitiesr;. For the casng < 3x(Os) — 6, we prove the result below.

Let N; be the number of singular pointg of B (possibly infinitely near) such
thatr; = j.

Proposition 2. Denote by @ and F the negative section and a ruling of the
Hirzebruch surfaceFe. Let S be a minimal smooth surface of general type with a
hyperelliptic pencil of minimal genug&k — 2)/2. If Kg < 3x(0s) — 6, then S is the
smooth minimal model of a double covet -S F, with branch curveB = kCy +
(ek/2 + 1)F such that
a) ri <min{8, k/2+2, | —k/2+ 2} Vi,

b) Ns+ Ng = 15+ K32, — 3x(Os) — (1/4)(k — 10)( — 10);
c) x(0s) =1+ (1/4)(k —2)( —2)— Ng—3Ng — 6Ng,
where 8 — S is the canonical resolution.

Proposition 2 can be used to restrict possibilities BorWe show the following:

Theorem 3. Let S be a smooth minimal surface of general type with a hyper-
elliptic pencil of minimal genus g 4. If K3 < 3x(Os) —6, then x(Os) is bounded by
the number given in the table belofgmptiness means non-existencall these cases
do exist.

g
K23y —7/-8/-9|-10|-11|-12| -13| -14|-15|-16| < —-17
5 61 |56 |51 |46 |41 |36 |31 |26 |21 |16
6 49 |46 |43 |40 |37 |34 |27 |28 22
7 42 |43 |43 |35 |35 |36 |28 29 |22
8 44 | 44 | 45 36 37 29
9 45 46 37
10 46
>11
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REMARK 4. This result gives three examples where Theorem 1 is alstwatp:
in the casesd, K?—3x) = (10,—10), (9,—13), (8,—15) we havey < 46, 37, 29, thus
Theorem 1 implieg < 11, 10, 9, respectively (cf. Remark 10).

There is at least one case where Theorem 1 is sharp: a dowbie plith branch
locus a curve of degree 18 with 8 points of multiplicity 6. histcasey =5, K? =8
andg = 5.

3. Involutions

Let S be a smooth minimal surface of general type with a (ratiopacil of
hyperelliptic curves. This hyperelliptic structure inéscan involution (i.e. an auto-
morphism of order 2) of S. The quotientS/i is a rational surface.

Since S is minimal of general type, this involution is biregular. étiixed locus
of i is the union of a smooth curvR” (possibly empty) and of > 0 isolated points
Pi, ..., P. Let p: S— S/i be the projection onto the quotient. The surfé&g has
nodes at the point&; := p(R), i =1,...,t, and is smooth elsewhere. R” # @,
the image viap of R’ is a smooth curveB” not containing the singular point®;,

i =1,...,t. Let nowh: V — S be the blow-up ofS at P;,..., P, and setR' = h*(R").
The involutioni induces a biregular involution on V whose fixed locus iR := R +
Etl h=1(P). The quotientW := V/i is smooth and one has a commutative diagram

v
g
—

b

I»
W S

wheren: V — W is the projection onto the quotient amd W — S/i is the minimal
desingularization map. Notice that

A=g4Q) i=1,...,1,

are (-2)-curves andr*(A) = 2-h™(P).
Set B’ := g*(B"”). Sincer is a double cover, its branch loci&s +Zt1 A is even
i.e. there is a line bundlé on W such that

4. Choice of minimal model

Part of this section may be found in [9]. We use the notatidnodtuced so far.
As above,W is a rational surface, thus either it is isomorphicRé or its minimal
model is an Hirzebruch surfade..
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(%). Blowing-up, if necessaryP? at a point, we can suppose that # P2,

Notice that in this case the mdp V — S is the contraction of two-{1)-curves. With
this assumption we do not need to consider the a&lse P? separately.
Thus there is a birational morphism

0. W — TFe.

Let B := p(B) and consider the double cov& — F. with branch locusB. If B is
singular thenS' is also singular and is isomorphic to the minimal smooth resolution
of S.

We can defin&k and| such that

:kCo—l—(e—Zk—H)F,

where Cy and F are, respectively, the negative section and a rulindfofthus C2 =
—e, CoF =1, F2 = 0). Notice thatB2 = 2kl and KpB = —2k — 2I.

B

(¥). Among all the possibilities for the map, we choose one satisfying, in
this order:
1) the degre& of B over a section is minimal;
2) the greatest order of the singularities Bfis minimal;
3) the number of singularities with greatest order is alsaimmal.

Recall that a (2— 1, 2 — 1) singularity of B is a pair &;, xk) such thatx is
infinitely near tox; andrj = 2r —2, ry = 2r.
Let
rm = maxri}
or ryy := 0 if B is smooth.
By elementary transformatiover x; € Fe we mean the blow-up ok followed

by the blow-down of the strict transform of the ruling Bf that containsx;.
The following is a consequence of the two assumptio)sof the mapp.

Proposition 5 ([9]). We have
a) If k=0 (mod 4),then , < k/2+ 2 and the equality holds only if,xbelongs to
a singularity (k/2+ 1,k/2+ 1). In this last case B k+ 2 and all the branches of the
singularity are tangent to the ruling df. that contains it.
b) If k=2 (mod 4),then r, < k/2+ 1 and the equality holds only if,xbelongs to
a singularity (k/2, k/2). In this case I> k.

In a similar vein:
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Proposition 6. We have that

a) ifl =k+ 2 and k> 8, there are at most twgk/2 + 1, k/2 + 1)-points

b) I >k/2and | >k/2+ry,—2;

c) ifl =k/2+ry— 2, then either
e e=2,1=k—2,the branch locusB has a(k/2 — 1, k/2 — 1)-point and all
singularities are of multiplicity< k/2, or
e we can suppose € 1, the negative section Cof F; is contained inB, B has
a point of multiplicity r, contained in @ and the remaining singularities are of
multiplicity < rp,.

Proof. a) This is due to Borrelli ([3]). Suppose that there #iree singularities
(k/2 + 1,k/2 + 1). The rulings ofF, through these points are contained Bhand
then BCy = | —ek/2 > 4 (BCy is even). This impliee < 1. Making, if necessary, an
elementary transformation over one of these points, we ocapcase thae = 1.

Let p be as above an#;, E/, i = 1,2,3, be the exceptional divisors corresponding
to three singularitiesk(2 + 1,k/2 + 1) of B. The general element of the linear system
|p*(4Co + 5F) — Zi’(ZEi + 2E)| is a smooth and irreducible rational cur@ such
that CB < k. This contradicts the choice:) of the mapp.

b) If rm > k/2 then the result follows from Proposition 5. Suppose mew< k/2.
We haveBCy > —e, i.e.| —ek/2 > —e. Therefore ife > 2, then

k
| >k—-2> and Izk-22§+rm—2.

NI X

When e = 0 we obtain immediately > k, by the choice of the map, thus!| >
k/2+rm.

If e=1 then BCy =1 — k/2 > 0. Blowing-down C, we obtain a singularity
of order at mostt — k/2 4+ 1, hence the choice of the minimal model impligg <
I —k/2 + 2 (notice that the equality happens only if the order of thegslarity is
rm—1,rm—1)). .

c) Assume that = k/2+r,—2. Proposition 5 implies,, <k/2. FromBCy > —e
we obtaink/2+rm—2 =1 > ek/2—e, thus eithere=1 or e = 2 andr,, = k/2 (notice
thate = 0 implies| > k).

In the casee = 1 we can, as in the proof of b), contract the section with self-
intersection {1) to obtain a branch curve i®? with at most singularities of type
(I —k/2+1,1 —k/2+ 1).

Suppose now thae = 2 and there is a poink; of multiplicity k/2. In this case
BCy = —2, hencex; ¢ Co. We make an elementary transformation oxerto obtain
the casee = 1 also withl = k — 2. O
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5. Bound of genus

In this section we prove the key result to establish boundgHe minimal genus
of the hyperelliptic fibrations.
From [6] (cf. also [4]), we get the following:

Proposition 7. Let ' — S be the canonical resolution of a double cover-$
Fe with branch locusB = kCy + (ek/2 +1)F. Let S be the minimal model of &nd
t:= KZ—K3. If S is of general typethen
a) Y(ri—2)k-ri—2)=H;
by 2 =G+ (i —2),
where

H = 2k?* —k(4x(Os) +t — K& + 8) + 16 (0s) + 2t — 2K
and
G = -2k +4x(0s) +t—K3+8.

Proof. From [6, Propositions 2 and 3, a)] one gets:

a) Xl =—-48+12 + 12Kk — 8x(Os) + 4KZ — 4t + Y (ri — 2)(ri — 4);

b) 2k +2 =8+ 4x(0s) +t—KZ+ Y (ri —2).

The result is obtained replacing (a) by (a) +<&)(b). L]

The motivation for Lemma 8 and Proposition 9 below is thediwihg. Among all
the solutions of the equations of Proposition 7, the onek hitjgesti correspond to the
solutions with singularities of maximal order. This givas @pper bound fot. But we
also have a lower bound fdr implied by the assumptions) on the mapp (Propos-
itions 5 and 6). We note that the arguments used in the praefsnastly formal.

Lemma 8. Suppose that k- 8. With the above notatignve have
a A<G+H/(k—rn—2),and
b) if ry is obtained only from singularities of tygden — 1,rm — 1), then
H

A= TR =tm) T (tm— Dk —Tm—2) 2™~ ©)

Proof. a) Proposition 5 implies, <k/2+ 2. If K—r, —2 <0, we get from
k—2<rm<k/2+2 thatk <8. Hencek —r,,—2 > 0 and the statement follows from
Proposition 7.

b) By the assumptions, i¥; does not belong to a§ —1,rn, — 1) singularity, we
haver; < ry. Let n > 1 be the number of singularities of typen(—1,rm — 1) and
s > 0 be the number of singular pointg of another type. As seen in Section 4, each



936 C. RTO AND M.M. SANCHEZ

singularity ¢m — 1,rn, — 1) corresponds to two infinitely near singular poims Xk+1
with ry = rm — 2, ryp1 = . Therefore

2n+s S
D =2)=n@mn-6)+) (rj~2)
i=1 j=1

with rj < rm. Thus from Proposition 7, b) we get

S
2 =G+n@2y—6)+ > (r—2).
j=1

By Proposition 7, a),

H=n(rm—AK—rm) + (m—2K—rm—2)+ Y _(rj —2)k—rj —2),
=1

hence
 H= L -2k =1 -2)
B (fm—HK—=rm) +(m—2)K—rm—2)
and then
_ H—Z?:l(rj—Z)(k—rj—Z) S '
R (T B e | e e LA D}
Sincerj <rm, j=1,...,5,
(tm—ADK—rm)+(m—2)K—Tm—2) < (2rm—6)k—r; —2).
This implies
- : (rj —2)k—r; —2)(@&m—6)
D o o
and the result follows from (1). ]

The next result will allow us to give bounds fée Notice that, sinceB is even
and BCy = | — ek/2,

k=0 (mod 4)= 1| =0 (mod 2).

Proposition 9. In the conditions ofProposition 7,suppose that k- 8.
If Kk =0 (mod 4),one of the following holds
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a) rm=k/2+2,1 =k+2and
(4x(0s) +t — K& —8)k < 16x(0s) — 16, with t > 2;
b) rm=k/24+2,1 >k+ 4 and
(4x(Os) +t — KZ —8)k? — 16x(Os)k + 32¢(0s) <0, with t>2;
c) rm=k/2, =k—2 and
(4x(Os) +t — K& — 4)k? + (—48x (Os) — 8t + 8K32 + 32k
+ 160x(Os) + 16t — 16K2—-96 <0, with t> 1,
or
(4x(O0s) +t — K&+ 2)k < 32¢(0s) + 4t —4KZ—8, with t>1,
or
(4x(Os) +t — K& — B)k? + (—48x (Os) — 8t + 8K 32 + 44k
+ 160x(Os) + 16t — 16K2—128<0, with t>2;

d rm=k/2,l =k+j, j=0,and
(4x(0s) +t — K3+ 8+ 2] — 2n)k < 32¢(Os) + 4t — 4KZ —8n,

with n < j + 7, where n is the number of points kpossibly infinitely negrsuch that
r =k/2;
e) rm<k/2—2and

k=<5+ 1+ 8x(Os),

or
(4x(0s) +t — Kk = 32¢(Os) + 4t — 4K3,.

If k =2 (mod 4),one of the following holds
f) rm=k/2+1and
(4x(Os) +t — KZ—2)k < 24x(Os) + 2t —2KZ—20, with t>1,
or
(4x(Os) +t — KZ — 8)k? 4 (—32x(Os) — 4t + 4K 3 + 48k
+ 80x(Os) + 4t —4K2—-96<0, with t>2;

0 rm=<k/2-1and

k=<5+ 1+ 8x(Os),

or
2(4x(0s) +t — K& — 6)k < 245 (Og) + 2t — 2K3 — 28.
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REMARK 10. As noted in Remark 4, there are examples where cases &))and
fail to be sharp by 1. The reason for not having a sharp resuthé following: in
these examples we havg, = 0, thus we are using > k/2 — 2 in the proof of e)
and g). But in fact we havé > k/2 in these cases, from Proposition 6, b).

The last example referred in Remark 4 shows that case d) kvith12, j = 0O,

n =7 is sharp.

Proof of Proposition 9. LeH, G be as defined in Proposition 7 and let

Pi(l, rm, G, H,K) := (2 —G)(K—rm—2)—H,
Paol, rm, G, H, K) := (2 — G)((rm — 4)K —Tm) + (rm — 2)(K — rm — 2))
— H(2rm—6).

From Lemma 8,

P,<0 and P, <0O.

a) Letn be the number ofk/2+ 1,k/2+ 1) points. From Propositions 5, a) and
6, a),n =1 or 2. From Proposition 7, we have

D i—-2k-ri—2)=H" and 2=G'+) (1 —2),
where
H = H —n(k/2k/2—4)+ (k/2—2)?), G =G+nk-—2)
andr; <k/2, Vi.
The result follows from
Pi(k +2,k/2,G’, H', k) < 0.

Notice thatt > 2n.
b) From Proposition 5, there are at mo&yZ + 1, k/2 + 1) singularities. The
inequality

Py(k +4,k/2+2,G,H, k) <0

gives the result.

c) Letn be the number of points of multiplicitk/2 and m be the number of
(k/2—1,k/2 — 1) singularities. From Proposition 6, a),= 0 or 1.

If n=0, thenry, = k/2 impliesm > 1 (thust > 1). From

Pz(k_Z! k/ZYGY Hvk)fo

one gets the first inequality.
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Supposen = 1. Notice that, as shown in the proof of Proposition 6, c), bt of
multiplicity k/2 is obtained from the blow-up @? at a point of type K/2—1,k/2—1).
Hencet > 1.

Let

H :=H—-(/2-2F, G =G+k2-2

(we remove the contribution of the point of multipliciy/2).
If m=0, then

Pi(k—2,k/2—-2,G', H', k) <0

implies the second inequality.
If m> 0, then

Py(k —2,k/2,G', H, k) <0

gives the third inequality. In this cage> 2.
d) Letj:=1—k and letn be the number of pointg; (possibly infinitely near)
such thatr; = k/2. From Proposition 7, we have

di—2)k-ri—2)=H and 2=G'+ ) (r—2),
where
H =H—-nk/2—2)? G =G +n(k/2-2)

andr; <k/2-2, Vi.
The inequality
Pk +j,k/2-2,G,H k) <0
gives
(4x(0s) +t — K&+ 8+ 2] — 2n)k < 32x(Os) + 4t — 4KZ — 8n.
It only remains to show that < j + 7.
One can verify, using the double cover formulas (see e.gv.[22]), thatn > j+8

implies x(Os) < 1, except forn =8, | =k andn = 10, k = 12, | = 14. We claim
that in these caseK2 < 0. This is impossible becaus®is of general type.

Proof of the claim. From the double cover formulas one gets #HOs) < 2 and
there is at least a—2)-curve A contained in the branch curvB, other\NiseKé <0.

One has
. +(-KF+ ) K n)E
—_ 2 W 2 1 [N}

where F is the total transform of and eachE; is an exceptional divisor with self-
intersection—1. SinceAB = -2, AKyw =0, >k andr; <k/2 Vi, we haveAE <0
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for somei such thatr; < k/2. The only possibility is the existence of a (3, 3)-point

in B and x(Os) = 1. But the imposition of such a singularity in the branch ®cu
decreases the self-intersection of the canonical divigot bthusK3 < 0.

e) From Proposition 6, b), > k/2+r,, —2. Let

f(rm) := Puk/24+T1m—2,1m, G, H, k).

We have

f(rm) = —2r2 + brp, 4+ ¢ <0,
where

b=4y(Os)+t—-KZ—k+8
and

c = k? — 10k — 85 (Os) + 24.

Suppose that = f(0) > 0 (i.e. k > 5+ /1 +8x(0Os)). Then f(r,) has exactly one
positive rootx. One has

4x —b = /b2 + 8c
andk/2 —2 >rp, > x implies that
(4(k/2 — 2) — b)?> > b? + 8c.

This inequality gives the result.
f) Let n be the number of points of typ&/2, k/2).
If n=1, we proceed as in a), with> k.
If n> 1, the inequality is given by

Po(k, k/2+1,G, H, k) < 0.

g) Itis analogous to the proof of e): in this case the resulodes from k/2—1 >
Im > X. O

6. Proof of main results

Proof of Theorem 1. Consider the parabola given flfx) = ax? + bx + ¢, with
a>0.If f(ky<0, f(2 >0 andz > —b/2a (the first coordinate of the vertex), then
k<z

This fact and Proposition 9 imply that, Kg < 4x(Os) — 6, one of the follow-
ing holds:

a) k= (16¢(Os) - 16)/(4x(Os) — K& —6);
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b) k < (16x(0s))/(4x(Os) +t —K3—8),t > 2;
c) k<44 (16x(0s))/(4x(Os) +t — Kg— H,t>1;
¢) k<4+ (16x(0s) —4)/(4x(Os) +t —KZ—5), t > 2;
d) k <4+ (16x(0s) — 32)/(4x(Os) — KZ—6);
e) k=<5+ 1+ 8x(Os);
€) k =4+ (16¢(0s))/(4x(0s) — K2);
f) k<24 (16x(0s) — 16)/(4x(Os) — K& —1);
f) k<2+ (16x(0s) — 16)/(4x(Os) +t — Ké— 8),t>2;
g) k<54 J1+8x(0s);
g) k <2+ (16x(0s) — 16)/(4x(Os) — K3 —6).
We want to show thak is not greater than

1 1 —32
m ax{ 6x (C’)s)2 4 6x (Os) 23 ,
4x(0Os) —K5—6 4x(0Os) —K5—6

44 162(09) 5+ \/1+87x(03)}-

4x(0s) — K& -
The result follows easily. Just notice that

16x(0s) =16 _ 16x (Os)
4x(0s) —K5—6 ~ 4x(0s) — KG—6

4x(0s) —KE-6<8= 2+
and

16x(0s) — 16 _ 16x (Os) — 32

4 .o g
2309 —KZ—6 ' ax(0s)—KZ—6

4(0s) —KZ—-6>8= 2+

Proof of Proposition 2. Letaf), (8) be the equations of Proposition 7, a), b), re-
spectively. One has thatd) + (k — 10)(8)]/8 is equivalent to

@ 3 Y0 -2)E-r) = 15+ KE—t—3x(09) ~ ;(k—10)0 -~ 10)

and @) + (2) is equivalent to

@ x(09 = 1+ 3(=21 =2~ £ 36 ~ 2,

Now it suffices to show that, < 8.

Suppose thakK2 < 3x(Os) — 6.

From [8, Theorem 1] one gets that (Os) > 54, thenS has a pencil of hyper-
elliptic curves of genus< 6. In this casek < 14, thusry, < k/2 + 2 impliesry, < 8.

From the proof of Theorem 1 we obtain that){Os) < 31, then one of the pos-
sibilities below occur. In all cases, < 8.
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a) and b)k < 16,ry, < 8;
c), ¢) and d)k <18, ry, = k/2 < 8;
e) k<20,rh<k/2-2<8;
€) k<16,rn <k/2—-2<6;
f) k<14, rn=k/24+1<8;
f) k<16,rpm =k/24+1<8;
9) k=18,rm=k/2-1=8;
g) k=14, rpn =k/2-1=<6.
Suppose now that 3% x(Os) < 53. From Theorem 1 we get th&t < 18 or
k <54 /1+8x(0g). In this last cas& < 24 andr,, < k/2— 1 (see Proposition 9
e), 9)). Thus we have, < 18/2+4 2 orry, < 24/2— 1. Sincery, is even,r, < 10.
Let N; be the number of pointg; such thatr; = j. We have

D (ri —2) = 8Nyo+ 6Ng
and, from (2),
8Njo > (k — 10)( — 10)— 32.

Using Proposition 7, b) and the assumptipf®s) > 32, this implies

2 + 2k > 15+ (k — 10)( — 10) -+ 6N,

or equivalently
4) (k—12)(0 —12) < 29— 6Ns.

Supposer, = 10. Then Propositions 5 and 6 give two possibilities:

e k=16,1 > k+ 2 =18, there is a singularity of type (9, IN§ > 1);

e k=>18,1>k/24+rmn—2>17.

Both cases contradict (4). We conclude thgt< 8. O

Proof of Theorem 3. First we claim that A is a (2)-curve contained in the
branch curveB, the imageA of A in F. does not intersect a negligible singularity of
B, unlessA is the negative section df; and the only singularity o8 is a double
point in Cy (this corresponds to a smooth branch curveP). In fact otherwise there
is a 1)-curve E such thatAE =1 or 2. If AE =1, then A+ E can be contracted
to a smooth point of the branch cun&cC Fe. This is a contradiction because the ca-
nonical resolution blows-up only singular points Bf SupposeAE = 2. The inverse
image of A is a (—~1)-curve which contracts to a smooth point 8f The inverse im-
age of E is then contracted to a curvE with arithmetic genus 1 an€2 = 2. We
obtain from the adjunction formula tha¢sE = —2, which is impossible becausgis
of general type.

Recall thatt := K2 — K2, The following holds:
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(1) | > k/2 (Becausd — ek/2 = BCy > —e and BCy is even.);

(2) | =k/2 <= (t =2A Ny = Ng = Ng = 0) (In this casee = 1 and BCy = 0.);

B) I =k/24+42= (N6 = Ng=0At>NgA(t =NgV Ng>1)); (If Ng £ 0, this
corresponds to a branch curve ¥ with N4 points of type (3, 3) (see Proposition 6,
b), ©)).);

4) I =k—2At=0= k/2 even; (As in (1) > ek/2—¢e, thuse <2. If e= 2,
BCy = —2 impliest > 1. Hencee = 1 and thenl even impliesk/2 even.);

B) | <k—2=1-k/2 even; (As in (1)] > ek/2—e, thuse=1 and then —k/2 =
BC is even.)

(6) t=1ANg=Ng=Ng=0=1=k—2. (If there are only negligible singularities,
t = 1 is only possible if the negative section Bf is an isolated component of the
branch locus.)

For given values oﬂ<§ — 3x(0s) and k, we want to choose the solution of the
equation given in Proposition 2, b) which maximizes the gadd x (Os), given by the
equation in Proposition 2, ¢). We can assuMg= Ng = 0.

It suffices to compute the numerical possibilities for Pipon 2, b), ¢) which
satisfy conditions (1), ..., (6). We note the following: sk > 12, [8, Theorem 1]
implies x(Os) < 69, then Theorem 1 givek < 28; | > k/2, k > 12 and (2) imply
—7>KZ%—-3x(0s) = —18+t + Ny, thus K3 —3x(Os) = —18,t < 11 andN, < 11.

A simple algorithm is available athttp://hone.utad. pt/~critol/
nmagna_code. htn .

It remains to prove the existence. All cases can be consttuas double covers
of P2, Fy, F1 or F,. The table below contains information abdubr the degree of the
branch curve inP? and about the singularities of the branch curve, if any.

g
K2 -3y 7 -8 -9 -10
5 |[Fo, | =26 Fo, | = 24 Fo, | =22 |Fy, | =20
6 ||Fo, | =18 Fp, | =17 Fo, | = 16|Fy, | =15
7 [[F, | =14, (3,3)|F,, | = 14 Fi, | =14|Fy, | =12, (3,3)
8 ||Fy, | =13, (3,3)|Fy, | =13, (4)|Fy, | =13
9 P2, 22, (3, 3) Fy, | =12
10 P?, 22
g
-11 -12 -13 14 -15 -16
5 [[Fo, | =18 Fo, | = 16| Fo, | = 14 Fo, | =12|Fy, | = 10|Fy, | =8
6 ||[Fo, | =14 Fi, | =13|Fy, | =11, (4)|Fy, | =11 Fi, | =9
7 ||[Fy, | =12, (4)|Fy, | = 12| P?, 18, (3, 3) F1, | = 10| P?, 16
8 || P2 20, (3,3) Fq, | =11 P?, 18
9 P?, 20
10
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Suppose first tha is smooth and is the double cover of an Hirzebruch surface
Fe with branch locusB = 2L = kCy + (ek/2 + 1)F. We get from the double cover
formulas (see e.g. [2]) that

1 1. 1
1(0s) = 2x(Or,) + SL(Kg, + L) = 2+ 2kl = S(k +1)
and
K2 =2(Kp, + L) = 16— 4(k + 1) +KI.

Now we computey and K2 for the cases given in the table above taking in account
that a 4-uple point in the branch locus decred$ésby 2 andy by 1 and a (3, 3)-point
decreases botK? and x by 1. Notice thatk = 2g + 2.

Finally if Sis a double cover o2 with branch locus a smooth curve of degree
d, then

1 1
x(0s) = 2+ £d(d—6) and K2 = E(d_6)2_

The result follows by computing and K2 for d = 16, 18, 20 and 22. ]
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