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Abstract

In this article, we shall prove that for any finite solvableogp G, there exist
infinitely many abelian extensionk /Q and Galois extension®/Q such that the
Galois group Gal¢l/K) is isomorphic toG and M /K is unramified. The difference
between our result and [3, 4, 6, 7, 13] is that we have a bas# Keivhich is not
only Galois overQ, but also has very small degree compared to their results. We
will also get another proof of Nomura’s work [9], which givess a base field of
smaller degree than Nomura’s. Finally for a given finite rfmie@n simple groups,
we will show there exists an unramified extensighyK’ such that the Galois group
is isomorphic toG and K’ has relatively small degree.

1. Introduction

The existence of unramified extensions with a prescribedi&aroup has been
studied by various authors. Frohlich [4] proved that for grositive integemn, there
exists a number fielK of finite degree and an unramified extensibtyK such that
the Galois group Gall/K) is isomorphic to the symmetric grouf, of degreen. This
result implies that any finite group can be realized as the@i&aroup of some unrami-
fied extension. Although for a given finite gro@ we can find an unramified extension
M/K’ such thatG ~ Gal(M/K’) by Frohlich’s work, it is more or less meaningless
becauseK’ has extremely high degree and it is not even Galois Qe herefore, re-
searchers have tried to find a base field which has degreeesniadin the order oG
and is Galois ove@Q.

Uchida [11], Yamamoto [13], Elstrodt—Grunewald—Mennicld3, [Kondo [7] and
Kedlaya [6] studied the existence of an unramified extengioer a quadratic field
whose Galois group is isomorphic to the alternating gréyp Using their results, we
see that the base field of an unramifiedS,-extension can be chosen as a quadratic
field, and that a given finite grou@, we can find an unramified extensidh/K’ such
that G ~ Gal(M/K’). In this case, the degree of the base fi&ld is smaller than
Frohlich’s but is still extremely high.

Recently Ozaki [10] and Nomura [9] studieggtgroup cases. Ozaki [10] proved
that for any finite p-group G, there exists a number fiel& of finite degree such
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1040 K.-S. Kim

that the Galois group of its maximal unramifigdextension is isomorphic t&. But
the degree of the base field is also extremely high in this case. Nomura sacri-
ficed the maximality of unramified-extension to greatly reduce the degree of the
base field. Nomura [9] proved that for any finitegroup G, there exists an elemen-
tary abelianp-extensionK /Q and an unramified extensiod /K such that the Galois
group GalM/K) is isomorphic toG, and reduced the degree of the base fi€ldas
much as possible. The base figd can be chosen such thak [ Q] = p?*!, where
IGP[G, G]| = p*.

In this article, we will mainly consider the case of finite sdble groups. We shall

prove that for any finite solvable group, there exist infinitely many abelian extensions
K/Q and Galois extensionsl/Q such that the Galois group GM({K) is isomorphic
to G and M/K is unramified. The difference between our result and that3p#[ 6,
7, 13] is that we have a base field which is not only Galois @eltbut also has very
small degree compared to their results. In doing this, wé &#o consider the case
of p-groups. We will find an alternative to Nomura’s proof thates a base field of
degree smaller than Nomura'’s.

Finally for a given finite nonabelian simple gro@, we will demonstrate the ex-
istence of an unramified extensidvi/K’ such that the Galois group is isomorphic to
G and K’ has relatively small degree. This is a consequence of Kadlayork [6].

2. Embedding problems

In this section, we recall some facts from the theory of endbegl problems of
Galois extensions to prove our main theorem. General stumieembedding problems
can be found in Chapter Il 85 and Chapter IV 86 of [8].

Let k be a number field of finite degree am@k the absolute Galois group d&
Let K/k be a finite Galois extension with the Galois groGp For a group extension

1-A—E i> G — 1 of finite groups, the embedding problei@,, j) is defined by
the diagram

Gk

e

1— s A— S E—sG6—51

where ¢ is the canonical surjection. A continuous homomorphignof Gy to E is
called asolution of (G, ¢, j) if it satisfies the conditionj o v = ¢. When G, ¢, j)
has a solution, we callG, ¢, j) is solvable A solution v is called a proper solution
if it is surjective. A field N is called asolution field(resp. aproper solution fieldl of
(G, ¢, j) if N is the fixed field of the kernel of a solution (resp. a propeusonh).
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For a Galois extensioiK /k, we set

RamK /k) := {p of a prime ofk | p ramifies in K /k},
Sp = 6(K)p := {p of a prime ofk dividing p},

Gw = 6(K)o := {infinite (i.e., archimedean) primes &f.

Theorem 2.1 (Theorem 9.6.7 in [8]) Let K/k be a finite Galois extension of the
global field k and letp: Gy — Gal(K/k) = G. Then every split embedding problem

Gk

le

1—P—» PxG—G——1

with finite p-group P has a proper solution /M. If p # chark), we can choose the
solution in such a way that the following conditions are sftid

(i) All pe RamK/k) U &, U &, are completely decomposed in/K.

(i) If p is ramified in N/K, thenp splits completely in Kk and N,/k, is a cyclic
totally ramified extension of local fields.

3. Some lemmas

In this section, we quote useful and important lemmas to @m@mw main theorem.

Lemma 3.1 (Abhyankar's lemma, Theorem 1 of [2]) Let F be a local field. Let
E: and E be finite extensions of F with ramification indicegs and e respectively.
Suppose Eis tamely ramified and.g e;. Then RE; is an unramified extension of;E

REMARK 3.2. LetE;/F and E;/F be extensions of global fields such that the
ramification indicies atp satisfy the conditions of Lemma 3.1. Then the extension
E:1E,/E; is unramified atp since this is a local question. If this holds for each prime
p of F, then E1E,/E; is unramified everywhere.

To prove our main theorem, we need the following Proposi8dh The following
lemmas will be used to prove Proposition 3.5.

Lemma 3.3 (Lemma 14.4 of [12]) Let E/F be an unramifiedfinite Galois ex-
tension where E and F are finite extension®f. Then E= F(¢,) for some n with
ptn.

Lemma 3.4 (Lemma 14.5 of [12]) Let E and F be finite extension @, and
let p be the maximal ideal of the integers of F. Supposd-Hs totally ramified of
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degree e with g e (i.e, E/F is tamely ramifiefl Then there existg € pg \sz and
a root of o of

Xe—nr =0
such that E= F(«).

Proposition 3.5. If E/Q, is a totally ramified abelian extension of degree e with
p { e then e| (p—1).

Proof. LetE/Q, be a totally ramified abelian extension of degeewith p } e
(i.e., E/Q, is tamely ramified). By Lemma 3.4& = Qp(7*®) wherer = —up for
some unitu € Q,. Sinceu is a unit andp t e the discriminant off(X) = X®*—u is
not divisible by p, henceQ,(u*®)/Q, is unramified. By Lemma 3.3,

Qp(u®) C Qp(¢n)

for somen with p + n. Let T be the compositum of the field®,(s,) and E. Then

T is abelian. Sinceu® and 7€ are contained inT, (—p)Y¥¢ is also contained in
T. It follows that Q,((—p)*/©)/Qp is Galois, since it is a subextension of the abelian
extensionT /Q, so

Qp((=P)Y®) = Qp(te(~P)"®)

for a primitive eth root of unity ¢e. Therefore

le € Qp((_ p)l/e).

SinceQ,((—p)Y/®) is totally ramified, so is the subextensi@y(¢e)/Qp. But p } €, so
the latter extension is trivial antk, € Q,. Thereforee | (p —1). O

The following lemma will be used in comparing our result ahé previous one.
Lemma 3.6. Letn be a product of at least two distinct primés., n = p;*- - - pit.
Puts=Y"_,r. Then
n® <2(n-1).

Proof. We claim than® dividesn!. It suffices to show thapiriS | n! for each p;.
Let us show the following terms divide!:
- prpz---pit where 1< x <ry;
— pi-ywhere 1Sy < (ra+4---+ry);
— piwhere 1<z < (r; - 1).
Note thatpypy---pi' > P> + p3 + -+ p' > r2+r3+---+re. It is clear that
any two of above terms are distinct. The product of @lHfactors of the above terms
is pi**. So p/*° dividesn! for eachi.

Sincen andn —1 are relatively prime, it is clear that®* | (n —2)!, i.e.,, n>! <
(n—2)!. Sincen <2(n—1), n° < 2(n—1)L. ]
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4. Main theorem

Main theorem. Let L/Q be a Galois extension witBal(L/Q) = G. Let K/Q be
a Galois extension such that LK is unramified and IO K = Q, i.e, Gal(LK/K) ~
Gal(L/Q). Let H be a finite nilpotent group satisfying

1> H—->HxG—->G-—1.

Then there exist infinitely many cyclic extensiong/& and Galois extensions’[Q
such that

i) L'DL, L'NnK' =Q,

(i) Gal(L’'/Q) ¥ H xG, i.e, GallL'K'/K") ~H %G and

(i) L’K’/K” is unramified at all primes

where K is the compositum of the fields K andy.KWe can take K satisfying
[Ko: Q] = m where m is the maximal order of elements in H.

To prove our main theorem, we need the following Theorem 4.1.

Theorem 4.1. Let L/Q be a Galois extension wital(L/Q) = G. Let K/Q be
a Galois extension such that LK is unramified and W K =Q, i.e, GallLK /K) ~
Gal(L/Q). Let P be a finite p-group satisfying

1-P—-PxG—-G-— 1

Then there exist infinitely many cyclic p-extensiong@® and Galois extensions’[Q
such that

) L'DL, L'nK' =Q,

(i) Gal(L’/Q) ~ PxG, i.e, GalL'’K'/K)~ PxG and

(i) L’K’/K’ is unramified at all primes

where K is the compositum of the fields K and).KWe can take K satisfying[Ko :
Q] < p™ where p" is the maximal order of elements in P.

Proof. DefineGy := Gal(LK/Q) = G x Gal(K/Q). Consider the embedding
problem

Gk

e

1— P— PxGy—— Gy — 1

(Gal(K/Q) acts trivially on P). Theorem 2.1 implies thalN/Q exists such that
Gal(N/Q) ~ (PxG)xGal(K/Q). ThenN is the composite oK /Q and Galois exten-
sion L'/Q with GalL’/Q) ~ Px G, L'>DL andL’'nNnK = Q. L is a Galois subfield
of L’. By Theorem 2.1, we can takid satisfying the following conditions (i) (ii).
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(i) All pe RamLK/Q)U &, U B, are unramified inN/LK.

(i) If g is in RamN/Q) \ RamLK /Q), then g splits completely inLK/Q and
Ng /Qq = Lj /Qq is a cyclic totally ramified extension of local fields, whedg
(resp.q;) is a prime ideal inN (resp. L’) satisfyingq; | g (resp.q; | gi) and Nj
(resp.Ly,) is the g;-completion of N (resp.q;-completion ofL’).

Thus everygi € RamN/Q) \ RamLK/Q) = {01, Oz, . . ., On} IS tamely ramified
and Galt; /Qq) ~Z/ p*Z for all g;, where p? is the ramification index for eacty.
By Proposition 3.5,p% | (o — 1). Let K; be a cyclic subfield ofQ(¢y) with degree
p%. ThenK;/Q is a totally ramified extension with ramification index:.

Definea := maxay,az,...,ay}. Let gy be a prime which is unramified i /Q
and congruent to 1 mog@?. Infinitely many such primes exist, this fact is responsible
for the existence of infinitely many cyclic p-extensions Khen aZ/p?Z-extension
Knt1 C Q(&q,,,) Xist. Letx; be the character corresponding Kg. Define

X = X1 Xn+1

and letKg be the corresponding field. Thefy is a Z/p?Z-extension unramified out-
side {q1, Oz, . - ., Ony1} With ramification indexg = p# for eachq (1 <i <n+1).
Define K’ := KKy. Becauseq,y; is unramified inN, N N Kg = Q. Thus
Gal(NKp/Q) ~ Gal(N/Q) x Gal(Kp/Q) ~ (Gal(lL’/Q) x Gal(K/Q)) x Gal(Kp/Q) =~
(Gal(L'/Q) x Gal(K'/Q)). ThenL’' N K’ = Q. We know thatN/K is unramified out-
side {qi, O, . . ., On}. By Abhyankar’s lemmaN Kqg/KKg = L’K’/K’ is unramified at
all finite primes and Gal('K’/K’) ~ Gal(L'/Q) ~ P x G. Now the remaining task
is to show thatL’K’/K’ is unramified at archimedean primes. Because all fields that
we are considering are Galois ov@, they are either totally complex or totally real.
If K is totally complex, then every extension &f is unramified at the archimedean
primes, this completes the proof. K is totally real, then by the condition (i) of The-
orem 2.1 (i),N is also totally real. Thud’K’/K’ = NKy/KKgq is unramified at the
archimedean primes, wheth&, is totally real or complex. ]

Proof of Main theorem. LeH be a finite nilpotent group. TheH is the direct
product of its Sylowp;-subgroups, i.e.H >~ P; x P, x--- x P, where P, is a Sylow
pi-subgroup ofH and |R| = (p;)" for each 1<i <n. DefineH; asP; x---x B.
Becausep;’s are distinct, one can easily show that evéty(resp. H;) is a character-
istic subgroup ofH, i.e., everyP, (resp.H;) is invariant under the action d& on H.
So the action ofG on H induces an action o6 on P, (resp.H;) for eachi. We will
proceed by induction oi.

If i =1, Hy is a p;-group. Consider the exact sequence

l1-H >HxG—->G—->1

(the action is induced by the action & on H). By Theorem 4.1, there exist infinitely
many cyclic p;-extensionsK/Q and Galois extensionk;/Q such that
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() LiDL, LinK;=Q,

(II) GaI(Ll/Q) ~ H; xG, i.e., Galq_lKl/Kl) ~ H; x G and
(i) L1K1/Ky is unramified at all primes.

Here K, is defined as the compositum of the fieldsand K.

Now we assume that we have already found a cyclic extensigi) whose degree
[K': Q] is coprime topi,1 and a Galois extensioh;/Q such that
() LioL LNK =Q,
(II) G&'(Li/Q) ~ H; xG, i.e., Gal(_i Ki/Ki) ~ H; xG and
(i) LiK;i/K; is unramified at all primes,
where K; is the compositum oK and K'. Consider the split exact sequence

1->P,;1—>Hyy1xG—->H xG— 1.

We can easily show thatli,; x G is a split extension oH; xG by P, ;. (The actions
are induced by the action d& on H.) By Theorem 4.1, there exist infinitely many
cyclic pi;1-extensionsk (+1)/Q and Galois extensionk;,1/Q such that
() LiqadLi, LianKiy1i=Q,
(i) Gal(Li+1/Q) ~ Hi11x G, i.e, Galti+1Ki+1/Ki+1) =~ Hiy1 x G and
(i) Li+1Kij+1/Kjs1 is unramified at all primes,
where K1 is the compositum of the field&; and K(+1), put K+l = KIK(+D),
Since K' : Q] is coprime to pi.1, K'*1 is cyclic, i.e., Ki 1 = KK+ = KKI+1 js
the compositum of the field& and cyclic extensiork'+*.

Therefore there exist Galois extensiobs/Q, K,/Q such that
) LhnDL, KhDK,LyNKy=0Q,
(i) Gal(Lh/Q) ~ H, %G, i.e., GalL,Kn/Kp) >~ Hy, x G and
(i) LnKn/K, is unramified at all primes,
where K, is the compositum of the field& and K". Put Ky := KOK®@ ...
K". Becausep;'s are distinct, one can easily show thidg is cyclic and Kq : Q]
p™p™ ... p™ = m where p™ is the maximal order of elements iR. PuttingL’:
L, and K’ := K,, we have proved our main theorem.

—
=)
=

Ol

5. Application 1—p-groups

Corollary 5.1. For any finite p-group P there exist infinitely many extensions
M/K of number fields such that
— K is p-cyclic overQ;
—  M/K is unramified
- GalM/K) ~ P;
- [K:Q]=p™
where " is the maximal order of elements in P.
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Proof. By Theorem 4.1, there existyQ such that Gal(/Q) ~ P and cyclic p-
extensionK such thatLK /K is unramified and Gal(K /K) >~ P. Because GaK /Q)
is isomorphic to a cyclic subgroup @, [K : Q] < p™. Putting M := LK, we have
proved our assertion. O

REMARK 5.2. This is another proof of Nomura’s result [9]. One maifffedi
ence is that Nomura’s base fields are elementary abgliartensions whereas our base
fields are cyclicp-extensions. Moreover, the degree of base field is reducete that
p™ < |PP|- p < |PP[P, P]|- p.

EXAMPLE 5.3. Let P = (Z/p°Z)'. Construct ap-unramified extensiorM /K
whose Galois group i$ by both methods. BecauseP[P, P] ~ (Z/pZ)', Nomura’s
base field K is an elementary abeliarp-extension K/Q with degree p'*! =
|PP[P, P]|- p. But our base field is a cyclip-extension with degreg? < p'*1.

Corollary 5.4. For any finite nilpotent group Hthere exist infinitely many ex-
tensions MK of number fields such that
— K is cyclic over@;
— M/K is unramified
- GalM/K) ~ H;
- [K:Q]=m;
where m is the maximal order of elements in H.

Proof. By our main theorem, there existyQ such that Gal(/Q) ~ H and
cyclic extensionK such thatLK /K is unramified and Gal(K/K) ~ H. Because
Gal(K /Q) is isomorphic to a cyclic subgroup df, [K : Q] < m. PuttingM := LK,
we have proved our assertion. ]

Corollary 5.5. For any finite abelian group Gthere exist infinitely many cyclic
extensions K of) such that the ideal class group of K contains a subgroup isphio
to G.

Proof. Since any finite abelian group is nilpotent, the corollary follows from
the Corollary 5.4. ]

6. Application 2—solvable groups

In order to deduce the case of finite solvable groups, we needfacts from
group theory and we recall the following definitions. SupmpdsatG is a finite non-
trivial group.

DEFINITION 6.1. ®(G) is the intersection of all maximal subgroups ®fand is
called theFrattini subgroupof G.
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DEFINITION 6.2. F(G) is the composite of all nilpotent normal subgroupsGf
and is called theitting subgroupof G.

®(G) is a characteristic subgroup @ and is contained inF(G). The group
F(G) is a normal nilpotent subgroup @&. We cite the following two facts, see [5],
Kapitel Ill, Satz 3.2 (b) and Satz 4.2 (c).

Proposition 6.3. Let N be a normal subgroup of the finite group G such that
N Z ®(G). Then there exists a partial complement U of N ini&, U € G and
G=N-U.

Proposition 6.4. Let G be a nontrivial finite solvable group. Theb(G) is a
proper subgroup of FG).

Let G be a nontrivial finite solvable group. By the two proposisoabove,F(G)
has a solvable partial complemedt & G, so G = F(G) -U. SinceG is a solvable
group, U is also a solvable group. We will define a solvable group secei€G;}:

— DefineG; asG.

— Let Gj be a solvable group. The@; = F(Gj) - U for some partial complement
U € G;. DefineGj;1 asU.

Since G; is a proper subgroup dob;_;, the order ofG; decreases ak increases. So
we get a trivial groupGg 1 for somek. BecauseGy = F(Gy):Gky1 = F(Gk), Gk is a
nilpotent group. That is the key idea in proving our main gdadt g; be the maximal
order of elements i (G;) for 1 <i <k—1 andgx be the maximal order of elements
in Gy. Defineg = [T, g..

Corollary 6.5. For any finite solvable group G£ {1}, we give constructions of
infinitely many extensions MK of number fields with
— K is abelian overQ;
— M/K is unramified
- GalM/K) ~ G;
- [K:Q]=g.

Proof. Let us recall the definition of the solvable group ssme {G;}. Define
G;:= G andGj;1:= U whereU is a partial complement of (G;) in G; i.e., Gi41 €
Gj and Gj = F(Gj) - Gj1. SinceGj, is a proper subgroup oB;, the order ofG;
decreases asincreases. So we get a nilpotent gro@p for somek. We will proceed
by induction oni.

If i =k, Gk is a nilpotent group. By Corollary 5.4, we givex and K with
— Kk is cyclic over@Q;

- LeNKg=Q;
—  LyKk/Kg is unramified;



1048 K.-S. Kim

- GaI(LkKk/Kk) ~ Gy;
- [Kk:Q] = gk
Now we assume that we have already fouhd K; satisfying the following
conditions:
() LiNnK=Q,
(II) GaI(Li/Q) ~ G, i.e., GaILi Ki/Ki) ~ Gj,
(i) LjKj/K; is unramified,
(iv) [Ki: Q] =g -~ Ok
Since F(Gi_1) - Gi = Gj_1, there exists a surjection

F(Gi,l) X Gi —> Gifl.

By our main theorem, there exit'/L;/Q and K;_1/K;/Q such that
) L'NKi.1=Q,
(i) Gal(L'/Q) ~ F(Gj_1) x Gj, i.e., GalL'Ki_1/Kij_1) ~ F(Gj_1) x Gj,
(i) L'Kj_1/Kj_1 is unramified.
By the proofs of Theorem 4.1 and our main theordfq,; is the compositum oK;
and a cyclic extensioKo/Q such thatK; N Kg = Q. ThusK;_;/Q is an abelian ex-
tension whenK;/Q is abelian. Note that Gaf(y/Q) is isomorphic to cyclic subgroup
of F(Gi-1). Thus Ki_1: Q] = gi-10i - G- Because Gal('/Q) >~ F(Gi-1) x Gj, a
subfieldL;_; C L’ exists such that Gal{_;/Q) ~ G;_;. BecauselL'K;_;/Kj_; is un-
ramified, L;_1K;j_1/Kj_1 is also unramified and Gal(_;K;_1/Ki_1) ~ Gj_3.

Therefore there exist ;, K; satisfying the following conditions:
() LinKi=Q,
(II) Ga'(L]_/Q) ~ Gy, i.e., GaN_lKl/Kl) ~ Gy,
(i) L1K1/Ky is unramified,
(V) [Ki: Q] =@ -k =0.
Define M := L,K; and K := K;. From our setting ofK, K is the compositum of
cyclic extensions ofQ, thus K/Q is an abelian extension. This completes the proof.

O

REMARK 6.6. We will compare our result with previous ones [3, 6, 7, 13

Let G be a finite solvable group which is not nilpotent. Then we caruse Corol-
lary 5.4. Letn be the order ofG. SinceG is not nilpotent,n is a product of at least
two distinct primes, i.e.n = p&l---p{‘. Puts:= Z}zlri and p :=min{pg, p2,..., pt}.
Let us construct unramified extensid/K whose Galois group i§€ by our method.

By Corollary 6.5, K: Q] < g =010 0. Since allF(Gj)’s and Gx are proper
subgroups ofG, we easily check thag; < n/p for each 1<i <k andk <'s, thus
[K:Q] = (n/p)s.

Now let us construct it with Kedlaya’s result [6]. Kedlayaoped that there exist
infinitely many number field& of degreen =r + 2s and signaturer(s) such that
the Galois closurel of F has Galois groups, over Q and the discriminant of is
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squarefree. These conditions ensure thas an unramifiedA,-extension ofQ(+/dr).
(See [3], or [7] Theorem 1 for a slightly stronger statemeritet R = Q(./p-dF)
wherep } de. By Lemma 3.1,L R/R is unramified and Gal(R/R) ~ Gal(L/Q) ~ S..
So we can find an unramified extensidrR/K’ such that Gall R/K’) ~ G by his
result. In this method,q’ : Q] is exactly 26 — 1)!.

By Lemma 3.6, K : Q] < (n/p)® < n® < 2(n—1)!. So the degree oK is smaller
in our method than Kedlaya’s.

Let us see an example. L& be a finite solvable group of order 100. Let us
construct unramified extensioll /K whose Galois group i€ by our method. Since
100= 22.5%, the degree oK is at most 6.25 10° in our method, contrary to the fact
that it is exactly 2 99! = 1.8665 - - x 10'6 in Kedlaya’s result.

In fact, whenG is solvable, we cannot specify the degree of the base fieldt@ue
the process of quotienting groups. Like two examples belbthere is no process of
quotienting groups, the degree of a base field is smaller [Bdn

EXAMPLE 6.7. Suppose thab = . In this case, we cannot use Corollary 5.4,
because althougl® is solvable, it is not nilpotent. We kno ~ C3 x C,. By Corol-
lary 5.1, there exist quadratic extensidnK such that Gal( K /K) ~ C, andLK /K is
unramified. By proof of our main theorem, there eXistK’ such that Gal{’K’/K”’) ~
C3xCy; >~ S and L’K’/K” is unramified. HereK’ is a compositum oK and some
cyclic cubic extension, thus the degree of base flelds 6 = |S;].

EXAMPLE 6.8. Suppose thaG = S;. This groupG is also solvable, not nil-
potent. G can be written as/, x S3. By Example 6.7, there exidt’, K’ such that
GallL'’K’'/K) ~ S and L’K’/K’ is unramified. By proof of our main theorem, there
exist L”, K” such that Gal("K"/K") ~ Vy, x § ~ § and L”K"”/K” is unramified.
Because the maximal order of elements\afis 2, K” is a compositum ofK’ and
some quadratic field which is linearly disjoint with’. Thus the degree of base field
K" is 12 < |

REMARK 6.9. Suppose thdb is a nonabelian simple group. BecauBaloes not
contain proper normal subgroups, we cannot use the emigegdoblem, but we can
simply make nonabelian simple unramified extensions wittp observation based on
Kedlaya’s work [6].

Let G be a nonabelian simple group. LEt be a proper subgroup @& andn :=
[G : H]. Then there is a natural inclusid@ — A,. We know that there are infinitely
many unramifiedA,-extensionsM /K where K is a quadratic field. LeK’ := MC.
Then M /K’ is unramifed and Gall /K’) ~ G.

As previously stated, we want to reduce the degree of the fireldeK’ as much as
possible; i.e. finding the minimal index of the subgroup ofomatbelian simple grou®
is sufficient.
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(i) G = A,—the minimal index ofA; is n.

(i) G = PSL,(q)—the minimal index of PSk(q) is (" —1)/(q—1) except for (,q) =
(2,5),(2,7),(2,9), (2,11) or (4, 2). (See [1)).

For example, letG := PSLy(7). Then the minimal index of PSL(7) is 7. (See [1]).
Thus we can choose a base fiéd with degree 30= 7!/|PSLy(7)|.
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