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Abstract
In this article, we shall prove that for any finite solvable group G, there exist

infinitely many abelian extensionsK=Q and Galois extensionsM=Q such that the
Galois group Gal(M=K ) is isomorphic toG and M=K is unramified. The difference
between our result and [3, 4, 6, 7, 13] is that we have a base field K which is not
only Galois overQ, but also has very small degree compared to their results. We
will also get another proof of Nomura’s work [9], which givesus a base field of
smaller degree than Nomura’s. Finally for a given finite nonabelian simple groupG,
we will show there exists an unramified extensionM=K 0 such that the Galois group
is isomorphic toG and K 0 has relatively small degree.

1. Introduction

The existence of unramified extensions with a prescribed Galois group has been
studied by various authors. Fröhlich [4] proved that for anypositive integern, there
exists a number fieldK of finite degree and an unramified extensionM=K such that
the Galois group Gal(M=K ) is isomorphic to the symmetric groupSn of degreen. This
result implies that any finite group can be realized as the Galois group of some unrami-
fied extension. Although for a given finite groupG we can find an unramified extension
M=K 0 such thatG ' Gal(M=K 0) by Fröhlich’s work, it is more or less meaningless
becauseK 0 has extremely high degree and it is not even Galois overQ. Therefore, re-
searchers have tried to find a base field which has degree smaller than the order ofG
and is Galois overQ.

Uchida [11], Yamamoto [13], Elstrodt–Grunewald–Mennicke [3], Kondo [7] and
Kedlaya [6] studied the existence of an unramified extensionover a quadratic field
whose Galois group is isomorphic to the alternating groupAn. Using their results, we
see that the base fieldK of an unramifiedSn-extension can be chosen as a quadratic
field, and that a given finite groupG, we can find an unramified extensionM=K 0 such
that G ' Gal(M=K 0). In this case, the degree of the base fieldK 0 is smaller than
Fröhlich’s but is still extremely high.

Recently Ozaki [10] and Nomura [9] studiedp-group cases. Ozaki [10] proved
that for any finite p-group G, there exists a number fieldK of finite degree such
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1040 K.-S. KIM

that the Galois group of its maximal unramifiedp-extension is isomorphic toG. But
the degree of the base fieldK is also extremely high in this case. Nomura sacri-
ficed the maximality of unramifiedp-extension to greatly reduce the degree of the
base field. Nomura [9] proved that for any finitep-group G, there exists an elemen-
tary abelianp-extensionK=Q and an unramified extensionM=K such that the Galois
group Gal(M=K ) is isomorphic toG, and reduced the degree of the base fieldK as
much as possible. The base fieldK can be chosen such that [K W Q] D paC1, where
jGp[G, G]j D pa.

In this article, we will mainly consider the case of finite solvable groups. We shall
prove that for any finite solvable groupG, there exist infinitely many abelian extensions
K=Q and Galois extensionsM=Q such that the Galois group Gal(M=K ) is isomorphic
to G and M=K is unramified. The difference between our result and that of [3, 4, 6,
7, 13] is that we have a base field which is not only Galois overQ, but also has very
small degree compared to their results. In doing this, we will also consider the case
of p-groups. We will find an alternative to Nomura’s proof that gives a base field of
degree smaller than Nomura’s.

Finally for a given finite nonabelian simple groupG, we will demonstrate the ex-
istence of an unramified extensionM=K 0 such that the Galois group is isomorphic to
G and K 0 has relatively small degree. This is a consequence of Kedlaya’s work [6].

2. Embedding problems

In this section, we recall some facts from the theory of embedding problems of
Galois extensions to prove our main theorem. General studies on embedding problems
can be found in Chapter III §5 and Chapter IV §6 of [8].

Let k be a number field of finite degree andGk the absolute Galois group ofk.
Let K=k be a finite Galois extension with the Galois groupG. For a group extension

1! A! E
j
�! G! 1 of finite groups, the embedding problem (G,', j ) is defined by

the diagram

Gk

1 A E G 1

 

!

'

 

!

 

!

 

!

j
 

!

where ' is the canonical surjection. A continuous homomorphism of Gk to E is
called asolution of (G, ', j ) if it satisfies the conditionj Æ  D '. When (G, ', j )
has a solution, we call (G, ', j ) is solvable. A solution  is called a proper solution
if it is surjective. A field N is called asolution field(resp. aproper solution field) of
(G, ', j ) if N is the fixed field of the kernel of a solution (resp. a proper solution).
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For a Galois extensionK=k, we set

Ram(K=k) WD {p of a prime ofk j p ramifies in K=k},

Sp D S(k)p WD {p of a prime ofk dividing p},

S
1

D S(k)
1

WD {infinite (i.e., archimedean) primes ofk}.

Theorem 2.1 (Theorem 9.6.7 in [8]). Let K=k be a finite Galois extension of the
global field k and let' W Gk � Gal(K=k) D G. Then every split embedding problem

Gk

1 P PÌ G G 1

 

!

'

 

!

 

!

 

!

 

!

with finite p-group P has a proper solution N=k. If p ¤ char(k), we can choose the
solution in such a way that the following conditions are satisfied:
(i) All p 2 Ram(K=k) [Sp [S

1

are completely decomposed in N=K.
(ii) If p is ramified in N=K , then p splits completely in K=k and Np=kp is a cyclic
totally ramified extension of local fields.

3. Some lemmas

In this section, we quote useful and important lemmas to prove our main theorem.

Lemma 3.1 (Abhyankar’s lemma, Theorem 1 of [2]). Let F be a local field. Let
E1 and E2 be finite extensions of F with ramification indices e1 and e2 respectively.
Suppose E2 is tamely ramified and e2 j e1. Then E1E2 is an unramified extension of E1.

REMARK 3.2. Let E1=F and E2=F be extensions of global fields such that the
ramification indicies atp satisfy the conditions of Lemma 3.1. Then the extension
E1E2=E1 is unramified atp since this is a local question. If this holds for each prime
p of F , then E1E2=E1 is unramified everywhere.

To prove our main theorem, we need the following Proposition3.5. The following
lemmas will be used to prove Proposition 3.5.

Lemma 3.3 (Lemma 14.4 of [12]). Let E=F be an unramified, finite Galois ex-
tension where E and F are finite extension ofQp. Then ED F(�n) for some n with
p  n.

Lemma 3.4 (Lemma 14.5 of [12]). Let E and F be finite extension ofQp and
let pF be the maximal ideal of the integers of F. Suppose E=F is totally ramified of
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degree e with p e (i.e., E=F is tamely ramified). Then there exists� 2 pF n p
2
F and

a root of � of

Xe
� � D 0

such that ED F(�).

Proposition 3.5. If E=Qp is a totally ramified abelian extension of degree e with
p  e, then ej (p� 1).

Proof. Let E=Qp be a totally ramified abelian extension of degreee with p  e
(i.e., E=Qp is tamely ramified). By Lemma 3.4,E D Qp(�1=e) where� D �up for
some unitu 2 Qp. Sinceu is a unit andp  e the discriminant of f (X) D Xe

� u is
not divisible by p, henceQp(u1=e)=Qp is unramified. By Lemma 3.3,

Qp(u1=e) � Qp(�n)

for somen with p  n. Let T be the compositum of the fieldsQp(�n) and E. Then
T is abelian. Sinceu1=e and �1=e are contained inT , (�p)1=e is also contained in
T . It follows thatQp((�p)1=e)=Qp is Galois, since it is a subextension of the abelian
extensionT=Q, so

Qp((�p)1=e) D Qp(�e(�p)1=e)

for a primitive eth root of unity �e. Therefore

�e 2 Qp((�p)1=e).

SinceQp((�p)1=e) is totally ramified, so is the subextensionQp(�e)=Qp. But p  e, so
the latter extension is trivial and�e 2 Qp. Thereforee j (p� 1).

The following lemma will be used in comparing our result and the previous one.

Lemma 3.6. Let n be a product of at least two distinct primes, i.e., nD pr1
1 � � � p

r t
t .

Put sD
Pt

iD1 r i . Then

ns
< 2(n� 1)!.

Proof. We claim thatns divides n!. It suffices to show thatpr i s
i j n! for each pi .

Let us show the following terms dividen!:
– px

1 pr2
2 � � � p

r t
t where 1� x � r1;

– pr1
1 � y where 1� y � (r2C � � � C r t );

– pz
1 where 1� z� (r1 � 1).

Note that pr2
2 pr3

3 � � � p
r t
t > pr2

2 C pr3
3 C � � � C pr t

t > r2 C r3 C � � � C r t . It is clear that
any two of above terms are distinct. The product of allp1-factors of the above terms
is pr1s

1 . So pr i s
i divides n! for each i .

Sincen and n � 1 are relatively prime, it is clear thatns�1
j (n � 2)!, i.e., ns�1

�

(n� 2)!. Sincen < 2(n� 1), ns
< 2(n� 1)!.
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4. Main theorem

Main theorem. Let L=Q be a Galois extension withGal(L=Q) D G. Let K=Q be
a Galois extension such that LK=K is unramified and L\ K D Q, i.e., Gal(LK=K ) '
Gal(L=Q). Let H be a finite nilpotent group satisfying

1! H ! H Ì G! G! 1.

Then there exist infinitely many cyclic extensions K0=Q and Galois extensions L0=Q
such that
(i) L 0

� L, L 0

\ K 0

D Q,
(ii) Gal(L 0

=Q) ' H Ì G, i.e., Gal(L 0K 0

=K 0) ' H Ì G and
(iii) L 0K 0

=K 0 is unramified at all primes,
where K0 is the compositum of the fields K and K0. We can take K0 satisfying
[K0 W Q] � m where m is the maximal order of elements in H.

To prove our main theorem, we need the following Theorem 4.1.

Theorem 4.1. Let L=Q be a Galois extension withGal(L=Q) D G. Let K=Q be
a Galois extension such that LK=K is unramified and L\K D Q, i.e., Gal(LK=K ) '
Gal(L=Q). Let P be a finite p-group satisfying

1! P! P Ì G! G! 1.

Then there exist infinitely many cyclic p-extensions K0=Q and Galois extensions L0=Q
such that
(i) L 0

� L, L 0

\ K 0

D Q,
(ii) Gal(L 0

=Q) ' P Ì G, i.e., Gal(L 0K 0

=K 0) ' P Ì G and
(iii) L 0K 0

=K 0 is unramified at all primes,
where K0 is the compositum of the fields K and K0. We can take K0 satisfying[K0 W

Q] � pm where pm is the maximal order of elements in P.

Proof. DefineG0 WD Gal(LK=Q) D G � Gal(K=Q). Consider the embedding
problem

Gk

1 P PÌ G0 G0 1

 

!

'

 

!

 

!

 

!

 

!

(Gal(K=Q) acts trivially on P). Theorem 2.1 implies thatN=Q exists such that
Gal(N=Q)' (PÌG)�Gal(K=Q). Then N is the composite ofK=Q and Galois exten-
sion L 0

=Q with Gal(L 0

=Q) ' P Ì G, L 0

� L and L 0

\ K D Q. L is a Galois subfield
of L 0. By Theorem 2.1, we can takeN satisfying the following conditions (i) (ii).
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(i) All p 2 Ram(LK=Q) [Sp [S
1

are unramified inN=LK .
(ii) If qi is in Ram(N=Q) n Ram(LK=Q), then qi splits completely inLK=Q and
N
Nqi
=Qqi D L 0

qi
=Qqi is a cyclic totally ramified extension of local fields, whereNqi

(resp. qi ) is a prime ideal inN (resp. L 0) satisfying Nqi j qi (resp. qi j qi ) and N
Nqi

(resp. L 0

qi
) is the Nqi -completion of N (resp.qi -completion of L 0).

Thus everyqi 2 Ram(N=Q) n Ram(LK=Q) D {q1, q2, : : : , qn} is tamely ramified
and Gal(L 0

qi
=Qqi ) ' Z=pai

Z for all qi , where pai is the ramification index for eachqi .
By Proposition 3.5,pai

j (qi � 1). Let K i be a cyclic subfield ofQ(�qi ) with degree
pai . Then K i =Q is a totally ramified extension with ramification indexpai .

Define a WD max{a1, a2, : : : , an}. Let qnC1 be a prime which is unramified inN=Q
and congruent to 1 modpa. Infinitely many such primes exist, this fact is responsible
for the existence of infinitely many cyclic p-extensions K0. Then aZ=pa

Z-extension
KnC1 � Q(�qnC1) exist. Let�i be the character corresponding toK i . Define

� D �1 � � � �nC1

and let K0 be the corresponding field. ThenK0 is a Z=pa
Z-extension unramified out-

side {q1, q2, : : : , qnC1} with ramification indexei D pai for eachqi (1� i � nC 1).
Define K 0

WD K K0. BecauseqnC1 is unramified in N, N \ K0 D Q. Thus
Gal(N K0=Q) ' Gal(N=Q) � Gal(K0=Q) ' (Gal(L 0

=Q) � Gal(K=Q)) � Gal(K0=Q) '
(Gal(L 0

=Q) �Gal(K 0

=Q)). Then L 0

\ K 0

D Q. We know thatN=K is unramified out-
side {q1, q2, : : : , qn}. By Abhyankar’s lemma,N K0=K K0 D L 0K 0

=K 0 is unramified at
all finite primes and Gal(L 0K 0

=K 0) ' Gal(L 0

=Q) ' P Ì G. Now the remaining task
is to show thatL 0K 0

=K 0 is unramified at archimedean primes. Because all fields that
we are considering are Galois overQ, they are either totally complex or totally real.
If K is totally complex, then every extension ofK is unramified at the archimedean
primes, this completes the proof. IfK is totally real, then by the condition (i) of The-
orem 2.1 (i), N is also totally real. ThusL 0K 0

=K 0

D N K0=K K0 is unramified at the
archimedean primes, whetherK0 is totally real or complex.

Proof of Main theorem. LetH be a finite nilpotent group. ThenH is the direct
product of its Sylowpi -subgroups, i.e.,H ' P1 � P2 � � � � � Pn where Pi is a Sylow
pi -subgroup ofH and jPi j D (pi )r i for each 1� i � n. Define Hi as P1 � � � � � Pi .
Becausepi ’s are distinct, one can easily show that everyPi (resp. Hi ) is a character-
istic subgroup ofH , i.e., everyPi (resp. Hi ) is invariant under the action ofG on H .
So the action ofG on H induces an action ofG on Pi (resp. Hi ) for eachi . We will
proceed by induction oni .

If i D 1, H1 is a p1-group. Consider the exact sequence

1! H1! H1 Ì G! G! 1

(the action is induced by the action ofG on H ). By Theorem 4.1, there exist infinitely
many cyclic p1-extensionsK 1

=Q and Galois extensionsL1=Q such that
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(i) L1 � L, L1 \ K1 D Q,
(ii) Gal(L1=Q) ' H1 Ì G, i.e., Gal(L1K1=K1) ' H1 Ì G and
(iii) L1K1=K1 is unramified at all primes.
Here K1 is defined as the compositum of the fieldsK and K 1.

Now we assume that we have already found a cyclic extensionK i
=Q whose degree

[K i
W Q] is coprime to piC1 and a Galois extensionL i =Q such that

(i) L i � L, L i \ K i D Q,
(ii) Gal(L i =Q) ' Hi Ì G, i.e., Gal(L i K i =K i ) ' Hi Ì G and
(iii) L i K i =K i is unramified at all primes,
where K i is the compositum ofK and K i . Consider the split exact sequence

1! PiC1! HiC1 Ì G! Hi Ì G! 1.

We can easily show thatHiC1ÌG is a split extension ofHi ÌG by PiC1. (The actions
are induced by the action ofG on H .) By Theorem 4.1, there exist infinitely many
cyclic piC1-extensionsK (iC1)

=Q and Galois extensionsL iC1=Q such that
(i) L iC1 � L i , L iC1 \ K iC1 D Q,
(ii) Gal(L iC1=Q) ' HiC1 Ì G, i.e., Gal(L iC1K iC1=K iC1) ' HiC1 Ì G and
(iii) L iC1K iC1=K iC1 is unramified at all primes,
where K iC1 is the compositum of the fieldsK i and K (iC1). Put K iC1

D K i K (iC1).
Since [K i

W Q] is coprime to piC1, K iC1 is cyclic, i.e., K iC1 D K i K (iC1)
D K K iC1 is

the compositum of the fieldsK and cyclic extensionK iC1.
Therefore there exist Galois extensionsLn=Q, Kn=Q such that

(i) Ln � L, Kn � K , Ln \ Kn D Q,
(ii) Gal(Ln=Q) ' Hn Ì G, i.e., Gal(LnKn=Kn) ' Hn Ì G and
(iii) LnKn=Kn is unramified at all primes,
where Kn is the compositum of the fieldsK and K n. Put K0 WD K (1)K (2)

� � � K (n)
D

K n. Becausepi ’s are distinct, one can easily show thatK0 is cyclic and [K0 W Q] �
pm1 pm2

� � � pmn
D m where pmi is the maximal order of elements inPi . Putting L 0

WD

Ln and K 0

WD Kn, we have proved our main theorem.

5. Application 1—p-groups

Corollary 5.1. For any finite p-group P, there exist infinitely many extensions
M=K of number fields such that
– K is p-cyclic overQ;
– M=K is unramified;
– Gal(M=K ) ' P;
– [K W Q] � pm;
where pm is the maximal order of elements in P.
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Proof. By Theorem 4.1, there existsL=Q such that Gal(L=Q) ' P and cyclic p-
extensionK such thatLK=K is unramified and Gal(LK=K ) ' P. Because Gal(K=Q)
is isomorphic to a cyclic subgroup ofP, [K W Q] � pm. Putting M WD LK , we have
proved our assertion.

REMARK 5.2. This is another proof of Nomura’s result [9]. One main differ-
ence is that Nomura’s base fields are elementary abelianp-extensions whereas our base
fields are cyclicp-extensions. Moreover, the degree of base field is reduced. Note that
pm
� jPp

j � p � jPp[ P, P]j � p.

EXAMPLE 5.3. Let P D (Z=p2
Z)l . Construct ap-unramified extensionM=K

whose Galois group isP by both methods. BecausePp[ P, P] ' (Z=pZ)l , Nomura’s
base field K is an elementary abelianp-extension K=Q with degree plC1

D

jPp[ P, P]j � p. But our base field is a cyclicp-extension with degreep2
� plC1.

Corollary 5.4. For any finite nilpotent group H, there exist infinitely many ex-
tensions M=K of number fields such that
– K is cyclic overQ;
– M=K is unramified;
– Gal(M=K ) ' H ;
– [K W Q] � m;
where m is the maximal order of elements in H.

Proof. By our main theorem, there existsL=Q such that Gal(L=Q) ' H and
cyclic extensionK such thatLK=K is unramified and Gal(LK=K ) ' H . Because
Gal(K=Q) is isomorphic to a cyclic subgroup ofH , [K W Q] � m. Putting M WD LK ,
we have proved our assertion.

Corollary 5.5. For any finite abelian group G, there exist infinitely many cyclic
extensions K ofQ such that the ideal class group of K contains a subgroup isomorphic
to G.

Proof. Since any finite abelian groupG is nilpotent, the corollary follows from
the Corollary 5.4.

6. Application 2—solvable groups

In order to deduce the case of finite solvable groups, we need two facts from
group theory and we recall the following definitions. Suppose that G is a finite non-
trivial group.

DEFINITION 6.1. 8(G) is the intersection of all maximal subgroups ofG and is
called theFrattini subgroupof G.
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DEFINITION 6.2. F(G) is the composite of all nilpotent normal subgroups ofG
and is called theFitting subgroupof G.

8(G) is a characteristic subgroup ofG and is contained inF(G). The group
F(G) is a normal nilpotent subgroup ofG. We cite the following two facts, see [5],
Kapitel III, Satz 3.2 (b) and Satz 4.2 (c).

Proposition 6.3. Let N be a normal subgroup of the finite group G such that
N � 8(G). Then there exists a partial complement U of N in G, i.e., U ¨ G and
G D N �U.

Proposition 6.4. Let G be a nontrivial finite solvable group. Then8(G) is a
proper subgroup of F(G).

Let G be a nontrivial finite solvable group. By the two propositions above,F(G)
has a solvable partial complementU ¨ G, so G D F(G) � U . Since G is a solvable
group,U is also a solvable group. We will define a solvable group sequence {Gi }:
– Define G1 as G.
– Let Gi be a solvable group. ThenGi D F(Gi ) � U for some partial complement
U ¨ Gi . Define GiC1 as U .
Since Gi is a proper subgroup ofGi�1, the order ofGi decreases asi increases. So
we get a trivial groupGkC1 for somek. BecauseGk D F(Gk) �GkC1 D F(Gk), Gk is a
nilpotent group. That is the key idea in proving our main goal. Let gi be the maximal
order of elements inF(Gi ) for 1� i � k�1 andgk be the maximal order of elements
in Gk. Define g D

Qk
iD1 gi .

Corollary 6.5. For any finite solvable group G¤ {1}, we give constructions of
infinitely many extensions M=K of number fields with
– K is abelian overQ;
– M=K is unramified;
– Gal(M=K ) ' G;
– [K W Q] � g.

Proof. Let us recall the definition of the solvable group sequence{Gi }. Define
G1 WD G and GiC1 WD U whereU is a partial complement ofF(Gi ) in Gi i.e., GiC1 ¨

Gi and Gi D F(Gi ) � GiC1. Since GiC1 is a proper subgroup ofGi , the order ofGi

decreases asi increases. So we get a nilpotent groupGk for somek. We will proceed
by induction oni .

If i D k, Gk is a nilpotent group. By Corollary 5.4, we giveLk and Kk with
– Kk is cyclic overQ;
– Lk \ Kk D Q;
– LkKk=Kk is unramified;
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– Gal(LkKk=Kk) ' Gk;
– [Kk W Q] � gk.

Now we assume that we have already foundL i , K i satisfying the following
conditions:
(i) L i \ K i D Q,
(ii) Gal(L i =Q) ' Gi , i.e., Gal(L i K i =K i ) ' Gi ,
(iii) L i K i =K i is unramified,
(iv) [ K i W Q] � gi � � � gk.

Since F(Gi�1) � Gi D Gi�1, there exists a surjection

F(Gi�1) Ì Gi � Gi�1.

By our main theorem, there existL 0

=L i =Q and K i�1=K i =Q such that
(i) L 0

\ K i�1 D Q,
(ii) Gal(L 0

=Q) ' F(Gi�1) Ì Gi , i.e., Gal(L 0K i�1=K i�1) ' F(Gi�1) Ì Gi ,
(iii) L 0K i�1=K i�1 is unramified.
By the proofs of Theorem 4.1 and our main theorem,K i�1 is the compositum ofK i

and a cyclic extensionK0=Q such thatK i \ K0 D Q. Thus K i�1=Q is an abelian ex-
tension whenK i =Q is abelian. Note that Gal(K0=Q) is isomorphic to cyclic subgroup
of F(Gi�1). Thus [K i�1 W Q] � gi�1gi � � � gk. Because Gal(L 0

=Q) ' F(Gi�1) Ì Gi , a
subfield L i�1 � L 0 exists such that Gal(L i�1=Q) ' Gi�1. BecauseL 0K i�1=K i�1 is un-
ramified, L i�1K i�1=K i�1 is also unramified and Gal(L i�1K i�1=K i�1) ' Gi�1.

Therefore there existL1, K1 satisfying the following conditions:
(i) L1 \ K1 D Q,
(ii) Gal(L1=Q) ' G1, i.e., Gal(L1K1=K1) ' G1,
(iii) L1K1=K1 is unramified,
(iv) [ K1 W Q] � g1g2 � � � gk D g.
Define M WD L1K1 and K WD K1. From our setting ofK , K is the compositum of
cyclic extensions ofQ, thus K=Q is an abelian extension. This completes the proof.

REMARK 6.6. We will compare our result with previous ones [3, 6, 7, 13].
Let G be a finite solvable group which is not nilpotent. Then we cannot use Corol-

lary 5.4. Letn be the order ofG. SinceG is not nilpotent,n is a product of at least
two distinct primes, i.e.,nD pr1

1 � � � p
r t
t . Put s WD

Pt
iD1 r i and p WD min{p1, p2, : : : , pt}.

Let us construct unramified extensionM=K whose Galois group isG by our method.
By Corollary 6.5, [K W Q] � g D g1g2 � � � gk. Since all F(Gi )’s and Gk are proper

subgroups ofG, we easily check thatgi � n=p for each 1� i � k and k � s, thus
[K W Q] � (n=p)s.

Now let us construct it with Kedlaya’s result [6]. Kedlaya proved that there exist
infinitely many number fieldsF of degreen D r C 2s and signature (r, s) such that
the Galois closureL of F has Galois groupSn over Q and the discriminant ofF is
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squarefree. These conditions ensure thatL is an unramifiedAn-extension ofQ(
p

dF ).
(See [3], or [7] Theorem 1 for a slightly stronger statement). Let R D Q(

p

p � dF )
where p  dF . By Lemma 3.1,L R=R is unramified and Gal(L R=R)' Gal(L=Q)' Sn.
So we can find an unramified extensionL R=K 0 such that Gal(L R=K 0) ' G by his
result. In this method, [K 0

W Q] is exactly 2(n� 1)!.
By Lemma 3.6, [K W Q] � (n=p)s

< ns
< 2(n� 1)!. So the degree ofK is smaller

in our method than Kedlaya’s.
Let us see an example. LetG be a finite solvable group of order 100. Let us

construct unramified extensionM=K whose Galois group isG by our method. Since
100D 22

�52, the degree ofK is at most 6.25�106 in our method, contrary to the fact
that it is exactly 2� 99!D 1.8665� � � � 10156 in Kedlaya’s result.

In fact, whenG is solvable, we cannot specify the degree of the base field dueto
the process of quotienting groups. Like two examples below,if there is no process of
quotienting groups, the degree of a base field is smaller thanjGj.

EXAMPLE 6.7. Suppose thatG D S3. In this case, we cannot use Corollary 5.4,
because althoughG is solvable, it is not nilpotent. We knowG ' C3 Ì C2. By Corol-
lary 5.1, there exist quadratic extensionsL , K such that Gal(LK=K )' C2 andLK=K is
unramified. By proof of our main theorem, there existL 0, K 0 such that Gal(L 0K 0

=K 0) '
C3 Ì C2 ' S3 and L 0K 0

=K 0 is unramified. Here,K 0 is a compositum ofK and some
cyclic cubic extension, thus the degree of base fieldK 0 is 6D jS3j.

EXAMPLE 6.8. Suppose thatG D S4. This group G is also solvable, not nil-
potent. G can be written asV4 Ì S3. By Example 6.7, there existL 0, K 0 such that
Gal(L 0K 0

=K 0) ' S3 and L 0K 0

=K 0 is unramified. By proof of our main theorem, there
exist L 00, K 00 such that Gal(L 00K 00

=K 00) ' V4 Ì S3 ' S4 and L 00K 00

=K 00 is unramified.
Because the maximal order of elements ofV4 is 2, K 00 is a compositum ofK 0 and
some quadratic field which is linearly disjoint withK 0. Thus the degree of base field
K 0 is 12< jS4j.

REMARK 6.9. Suppose thatG is a nonabelian simple group. BecauseG does not
contain proper normal subgroups, we cannot use the embedding problem, but we can
simply make nonabelian simple unramified extensions with simple observation based on
Kedlaya’s work [6].

Let G be a nonabelian simple group. LetH be a proper subgroup ofG and n WD
[G W H ]. Then there is a natural inclusionG ,! An. We know that there are infinitely
many unramifiedAn-extensionsM=K where K is a quadratic field. LetK 0

WD MG.
Then M=K 0 is unramifed and Gal(M=K 0) ' G.

As previously stated, we want to reduce the degree of the basefield K 0 as much as
possible; i.e. finding the minimal index of the subgroup of a nonabelian simple groupG
is sufficient.
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(i) G D An—the minimal index ofAn is n.
(ii) G D PSLn(q)—the minimal index of PSLn(q) is (qn

�1)=(q�1) except for (n,q)D
(2, 5), (2, 7), (2, 9), (2, 11) or (4, 2). (See [1]).
For example, letG WD PSL2(7). Then the minimal index of PSL2(7) is 7. (See [1]).
Thus we can choose a base fieldK 0 with degree 30D 7!=jPSL2(7)j.
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