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Abstract
Let G be a compact Lie group andX be a compact smoothG-manifold with

finitely many G-fixed points. We show that ifX admits aG-equivariant hyperbolic
diffeomorphism having a certain convergence property, there exists an open covering
of X indexed by theG-fixed points so that each open set isG-invariant andG-
equivariantly diffeomorphic to the tangentialG-representation at the corresponding
G-fixed point. We also show that the converse is also true in case of holomorphic
torus actions.

1. Introduction

It is known that there is a certain similarity between algebraicC�-actions on smooth
complex projective varieties and smoothR-actions on compact Riemannian manifolds aris-
ing from the negative gradient flows for Morse functions (see,for example, [4, 2.4]). The
first similarity is that the both actions induce decompositions of acted spaces via affine
spaces, that is, the Białynicki-Birula decompositions andthe Morse decompositions.

On the other hand, a theorem of Białynicki-Birula [2] statesthat the existence of
an algebraicC�-action on a smooth complex projective variety implies the existence of
an open covering of the variety so that each open set is isomorphic to the affine space
having the same dimension and is invariant under theC

�-action. So, roughly speaking,
if a smooth complex projective variety has an algebraicC�-action, it is covered by
representation spaces ofC�.

The aim of the present paper is to give a Morse theoretic counterpart of the above
result of Białynicki-Birula. More generally, we consider a compact smooth manifold
having an invariant hyperbolic diffeomorphism satisfyinga certain convergence condi-
tion. Let us explain our result precisely.

Let G be a compact Lie group andX be a compact smoothG-manifold with
finitely many G-fixed points. Let' W X ! X be a G-equivariant hyperbolic diffeo-
morphism ofX. Then we say that the hyperbolic diffeomorphism' satisfyingconver-
gence conditionif the following three conditions are satisfied:
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1018 H. YAMANAKA

(C1) the G-fixed point set coincides with the fixed point set of',
(C2) for eachG-fixed point p, the intersection of the corresponding stable and unstable
manifolds is the singleton{p},
(C3) for anyx 2 X, the sequence'n(x) converges to aG-fixed point whenn tends to
1 or �1.
Note that if ' is the hyperbolic diffeomorphism arising from the negativegradient
flow of a G-invariant Morse function relative to aG-invariant Riemannian metric, it
satisfies the convergence condition. In particular, for a compact torusT , every com-
pact HamiltonianT-space with finitely manyT-fixed points admits such a hyperbolic
diffeomorphism.

We next make the following definition:

DEFINITION. An open covering (Up j p 2 XG) of X indexed byG-fixed points
is called aG-representation coveringof X if each open setUp is invariant under the
G-action and isG-equivariantly diffeomorphic to the tangentialG-representationTpX.

Under the above terminology, we will prove the following theorem:

Theorem 1.1. Assume that the compact smooth G-manifold X has a G-equivariant
hyperbolic diffeomorphism satisfying the convergence condition. Then X admits a G-
representation covering.

Theorem 1.1 implies the following results:

Corollary 1.2. If X has a G-invariant Morse function, there exists a G-
representation covering of X.

Corollary 1.3. Every compact Hamiltonian T -space with finitely many T -fixed
points admits a T -representation covering.

Concerning Theorem 1.1, a natural question arises: Does theconverse of The-
orem 1.1 hold? The following second theorem gives a partial affirmative answer, that
is, the converse is also true in case of holomorphic torus actions:

Theorem 1.4. Let T be a compact torus. Assume that a compact complex mani-
fold X with holomorphic T -action admits a T -representationcovering as a holomorphic
chart. Then it admits a T -equivariant hyperbolic diffeomorphism satisfying the conver-
gence condition.

We explain the contents of the present paper. In Section 2 we recall some basic
definitions concerning hyperbolic diffeomorphisms and hyperbolic dynamical systems.
In Section 3, we prove Theorem 1.1. In Section 4, we give a method to construct a
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hyperbolic dynamical system from torus actions and invariant almost complex struc-
tures. Finally, in Section 5 we prove Theorem 1.4.

2. Hyperbolic dynamical systems

In this section we recall some fundamental definitions concerning hyperbolic dy-
namical systems and hyperbolic diffeomorphisms. For the details, we refer [3], [11].

Let X be a compact manifold and� be a smooth vector field onX. Let ' W R �
X ! X be the corresponding dynamical system. So the curve{'(s, x)}s2R gives the
flow of � whose initial value isx.

Let p be a fixed point of'. Recall that the differential (d� )p W TpX ! TpX is
an R-linear transformation defined as follow: for a local frame�1, : : : , �n 2 0(TU)
(nD dim X) on an open neighborhoodU of p, the representation matrix of (d� )p with
respect to the ordered base (�1)p, : : : , (�n)p is given by [(�i )p f j ] i , j where fi W U ! R

are C1-function satisfying� jU D
P

1�i�n fi �i . It is straightforward to check that the
definition is independent of choice of local frame.

DEFINITION. (1) A fixed point p of ' is called ahyperbolic fixed pointof ' if
the differential (d� )p has no complex eigenvalues whose real parts are zero.
(2) We say that� is a hyperbolic vector fieldif all fixed points of ' are hyperbolic.

Let � be a hyperbolic vector field andp be a hyperbolic fixed point. Thestable
and unstable manifoldof p are defined by

Ws(p) WD

�

x 2 X lim
s!1

'(s, x) D p

�

and

Wu(p) WD

�

x 2 X lim
s!�1

'(s, x) D p

�

respectively.
We next explain the notion of hyperbolic diffeomorphisms. Let ' W X ! X be a

diffeomorphism ofX.

DEFINITION. (1) A fixed point p of ' is called hyperbolic fixed pointof ' if
the differential (d')p W TpX! TpX has no complex eigenvalues whose absolute values
are 1.
(2) We say that' is a hyperbolic diffeomorphismof X if all fixed points of ' are
hyperbolic.
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Let ' be a hyperbolic diffeomorphism ofX and p be a hyperbolic fixed point.
The stableand unstable manifoldof p are defined by

Ws(p) WD

�

x 2 X lim
n!1

'

n(x) D p

�

and

Wu(p) WD

�

x 2 X lim
n!�1

'

n(x) D p

�

respectively. Thestable manifold theoremstates that they are injectively immersed sub-
manifold of X.

We summarize the facts which will be needed in the later sections:

Lemma 2.1. Let � be a vector field on X and'W R� X! X be the correspond-
ing dynamical system.
(1) � is hyperbolic if and only if the diffeomorphism's W X ! X defined by's(x) WD
'(s, x) is hyperbolic for all s2 R n {0}.
(2) If the limits lims!1

'(s, x) and lims!�1

'(s, x) exist for all x2 X, then the lim-
its limn!1

'

n
s (x) D p and limn!�1

'

n
s (x) D p exist for all s2 R, x 2 X. Also, the

corresponding stable and unstable manifolds coincide.

Proof. For (1), we refer [3, p. 113, Lemma 4.19]. (2) is clear.

3. Representation covering

Let G be a compact Lie group andX be a compact smoothG-manifold with fi-
nitely many G-fixed points. We introduce our main subject in this paper, that is, the
notion of G-representation coverings ofX:

DEFINITION. We say that a smoothG-manifold X has aG-representation cover-
ing if there exists an open covering (Upjp 2 XG) of X indexed byG-fixed points
such that
(1) eachUp is G-invariant,
(2) Up � TpX as G-manifolds.

We give three examples of smoothG-manifolds admitting representation coverings.

EXAMPLE . Let

X D S2n
D {(z1, : : : , zn, s) 2 Cn

� R j jz1j
2
C � � � C jznj

2
C s2

D 1}

be the 2n-dimensional sphere. We define an action ofT D (S1)n on S2n by

(t1, : : : , tn) � (z1, : : : , zn, s) D (t1z1, : : : , tnzn, s).
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Then one can construct aT-representation covering of the pair (S2n, T) as follow:
Let S2n

D U0 [ U
1

, U0 D {s ¤ 1}, U
1

D {s ¤ �1} be the standardT-invariant
open covering.

Then the maps

'0 W U0! T(0,:::,0,1)S
2n,

'

1

W U
1

! T(0,:::,0,�1)S
2n

given by

'0(z1, : : : , zn, s) D

�

z1

1� s
, : : : ,

zn

1� s

�

,

'

1

(z1, : : : , zn, s) D

�

z1

1C s
, : : : ,

zn

1C s

�

are T-equivariant. Note that the former is the composition of thestereographic projec-
tion and the componentwise complex conjugation (z1, : : : , zn) 7! (z1, : : : , zn).

EXAMPLE . Let

X D CPn
D {[z0 W z1 W � � � W zn] j (z0, z1, : : : , zn) 2 CnC1

n {(0, 0, : : : , 0)}}

be the complex projective space of complex dimensionn. We define an action ofT D
(S1)n by

(t1, : : : , tn) � [z0 W z1 W � � � W zn] D [z0 W t1z1 W � � � W tnzn].

Then one can construct aT-representation covering ofCPn as follow:
Let Ui be an open set ofCPn defined by

Ui WD {[z0 W z1 W � � � W zn] 2 CPn
j zi ¤ 0} (0� i � n).

Then the open covering (Ui j 0 � i � n) gives a T-representation covering. The
same construction is possible for arbitrary toric manifold, i.e., complete non-singular
toric variety with the Hausdorff topology (see [5]).

EXAMPLE . Let G be a connected reductive algebraic group overC and B be a
Borel subgroup ofG. We take X and T as the flag manifoldG=B and the compact
real form of the maximal torus ofG contained inB, respectively.

Then one can construct aT-representation covering of the pair (G=B, T) as fol-
low: Let X(w0) be the Bruhat cell corresponding to the longest elementw0 of W. We
set U

w

WD ww

�1
0 X(w0) (w 2 W). Then [12, p. 149, 8.5.1. Proposition (ii)] and [12,

p. 152, 8.5.10. Excercise (1)] imply that the open sets{U
w

j w 2 W} of X gives an
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open covering of the flag manifoldX and eachU
w

is T-equivariantly diffeomorphic to

M

�21

C

g
�w.�.

Here,1C is the set of positive roots corresponding to the Borel subgroup B and g
�w�

is the root space for the root�w . �.

To state our result, we make the following definition:

DEFINITION. We say that aG-equivariant hyperbolic diffeomorphism

' W X ! X

hasconvergence propertyif it satisfies the following three properties:
(C1) XG

� Fix('),
(C2) Wu(p) \Ws(p) D {p} for all p 2 XG,
(C3) the limits limn!1

'

n(x) and limn!�1

'

n(x) converge to someG-fixed points of
X for all x 2 X.

The following is our main theorem in this section:

Theorem 3.1. If X admits a G-equivariant hyperbolic diffeomorphism having con-
vergence property, then there exists a G-representation covering of X.

As a corollary one finds that the existence of aG-representation covering gives an
obstruction for the existence ofG-invariant Morse functions:

Corollary 3.2. If X admits a G-invariant Morse function, there exists a G-
representation covering of X.

Proof. Take a G-invariant Riemannian metric on X. LetQ' W R � X ! X be the
hyperbolic dynamical system associated to the negative gradient vector field of the
G-invariant Morse function relative to the G-invariant Riemannian metric. Then the
hyperbolic diffeomorphism'W X! X defined by'(x) WD Q'(1,x) gives a G-equivariant
hyperbolic diffeomorphism having convergence property.

Corollary 3.2 implies the following. LetT be a compact torus.

Corollary 3.3. Every compact Hamiltonian T -manifold X with finitely many T -
fixed points admits a T -representation covering.

Proof. Let8W X! (Lie(T))� be the moment map. Then for a generic a2 Lie(T),
the contraction8a W X ! R, 8a(x) WD (8(x))(a) give a T -invariant Morse function as
well known(see for example[10]).
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REMARK . It is known a similarity between algebraicC�-actions on smooth com-
plex projective varieties and theR-actions arising from negative gradient flows associ-
ated to Morse functions on compact manifolds (for example, see [4, 2.4]). A theorem
of Białynicki-Birula [2] states that every smooth complex projective variety with an
algebraicC�-action has a Zariski open covering so that each Zariski openset isC�-
invariant and is isomorphic to an algebraicC�-representation. From this point of view,
Theorem 3.1 (or Corollary 3.2) can be thought as a Morse theoretic counterpart of the
above theorem of Białynicki-Birula.

The rest of this section is devoted to the proof of Theorem 3.1. We begin by the
following lemma:

Lemma 3.4. Let E be a Banach space, U be an open neighborhood of0 2 E
and f W U ! E be a C1-map such that f(0) D 0, (d f )0 D idE. If a positive real
number r> 0 satisfies that by measuring the operator norm, jidE � (d f )xj < 1=2 for
any x2 B2r (0), then the restriction of f induces a C1-diffeomorphism

f �1(Br =2(0))\ Br (0)! Br =2(0).

Proof. This follows from the proof of the inverse mapping theorem given in [8].

Let N be a G-manifold (not necessary compact),p be a G-fixed point of N and
' W N ! N be a G-equivariant hyperbolic diffeomorphism ofN having the following
properties:
• NG

D Fix(') D {p},
• p is the global attractor, i.e.,N D Ws(p).

We fix a G-invariant Riemannian metric ofN and denote byk�k the corresponding
fiberwise norm ofT N. For a positive real numberr > 0, we denote byBr (0) the open
ball in TpN which is centered at 0 and have radiusr with respect to the normk � k.
We note that since the normk � k is G-invariant, eachBr (0) is invariant under theG-
action onTpN. The set{Br (0) j r > 0} forms a fundamental neighborhood system of
0 2 TpN.

By focusing on the exponential map with respect to theG-invariant Riemannian
metric, one can find a positive real numberR > 0, a T-invariant open neighborhood
U of p and aG-equivariant diffeomorphism

 W U ! BR(0) (� TpN).



1024 H. YAMANAKA

We define aG-equivariant diffeomorphism

g W  (U \ '�1(U ))!  (U \ '(U ))

by

g WD  jU\'(U ) Æ 'jU\'�1(U ) Æ  
�1
j

 (U\'�1(U )).

In the rest of this section we setE WD TpN for simplicity. We note that the vector
spaceE can be viewed as aG-representation, i.e., the tangential representation atp.
Let us define aC1-map u W E ! E by u(� ) D �(k�k)� where � is a C1-function
� W R! R depicted by the following picture:

We note that since the fiberwise normk � k is G-invariant and sinceG acts onE
as a representation, theC1-map u is G-equivariant.

Let A be the differential (dg)0 W E! E of g at 0 and we set

8 WD A�1
Æ g W  (U \ '�1(U ))! E.

Since G acts onE as aG-representation, both ofA and8 are G-equivariant. In
the rest of this section, we setV WD  (U \ '�1(U )) for simplicity.

What we first want to show is that the germ of the mapg W  (U \ '�1(U ))! E
at 0 coincides with the germ of aG-equivariant diffeomorphismh W E ! E at 0, that
is, the maps coincide on an open neighborhood of 0.

For the proof of Theorem 3.1, we need to go back to the proof of the so-called
stable manifold theorem. We should remark that our arguments in Lemmas 3.5 and 3.6
are greatly influenced on the paper of Abbondandolo–Majer [1].

Under the above notations, we next show the following lemma:

Lemma 3.5. There exist positive real numbers r> 0, Æ > 0 and C1-maps
X W [0, 1]� Br =2(0)! E, Y W [0, 1]� B

Æ

(0)! E satisfying the following conditions:
(1) Y([0, 1]� B

Æ

(0))� Br =2(0),
(2) Y(0, � ) D � and (�Y=�t)(t, � ) D X(t, Y(t, � )) for all (t, � ) 2 [0, 1]� B

Æ

(0),
(3) Y(1, � ) D 8(� ) for all � 2 B

Æ

(0),
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(4) X and Y are G-equivariant with respect to the second components,
(5) X(t, 0)D 0, (D2Xt )0 D 0 for each t2 [0, 1]. Here Xt is given by Xt (� ) D X(t, � ).

Proof. We follow up [1, Lemma 4.8]. We define aC1-map Y W [0, 1] � V ! E
by Y(t, � ) D t8(� )C (1� t)� and setYt (� ) WD Y(t, � ). Note that since the map8 is
G-equivariant andG acts onE as a realG-representation, the mapYt is G-equivariant
for eacht 2 [0, 1].

Let us consider a continuous map� W [0, 1] � V ! R given by �(t, � ) WD jidE �

(dYt )� j. Since (dYt )0 D idE for any t 2 [0, 1], one finds that the set��1({s 2 R j s <
1=2}) is an open neighborhood of [0, 1]� {0} in [0, 1] � V . In particular, for each
t 2 [0, 1], we can choose an open neighborhoodUt of t in [0, 1] and a positive real
numberr t > 0 so thatUt �B2r t (0)� ��1({s2 R j s< 1=2}). Thanks to the compactness
of the closed interval [0, 1], there exist finitely many real numberst1, : : : , tn 2 [0, 1]
so that [0, 1] is covered by{Uti j 1 � i � n}. We define a positive real numberr > 0
by r WD min1�i�n r ti . Then one can easily deduce that [0, 1]� B2r (0) � ��1({s 2 R j
s< 1=2}).

Therefore we have thatjidE � (dYt )� j < 1=2 for all (t, � ) 2 [0, 1] � B2r (0). Thus
by Lemma 3.4, we can conclude that there exists a positive real number r > 0 which
is independent of the parametert 2 [0, 1] so that for eacht 2 [0, 1], the restriction of
Yt induces aC1-diffeomorphism

Y�1
t (Br =2(0))\ Br (0)! Br =2(0).

We can choose the real numberr so that Br (0)� V by taking r smaller if necessary.
Denote byYt the aboveC1-diffeomorphism and define aC1-map H W [0, 1] �

Br =2(0)! E by H (t, � ) WD Y
�1
t (� ). It is easy to check thatH is T-equivariant with

respect to the second component.
We next claim that

\

t2[0,1]

Y�1
t (Br =2(0))D Y�1

0 (Br =2(0))\ Y�1
1 (Br =2(0)).

Clearly the LHS is contained in the RHS. If� belongs to the RHS, one has� D
Y0(� ) 2 Br =2(0) and8(� ) D Y1(� ) 2 Br =2(0). Thus by the convexity of the open ball
Br =2(0), we have thatYt (� ) D t8(� )C (1� t)� 2 Br =2(0) for all t 2 [0, 1], as desired.

As a consequence, there exists a positive real numberÆ > 0 so that

B
Æ

(0)�
\

t2[0,1]

Y�1
t (Br =2(0))\ Br (0)\ V .

Then eachYt induces an injectionB
Æ

(0)! Br =2(0). In particular, for each (t, � ) 2
[0, 1]� B

Æ

(0) we haveY(t, � ) 2 Br =2(0) and haveH (t, Y(t, � )) D � .
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Since we have chosenr > 0 so thatBr (0)� V , the image ofH W [0,1]�B
Æ

(0)! E
is contained inV . This allows us to define aC1-map X W [0, 1] � Br =2(0)! E by
X(t, � ) D 8(H (t, � )) � H (t, � ). It is clear thatX is G-equivariant with respect to the
second component.

In the above arguments, we have constructed twoC1-maps

X W [0, 1]� Br =2(0)! E, Y W [0, 1]� B
Æ

(0)! E.

It is straightforward to check that the positive real numbers r, Æ and the above two
maps X, Y satisfy our desired properties.

Lemma 3.6. There exists a positive real number� > 0 and a G-equivariant C1-
diffeomorphism hW E! E satisfying the following conditions:
(1) B

�

(0)� V \ BR(0),
(2) hjB

�

(0) D gjB
�

(0),
(3) for each x2 N, there exists a non-negative integer n(x) so that hn(x)(x) 2 B

�

(0).

Proof. We follow up [1, Proposition 4.7]. LetX W [0, 1] � Br =2(0) ! E and
Y W [0, 1]� B

Æ

(0)! E as in Lemma 3.5.
Since the function� is identity on an open neighborhood of 02 R and has com-

pact support, there exist two positive real numbers 0< s0 < r0 so thatujBs0 (0) D idBs0 (0)

and u(E) � Br0(0). By the condition (5) in Lemma 3.5 and the Tayler’s formula, the
argument presented in Lemma 3.5 shows that there exist positive real numbers�1,r1 > 0
so thate�1r0=s0

kAk < 1 and jX(t, � )j � �1j� j for all (t, � ) 2 [0, 1]� Br1(0). Let us define
Qu W E! E and QX W [0, 1]� E! E by

Qu(� ) D
r1

r0
u

�

r0

r1
�

�

, QX(t, � ) D X(t, Qu(� )).

Note that QujBs(0) D idBs(0) for s WD (r1s0)=r0, and Qu(E) � Br1(0). Also note thatQu is

G-equivariant andQX is G-equivariant with respect to the second component.
We claim thatj QX(t, � )j � �1(r0=s0)j� j for all (t, � ) 2 [0, 1] � E. If � 2 Bs(0), the

estimate holds sinceX(t, � ) D QX(t, � ). If � � Bs(0), we have thatj QX(t, � )j � �1j Quj �
�1r1 � �1(r1=s)j� j D �1(r0=s0)j� j. As a consequence, for eachc> 0, QX(t, � ) is bounded
velocity on [0, 1]� Bc(0) in sense of [6, p. 178].

Thus, [6, p. 179, 1.1. Theorem] implies that there exists a unique diffeotopy
QY W [0, 1] � E ! E. So we have that (� QY=�t)(t, � ) D QX(t, QY(t, � )) and QY(0, � ) D � .
Thanks to theG-equivariancy of QX, the mapg�1

�

QY(t, g � � ) is also the solution of
this equation for eachg 2 G. Thus one finds thatQY is G-equivariant with respect to
the second component.
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We next show that the estimatej QY(t,� )j � e�1(r0=s0)t
j� j holds for all (t,� ) 2 [0,1]�E.

From the defining equation ofQY(t, � ), we have

QY(t, � ) � � D QY(t, � ) � QY(0, � ) D
Z t

0

�

QY

�s
(s, � ) dsD

Z t

0

QX(s, QY(s, � )) ds.

From this, one also has

j

QY(t, � )j D

�

�

�

�

� C

Z t

0

QX(s, QY(s, � )) ds

�

�

�

�

� j� j C

Z t

0
j

QX(s, QY(s, � ))j ds

� j� j C

Z t

0
�1(r0=s0)j QY(s, � )j ds.

By applying Gronwall’s integral inequality, we obtain the desired inequality.
Moreover, sinceX and QX coincide locally, the argument presented in Lemma 3.11

shows that there exists a positive real number� > 0 so thatY and QY coincide on [0,1]�
B
�

(0), and B
�

(0)� V \ BR(0)\ B
Æ

(0).
Let us define a diffeomorphismQ8 W E ! E by Q8(� ) WD QY(1, � ). Then we claim

that a maphW E! E defined byh WD AÆ Q8 is the desired diffeomorphism. Note that
h is clearly G-equivariant.

The condition (1) is clear. The condition (2) holds sinceY(1, � ) D 8(� ) for all
� 2 B

Æ

(0) andY and QY coincide locally. Finally, since

jh(� )j � kAkj Q8(� )j � kAke�1(r0=s0)
j� j

and kAke�1(r0=s0)
< 1, the condition (3) holds.

The proof is now complete.

Proposition 3.7. There exists a G-equivariant C1-diffeomorphism TpN ! N.

Proof. This follows from a standard argument and Lemma 3.12.We describe the
proof to check theG-equivariancy.

Take aG-equivariantC1-diffeomorphismhW E! E as in Lemma 3.6. Let us define
a map�W N! E as follow. For a pointx 2 N, one can find a non-negative integern so
that 'n(x) 2  �1(B

�

(0)). By using the integern, we define�(x) WD h�n( ('n(x))). We
claim that the value�(x) is independent of the integern whenever'n(x) 2  �1(B

�

(0)).
To prove the claim, we first note that ('n(x)) 2 B

�

(0). Since we have chosen the
diffeomorphismh so thathjB

�

(0) D gjB
�

(0), one obtains thath( ('n(x))) D g( ('n(x))).
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Henceforth we have that

h�n( ('n(x))) D h�(nC1)(h( ('n(x))))

D h�(nC1)(g( ('n(x))))

D h�(nC1)(( Æ ' Æ  �1)( ('n(x))))

D h�(nC1)( ('nC1(x))).

This completes the proof of the well-definedness of�. Note that � is clearly G-
equivariant.

We next construct the inverse of�. For � 2 E, one can find a non-negative integer
n so thathn(� ) 2 B

�

(0). Then we define� W E! N by �(� ) WD '�n( �1(hn(� ))). The
same argument shows that the value�(� ) is independent of the integern whenever
hn(� ) 2 B

�

(0).
Since� clearly gives the inverse of�, the proof is now complete.

We go to the next step. LetW be a finite dimensional realG-representation and
�W E!W be a smoothG-equivariant vector bundle overW. Let rW 0(T W)�0(E)!
0(E) be a G-equivariant covariant derivative, that is, a covariant derivative having the
property that

(rg�� (g � s))(g � x) D g � ((r
�

s)(x))

for all g 2 G, � 2 0(T W), s 2 0(E), x 2 W. Note that such a covariant derivative
exists since for a fixed covariant derivativer, one can construct aG-equivariant co-
variant derivative Qr by averaging as follow:

( Qr
�

s)(x) WD
Z

g2G
[g�1
� rg�� (g � s)](x) dg.

Here dg is the Haar measure ofG normalized so that
R

g2G dgD 1.
For a point x 2 W, we define a curvecx W [0, 1]! W by cx(t) WD (1� t)x. We

denote byPcx W �
�1(x)! �

�1(0) the parallel transport associated to the curvecx and
the covariant derivativer. Let 0(cx) be the set of smooth sections ofE along the
curve cx. Note that an elementg 2 G induces a mapg

�

W 0(cx)! 0(cg�x) defined by
(g
�

s)(t) WD g � (s(t)).
Recall from elementary differential geometry that there exists an R-linear

transformation
D

dt
W 0(cx)! 0(cx)

which is characterized by the following two properties:
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(1) (D=dt)( f s) D (d f =dt)sC f (Ds=dt) ( f 2 C1([0, 1]), s 2 0(cx)),
(2) if s 2 0(cx) is given bys(t) D Qs(cx(t)) (t 2 (a, b)) for someQs 2 0(E) and two real
numbers 0� a < b � 1, then we have

Ds

dt
(t) D rc0x(t) Qs (t 2 (a, b)).

Lemma 3.8. The diagram

0(cx) 0(cx)

0(cg�x) 0(cg�x)

 

!

D=dt

 

!g
�

 

! g
�

 

!

D=dt

commutes for all g2 G, x 2 W.

Proof. Takes 2 0(cx) and t0 2 [0, 1]. Then by considering a local frame ofE
aroundcx(t0), one can take a global sectionQs 2 0(E) and two real numbers 0� a <
b � 1 so thats(t) D Qs(cx(t)) for all t 2 (a, b).

Then one has that
�

g
�

Ds

dt

�

(t0) D g � (rc0x(t0) Qs)

D rc0g�x(t0)(g � Qs) (asr is G-equivariant).

On the other hand, since

(g � Qs)(cg�x(t)) D g � (Qs(g�1
� (cg�x(t)))) D g � (Qs(cx(t))) D g � (s(t)) D (g

�

s)(t),

we have that

rc0g�x(t0)(g � Qs) D
D(g

�

s)

dt
(t0).

This completes the proof.

Corollary 3.9. We have that Pcg�x (g � v) D g � (Pcx (v)) for all g 2 G, x 2 W,
v 2 �

�1(x).

Proof. Let s 2 0(cx) be the parallel section along to the curvecx (so one has
Ds=dt D 0).

By the definition of the parallel transport, we have thats(0)D v and Pcx (v)D s(1).
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Then the curveg
�

s 2 0(cg�x) satisfies that

(g
�

s)(0)D g � (s(0))D g � v

and
D(g

�

s)

dt
D g

�

Ds

dt
D 0.

by Lemma 3.8.
Thus we have that

Pcg�x (g � v) D (g
�

s)(1)D g � (s(1))D g � (Pcx (v))

as desired.

Proposition 3.10. E is isomorphic to W���1(0) as a G-equivariant smooth vec-
tor bundle over W. Here the G-action on W� ��1(0) is given by the diagonal one.

Proof. We define a map9 W E! W � ��1(0) by 9(u) WD (�(u), Pc
� (u)(u)). Then

the map9 gives an isomorphism of smooth vector bundles and isG-equivariant by
Lemma 3.9.

We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. By the assumption (C2),Ws(p) and Wu(p) are embed-
ded G-invariant submanifold ofX (see, for example, [3, p. 115, Lemma 4.20]). Thus
one can applyG-equivariant tubular neighborhood theorem [7, p. 178, Theorem 4.8]
to Ws(p), and has aG-invariant open neighborhoodUp of Ws(p) in X which is G-
equivariantly diffeomorphic to the normal bundle

�p WD T XjWs(p)=T Ws(p)

of Ws(p) in X.
On the other hand, we have the following series ofG-equivariant diffeomorphisms:

�p � T XjWs(p)=T Ws(p)

� Ws(p) � (TpX=TpWs(p)) (as Proposition 3.7 and 3.10)

� Ws(p) � TpWu(p) (as TpX D TpWs(p)� TpWu(p))

� TpWs(p) � TpWu(p) (as Proposition 3.7)

� TpX.

Since X is decomposed into stable manifoldsWs(p) by the assumption (C3), the
family (Up j p 2 XG) of G-stable open sets gives a desiredG-representation covering
of X.
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4. Topological generators and hyperbolicity

In the previous section, we have shown that if a smoothG-manifold admits a cer-
tain equivariant hyperbolic diffeomorphism, it also admits a G-representation covering.

Then the following natural question arise: “Does the converse of Theorem 3.1
hold?”. Unfortunately, the author do not have any satisfactory answer to the question.

The aim of this and the next section is to give a partial affirmative answer for the
above question. Roughly speaking, we will show that the converse is also true in case
of holomorphic torus actions.

In this section we give a method to construct hyperbolic dynamical systems from
torus actions with invariant almost complex structures.

Let T D (S1)r be the compact torus of rankr and X be a smooth 2n-dimensional
T-manifold with an almost complex structureJ compatible with theT-action (the term
“compatible” means that for eacht 2 T , x 2 X, the induced mapt

�

W Tx X ! Tt �x X is
C-linear with respect toJx and Jt �x).

To construct a hyperbolic dynamical system from the torus action, we focus on a
topological generatort0 of T (by the definition, the cyclic group{tk

0 j k 2 Z} generated
by t0 is a dense subset of the compact torusT). We also take an elementa0 of the
Lie algebrat of T so that exp(a0) D t0. Let us denote by�0 the fundamental vector
field associated toa0. By the definition we have

(�0)x� D
d

ds
�(exp(sa0) � x)

�

�

�

�

sD0

for all smooth function� W X ! R and x 2 X.
We set� J

0 WD �J�0, and denote by zero(�0) and zero(� J
0 ) the set of zero points of

�0 and � J
0 respectively.

Lemma 4.1. We have the following:

zero(� J
0 ) D zero(�0) D XT.

Proof. The first equality and the inclusion zero(�0) � XT are clear. To see the
inverse inclusion zero(�0) � XT , let p 2 zero (�0). Since t0 is a topological generator
of T , it is enough to show thatt0 � p D p.

Assume thatt0 � p ¤ p. Then there exists a smooth function� W X ! R which
separatest0 � p and p, that is,�(t0 � p) ¤ �(p).

We define a smooth function�0 W R! R by

�0(s) D �(exp(sa0) � p).
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We also define a diffeomorphism�0W X! X by �0(x) D (exp(s0a0)) � x. Then we have

d

ds
�0(s)

�

�

�

�

sDs0

D

d

ds
�(exp(sa0) � p)

�

�

�

�

sDs0

D

d

ds
�(exp((sC s0)a0) � p)

�

�

�

�

sD0

D

d

ds
(� Æ �0)(exp(sa0) � p)

�

�

�

�

sD0

D (�0)p(� Æ �0)

D 0

for all s0 2 R. Thus the function�0 is a constant function. In particular, by taking the
values atsD 0 andsD 1, we have�(t0 � p) D �(p). This is a contradiction.

REMARK 4.2. The following seems to be well-known:

if Hodd(X) D {0}, we have thatXT
¤ ;.

In fact, one can give a short proof of this fact using our vector field �0: Assume that
XT
D ;. Then zero(�0)D ; by Lemma 4.1. Henceforth [9, PROPERTY 9.7] implies that

the Euler class ofX vanishes. So the Euler characteristic ofX also vanishes. This is
a contradiction.

Let us denote by' J
W R � X ! X the dynamical system corresponding to� J

0 .
We take a Riemannian metricg of X which is T-invariant andJ-Hermitian (note

that for a T-invariant metricg0, the metric

g(u, v) WD
g0(u, v)C g0(Ju, Jv)

2
(u, v 2 Tx X, x 2 X)

has the required property since we assumed thatJ is compatible with theT-action).
For a T-fixed point p of X, let expp W TpX ! X be the exponential map associated to
the Levi-Civita connection ofg. This is T-invariant and the differential at the origin
of TpX is the identity map under the natural identificationT0(TpX)D TpX. Thus there
exists a positive real numberÆ so that the restriction

exppjBÆ

(0) W B
Æ

(0)! expp(B
Æ

(0))

gives a T-equivariant diffeomorphism (hereB
Æ

(0) is the open ball whose center is 0
and radius isÆ in TpX with respect to the metricg). We setUp WD expp(B

Æ

(0)).
Moreover, by composing the diffeomorphism and theT-equivariant diffeomorphism

TpX ! B
Æ

(0), u 7!
Æu

p

1C kuk2
,
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we obtain aT-equivariant diffeomorphism'p W TpX ! Up.
Let

TpX D
n
M

iD1

(TpX)�p,i

be the irreducible decomposition of theT-representation spaceTpX. Here�p,i W T ! S1

is a weight of theT-representation and

(TpX)�p,i
D {u 2 TpX j t � u D �p,i (t)u (t 2 T)}

is the corresponding weight space.
We fix a C-baseup,1, : : : , up,n of TpX so thatup,i 2 (TpX)�p,i for all i . Then we

have a local coordinate system (UpI x1, y1, : : : , xn, yn) around p defined by

'

�1
p (x) D

n
X

iD1

(xi (x)C
p

�1yi (x))up,i .

Lemma 4.3. Assume that XT is non-empty and finite. Then' J
W R � X ! X is

a hyperbolic dynamical system on X.

Proof. We set

�0jUp D

n
X

iD1

fi
�

�xi
C

n
X

iD1

gi
�

�yi
( fi , gi 2 C1(Up)).

So one has

�

J
0 jUp D �

n
X

iD1

fi J
�

�xi
�

n
X

iD1

gi J
�

�yi
.

By the definition of the coordinate functionsx1, y1, : : : , xn, yn and T-equivariancy
of 'p W TpX ! Up, we have

fi (x) D (�0)xxi

D

d

ds
xi (exp(sa0) � x)

�

�

�

�

sD0

D

d

ds

 

R-coefficient ofup,i in exp(sa0) �

 

n
X

iD1

(xi (x)C
p

�1yi (x))up,i

!!

�

�

�

�

�

sD0

D

d

ds
(xi (x) Re�p,i (exp(sa0)) � yi (x) Im �p,i (exp(sa0)))

�

�

�

�

sD0

D xi (x) Red�p,i (a0) � yi (x) Im d�p,i (a0)

D �yi (x) Im d�p,i (a0)
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for all x 2 Up. A similar calculation shows that

gi (x) D xi (x) Im d�p,i (a0).

Thus we obtain that

�

J
0 jUp D

n
X

iD1

yi Im d�p,i (a0)J
�

�xi
�

n
X

iD1

xi Im d�p,i (a0)J
�

�yi
.

By using the local frame

�

J
�

�x1
, J

�

�y1
, : : : , J

�

�xn
, J

�

�yn

�

,

to compute the eigenvalues of (d� J
0 )p W TpX ! TpX, one finds that the representation

matrix is given by

diag(a1, a1, : : : , an, an) (ai D Im d�p,i (a0)).

Let us assume that' J is not hyperbolic. Then theR-linear transformation (d� J
0 )p

has a complex eigenvalue whose real part is zero. Hence we have ai D 0 for somei 2
{1,: : : ,n}. Sinced�p,i is

p

�1R-valued, we also obtain thatd�p,i (a0)D 0. This implies
that�p,i (t0)D �p,i (exp(a0))D exp(d�p,i (a0))D 1. So�p,i is identically equal to 1 since
t0 is a topological generator ofT . This implies that (TpX)�p,i is the trivial irreducible
T-representation. Since expp W B

Æ

(0)! Up is a T-equivariant diffeomorphism, we have

XT
� expp(B

Æ

(0)\(TpX)�p,i ). This is a contradiction since dimXT
D 0 and dimB

Æ

(0)\
(TpX)�p,i

D 2.

Lemma 4.4. '

J
s (t � x) D t � ' J

s (x) for all s 2 R, t 2 T , x 2 X.

Proof. Since the almost complex structureJ is compatible with theT-action,
we have

d

ds
'

J
s (t � x) D t

�

d

ds
'

J
s (x) D �t

�

(J�0)
'

J
s (x) D �Jt �' J

s (x)(�0)t �' J
s (x) D (� J

0 )t �' J
s (x).

This completes the proof.

5. Existence of equivariant hyperbolic diffeomorphisms

Let X be a compact complexT-manifold with finitely manyT-fixed points ad-
mitting a T-representation covering (Up j p 2 XT ). We say that theT-representation
covering isholomorphic if Up � TpX as complexT-manifolds.

In the rest of this section, we assume that theT-representation covering is
holomorphic.
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Let p be aT-fixed point of X and (UpI x1, y1, : : : , xn, yn) be the coordinate neigh-
borhood induced from the corresponding complexT-representation as in Section 4.

Using the coordinate onUp, we define a Riemannian metricg(p) on Up as follow:

g(p)

�

�

�xi
,
�

�y j

�

D 0 (1� i , j � n),

g(p)

�

�

�xi
,
�

�x j

�

D Æi j e
�jxi

j, g(p)

�

�

�yi
,
�

�y j

�

D Æi j e
�jyi

j (1� i , j � n).

Here the symbolÆi j stands for the Kronecker’s delta.
Let (�(p)

j p 2 XT ) be a partition of unity associated to the open covering (Up j

p 2 XT ). Then we define a Riemannian metricg on X by

g WD
X

p2XT

�

(p)g(p).

We set

kuk(p)
WD

p

g(p)(u, u), kvk WD
p

g(v, v)

for p 2 XT , u 2 TUp, v 2 T X.

Proposition 5.1. k�0k
'

J
s (x) converges to0 when s tends to1 for any x2 X.

Proof. One can take aT-fixed point p so thatx is contained inUp.
Then the same calculation in the proof of Lemma 4.3 shows that

�

J
0 jUp D

n
X

iD1

ai x
i �

�xi
C

n
X

iD1

ai y
i �

�yi

in the coordinate system (UpI x1, y1, : : : , xn, yn).
Henceforth the flow' J

s (x) is expressed as follow:

's(x) D (p1e�a1s, q1e�a1s, : : : , pne�ans, qne�ans).

Here (p1, q1, : : : , pn, qn) 2 R2n is the coordinate of the pointx in the coordinate neigh-
borhood (Up, I x1, y1, : : : , xn, yn).

As a consequence, we have that

(k� J
0 k

(p)
'

J
s (x))

2
D

n
X

iD1

a2
i p2

i e�2ai s�jpi je�ai s
C

n
X

iD1

a2
i q2

i e�2ai s�jqi je�ai s
.

We claim that whens! 1, the terma2
i p2

i e�2ai s�jpi je�ai s
converges to 0. This is

because that
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• if pi D 0, the claim is obvious,
• if pi ¤ 0 andai > 0, the claim is also obvious,
• if pi ¤ 0 andai < 0, the claim follows from the fact that

�2ai s� jpi je
�ai s
! �1

when s!1.
The same consideration shows that the terma2

i q2
i e�2ai s�jqi je�ai s

also converges to 0

when s!1. Thus we have thatk� J
0 k

(p)
'

J
s (x) ! 0 whens!1.

Since�(p) is bounded, we also havek� J
0 k' J

s (x) ! 0 whens!1.

The following is our main theorem in this section:

Theorem 5.2. There exists a T -invariant hyperbolic diffeomorphism' W X ! X
satisfying the convergence property.

Proof. We define a diffeomorphism'W X! X by '(x)D ' J
1 (x). By Lemmas 2.1,

4.3 and 4.4,' is a T-equivariant hyperbolic diffeomorphism. The local expression of
the vector field� J

0 on Up presented in Proposition 5.1 shows that each open setUp is
stable under the inducedR-action. So the expression of the flow presented in Propos-
ition 5.1 shows that' satisfies the condition (C1), (C2).

We next prove that' J satisfies the condition (C3).
We first consider the case thats!1. Let x be a point ofX. SinceX is sequen-

tially compact, there exists a real sequence{sn}
1

nD1 having the following two properties:
• {sn}

1

nD1 is strictly increasing and is divergent to1.
• '

J
sn

(x) converges to a pointp of X when n tends to1.
By Proposition 5.1 we have

k�

J
0 kp D k�

J
0 klimn!1 '

J
sn (x) D lim

n!1

k�

J
0 k' J

sn (x) D 0.

Henceforth p is a T-fixed point of X by Lemma 4.1. We show that the flow
'

J
s (x) converges to theT-fixed point p when s tends to1. We proceed proof by

contradiction.
Assume that the flow' J

s (x) does not converge to theT-fixed point p. Since XT

is finite, one can take a compact neighborhoodK of p so that K \ XT
D {p}. Then

there exists an open setU of X having the following two properties:
• p 2 U � K .
• There exists a strictly increasing sequence{s0n}

1

nD1 so thats0n is divergent to1 and
'

J
s0n

(x) is in K nU for all n � 1.
Since X is sequentially compact, by taking a subsequence if necessary, one may

assume that the sequence{' J
s0n

(x)}1nD1 converges to a pointp0 of X. Then the argument
used in the proof thatp is a T-fixed point also implies thatp0 is a T-fixed point of X.
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However, since' J
s0n

(x) is in the closed setK nU for all n� 1, theT-fixed point p0 must

be contained inK and differs fromp. This contradicts to the fact thatK \ XT
D {p}.

This completes the proof that the limit lims!1

'

J
s (x) converges to someT-fixed point

of X.
The convergence of lims!�1

'

J
s (x) follows from the above case by changing the

elementa0 to �a0.
The proof is now complete.
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