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Abstract
Let F be a non-Archimedean local field with a finite residue field. We prove that the con-

jecture, presented by Broussous, Sécherre, and Stevens, is verified in the essetially tame case,
that is, that the Jacquet-Langlands correspondence, which was explicitly described by Bushnell
and Henniart, preserves an endo-class for irreducible essentially tame representations of inner
forms of GLn(F), n ≥ 1, of parametric degree n. Moreover we give explicitly a parameter set for
such representations of an inner form G of GLn(F) which contain simple characters belonging
to an endo-class.

Introduction

Let F be a non-Archimedean local field with a finite residue field kF of characteristic p.
For a positive integer n, let A be a simple central F-algebra of dimension n2, and let G = A×

be the multiplicative group of A.
In [10], [18], and [2], it was proved that there exists a canonical bijection, referred to as the

Jacquet-Langlands correspondence, between the sets of equivalence classes of irreducible
essentially square-integrable representations of GLn(F) and G = A×. We will denote this
correspondence by j.

In a series of papers by Bushnell and Henniart [13], [5], [6], and Silberger and Zink [22],
[23], an explicit description of the Jacquet-Langlands correspondence was given by using
the structure theory of types, which was begun by Bushnell and Kutzko [9] and developed
by Grabitz, Silberger, and Zink [12] and by Sécherre and Stevens [19], [20], [21].

The notion of an endo-equivalence class (in short, endo-class) over F was introduced
by Bushnell and Henniart [4] for GLn(F), and it was generalized to the inner form A× by
Broussous, Sécherre, and Stevens [3]. In the latter article, associated with any essentially
square-integrable representation of G = A×, an endo-class over F was defined, and it was
conjectured that this endo-class is invariant under the Jacquet-Langlands correspondence.
We will refer to this as the BSS conjecture. Moreover, it was noted that the BSS conjecture is
verified for the Jacquet-Langlands correspondence j, described by [22], [23], for irreducible
essentially square-integrable representations of G which have level zero.

Recently, Imai and Tsushima [15] showed that the BSS conjeture is also verified for
simple epipelagic representations of G which have positive level.

In [8], the notion of essentially tame for irreducible cuspidal representations of G was
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defined, and the concept of parametric degree for irreducible cuspidal representations of
GLn(F) was generalized to those of G. The Jacquet-Langlands correspondence j, which is
described in Theorem 1.1 below, induces a canonical bijection, denoted by jA, between the
set, denoted by et

n (F), of equivalence classes of irreducible essentially tame representations
of GLn(F), of parametric degree n and the set, denoted by et

m(D) of those of G. An explicit
description of this correspondence jA : et

n (F) � et
m(D) was given by using the parameteri-

zation of the latter set in terms of admissible pairs over F of degree n, which was introduced
by Howe [14].

In this paper, by using the results of Sécherre [19] and Bushnell and Henniart [8], we
prove that the BSS conjecture is also verified for the essentially tame Jacquet-Langlands
correspondence jA, that is, an endo-class Θ determines the subsets et

n (F,Θ) and et
m(D,Θ)

of et
n (F) and et

m(D), respectively, and jA induces a bijection

jA,Θ : et
n (F,Θ) � 

et
m(D,Θ)

(see Theorem 2.1 and Corollary 2.2). We see that a parameter set for et
m(D,Θ) associated

with the endo-class Θ is given as follows:


et
m(D,Θ) � (X(k×E)kE0−reg/〈σ0〉) × C×,

where for certain unramified extension E/E0 associated with Θ, X(k×E)kE0−reg/〈σ0〉 denotes
the set of Gal(kE/kE0 )-orbits in the set of kE0 -regular characters of k×E (see Theorem 2.9 for
the details). Using this result, the parameter set for equivalence classes of irreducible es-
sentially tame cuspidal representations of level zero and the correspondence are explicitly
described (see Propositions 2.10 and Corollary 2.11). Moreover, we prove that the parameter
sets for equivalence classes of irreducible essentially tame and totally ramified representa-
tions of GLn(F) and G associated with a single endo-class become both X(k×F) × C×, and
the correspondence is also described by this parameter set (see Proposition 2.12, Corollary
2.13, and Theorem 2.14).

This paper is organized as follows. In Section 1, we recall the definitions of the Jacquet-
Langlands correspondence [10], [18], [2], the simple types in G [9], [20], and the endo-class
[4], [3]. Next, we recall the parameterization of the equivalence classes of irreducible es-
sentially tame cuspidal representations of G of parametric degree n in terms of the admissi-
ble pairs of degree n and the description of the Jacquet-Langlands correspondence through
this parameterization, which was established by [8]. In Section 2, we state the main the-
orem (Theorem 2.1), which states that the Jacquet-Langlands correspondence preserves an
endo-class for the equivalence classes of essentially tame representations of G of parametric
degree n, and we determine explicitly the parameterization of equivalence classes of such
representations associated with an endo-class. Next, we see the examples not only in the
level zero case, but also in the essentially tame and totally ramified case. In Section 3, we
provide a proof of Theorem 2.1.

1. Essentially tame representations

1. Essentially tame representations
We recall the results of Bushnell and Henniart [7],[8] for the essentially tame Jacquet-

Langlands correspondence for inner forms of GLn(F).
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1.1. Preliminaries.
1.1. Preliminaries. Let F be a non-Archimedean local field with a finite residue field of

characteristic p. For a finite, commutative, or non-commutative field extension K of F, we
denote by oK its ring of integers, by pK the maximal ideal of oK , and by kK its residue field.
We write as UK = o

×
K the multiplicative group of oK and U1

K = 1 + pK .
Let A be a simple central F-algebra of dimension n2, n ≥ 1. Then, there exists a central F-

division algebra D of dimension d2, d ≥ 1, such that A � Mm(D), where m is an integer and
n = md. We identify A = Mm(D) through the isomorphism, and we set G = A× = GLm(D).

In this paper, all representations of a totally disconnected locally compact group are as-
sumed to be smooth with complex coefficients.

An irreducible representation π of G is referred to as essentially square-integrable if there
exists a character χ of G such that πχ(:= π ⊗ (χ ◦ Nrd)) is unitary and has a nonzero coef-
ficient which is square-integrable on G/Z, where Nrd denotes the reduced norm in A and
Z is the center of G. We denote by 

(2)
m (D) the set of equivalence classes of essentially

square-integrable representations of G = GLm(D). In particular, (2)
n (F) denotes the set of

equivalence classes of essentially square-integrable representations of GLn(F).

Theorem 1.1 ([10], [18], [2]). There exists a canonical bijection, referred to as the
Jacquet-Langlands correspondence,

j : (2)
n (F) � 

(2)
m (D)

which is uniquely characterized by the character relation

tr π(g) = (−1)n−mtr j(π)(g′)

for any elliptic regular elements g ∈ GLn(F), g′ ∈ GLm(D) that have the same reduced
characteristic polynomial.

A representation π of G is referred to as cuspidal if there exists a nonzero coefficient
which is compactly supported modulo the center Z of G. Then, the set (2)

m (D) contains the
set, denoted by 

(0)
m (D), of equivalence classes of irreducible cuspidal representations of G.

Let π be an irreducible representation of G. We say that the representation π has level zero
if for a maximal oF-order A of A with the Jacobson radical P, π has a nonzero U1(A)-fixed
vector, where we set U1(A) = 1 + P, and otherwise, we say that the representation π has
positive level.

In [9], [19], [20], [21], it was proved that π ∈ 
(0)
m (D) contains a pair (J, λ) in G that is

referred to as a maximal simple type and which consists of a compact open subgroup J of G
and an irreducible representation λ of J. The pair (J, λ) can be constructed as follows. If the
representation π has level zero, then we have

(1) J = U = U(A) = A× for a maximal oF-order A of A;
(2) λ = σ is an irreducible representation of J = U that is trivial on U1(A) and inflated

from a cuspidal representation σ of the finite group U(A)/U1(A) � GLm(kD).
Such a pair (J, λ) = (U, σ) is referred to as a maximal simple type in G of level zero.

Suppose that the representation π ∈ 
(0)
m (D) has positive level. Then, there exists a

quadraple [A, �, 0, β] in A, referred to as a simple stratum. Here, A is a hereditary oF-order
of A, � is a positive integer, β is an element of A which satisfies β ∈ A−�\A−�+1 and gener-
ates a subfield F[β] over F, and an integer k0(β,A), referred to as the critical exponent of
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[A, �, 0, β], is defined and is negative. Let E = F[β], and let B = CA(E), the centralizer of E
in A. Then, A satisfies xAx−1 = A, for any x ∈ E×, and B = A ∩ B is a maximal oE-order
in B. There exists a central E-division algebra DE such that B � M f (DE) for some integer
f > 0.

Attached to the simple stratum [A, �, 0, β] in A, two oF-lattices J = J(β,A), H = H(β,A)
of A are defined, and the groups J = J(β,A),H = H(β,A) are defined by

J = J(β,A) = J ∩ U(A), H = H(β,A) = H ∩ U(A),

respectively. Furthermore, the normal subgroups J1,H1 of J,H are defined by
J1 = J1(β,A) = J ∩ U1(A), H1 = H1(β,A) = H ∩ U1(A),

respectively. Then, we have J/J1 � U(B)/U1(B) � GL f (kDE ).
Let us fix an additive character

ψF : F −→ C×

which is trivial on pF but not on oF . We will fix this character to be ψF . The set of sim-
ple characters of the group H1 = H1(β,A), denoted by (A, β, ψF), is defined through the
character ψF . In order to prove the main theorem, we shall recall the definition in detail
in Section 3.1. For a simple character θ ∈ (A, β, ψF), it can be proved that there exists a
unique irreducible representation of J1 = J1(β,A), denoted by η = η(θ), which contains θ.

A pair such as (J, λ) above, attached to the simple stratum [A, �, 0, β] in A, can be con-
structed as follows. There exist a simple character θ ∈ (A, β, ψF) and a maximal simple
type (U(B), σB) in B such that

λ = κ ⊗ σ
where

(1) the representation κ is an extension to J of the representation η = η(θ) which is
intertwined by all of B×;

(2) the representation σ = σB is the inflation to J of a cuspidal representation σB of the
finite group J/J1 � U(B)/U1(B) � GL f (kDE ).

Such a pair (J, λ) is said to be a maximal simple type in G of positive level, and attached
to the simple stratum [A, �, 0, β] in A.

A maximal simple type (U, σ) in G of level zero can be regarded as a simple type attached
to a null stratum [A, 0, 0, 0] in A [20, Remarque 4.1]. In this case, from β = 0, we have
E = F, B = A,B = A, and σB = σ.

1.2. Essentially tame cuspidal representations.
1.2. Essentially tame cuspidal representations. Let π ∈ 

(0)
m (D), and let (J, λ) be a

maximal simple type in G which is contained in π and is attached to a simple stratum
[A, �, 0, β] in A. Then, by definition, we have λ = κ ⊗ σ (resp. λ = σ) when (J, λ) is of
positive level (resp. level zero), where σ is the inflation of the representation σB (resp. σ)
of the finite group J/J1 � GL f (kDE ), as before. Here, we set f = m, E = F, and DE = D
in the level zero case. Thus, the Galois group Γ = Gal(kDE/kE) of the extension kDE/kE

acts naturally on J/J1. We denote by w0 the number of distinct Γ-conjugates of σB (resp.
σ). Following [8], we define the invariant δ(π), referred to as the parametric degree of the
representation π, by
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δ(π) = fw0[E : F].

More generally, the parametric degree δ(π) for π ∈ (2)
m (D) is defined by δ(π) = δ(π0) for

a representation π0 in the cuspidal support of π (see [8, Section 2.8]).
For π ∈ (2)

m (D), we denote by t(π) the number of unramified characters χ of F× such that
π ⊗ (χ ◦ Nrd) � π. It was proved in [8] that δ(π)|n and t(π)|δ(π).

A representation π ∈ (2)
m (D) is referred to as essentially tame if the characteristic p of the

residue field kF of F does not divide δ(π)/t(π). We denote by et
m(D) the set of π ∈ (2)

m (D)
which are essentially tame with δ(π) = n. We note that all the representations of et

m(D) are
cuspidal.

The set et
m(D) is characterized as follows.

Proposition 1.2 ([8, Section 2.8, Lemma]). Let π ∈ (0)
m (D). We have that π is essentially

tame if and only if either

(1) π contains a maximal simple type of level zero, or
(2) π has positive level and contains a maximal simple type in G attached to a simple

stratum [A, �, 0, β] in A such that the field extension F[β]/F is tamely ramified.

By [8, Section 2.8, Corollary 2], the Jacquet-Langlands correspondence j, described in
Theorem 1.1, induces a canonical bijection

(1.1) jA : et
n (F) � 

et
m(D).

1.3. Endo-classes.
1.3. Endo-classes. Let D be a central F-division algebra of dimension d2, d ≥ 1, and set

A = Mm(D), m ≥ 1.
Bushnell and Henniart [4] introduced the notion of an endo equivalence class (in short,

endo-class) over F of a simple character for GLn(F) attached to a simple stratum [A, �, 0, β]
in Mn(F), where A is a hereditary oF-order. We denote by (F) the set of endo-classes over
F of simple characters for GLn(F), where n ≥ 1 varies. This notion was generalized to a
simple character for GLm(D) attached to a simple stratum [Λ, �, 0, β] in A = Mm(D), where
Λ is an oD-lattice sequence [19], [21], [3]. We denote by ̃(F) the set of endo-classes over F
of simple characters for GLm(D), where n = md ≥ 1 varies. Then, from [3, Corollary 8.2],
it follows that (F) is a subset of ̃(F).

For a simple character θ ∈ (Λ, β, ψF) attached to a simple stratum [Λ, �, 0, β] in A =
Mm(D), we denote by F(θ) the endo-class over F defined by the pair ([Λ, �, 0, β], θ). This
generalizes F(θ) for GLn(F), which was defined by [7, Notation and background], to one
for GLm(D).

For a hereditary oF-order A of A, we have the null stratum [A, 0, 0, 0] in A and the attached
compact subgroup H1 = H1(A, 0) = U1(A) of G = A× = GLm(D). Since the trivial character
1U1(A) of the group U1(A) can be regarded as a simple character of H1, we adjoin to ̃(F) a
trivial element Θ0, which may be regarded as the endo-class F(1U1(A)) for such an arbitrary
hereditary oF-order A of A.

Let χ be a non-trivial character of the group U1
F = 1+ pF . The character χ can be also re-

garded as a simple character of (oF , c, ψF) attached to some simple stratum [oF ,−vF(c), 0, c]
in F = EndF(F), where vF(c) denotes the F-valuation of c ∈ F (see [7, Section 1.2]). Thus,
we can form F(χ) ∈ (F). From [4, Corollary (9.13)], for a finite, tamely ramified exten-
sion K/F, there exists a canonical surjection
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RK/F : (K) −→ (F)

that is transitive in the extension K/F.

1.4. Admissible pairs.
1.4. Admissible pairs. By Howe and Moy [14], [17], Bushnell and Henniart [7] proved

that the set et
n (F), defined in Section 1.2, has a canonical one-to-one correspondence with

the set of admissible pairs over F, denoted by (E/F, ξ), which consist of tamely ramified
extensions E/F of degree n and certain characters of E×. They generalized this result for
GLn(F) to that for GLm(D) and described explicitly the Jacquet-Langlands correspondence
jA of (1.1) through this parameterization [8].

We recall the definition of admissible character [14].

Definition 1.3 [14], [17], [7], [8]. Let E/F be a finite, tamely ramified extension.
(i) Let χ be a character of U1

E . A pair (E/F, χ) is referred to as an admissible 1-pair if χ
does not factor through the norm map NE/K for any field K, where F ⊂ K � E.

(ii) Let ξ be a character of E×. A pair (E/F, ξ) is referred to as an admissible pair over F
if

(1) ξ does not factor through NE/K for any field K, where F ⊂ K � E.
(2) if ξ|U1

E factors through NE/K for a field K, where F ⊂ K � E, then E/K is unrami-
fied.

The degree of an admissible pair (E/F, ξ) over F is defined by the extension degree [E :
F] of E/F. Let (E/F, η) and (E′/F, η′) be pairs such as those in Definition 1.3. We say that
(E/F, η) and (E′/F, η′) are F-isomorphic if there exists an F-isomorphism α : E −→ E′

such that η = η′ ◦ α. We write P(1)(F) (resp. Pn(F)) for the set of F-isomorphism classes of
admissible 1-pairs (resp. admissible pairs over F and of degree n).

Hereinafter, π ∈ et
m(D) means that δ(π) = n and π is an essentially tame representation

of G = GLm(D). Attached to each π ∈ et
m(D), an (F-isomorphism class of) admissible pair

(E/F, ξ) in Pn(F) can be constructed as follows [7],[8].
Suppose that π ∈ et

m(D) and that π has level zero. Then, there exists a maximal simple
type (U, σ) in G of level zero which is contained in π, and from this maximal simple type,
we obtain an admissible pair (E/F, ξ) over F and of degree n that satisfies

(1) E/F is an unramified extension of degree n;
(2) the character ξ of E× is tamely ramified, that is, ξ|U1

E = 1.
Thus, by [3, Section 9.2], we may set the endo-class Θ(π) of the representation π to be the
trivial endo-class Θ0 defined as above.

We next assume that π ∈ et
m(D) has positive level. Then, there exist a simple stratum

[A, �, 0, β] in A and a maximal simple type (J, λ) in G attached to it such that λ|H1(β,A)
contains a simple character θ ∈ (A, β, ψF). Again using [3, Section 9.2], we set

Θ(π) = F(θ).

The maximal simple type (J, λ) above can be extended to a pair (J,Λ), referred to as an
extended maximal simple type, so that π is compactly induced from Λ to G as follows [8,
Section 4.3].

(1) J = JB(σB)J1, where JB(σB) denotes the normalizer of the maximal simple type
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(U(B), σB) in B = CA(β), as in Section 1.1;
(2) Λ is an extension of λ.

Let E0 = F[β]. Recall that B = CA(E0) and B = B ∩ A. There exists an admissible 1-pair
(E0/F, ξ0) such that

θ|U1(B) = ξ0 ◦ NrdB,

and E/E0 is an unramified extension in B such that B is E-pure, that is, xBx−1 = B for
x ∈ E×, and [E : F] = n.

We now choose a prime element �F in oF for the following discussion.

Lemma 1.4 ([8, Section 4.3, Lemma]). There exists a unique character ξw of E× that
satisfies

(1) ξw|U1
E = ξ0 ◦ NE/E0;

(2) ξw(�F) = 1;
(3) ξw has finite, p-power order.

The representation Λ of the extended maximal simple type (J,Λ) can be decomposed
into a tensor product Λ = Λw ⊗ Λt of representations Λw and Λt that satisfy

(1) Λw is a representation of J to which can be extended the unique irreducible repre-
sentation η(θ) of J1 containing θ;

(2) Λt is trivial on J1 and induces a maximal simple type (J∩B,Λt|J∩B) in B× of level
zero.

From the representation Λt above, as in the level zero case, we obtain an admissible pair
(E/E0, ξt) over E0, where ξt is tamely ramified. Hence, we can define the character ξ of E×

by

ξ = ξt · ξw
from the above characters ξw and ξt. Then, it is easy to prove that (E/F, ξ) is an admissible
pair over F and of degree n. Thus, we obtain the map π 
→ (E/F, ξ). This pair (E/F, ξ) is
said to be attached to π.

Theorem 1.5 ([8, Section 6, Parameterization Theorem]). Assume that (E/F, ξ) is in
Pn(F). Then, there exists a unique π ∈ et

m(D) such that (E/F, ξ) is F-isomorphic to an
admissible pair attached to π. In such a case, let us write

π = πD(ξ).

Then, the map (E/F, ξ) 
→ πD(ξ) induces a bijection

Pn(F) � 
et
m(D).

We note that πD(ξ) in this theorem is DΠξ in the notation of [8]. This theorem was first
proved for GLn(F) [5], and then it was generalized to GLm(D) [8]. The map π 
→ (E/F, ξ)
above is the inverse of the map (E/F, ξ) 
→ πD(ξ) of Theorem 1.5.

Theorem 1.6 ([8, Section 6, First Comparison Theorem]). Assume that (E/F, ξ) is in
Pn(F). Then, there exists a unique tamely ramified character, denoted by ν = ν(D, ξ), of E×

with ν2 = 1 such that (E/F, ξν) ∈ Pn(F) and
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πD(ξ) = jA(πF(ξν)).

We note that the values of the character ν = ν(D, ξ) of Theorem 1.6, which is Dνξ in the
notation of [8], are completely determined [8, Sections 6 and 7].

2. Invariance of an endo-class under jA

2. Invariance of an endo-class under jA2.1. Conjecture 9.5 of Broussous, Sécherre and Stevens.
2.1. Conjecture 9.5 of Broussous, Sécherre and Stevens. Assume that (E/F, ξ) ∈

Pn(F). If ξ|U1
E = 1, then the representations πF(ξν) and πD(ξ) in Theorem 1.6 both have

level zero. Thus, we obtain

Θ(πF(ξν)) = Θ(πD(ξ)) = Θ0,

which shows that Conjecture 9.5 of [3] is true. This is stated in the Introduction of [3] (cf.
[16]).

We will assume that ξ|U1
E � 1. Then [7, Section 2.3], there exists a simple stratum

[A, �, 0, β] in A = Mn(F) and a simple character θ ∈ (A, β, ψF) such that
(1) there exists the minimal subextension F ⊂ E0 ⊂ E such that ξ|U1

E = ξ0 ◦ NE/E0 for
some admissible 1-pair (E0/F, ξ0);

(2) E0 = F[β];
(3) F(θ) = RE0/F(E0 (ξ0)) ∈ (F).

From this character ξ0 of E×0 , through the fixed prime element �F , we obtain the character
ξw of E× as defined by Lemma 1.4. Set ξt = ξ−1

w ξ. Then, (E/E0, ξt) is an admissible pair
over E0 and ξt is tamely ramified. We define the subgroup J of A× = GLn(F) by

J = E×J(β,A).

From (E/E0, ξt), we obtain an irreducible representation Λt of J that is trivial on J1 =

J1(β,A) and an extension Λw to J of the irreducible representation η(θ) of J1(β,A) that
contains θ such that Λ = Λw ⊗Λt forms an extended maximal simple type (J,Λ) in GLn(F)
and

πF(ξ) = c-IndGLn(F)
J Λ.

From [7, Section 2.3, Theorem], we obtain

Θ(πF(ξ)) = F(θ) = RE0/F(E0 (ξ0)).

We will denote the last endo-class of the above equalities as Θξ0 . Let

Θξ = RE/F(E(ξ|U1
E)).

Then, from ξ|U1
E = ξ0 ◦ NE/E0 , we have Θξ = Θξ0 . Thus, we obtain

(2.1) Θ(πF(ξ)) = Θξ = Θξ0 .

Since the character ν = ν(D, ξ) given by Theorem 1.6 is tamely ramified, (ξν)|U1
E = ξ|U1

E .
Thus, we obtain

(2.2) Θ(πF(ξν)) = Θξν = Θξ.

Now we can state the following main result.
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Theorem 2.1. Let (E/F, ξ) ∈ Pn(F) with ξ|U1
E � 1, and (E0/F, ξ0) be the corresponding

admissible 1-pair as above. Then, for πD(ξ) ∈ et
m(D), we have

Θ(πD(ξ)) = Θξ = Θξ0 .

We shall prove this theorem in the next section. In this section, we will assume that this
theorem holds.

Corollary 2.2. For π ∈ et
n (F), we have

Θ( jA(π)) = Θ(π).

Proof. This follows from Equations (2.1) and (2.2) and from Theorems 1.6 and 2.1. �
This implies that the Conjecture 9.5 of [3] is verified for the essentially tame representations
of inner forms of GLn(F). Given Θ an endo-class over F, set


et
m(D,Θ) = {π ∈ et

m(D) : Θ(π) = Θ}.
If et

m(D,Θ) is non-empty, then the Jacquet-Langlands correspondence jA of (1.1) induces a
canonical bijection

(2.3) jA,Θ : et
n (F,Θ) � 

et
m(D,Θ).

2.2. Parameterization for et
m(D,Θ).

2.2. Parameterization for et
m(D,Θ). We give a parameterization for et

m(D,Θ) and de-
scribe the correspondence jA,Θ.

Lemma 2.3. Let E/F, E′/F be finite field extensions, and let E0/F be a subextension of
E/F. If there exists an F-isomorphism α : E −→ E′, then we have

α ◦ NE/E0 (x) = NE′/α(E0)(α(x))

for any x ∈ E.

Proof. This is elementary. �

Let (E/F, ξ) ∈ Pn(F). Then, from [8, Section 4.1, Lemma], there exists an admissible
1-pair (E0/F, ξ0) with E0 ⊂ E and ξ|U1

E = ξ0 ◦ NE/E0 , where E/E0 is unramified. For this
pair (E/E0, ξ0), let ξw be the unique character of E× defined by the conditions of Lemma 1.4,
and set ξt = ξ

−1
w ξ. Then, (E/E0, ξt) is an admissible pair over E0 and ξt is tamely ramified,

as stated in Section 1.4. Hence, we obtain the decomposition ξ = ξwξt.

Proposition 2.4. Let (E/F, ξ) be an admissible pair over F of degree n such that ξ can be
decomposed into ξ = ξwξt, as above. Let (E′/F, ξ′) be another pair in Pn(F), with ξ′ = ξ′wξ′t ,
where ξ′w = ξ′0 ◦ NE′/E′0 on U1

E′ for some (E′0/F, ξ
′
0) ∈ P(1)(F), as above. Suppose that there

exists an F-isomorphism α0 : (E′0/F, ξ
′
0) � (E0/F, ξ0). Then, there exists an F-isomorphism

α : E′ −→ E that extends α0 such that for some admissible pair (E/E0, ϑ) with ϑ tamely
ramified,

α : (E′/F, ξ′) � (E/F, ξwϑ)

holds.
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Proof. Through the F-isomorphism α0, we see that E′/E′0 and E/E0 are unramified ex-
tensions of the same degree. Thus, there exists an F-isomorphism α : E′ −→ E that extends
α0. Define the characters ξo

w and ϑ of E× by

ξo
w = ξ

′
w ◦ α−1, ϑ = ξ′t ◦ α−1,

respectively. Since α−1(U1
E) = U1

E′ , we have

ξo
w(x) = ξ′0 ◦ NE′/E′0 (α

−1(x))

for any x ∈ U1
E . By Lemma 2.3, we obtain

ξo
w(x) = ξ′0 ◦ α−1

0 ◦ NE/E0 (x) = ξ0 ◦ NE/E0 (x) = ξw(x)

for any x ∈ U1
E . The equality ξ′w(�F) = ξw(�F) = 1 follows immediately, and for integers

a ≥ 1, we have

(ξo
w)pa
= (ξ′w ◦ α−1)pa

= 1.

Hence, we obtain the equlity ξo
w = ξw as a character of E×. By definition, ϑ = ξ′t ◦ α−1

is tamely ramified. Since (E′/E′0, ξ
′
t ) is admissible, again from Lemma 2.3, it follows that

(E/E0, ϑ) is also admissible, through the F-isomorphism α. Consequently, we obtain

ξ′ ◦ α−1 = (ξ′wξ
′
t ) ◦ α−1 = (ξ′w ◦ α−1)(ξ′t ◦ α−1) = ξwϑ,

which implies that α is the F-isomorphism (E′/F, ξ′) � (E/F, ξwϑ). �

We denote by Xt(E×) the set of tamely ramified (quasi-)characters of E×.

Proposition 2.5 (cf. [8, Section 4.3, Remark]). Let π ∈ et
m(D), and let (E/F, ξ) ∈ Pn(F)

be attached to π. Let Θ = Θ(π). Let ξ = ξwξt and ξw = ξ0 ◦ NE/E0 on U1
E, for some

(E0/F, ξ0) ∈ P(1)(F), as in Proposition 2.4. Denote by Ξ(E0) the set of ϑ ∈ Xt(E×) such that
(E/E0, ϑ) is admissible. Then, the set et

m(D,Θ) is given by


et
m(D,Θ) = {πD(ξwϑ) : ϑ ∈ Ξ(E0)}.

Proof. The inclusion ⊃ is clear. We prove the converse inclusion ⊂. Assume that π′ ∈
et

m(D,Θ), that is, Θ(π′) = Θ. Then, from Theorem 1.5, there exists a unique (E′/F, ξ′) ∈
Pn(F) such that π′ � πD(ξ′). We may identify π′ = πD(ξ′). For the character ξ′, we have
ξ′|U1

E′ = ξ
′
0 ◦ NE′/E′0 , for some (E′0/F, ξ

′
0) ∈ P(1)(F), where E′0/F is a subextension of E′/F.

From Theorem 2.1, we have

Θ = Θξ = Θξ0

and Θξ′ = Θ(π′). By assumption, we thus obtain

Θξ′ = Θ(π′) = Θ = Θξ0 .

Hence, from [7, Theorem 1.3], there exists an F-isomorphism

α0 : (E′0/F, ξ
′
0) � (E0/F, ξ0),

and from Proposition 2.4, there exist an F-isomorphism α : E′ � E that extends α0 and an
admissible pair (E/E0, ϑ) with ϑ tamely ramified such that
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α : (E′/F, ξ′) � (E/F, ξwϑ).

Consequently, Theorem 1.5 implies that

π′ = πD(ξ′) � πD(ξwϑ).

�

The Jacquet-Langlands correspondence jA,Θ of (2.3) can be described as follows.

Proposition 2.6. Let π ∈ et
m(D), and let (E/F, ξ) ∈ Pn(F) be attached to π. Let

Θ = Θ(π). Let ξ = ξwξt and ξw = ξ0 ◦ NE/E0 on U1
E, for some (E0/F, ξ0) ∈ P(1)(F), as

in Proposition 2.4. Then, there exists a unique tamely ramified character νΘ of E× which
depends only on the endo-class Θ and satisfies ν2

Θ
= 1, where the Jacquet-Langlands corre-

spondence jA,Θ of (2.3) can be described by

jA,Θ(πF(ξwϑνΘ)) = πD(ξwϑ)

for any ϑ ∈ Ξ(E0).

Proof. For a representation πD(ξwϑ) ∈ et
m(D,Θ), let νΘ = ν(D, ξwϑ) be as in Theorem

1.6. Then, from Proposition 2.5 and Corollary 1 to Second Comparison Theorem of [8,
Section 7.1], the character νΘ does not depend on the choice of ξwϑ and depends only on the
endo-class Θ. The remainder of this proposition was proved in Theorem 1.6. �

In the following discussions, we retain the situation of Proposition 2.5. Set

0 = {α ∈ Aut(E|F) : α(E0) = E0 and ξ0 ◦ α = ξ0},
where Aut(E|F) denotes the group of F-automorphisms of the field E. Let ϑ ∈ Ξ(E0) and
α ∈ 0. Then, (E/E0, ϑ ◦ α) is an admissible pair and ϑ ◦ α is tamely ramified. Thus, by the
definition of Ξ(E0) in Proposition 2.5, we obtain ϑ ◦ α ∈ Ξ(E0), which implies that 0 acts
on Ξ(E0) by (α, ϑ) 
→ ϑ ◦ α. We denote by Ξ(E0)/0 the set of 0-orbits in Ξ(E0).

Proposition 2.7. Let π ∈ et
m(D), and let (E/F, ξ) ∈ Pn(F) be attached to π. Let Θ =

Θ(π). Let ξ = ξwξt and ξw = ξ0◦NE/E0 on U1
E for some (E0/F, ξ0) ∈ P(1)(F), as in Proposition

2.5. Then, the map ϑ 
→ πD(ξwϑ) induces a canonical bijection

Ξ(E0)/0 � 
et
m(D,Θ).

Proof. Proposition 2.5 shows that the map ϑ 
→ πD(ξwϑ) induces the surjection Ξ(E0) −→
et

m(D,Θ). Let ϑ, ϑ′ ∈ Ξ(E0) satisfy πD(ξwϑ) � πD(ξwϑ′). Then, from Theorem 2.1, it
follows that

Θ(πD(ξwϑ)) = Θξ0 = Θ(πD(ξwϑ′)).

From Proposition 2.4, we obtain an F-isomorphism α0 : (E0/F, ξ0) � (E0/F, ξ0) and an
F-isomorphism α : (E/F, ξwϑ) � (E/F, ξwϑ′) that extends α0. Thus, we obtain

ξwϑ
′ = (ξwϑ) ◦ α = (ξw ◦ α)(ϑ ◦ α).

Through the F-isomorphism α0, we see that ξw = ξw ◦ α, similar to the proof of Proposition
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2.4. Hence, we obtain ϑ′ = ϑ ◦ α and α ∈ 0. �

We describe the set Ξ(E0)/0 in Proposition 2.7 explicitly. Denote by µE the set of roots
of unity in E of order relatively prime to p, and let �E be a prime element of E. We may
identify µE = k×E and E× = k×E × U1

E × �ZE . Thus, the map ϑ 
→ (ϑ|µE , ϑ(�E)) gives a
canonical bijection

Xt(E×) � X(k×E) × C×.
Lemma 2.8. Let the notation and assumptions be as in Proposition 2.7, and let ϑ ∈

Xt(E×). Then, we have 0 = Gal(E/E0), and (E/E0, ϑ) is admissible, that is, ϑ ∈ Ξ(E0) if
and only if ϑ|µE is kE0-regular.

Proof. Since (E0/F, ξ0) is an admissible 1-pair, by definition, ξ0|U1
E0

does not factor
through NE0/K , for any field K such that F ⊂ K � E0. Let α ∈ 0. Then, by the definition
of 0 above, α(E0) = E0 and ξ0 ◦ α = ξ0. Thus, by [7, A.1. Lemma], this implies α|E0 is
trivial, that is, α ∈ Gal(E/E0). This shows the first assertion.

For the second assertion, since the field extension E/E0 is unramified, ϑ ∈ Ξ(E0) if and
only if ϑ ◦ σ are distinct for all σ ∈ Gal(E/E0). Equivalently, ϑ|µE is Gal(kE/kE0 )-regular,
referred to as kE0 -regular. Hence, the proof is completed. �

Let σ0 be a generator of Gal(E/E0). We may identify Gal(kE/kE0 ) = Gal(E/E0) = 〈σ0〉.
Denote by X(k×E)kE0−reg the set of kE0 -regular characters χ in X(k×E), and by X(k×E)kE0−reg/〈σ0〉
the set of 〈σ0〉-orbits in the set X(k×E)kE0−reg.

Theorem 2.9. Let π ∈ et
m(D), and let (E/F, ξ) ∈ Pn(F) be attached to π. Let Θ = Θ(π).

Let ξ = ξwξt and ξw = ξ0 ◦NE/E0 on U1
E for some (E0/F, ξ0) ∈ P(1)(F), as in Proposition 2.5.

Then, we have a canonical bijection


et
m(D,Θ) � (X(k×E)kE0−reg/〈σ0〉) × C×.

Proof. By Lemma 2.8, we have Ξ(E0) � X(k×E)kE0−reg × C× under the map ϑ 
→
(ϑ|µE , ϑ(�E0 )), and for σ ∈ 0 = Gal(E/E0), we have

(ϑ ◦ σ|µE , ϑ ◦ σ(�E0 )) = ((ϑ|µE) ◦ σ, ϑ(�E0 )),

where we identify σ = σ in Gal(E/E0) = Gal(kE/kE0 ). Thus, there exists a canonical
bijection between the set Ξ(E0)/0 in Proposition 2.7 and (X(k×E)kE0−reg/〈σ0〉) × C×. Hence,
the proof is completed. �

We consider the level zero case. Let π ∈ et
m(D) have level zero, and let (E/F, ξ) ∈ Pn(F)

be attached to π. Then, from [8, Section 4.2] and Theorem 2.1, it follows that ξ is tamely
ramified and Θ(π) = Θ0. By definition, we have E0 = F and ξ0 = ξw = 1. Thus, we have
Ξ(E0) = Ξ(F) and 0 = Gal(E/F), where we remark that E is an unramified extension field
of E0 = F. Hence, by Theorem 2.9, we can re-write [8, Section 4.2, Proposition] as follows.

Proposition 2.10. Let π ∈ et
m(D) have level zero, and let (E/F, ξ) ∈ Pn(F) be attached

to π. Then, there exists a canonical bijection


et
m(D,Θ0) � (X(k×E)kF-reg/〈σ0〉) × C×.
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We denote by πD([χ], c) the image in et
m(D,Θ0) of an element ([χ], c) in the right-hand

side set under the bijection given in Proposition 2.10, where [χ] denotes the 〈σ0〉-orbit of
the element χ ∈ X(k×E)kF -reg.

We remark that the parameter set in Proposition 2.10 is equal to Gal(Fn/F)\X′t (F×n ) con-
tained in the parameter set T n

0 for equivalence classes of level zero essentially square-
integrable representations of an inner form of GLn(F) obtained by [23, Theorem 1].

Corollary 2.11. The Jacquet-Langlands correspondence jA,Θ0
of (2.3) for the level zero

case is described by

jA,Θ0
(πF([χ], c)) = πD([χ], c)

for any (χ, c) ∈ X(k×E)kF-reg × C×.

Proof. It follows from the last statement of the proof of [8, Section 6, First Comparison
Theorem] (see [8, Section 6.8]) that the tamely ramified character νΘ0 defined by Proposition
2.6 is trivial. Thus, the corollary follows from Theorem 1.6 and Proposition 2.10. �

We next consider the totally ramified case.

Proposition 2.12. Let π ∈ et
m(D), and let (E/F, ξ) ∈ Pn(F) be attached to π. Let Θ =

Θ(π). Suppose that t(π) = 1, that is, E/F is totally ramified. Then, every representation in
et

m(D,Θ) is totally ramified, and there exists a canonical bijection


et
m(D,Θ) � X(k×F) × C×.

Proof. Since E/F is totally ramified, we have E = E0, 0 = (1), and kE = kF . Thus, the
assertion follows immediately from Theorem 2.9. �

We denote by πD(χ, c) the image in et
m(D,Θ) of (χ, c) ∈ X(k×F) × C× under the bijection

given in Proposition 2.12, as above.

Corollary 2.13. Let π ∈ et
m(D), and let (E/F, ξ) ∈ Pn(F) be attached to π. Let Θ =

Θ(π). Suppose that t(π) = 1. Then, the Jacquet-Langlands correspondence jA,Θ of (2.3) is
described by

jA,Θ(πF(χ, (−1)n−mc)) = πD(χ, c)

for any (χ, c) ∈ X(k×F) × C×.

Proof. The tamely ramified character ν = νΘ of E× defined by Proposition 2.6 can be
expressed as follows [8, Section 5.2, Theorem]:

ν(x) = (−1)(n−m)vE(x), x ∈ E×.

Thus, the corollary follows directly from Proposition 2.6. �

Theorem 2.14. Let the notation and assumptions be as in Corollary 2.13. Then, the
Jacquet-Langlands correspondence jA,Θ on the set et

m(D,Θ) of (2.3) can be re-written by

jA,Θ(πF(χ, (−1)n−1c)) = πD(χ, (−1)m−1c)

for any (χ, c) ∈ X(k×F) × C×.
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Proof. For a representation πD(χ, c) ∈ et
m(D,Θ) for (χ, c) ∈ X(k×F) × C×, we replace this

representation by πD(χ, (−1)m−1c). Then, from Corollary 2.13, we obtain

πD(χ, (−1)m−1c) = jA,Θ(πF(χ, (−1)n−m(−1)m−1c)),

which shows this theorem. �

In Theorem 2.14, we choose the parameterization

(χ, c) 
→ πD(χ, (−1)m−1c) : X(k×F) × C× � 
et
m(D,Θ)

as defined by Imai and Tsushima [15].

3. Proof of Theorem 2.1

3. Proof of Theorem 2.1
We recall the definitions and the notation of [19], and using them, we prove Theorem 2.1.

3.1. Simple character.
3.1. Simple character. Let A be a simple central F-algebra, and let V be a simple left A-

module. Let D = EndA(V)op be the opposite of the central F-division algebra EndA(V) with
dimF(D) = d2, d ≥ 1. Then, V can be regarded as a right D-vector space, and there exists
a canonical isomorphism of F-algebras between A and EndD(V). Hereinafter, we identify
A = EndD(V) through this isomorphism.

Let L/F be an unramified field extension in D with [L : F] = d. Following [19, 2.2.2],
we set

A = A ⊗F L

and V = V ⊗L L. Then, V is isomorphic to V as L-vector spaces. We have A = EndL(V). We
regard V as a left A-module.

Let [A, �, 0, β] be a simple stratum in A = EndD(V). Let Λ = (Λk)k∈Z be a strict oD-lattice
sequence in V with A = P0(Λ), where for a ∈ Z, we define

Pa(Λ) = {x ∈ A : xΛk ⊂ Λk+a, k ∈ Z}.
Set Λ = Λ ⊗oL oL = (Λk ⊗oL oL)k∈Z. Then, Λ can be identified with Λ as oL-lattice sequences
through the identification V = V . Then, we havePa(Λ) = Pa(Λ)⊗oF oL, a ∈ Z. In particular,
we have A = P0(Λ) = A ⊗oF oL.

We may identify β = β ⊗ 1 ∈ A = A ⊗F L. Then, [A, �, 0, β] is a stratum in A. This is not
always simple. Set E = F[β] and E = E ⊗F L. Then, the E-algebra E is decomposed into
the sum of simple components

E = E1 ⊕ · · · ⊕ Es

for the integer s = gcd( f (E|F), d). Here, f (E|F) denotes the residue degree of E/F. Each
Ei is an unramified extension of E such that [Ei : E] = [L : F]/s, and it is also a finite field
extension of L.

For the character ψF as defined in Section 1.1, we fix an additive character

ψL : L −→ C×,
trivial on pL but not on oL, that extends ψF .

Attached to a simple stratum [A, �, 0, β] in A, the families of oF-lattices of A
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Jk = Jk(β,A), Hk = Hk(β,A), k ≥ 0

are defined, and the families of compact open subgroups of A×

Jk = Jk(β,A) = J ∩ Uk(A), Hk = Hk(β,A) = H ∩ Uk(A), k ≥ 0

are defined (see [19, Proposition 3.42]), where we set Uk(A) = 1 + Pk. Write J = J0

and H = H0. Attached to the stratum [A, �, 0, β] in A, the oL-lattices J
k
= Jk(β,A),H

k
=

Hk(β,A), k ≥ 0, of A are defined similarly. From [19, Section 3.1.3], it follows that these
oL-lattices have the same properties as those of Jk,Hk. The subgroups of G = A

×

J
k
= Jk(β,A), H

k
= Hk(β,A), k ≥ 0

are also defined. Set Γ = Gal(L/F). Then, Γ acts naturally on A = A ⊗F L and so on J
k
,H

k
,

k ≥ 0. For a Γ-set X, we denote by XΓ the set of Γ-fixed elements in X. Then, we have
(J

k
)Γ = Jk, (H

k
)Γ = Hk, k ≥ 0.

With respect to the characters ψF , ψL, the set of quasi-simple characters of H1(β,A)

Q(A, β, ψL) = Q(A, 0, β)

is defined by [19, Definition 3.22], and then the set of simple characters (A, β, ψF) is de-
fined by

(A, β, ψF) = {θ|H1(β,A) : θ ∈ Q(A, β, ψL)}
(see [19, Definition 3.45]).

Assume that for β ∈ A, the F-algebra F[β] is a field, and set E = F[β]. As in [9, (1.2)],
we write A(E) = EndF(E) and

A(E) = End0
oF

({pi
E : i ∈ Z}) = {x ∈ A(E) : xpi

E ⊂ pi
E , for all i ∈ Z}.

Then, [A(E), �, 0, β], with � = −vE(β), is a pure stratum in A(E). We write kF(β) =
k0(β,A(E)) for the critical exponent of [A(E), �, 0, β]. Moreover, we assume that kF(β) < 0.
Then, [A(E), �, 0, β] becomes a simple stratum in A(E). We can then write

F(β, ψF) = (A(E), β, ψF)

which is defined by [9, (3.2)].
Let L/F and E = E ⊗F L be as above. Set A(E) = EndL(E) and A(E) = End0

oL
({pi

E
: i ∈

Z}). Following the decomposition E = E1 ⊕ · · · ⊕Es as before, we have pi
E
= pi

E1 ⊕ · · · ⊕ pi
Es ,

i ∈ Z. Then, [A(E), �, 0, β] is a stratum in A(E) and is not always simple. As in [19, 3.3.3],
we set

L(β, ψL) = Q(A(E), β, ψL).

Let β = β1 ⊕ · · · ⊕ βs ∈ E = E1 ⊕ · · · ⊕ Es, with βi ∈ Ei for 1 ≤ i ≤ s. Then, [A(Ei), �, 0, βi]
is a simple stratum in A(Ei), for 1 ≤ i ≤ s. Thus, we have

L(βi, ψL) = Q(A(Ei), βi, ψL) = (A(Ei), βi, ψL).

From [19, p. 385], there exists a canonical bijection

ϕL
β : L(β, ψL) � L(β1, ψL) × · · · × L(βs, ψL).
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3.2. Transfer.
3.2. Transfer. Assume that [A, �, 0, β] is a simple stratum in A. Let [A, �, 0, β] be the

corresponding stratum in A, as above. Let Λ be the strict oL-lattice sequence in V = V ⊗L L,
as defined above, such that A = P0(Λ). From the decomposition E = E1 ⊕ · · · ⊕ Es, the left
E-module V is decomposed into the sum of simple components

V = V1 ⊕ · · · ⊕ V s,

where Vi is an Ei-vector space, for 1 ≤ i ≤ s. Since Ei/L is a finite field extension, Vi can
be regarded as a left L-vector space. Thus, we can set

A
i
= EndL(Vi),

and

Λ
i
= Λ|Vi.

Moreover, we set A
i
= P0(Λ

i
) in A

i
. Then, [A

i
, �, 0, βi] is a simple stratum in A

i
(cf. [3,

Section 6.2]). From [19, Corollary 3.34], it follows that there exists a bijection

ϕA,β : Q(A, β, ψL) �
s∏

i=1

(A
i
, βi, ψL).

We define the transfer

τA,β : L(β, ψL) � Q(A, β, ψL)

by the following commutative diagram

L(β, ψL)
τ
A,β−−−−−→ Q(A, β, ψL)

ϕL
β

⏐⏐⏐⏐⏐�
⏐⏐⏐⏐⏐�ϕA,β

∏s
i=1 L(βi, ψL) −−−−−−→∏

i τAi
,βi

∏s
i=1 (A

i
, βi, ψL).

We now note that each transfer

ϕ
A

i
,βi : L(βi, ψL) = (A(Ei), βi, ψL) −→ (A

i
, βi, ψL)

is defined by [9, (3.6.1)] for L-split groups.

Theorem 3.1 ([19, Theorem 3.53]). Let the notation and assumptions be as above. Then,
there exists a bijection

τA,β : F(β, ψF) −→ (A, β, ψF)

such that the diagram

L(β, ψL)
τ
A,β−−−−−→ Q(A, β, ψL)

res
⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐�res

F(β, ψF) −−−−−→
τA,β

(A, β, ψF)

is commutative.
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3.3. Proof of Theorem 2.1.
3.3. Proof of Theorem 2.1. We now prove Theorem 2.1.
We assume that π ∈ et

m(D) has positive level. Let (E/F, ξ) be an admissible pair over F
that has degree n and is attached to π. By assumption, we have ξ|U1

E � 1. Here, we may
set π = πD(ξ). On the other hand, there exists a pair ([A, �, 0, β], θ) such that [A, �, 0, β] is a
simple stratum in A and θ ∈ (A, β, ψF) is contained in π|H1(β,A). Thus, we obtain

Θ(π) = F(θ) ∈ ̃(F),

as in Section 1.4. Set E0 = F[β]. Then, again from the arguments of Section 1.4, there exists
a character ξ0 of U1

E0
which satisfies

θ|U1
E = ξ|U1

E = ξ0 ◦ NE/E0 .

We note that H1(β,A) ∩ E = U1
E . Moreover, (E0/F, ξ0) is an admissible 1-pair. From

Theorem 3.1, it follows that there exists a unique simple character θ0 ∈ F(β, ψF) such that

θ = τA,β(θ0).

Thus, from [3, Definitions 1.5 and 1.10], we obtain

Θ(π) = F(θ) = F(θ0)

in ̃(F). Again from Theorem 3.1, there exist θ0 ∈ L(β, ψL) and θ ∈ Q(A, β, ψL) such that

θ0|H1(β,A(E)) = θ0, θ|H1(β,A) = θ

and moreover,

θ = τA,β(θ0).

In order to prove Theorem 2.1, it is enough to prove

(3.1) θ0(x) = θ(x), x ∈ U1
E .

In fact, this implies that

θ0(x) = θ(x) = ξ(x) = ξ0(NE/E0 (x)), x ∈ U1
E .

We apply the arguments of [7, Section 2.3] to F(θ0) ∈ (F), so that

Θ(π) = F(θ) = F(θ0) = Θξ0 = Θξ,

which is the desired result of Theorem 2.1.
We will prove Equation (3.1). For the quasi-simple characters θ0, θ, set

ϕL
β(θ0) = (θ

i
0) ∈

s∏
i=1

L(βi, ψL),

ϕA,β(θ) = (θ
i
) ∈

s∏
i=1

(A
i
, βi, ψL).

By the commutative diagram before Theorem 3.1, for each i, 1 ≤ i ≤ s, we have

(3.2) θ
i
= τ
A

i
,βi(θ

i
0).

For a fixed i, we have
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θ
i
0 = θ0|H1(βi,A(Ei)), θ

i
= θ|H1(βi,A

i
).

Since we have

U1
E ⊂ U1

Ei ⊂ H1(βi,A(Ei)) ∩ H1(βi,A
i
),

from Equation (3.2) and [9, (3.6.1)], we hence obtain Equation (3.1). The proof of Theorem
2.1 is completed.
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