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Abstract
In this paper we shall prove the weak convergence of the associated diffusion processes of

regular subspaces with monotone characteristic sets for a fixed Dirichlet form. More precisely,
given a fixed 1-dimensional diffusion process and a sequence of its regular subspaces, if the
characteristic sets of regular subspaces are decreasing or increasing, then their associated dif-
fusion processes are weakly convergent to another diffusion process. This is an extended result
of [14].

1. Introduction

1. Introduction
Roughly speaking, for a fixed Dirichlet form, a regular Dirichlet subspace is its closed

subspace with Dirichlet and regular properties. This terminology was first raised by M.
Fukushima and J. Ying in [5] [6], then they and their co-authors did a series of works on
this topic, for example [3] [4] [9] and [10]. To introduce this conception, let E be a locally
compact separable metric space and m a fully supported Radon measure on E. Then L2(E,m)
is a Hilbert space, and its norm and inner product are denoted by ‖ · ‖m and (·, ·)m. The
definitions of Dirichlet form and regularity are standard, and we refer them to [2] and [7].
Further let ( , ), ( ′, ′) be two regular Dirichlet forms on L2(E,m). Then ( ′, ′) is called
a regular Dirichlet subspace, or a regular subspace in abbreviation, if


′ ⊂  , (u, v) = 

′(u, v), u, v ∈  ′.
We use ( ′, ′) ≺ ( , ) to stand for that ( ′, ′) is a regular subspace of ( , ).

Recently, one of us with his co-author considered the Mosco convergence on regular
subspaces of 1-dimensional diffusion process in [14]. In those settings, the state space E is
I = (a, b), an open interval, and m is a fixed and fully supported Radon measure on I. Then
L2(I,m) is a Hilbert space. The quadratic form

(,) := ( (s,m), (s,m)
0 )

is a regular Dirichlet form on L2(I,m) associated with the scaling function s, i.e. a strictly
increasing and continuous function on I. More precisely,
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(1.1)


(s,m)
0 := {u ∈  (s,m) : u(a) = 0 (resp. u(b) = 0) if a (resp. b) is s-regular},


(s,m)(u, v) =

1
2

∫
I

du
ds

dv
ds

ds, u, v ∈  (s,m)
0 ,

where

(1.2) 
(s,m) :=

{
u ∈ L2(I,m) : u � s, du

ds
∈ L2(I, ds)

}
,

u � s means that there exists an absolutely continuous function g on s(I) := {s(x) : x ∈ I}
such that u = g ◦ s, and du/ds := g′ ◦ s. Clearly, any function in  (s,m) is continuous. We
refer the above terminologies to [2] [4] and [14]. Note that

C∞c ◦ s := {u = ϕ ◦ s : ϕ ∈ C∞c (J)}
is a special standard core of (,), where J = s(I). Its associated Hunt process is denoted
by M. Hereafter, we always fix this regular Dirichlet form (,) and its associated Hunt
process M. Let {(n,n) : n ≥ 1} be a sequence of regular subspaces of (,). In other
words, for each n,


n ⊂ , 

n(u, v) = (u, v), u, v ∈ n.

Then for each n, there exists another scaling function sn such that (see Proposition 2.2
of [14])

sn � s, dsn

ds
= 0 or 1, ds-a.e.

and

(n,n) = ( (sn,m), (sn,m)
0 ).

Set

(1.3) Gn :=
{
x ∈ I :

dsn

ds
= 1

}

in the sense of ds-a.e., which is called the characteristic set of (n,n). We already illus-
trated in [10] that the characteristic set Gn is an essential character of regular subspace, see
also Lemma 2.3 of [14]. The associated diffusion process of (n,n) is denoted by Xn. Let
( , ) be another regular subspace of (,), whose scaling function is s∞ and characteristic
set is denoted by G. Its associated diffusion process is denoted by X. The probability tran-
sition semigroups of Xn and X are denoted by (Pn

t )t≥0 and (Pt)t≥0 respectively. We consider
two situations:

(D): Gn ↓ G in the sense of ds-a.e., i.e.

Gn ⊃ Gn+1,
⋂
n≥1

Gn = G, ds-a.e.

(U): Gn ↑ G in the sense of ds-a.e., i.e.

Gn ⊂ Gn+1,
⋃
n≥1

Gn = G, ds-a.e.

In [14], the authors proved that in (D) and part of (U) (i.e. Gn is open and G = I), (n,n)
converges in the sense of Mosco as n→ ∞.
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In this paper, we shall extend the results of [14]. Our main result stated in §2 illustrates
that in the cases of (D) and (U), under some mild conditions (n,n) is not only Mosco-
convergent to ( , ), but its associated diffusion process Xn is also convergent to X in the
weak sense.

Before proving the main result in §4, we shall deeply reconsider the Mosco convergence
of (D) and (U) in §3. We find if the characteristic sets are decreasing or increasing to another
set, which is not necessarily a characteristic set, then their associated regular subspaces are
Mosco-convergent to another Dirichlet form (may be in the wide sense), which is related
to the limitation of characteristic sets, see Theorems 3.8 and 3.11. We shall also give some
interesting examples. For instance, a sequence of regular Dirichlet forms may converge to a
“zero” Dirichlet form in the sense of Mosco, see Example 3.10. Particularly, for Case (U),
we shall prove the Mosco convergence in Theorem 3.11 without any other assumptions. In
other words, we may delete all other conditions in Theorem 4.1 of [14].

2. Main results

2. Main results
We first make the assumption:

(H1): Xn and X are both conservative.

Remark 2.1. For diffusion process Xn, it is conservative if and only if neither a nor b is
approachable in finite time, i.e. for c ∈ I,∫ c

a
m ((x, c)) sn(dx) = ∞,

(
resp.

∫ b

c
m ((c, x)) sn(dx) = ∞

)
.

Thus in Case (U), (H1) is equivalent to that X1 is conservative, and in Case (D), it is equal to
that X is conservative. Roughly speaking, we only need the conservativeness of the smallest
Dirichlet space in the sequence.

Note that this condition is mainly used to guarantee the Lyons-Zheng decomposition for
all T > 0 (without the restriction T < ζ, where ζ is the life time of relevant diffusion
process).

Since Xn and X are both diffusion processes, we may assume that they share the same
sample path space

Ω = C ([0,∞), I) ⊂ C ([0,∞),R) .

In other words, Ω may be regarded as a subspace of C ([0,∞),R). Note that C ([0,∞),R)
(and hence Ω) is a separable metric space with its standard metric (see [1]). Define a class
of trajectory functions on C([0,∞),R):

Zt(ω) = ω(t), ω ∈ C([0,∞),R), t ≥ 0.

Naturally, Xn (resp. X) corresponds to a probability measure class (Px
n)x∈I (resp. (Px)x∈I)

on Ω, and Z = (Zt)t≥0 may be regarded as their common trajectory function class. Let
{μn, μ : n ≥ 1} be a class of probability measures on I, and define

Pμn
n (·) :=

∫
x∈I
μn(dx)Px

n(·), Pμ(·) :=
∫

x∈I
μ(dx)Px(·).
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They are still probability measures on Ω. We make the following conditions on {μn, μ : n ≥
1}.

(H2): (i) {μn : n ≥ 1} is tight.
(ii) μn(dx) = gn(x)m(dx), μ(dx) = g(x)m(dx) and gn → g in L1(I,m) and L2(I,m)

as n→ ∞.

Remark 2.2. For example, if μn(dx) = μ(dx) = g(x)m(dx) and g ∈ L2(I,m) (for instance,
g is bounded), then (H2) is satisfied.

The second term of (H2) is mainly used to prove the weak convergence of finite dimen-
sional distributions in §4.2.

We have the last assumption as follows:

(H3): Let
◦
s be the scaling function of the smallest Dirichlet space in the sequence (i.e.

for Case (U),
◦
s = s1; for Case (D),

◦
s = s∞). Assume
◦
s � m

and

ϕ :=
d
◦
s

dm
is bounded.

Remark 2.3. For the classical case, i.e. (,) = ( 1
2 D,H1(R)), in other words, M is 1-dim

Brownian motion, we know that (H3) is always right.

Theorem 2.4. For the cases (D) and (U), under the conditions (H1), (H2) and (H3), Pμn
n

is weakly convergent to Pμ as n→ ∞.

We know from [9] that if the characteristic set of regular subspace is open, we may give
a deep description about its structure. However, [9] also pointed out that not each regular
subspace has an open characteristic set. Fortunately, the above theorem tells us although
we cannot directly describe the structure of regular subspace for some general case (the
characteristic set is not open), we may find some other “good” regular subspaces, whose
associated diffusion processes weakly converge to the bad one.

For example, assume that (,) corresponds to the 1-dimensional Brownian motion, and
( , ) is one of its regular subspaces with a characteristic set G (may not be open). Because
of the regularity of Lebesgue measure, we may find a sequence of open sets {Gn : n ≥ 1}
such that Gn ↓ G a.e. It follows that (see [9]) Gn is still a characteristic set of some regular
subspace, say (n,n), of (,), which can be described very well through the technique
of [9]. By Theorem 2.4, the associated diffusion process of (n,n) is weakly convergent to
that of ( , ).

3. Mosco convergence

3. Mosco convergence
In this section, we shall first introduce some results on Mosco convergence of monotone

Dirichlet spaces in §3.1. Note that the discussions in §3.1 are valid for general settings, not
only for the cases on the open interval I. Then in §3.2 we shall extend the main results
of [14] to more general situations.
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3.1. Mosco convergence of monotone Dirichlet spaces.
3.1. Mosco convergence of monotone Dirichlet spaces. We need to point out that in

this part (n,n) and (,) are general Dirichlet forms on L2(E,m) (not only the Dirichlet
forms on L2(I,m) in §1).

In the context of U. Mosco [11], the Mosco convergence may be defined for closed forms
in the wide sense, i.e. the quadratic forms which satisfy all conditions of closed forms except
for the denseness of domains in L2(E,m). Next, we shall write down its specific definition
for handy reference. For any quadratic form ( , ) on L2(E,m), we always extend the
domain of  to L2(E,m) by

(u, u) = ∞, u ∈ L2(E,m) \  .
Furthermore, we say un converges to u weakly in L2(E,m), if for any v ∈ L2(E,m), (un, v)m →
(u, v)m as n→ ∞, and strong convergence in L2(E,m) means ‖un − u‖m → 0 as n→ ∞.

Definition 3.1. Let {(n,n) : n ≥ 1} be a sequence of closed forms in the wide sense
and ( , ) another closed form in the wide sense on L2(E,m). Then (n,n) is said to be
convergent to ( , ) in the sense of Mosco as n→ ∞, if

(a) for any sequence {un : n ≥ 1} of functions in L2(E,m), which is convergent to
another function u ∈ L2(E,m) weakly, it holds that

(3.1) lim inf
n→∞ 

n(un, un) ≥ (u, u);

(b) for any function u ∈ L2(E,m), there always exists a sequence {un : n ≥ 1} of
functions in L2(E,m), which is convergent to u strongly as n→ ∞, such that

(3.2) lim sup
n→∞


n(un, un) ≤ (u, u).

Note that every closed form in the wide sense possesses an associated semigoup on
L2(E,m), which is not necessarily strongly continuous. Let (T n

t )t≥0 and (Tt)t≥0 be the semi-
groups of (n,n) and ( , ). Then (n,n) is convergent to ( , ) in the sense of Mosco,
if and only if for any f ∈ L2(E,m) and t ≥ 0, T n

t f is strongly convergent to Tt f in L2(E,m),
see [11].

3.1.1. Decreasing case.
3.1.1. Decreasing case. We always fix a regular Dirichlet form (,) on L2(E,m). A

decreasing sequence of regular subspaces means a sequence of regular subspaces {(n,n) :
n ≥ 1} of (,), which satisfies


1 ⊃ 

2 ⊃ · · · ⊃ 
n ⊃ · · · .

Define

(3.3) ∞ :=
⋂
n≥1


n, ∞(u, v) := (u, v), u, v ∈ ∞.

Clearly, ∞ may not be dense in L2(E,m), and (∞,∞) may not be a real Dirichlet form.
But it is actually a Dirichlet form in the wide sense, which means that it satisfies all con-
ditions of Dirichlet form except for the denseness of ∞ in L2(E,m). We refer its specific
definition to §1.3 of [7].

Lemma 3.2. Let (∞,∞) be the quadratic form defined by (3.3). Then it is a Dirichlet
form on L2(E,m) in the wide sense.
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Proof. Clearly, (∞,∞) is a bilinear symmetric quadratic form on L2(E,m). Thus it
suffices to prove the closeness and Dirichlet property of (∞,∞). Set

∞,1(u, v) := ∞(u, v) + (u, v)m, u, v ∈ ∞.
Assume that {uk : k ≥ 1} is an ∞,1-Cauchy sequence in ∞. For any n ≥ 1, since ∞ ⊂ n

and n|∞×∞ = ∞, it follows that {uk : k ≥ 1} is also an n
1 -Cauchy sequence in n.

Hence there is a function vn ∈ n such that ‖uk − vn‖n
1
→ 0 as k → ∞. Particularly, uk is

L2(E,m)-convergent to vn as k → ∞. But n is arbitrary for the existence of vn. That implies
v1 = v2 = · · · = vn = · · · . Denote this common function by v. Then v ∈ ∩n≥1

n = ∞ and

∞,1(uk − v, uk − v) = 
1
1 (uk − v1, uk − v1)→ 0

as k → ∞. Therefore, the closeness of (∞,∞) is proved. Finally, we turn to prove the
Dirichlet property of (∞,∞). Let u be arbitrary function in ∞ and ψ an arbitrary normal
contraction on R (i.e. for any t, s ∈ R, |ψ(t)| ≤ |t|, |ψ(t) − ψ(s)| ≤ |t − s|). Since for any n ≥ 1,
u ∈ ∞ ⊂ n, it follows that ψ ◦ u ∈ n and n(ψ ◦ u, ψ ◦ u) ≤ n(u, u). That implies

ψ ◦ u ∈
⋂
n≥1


n = ∞,

and naturally,

∞(ψ ◦ u, ψ ◦ u) = 
n(ψ ◦ u, ψ ◦ u), ∞(u, u) = 

n(u, u).

Hence

ψ ◦ u ∈ ∞, ∞(ψ ◦ u, ψ ◦ u) ≤ ∞(u, u).

That completes the proof. �

Remark 3.3. Set n := n ∩ Cc(E), which is a special standard core of (n,n), and
 := ∩n≥1n. One may easily check that (∞,∞) is regular if and only if  is a special
standard core of (∞,∞). In fact,

∞ ∩Cc(E) = (∩n≥1
n)

⋂
Cc(E) =

⋂
n≥1

(n ∩Cc(E)) = .

However, the regularity of (∞,∞) is not always satisfied, and indeed an example that
(∞,∞) is a Dirichlet form in the wide sense will be shown in Example 3.10. Furthermore,
Example 3.4 of [14] provided an example, in which the Mosco limitation (∞,∞) in Propo-
sition 3.4 is a real Dirichlet form (not only in the wide sense) but not a regular one. On the
other hand, the first part of Example 5.1 in [14] is an example to illustrate that (∞,∞) may
be a regular Dirichlet form.

The following Proposition asserts that the sequence {(n,n) : n ≥ 1} of regular sub-
spaces is convergent to the quadratic form (∞,∞) in the sense of Mosco. Indeed, the
regularities of {(n,n) : n ≥ 1} are not necessary for this fact. We refer a similar result
to [13, Theorem 3.1] and [12, Theorems S14 and S16].

Proposition 3.4. For a given regular Dirichlet form (,) on L2(E,m), assume
{(n,n) : n ≥ 1} is a decreasing sequence of regular subspaces of (,). The quadratic
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form (∞,∞) is defined by (3.3). Then (n,n) is convergent to (∞,∞) in the sense of
Mosco as n→ ∞.

Proof. We first prove the second term (b) of Definition 3.1. For any function u ∈ L2(E,m),
let un := u for any n ≥ 1. If u � ∞, then ∞(u, u) = ∞ and clearly

lim sup
n→∞


n(un, un) ≤ ∞(u, u).

Now assume that u ∈ ∞. Particularly, for any n ≥ 1, un = u ∈ ∞ ⊂ n. Thus n(un, un) =
∞(u, u), which indicates

lim sup
n→∞


n(un, un) = lim sup

n→∞
∞(u, u) = ∞(u, u).

Next, we turn to prove the first term (a) of Definition 3.1. Assume that un is weakly
convergent to u in L2(E,m) as n → ∞. Without loss of generality, we may assume that
un ∈ n for any n ≥ 1. In fact, if un � n, then n(un, un) = ∞. When we drop un from
the sequence of functions, the limitation in the left side of (3.1) will decrease. Moreover, if
there are only finite un such that un ∈ n, then this limitation must be ∞ and (3.1) is clear.
Fix an integer N, for any n ≥ N, since un ∈ n ⊂ N , it follows that {un : n ≥ N} ⊂ N .
Note that any closed form (not necessarily densely defined) is lower-semi-continuous with
respect to the weak convergence in L2(E,m). This implies

(3.4) lim inf
n≥N,n→∞ 

N(un, un) ≥ 
N(u, u).

On the other hand, it follows from un ∈ n that N(un, un) = n(un, un). If for some integer
N, u � N , then N(u, u) = ∞. From (3.4), we obtain that

lim inf
n→∞ 

n(un, un) = lim inf
n≥N,n→∞ 

N(un, un) ≥ ∞ ≥ ∞(u, u).

If for any integer N, u ∈ N , then it follows that u ∈ ∩N≥1
N = ∞. Clearly, for some

integer N, ∞(u, u) = N(u, u). Therefore, we can deduce from (3.4) that

lim inf
n→∞ 

n(un, un) = lim inf
n≥N,n→∞ 

N(un, un) ≥ ∞(u, u).

That completes the proof. �

3.1.2. Increasing case.
3.1.2. Increasing case. On the contrary, we shall consider the increasing sequences of

regular subspaces. We still fix a regular Dirichlet form (,) on L2(E,m). An increasing
sequence of regular subspaces means a sequence of regular subspaces {(n,n) : n ≥ 1} of
(,), which satisfies


1 ⊂ 

2 ⊂ · · · ⊂ 
n ⊂ · · · .

Note that ∪n≥1
n is a linear subspace of . It follows from the closeness of (,) that

the quadratic form (,∪n≥1
n) is closable on L2(E,m). Denote the closure of ∪n≥1

n in 

relative to the inner product 1 by ∞, and define

(3.5) 
∞(u, v) := (u, v), u, v ∈ ∞.

We first assert that (∞,∞) is a regular Dirichet form on L2(E,m).
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Lemma 3.5. The quadratic form (∞,∞) given above is a regular Dirichlet form on
L2(E,m). Furthermore, if n is a core of (n,n) for each n ≥ 1, then  := ∪n≥1n is a core
of (∞,∞).

Proof. We first claim that (∞,∪n≥1
n) possesses the Dirichlet property. In fact, let ψ be

a normal contraction. Take any function u in ∪n≥1
n. Then there exists an integer N such

that u ∈ N . Since (N ,N) is a Dirichlet form, it follows that ψ ◦ u ∈ N ⊂ ∪n≥1
n and


∞(ψ ◦ u, ψ ◦ u) ≤ 

∞(u, u).

That implies the Dirichlet property of (∞,∪n≥1
n). Thus it follows from Theorem 3.1.1

of [7] that (∞,∞) is a Dirichlet form on L2(E,m).
Next, we turn to prove that  is a core of (∞,∞). Clearly, we only need to prove that

 is dense in ∪n≥1
n with the norm ‖ · ‖∞1 . Indeed, for any function u ∈ ∪n≥1

n, there is an
integer N such that u ∈ N . Thus we can take a sequence of functions {un : n ≥ 1} ⊂ N

such that ‖un − u‖N
1
→ 0 as n→ ∞. Since N ⊂ ∞, it follows that un ∈  and

‖un − u‖∞1 → 0,

as n→ ∞. That completes the proof. �

For the increasing sequence {(n,n) : n ≥ 1} of regular subspaces, we have an analogical
result of Proposition 3.4. We also refer the relevant discussion to Theorem 3.2 of [13].

Proposition 3.6. Let {(n,n) : n ≥ 1} be an increasing sequence of regular subspaces
of (,) on L2(E,m). The quadratic form (∞,∞) is defined by (3.5). Then (n,n) is
convergent to (∞,∞) in the sense of Mosco as n→ ∞.

Proof. We first prove (a) of Definition 3.1. Take a sequence of functions {un : n ≥ 1}
in L2(E,m), which is weakly convergent to another function u ∈ L2(E,m). Without loss of
generality, we may assume that un ∈ n for any n ≥ 1. It follows from un ∈ n ⊂ ∞ that


n(un, un) = 

∞(un, un).

Since (∞,∞) is convergent to itself in the sense of Mosco, we have

lim inf
n→∞ 

∞(un, un) ≥ 
∞(u, u).

Thus we can deduce that

lim inf
n→∞ 

n(un, un) = lim inf
n→∞ 

∞(un, un) ≥ 
∞(u, u).

Finally, we prove (b) of Definition 3.1. For any function u ∈ L2(E,m), if u � ∞, then
clearly ∞(u, u) = ∞, and (3.2) is surely right. Otherwise, if u ∈ ∞, then it follows
from Lemma 3.5 that we may take a sequence of functions {un : n ≥ 1} ⊂  such that
‖un − u‖∞1 → 0 as n → ∞. Moreover, we may assume that un ∈ n for any n ≥ 1. In fact,
there always exists an increasing sequence of integers {kn : n ≥ 1} such that un ∈  kn . For
any n ≥ 1 and kn−1 ≤ l < kn, set

vl := un−1.

Then for any l ≥ 1, vl ∈ n−1 ⊂  l, and clearly ‖vl − u‖∞1 → 0 as l → ∞. Hence we can
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replace {un : n ≥ 1} by {vl : l ≥ 1} to realize our assumption. Consequently, it follows from
un ∈ n that n(un, un) = ∞(un, un). Furthermore, ‖un − u‖∞1 → 0 implies

lim sup
n→∞


n(un, un) = lim sup

n→∞

∞(un, un) = lim

n→∞ 
∞(un, un) = 

∞(u, u).

That completes the proof. �

3.2. Mosco convergence of the cases (D) and (U).
3.2. Mosco convergence of the cases (D) and (U). In this section, let us turn back to the

special cases of 1-dimensional irreducible diffusion processes on I. More precisely, as in §1,
(,) = ( (s,m), (s,m)

0 ) is the regular Dirichlet form on L2(I,m) associated with the scaling
function s. Then all regular subspaces of (,) may be characterized by the class of scaling
functions

(3.6)
Ss(I) :=

{
s̃ : s̃ is a strictly increasing and continuous function on I,

s̃(e) = 0, s̃ � s, ds̃
ds
= 0 or 1, ds-a.e.

}
,

where e is a fixed point of I. Furthermore, Ss(I) has the following equivalent expression:

Gs(I) :=
{
G ⊂ I : G is measurable,

∫
G∩(c,d)

ds > 0, ∀c, d ∈ I, c < d
}
.

In other words,

Ss(I)→ Gs(I), s̃ �→ Gs̃ :=
{
x ∈ I :

ds̃
ds

(x) = 1
}

is a bijective mapping, see Lemma 2.3 of [14]. The set Gs̃ ∈ Gs(I) of s̃ ∈ Ss(I) is the
characteristic set of associated regular subspace, which is an equivalence class in the sense
of ds-a.e. Note that the regular subspace associated with scaling function s̃ or characteristic
set Gs̃ may be written as

(
 (s̃,m), (s̃,m)

0
)
.

3.2.1. Case (D).
3.2.1. Case (D). Now we turn to consider the extended cases of (D), in which the Mosco

limitation is not necessarily a real Dirichlet form. Assume that G is a subset of I, which may
not belong to Gs(I). Set F := Gc and define

(3.7)
̄ :=

{
u ∈  (s,m) :

du
ds
= 0, ds-a.e. on F

}
,

̄(u, v) := 
(s,m)(u, v) =

1
2

∫
I

du
ds

dv
ds

ds, u, v ∈ ̄ .

We first assert that (̄ , ̄ ) is a Dirichlet form in the wide sense.

Lemma 3.7. Let G ⊂ I and the quadratic form (̄ , ̄ ) be given above. Then (̄ , ̄ ) is a
Dirichlet form in the wide sense on L2(I,m). Furthermore, (̄ , ̄ ) is a real Dirichlet form if
and only if G ∈ Gs(I).

Proof. For the first assertion, we only need to prove the closedness and Dirichlet property
of (̄ , ̄ ). Let {un : n ≥ 1} ⊂ ̄ be an ̄1-Cauchy sequence in ̄ . Since ̄ ⊂  (s,m) and
( (s,m), (s,m)) is closed, it follows that there is a function u ∈  (s,m) such that un → u with
the norm ‖ · ‖


(s,m)
1

as n → ∞. Particularly, a subsequence of {un : n ≥ 1}, which is still
denoted by {un : n ≥ 1}, satisfies
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dun

ds
→ du

ds
, ds-a.e.

as n→ ∞. From dun/ds = 0, ds-a.e. on F for any n, we can deduce that du/ds = 0, ds-a.e.
on F. Hence u ∈ ̄ and ‖un−u‖̄1

→ 0 as n→ ∞. That implies the closedness of (̄ , ̄ ). For
the Dirichlet property of (̄ , ̄ ), take a function u = ϕ ◦ s ∈ ̄ and assume that ψ is a normal
contraction. Note that du/ds = ϕ′ ◦ s and d(ψ ◦ u)/ds = (ψ ◦ ϕ)′ ◦ s = ψ′ ◦ ϕ ◦ s · ϕ′ ◦ s.
Clearly, ψ ◦ u ∈  (s,m) and


(s,m)(ψ ◦ u, ψ ◦ u) ≤ 

(s,m)(u, u).

It follows from du/ds = 0, ds-a.e. on F that

dψ ◦ u
ds

= 0, ds-a.e. on F.

Hence ψ ◦ u ∈ ̄ and ̄(ψ ◦ u, ψ ◦ u) ≤ ̄(u, u).
Finally, if G ∈ Gs(I), then clearly (̄ , ̄ ) is a real Dirichlet form (see Lemma 3.1 of [14]).

Otherwise, if G � Gs(I), then there is an open interval (c, d) ⊂ I such that (c, d) ⊂ F, ds-a.e.
In particular, any function u in ̄ satisfies du/ds = 0, ds-a.e. on (c, d). It follows that u is a
constant on (c, d), which indicates that ̄ cannot be dense in L2(I,m). In other words, (̄ , ̄ )
is only a Dirichlet form in the wide sense. That completes the proof. �

Assume that {Gn : n ≥ 1} ⊂ Gs(I) is a decreasing sequence of sets, and for each n, sn is
the associated scaling function of Gn. Note that Gn is defined in the sense of ds-a.e., hence
the decreasing sequence is also in the sense of ds-a.e. Define (̄n, ̄n) := ( (sn,m), (sn,m)).
Let

(3.8) G :=
⋂
n≥1

Gn,

which is a subset of I, and the quadratic form (̄ , ̄ ) is defined by (3.7) with respect to this
subset G. The following corollary may be regarded as an extension of Theorem 3.1 of [14].

Theorem 3.8. Let {Gn : n ≥ 1}, G and the quadratic form (̄ , ̄ ) be given above. Then(
̄n, ̄n

)
is convergent to (̄ , ̄ ) in the sense of Mosco as n→ ∞.

Proof. Since Gn is decreasing relative to n, it follows from Lemma 3.1 of [14] that

̄
1 ⊃ ̄

2 ⊃ · · · ⊃ ̄
n ⊃ · · · .

Thus from Proposition 3.4, we know that it suffices to prove⋂
n≥1

̄
n = ̄ .

In fact, by Lemma 3.1 of [14], u ∈ ∩n≥1̄
n, if and only if u ∈  and du/ds = 0, ds-a.e. on

Gc
n for any n ≥ 1, which implies that

du
ds
= 0, ds-a.e. on

⋃
n≥1

Gc
n =

⎛⎜⎜⎜⎜⎜⎜⎝
⋂
n≥1

Gn

⎞⎟⎟⎟⎟⎟⎟⎠
c

= Gc.
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It follows from (3.7) that u ∈ ∩n≥1̄
n is equivalent to that u ∈ ̄ . That completes the proof.

�

Remark 3.9. The Dirichlet form (̄n, ̄n) differs to (n,n) in §1. Indeed, (̄n, ̄n) is the
active reflected Dirichlet space of (n,n). The obstacle that we may meet when directly
considering (n,n) has been explained in §3 of [14]. Some similar results on (n,n) were
also given in Corollary 3.3 of [14]. Particularly, we need to point out if (H1) is satisfied,
then neither a nor b is sn-regular (s∞-regular). Thus for Case (D), (n,n) converges to
( , ) in the sense of Mosco.

Note that (3.7) is a real Dirichlet form, if and only if G ∈ Gs(I). Thus the Mosco limi-
tation (̄ , ̄ ) in Theorem 3.8 is not a real Dirichlet form, if and only if the set G defined by
(3.8) does not belong to Gs(I). An extreme and interesting example is as follows.

Example 3.10. Assume that I = R, m is the Lebesgue measure on R. Furthermore, s
is the natural scaling function on R, i.e. s(x) = x, x ∈ R. Then  (s,m) = 

(s,m)
0 , and(

 (s,m), (s,m)
0

)
is exactly the Dirichlet form

(
1
2 D,H1(R)

)
on L2(R) associated with the 1-

dimensional Brownian motion.
Let Q = {rk : k ≥ 1} be the set of all rational numbers. For any n ≥ 1, define

Gn :=
⋃
k≥1

(
rk − 1

2k+1 · n , rk +
1

2k+1 · n
)
.

Since Q is dense in R, one may easily check that Gn ∈ Gs(R). We denote the associated
scaling function of Gn by sn. On the other hand, clearly Gn is decreasing relative to n, and

G :=
⋂
n≥1

Gn.

Since the Lebesgue measure of Gn is not more than 1/n, it follows that the Lebesgue measure
of G equals 0. Let (̄ , ̄ ) be the quadratic form (3.7) relative to the above set G. Apparently,
one may check that

̄ = {0}.
Then the associated semigoup (Tt)t≥0 of (̄ , ̄ ) is exactly Ttu = u for any u ∈ L2(R) and
t ≥ 0. From Theorem 3.8, we can obtain that

(
 (sn,m), (sn,m)

)
is convergent to (̄ , ̄ ) in the

sense of Mosco. Note that
(
 (sn,m), (sn,m)

)
is a regular subspace of

(
1
2 D,H1(R)

)
, and we

denote its semigroup by (T n
t )t≥0. Therefore,

‖T n
t u − u‖m → 0, n→ ∞,

for any u ∈ L2(R) and t ≥ 0.

3.2.2. Case (U).
3.2.2. Case (U). In Theorem 4.2 of [14], we have already considered the Mosco conver-

gence of Case (U). However, the conditions on increasing characteristic sets are too strict,
i.e. {Gn : n ≥ 1} is a sequence of increasing open characteristic sets such that⋃

n≥1

Gn = I
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in the pointwise sense. We say a characteristic set is open, if one of its ds-versions is open
and we let it be this open version. For more details, see Theorem 4.2 of [14].

From now on, we shall prove this kind of Mosco convergence under general settings.
Note that in Case (U)

{Gn : n ≥ 1} ⊂ Gs(I)

is a sequence of increasing characteristic sets (in the sense of ds-a.e.) and

G :=
⋃
n≥1

Gn.

Clearly, G ∈ Gs(I). The associated scaling functions of Gn and G are denoted by sn and s∞.
Then (n,n) := ( (sn,m), (sn,m)

0 ) and ( , ) := ( (s∞,m), (s∞,m)
0 ) are both regular subspaces

of (,). Note that Gn and G are not necessarily open.

Theorem 3.11. For Case (U), the regular subspace (n,n) is convergent to ( , ) in
the sense of Mosco as n→ ∞.

Proof. Note that

sn � sn+1,
dsn

dsn+1
= 1Gn , dsn+1-a.e.

It follows that (n,n) is also a regular subspace of (n+1,n+1) (Cf. Theorem 4.1 of [4]).
In particular,


1 ⊂ 

2 ⊂ · · · ⊂ 
n ⊂ · · · ⊂  .

Note that C∞c ◦ sn is a special standard core of (n,n) for each n ≥ 1. Hence from Propo-
sition 3.6, we only need to prove that ⋃

n≥1

C∞c ◦ sn

is dense in  with the norm ‖ · ‖1 .
Set Jn := sn(I) and J∞ := s∞(I). Clearly, Jn and J∞ are open intervals and

J1 ⊂ J2 ⊂ · · · ⊂ Jn ⊂ · · · ⊂ J∞.

We assert that ∪n≥1Jn = J∞. Actually, ∪n≥1Jn ⊂ J∞. On the contrary, take a point x ∈ I.
Without loss of generality, we may assume that x > e, where e is the fixed point in (3.6).
Since 0 < s∞(x) < ∞, it follows that

s∞(x) =
∫ x

e
1G(y)ds(y) =

∫ x

e
lim
n→∞ 1Gn(y)ds(y) = lim

n→∞

∫ x

e
1Gn(y)ds(y),

which implies

(3.9) s∞(x) = lim
n→∞ sn(x).

All above convergent sequences are increasing relative to n. Since I is open, we can find a
point z ∈ I such that x < z. Similarly, we may deduce that

s∞(z) = lim
n→∞ sn(z) > s∞(x).
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Hence there is an integer M such that sM(z) > s∞(x). In particular, s∞(x) ∈ JM by s∞(x) >
0 = sM(e). Therefore, we can obtain that J∞ ⊂ ∪n≥1Jn.

Note that C∞c ◦ s∞ is a special standard core of ( , ). Take a function u = ϕ ◦ s∞ ∈
C∞c ◦ s∞, i.e. ϕ ∈ C∞c (J∞). Since the support supp[ϕ] of ϕ is compact, we may find a
bounded closed interval K ⊂ J∞ such that

0 ∈ K, supp[ϕ] ⊂ K.

Clearly, K is a compact subset of J∞. It follows from

K ⊂ J∞ =
⋃
n≥1

Jn

that there exists an integer N such that K ⊂ ∪1≤n≤N Jn = JN . That means, for any n ≥ N, we
may regard ϕ as a function in C∞c (Jn) by letting ϕ = 0 on Jn \ K. Furthermore, define

un := ϕ ◦ sn, n ≥ N,

where ϕ is the above function in C∞c (Jn). Clearly, un ∈ C∞c ◦ sn.
Finally, we shall prove that

‖un − u‖1 → 0, n→ ∞.
For any n ≥ N, since supp[ϕ] ⊂ K and 0 ∈ K, one may easily check that the support of ϕ◦sn

and ϕ ◦ s∞ are both subsets of W := s−1
N (K), which is a compact subset of I. Then it follows

from (3.9) and dominated convergence theorem that

(3.10)

lim
n→∞

∫
I
(un(x) − u(x))2 m(dx)

= lim
n→∞

∫
W

(ϕ (sn(x)) − ϕ (s∞(x)))2 m(dx)

=

∫
W

lim
n→∞ (ϕ (sn(x)) − ϕ (s∞(x)))2 m(dx)

= 0.

On the other hand,

(un − u, un − u)

=
1
2

∫
I

(
dun

ds
− du

ds

)2

ds

=
1
2

∫
I

(
ϕ′ ◦ sn · dsn

ds
− ϕ′ ◦ s∞ · ds∞

ds

)2

ds

≤
∫

I

(
ϕ′ ◦ sn · dsn

ds
− ϕ′ ◦ sn · ds∞

ds

)2

ds +
∫

I

(
ϕ′ ◦ sn · ds∞

ds
− ϕ′ ◦ s∞ · ds∞

ds

)2

ds.

Denote the two integrations in the last term of above inequality by Φ(n) and Ψ(n). For any
n ≥ N, since supp[ϕ′] ⊂ K, we can deduce that the support of ϕ′ ◦ sn is also a subset of W.
Moreover, ϕ′ ◦ sn is bounded by ‖ϕ′‖∞ for any n ≥ N. Hence

Φ(n) ≤ ‖ϕ′‖2∞
∫

W

(
1Gn(y) − 1G(y)

)2 ds(y).
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Since W is compact, it follows from the bounded convergence theorem that

lim
n→∞Φ(n) ≤ ‖ϕ′‖2∞ lim

n→∞

∫
W

(
1Gn(y) − 1G(y)

)2 ds(y)

= ‖ϕ′‖2∞
∫

W
lim
n→∞

(
1Gn(y) − 1G(y)

)2 ds(y)

= 0.

For another integration Ψ(n), we have

Ψ(n) =
∫

I

(
ϕ′ ◦ sn(y) − ϕ′ ◦ s∞(y)

)2
(
ds∞
ds

)2

ds

=

∫
W

(
ϕ′ ◦ sn(y) − ϕ′ ◦ s∞(y)

)2 ds∞.

Similarly to (3.10), we can obtain that

lim
n→∞Ψ(n) = 0.

That completes the proof. �

Now, we can reconsider Lemma 3.5, in which  is not asserted to be a special standard
core of (∞,∞). In particular, if n = n ∩Cc(E), then one may easily check that

 =
⋃
n≥1

n = (∪n≥1
n)

⋂
Cc(E)

is a special standard core of (∞,∞). But what about the cases that n is another special
standard core of (n,n)? More precisely, if n is a special standard core of (n,n) for each
n ≥ 1, whether  := ∪n≥1n is always a special standard core of (∞,∞). The following
example based on the Dirichlet forms in Theorem 3.11 indicates that the answer is negative.

Example 3.12. We use the same notations as those in Theorem 3.11, i.e.

( , ) = ( (s∞,m), (s∞,m)
0 ), (n,n) = ( (sn,m), (sn,m)

0 ), n ≥ 1,

where s∞, sn corresponds to the characteristic sets G and Gn, respectively, Gn is increasing
to G in the sense of ds-a.e. as n → ∞. Without loss of generality, further assume that for
any n ≥ 1,

(3.11) ds(Gn+1 \Gn) > 0.

Note that n := C∞c ◦sn is a special standard core of (n,n), and (n,n) is a proper regular
subspace of (n+1,n+1). Furthermore, we have proved in Theorem 3.11 that

 =
⋃
n≥1

n =
⋃
n≥1

C∞c ◦ sn

is a core of ( , ). However, we shall prove that  is not a subspace of Cc(I), and hence it
is not a special standard core of ( , ).

Since the coordinate function f (x) = x is locally in C∞c , it follows that sn is locally in n

for any n ≥ 1. Denote all functions that locally belong to  by loc. We first prove
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(3.12) s1 + s2 � loc.

In fact, because of (3.11), we may take a relatively compact open interval (c, d) such that

e ∈ (c, d), (c, d) ⊂ [c, d] ⊂ I

and

(3.13) ds(G1 ∩ (c, d)) < ds(G2 ∩ (c, d)) < ds(G3 ∩ (c, d)),

where e is the fixed point in (3.6). Assume that s1+s2 ∈ loc. Then there is a function u ∈ 
such that s1 + s2 = u on (c, d). Particularly, u may be written as u = ϕ ◦ sk for some integer
k and ϕ ∈ C∞c (Jk). Thus

s1 ◦ s−1
k (x) + s2 ◦ s−1

k (x) = ϕ(x), x ∈ (sk(c), sk(d)).

If k = 1, then we can deduce that s2 ◦ s−1
1 is smooth on (s1(c), s1(d)). Note that s2 ◦ s−1

1
is strictly increasing. That implies the Lebesgue-Stieltjes measure ds2 ◦ s−1

1 is absolutely
continuous with respect to the Lebesgue measure, which is denoted by | · |, on (s1(c), s1(d)).
Take a set H = s1(Gc

1 ∩ (c, d)). Then it follows from (3.13) that

|H| = ds1(Gc
1 ∩ (c, d)) =

∫
Gc

1∩(c,d)
1G1ds = 0,

whereas

ds2 ◦ s−1
1 (H) = ds2(Gc

1 ∩ (c, d)) = ds(G2 ∩Gc
1 ∩ (c, d))

= ds(G2 ∩ (c, d)) − ds(G1 ∩ (c, d)) > 0.

That contradicts to ds2 ◦ s−1
1 � | · |. If k = 2, similarly we can deduce that s1 ◦ s−1

2 is
smooth on (s2(c), s2(d)). Note that s1 ◦ s−1

2 (0) = s1(e) = 0. On the other hand, for any
x ∈ (s2(c), s2(d)), we have

(3.14)

s1 ◦ s−1
2 (x) =

∫ s−1
2 (x)

s−1
2 (0)

1G1 (y)ds(y) =
∫ s−1

2 (x)

s−1
2 (0)

1G1 (y) · 1G2 (y)ds(y)

=

∫ s−1
2 (x)

s−1
2 (0)

1G1 (y)ds2(y) =
∫ x

0
1G1 (s

−1
2 (z))dz

=

∫ x

0
1s2(G1)(z)dz.

Nevertheless, from (3.13), we can obtain

|s2(G1) ∩ (s2(c), s2(d)) | = |s2 (G1 ∩ (c, d)) | = ds (G1 ∩ (c, d))

< ds(G2 ∩ (c, d)) = ds2((c, d))

= | (s2(c), s2(d)) |.
That indicates that the derivative of s1 ◦ s−1

2 on (s2(c), s2(d)) is not continuous, which con-
tradicts to the smoothness of s1 ◦ s−1

2 on (s2(c), s2(d)). If k ≥ 3, without loss of generality,
we may only consider the case k = 3. Clearly, s1 ◦s−1

3 +s2 ◦s−1
3 is smooth on (s3(c), s3(d)).

Similarly to (3.14), we can obtain that for any x ∈ (s3(c), s3(d)),
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s1 ◦ s−1
3 (x) + s2 ◦ s−1

3 (x) =
∫ x

0

(
1s3(G1)(z) + 1s3(G2)(z)

)
dz.

However, s3(G1) ⊂ s3(G2) and it follows from (3.13) that

|s3(G2) ∩ (s3(c), s3(d)) | < | (s3(c), s3(d)) |,
which also contradicts to the smoothness of s1 ◦ s−1

3 + s2 ◦ s−1
3 . That completes the proof of

(3.12).
Now, we can prove that  is not a linear space. Indeed, since s1 and s2 are locally in 1

and 2 respectively, we may find two functions u1 ∈ 1, u2 ∈ 2 such that s1 = u1, s2 = u2

on (c, d). If  is a linear space, then u1 + u2 ∈ , whereas s1 + s2 = u1 + u2 on (c, d). That
indicates s1 + s2 ∈ loc, which conduces to the contradiction.

Furthermore, one may easily check that  satisfies all conditions of special standard core
except for the linearity (surely, it is not an algebra either).

4. Proof of Theorem 2.4

4. Proof of Theorem 2.4
It is well known that we need to prove the weak convergence of finite dimensional distri-

butions and the tightness of {Pμn
n : n ≥ 1}.

4.1. Scale transform.
4.1. Scale transform. Let

◦
s be the scaling function in (H3). Clearly,

◦
s is a strictly in-

creasing and continuous function on I. Set
◦
J:=

{◦
s(x) : x ∈ I

}
.

Then
◦
J is also an open interval of R and

◦
s : I → ◦

J

is a homeomorphism. Further set

Ω◦
s

:= {◦s ◦ ω : ω ∈ Ω} = C([0,∞),
◦
J) (⊂ C([0,∞),R))

and

η◦
s

: Ω→ Ω◦
s
, ω �→ ◦

s ◦ ω,

where
◦
s ◦ ω(t) :=

◦
s(ω(t)), t ≥ 0. Let

◦
t be the inverse of

◦
s, i.e.

◦
t =

◦
s
−1

. Then
◦
t is also a

strictly increasing and continuous function, and the inverse of η◦
s

is actually

η◦
t

: Ω◦
s
→ Ω, ω �→ ◦

t ◦ ω.

Since
◦
s is bijective, it follows that η◦

s
is also bijective. Furthermore, we may also prove that

η◦
s

is homeomorphic.

Lemma 4.1. The mapping η◦
s

is homeomorphic.

Proof. We only need to prove η◦
s

is continuous. Let {ωn : n ≥ 1} be a sequence in Ω and
ω another element in Ω. Note that ωn → ω in Ω if and only if for any fixed T > 0,
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(4.1) sup
0≤t≤T

|ωn(t) − ω(t)| → 0, n→ ∞.

In particular, there exists two constants M1, M2 such that [M1, M2] ⊂ I and

M1 ≤ ωn(t) ≤ M2, M1 ≤ ω(t) ≤ M2, 0 ≤ t ≤ T.

Since
◦
s is continuous on I, it follows that it is uniformly continuous on [M1, M2]. Thus for

any ε > 0, there exists a constant δ > 0 such that for any x, y ∈ [M1, M2] with |x − y| < δ,
| ◦s(x) − ◦s(y)| < ε.

From (4.1), we may deduce that there exists an integer N such that for any n > N,

sup
0≤t≤T

|ωn(t) − ω(t)| < δ.

Hence

sup
0≤t≤T

| ◦s ◦ ωn(t) − ◦s ◦ ω(t)| < ε,

which implies

lim
n→∞ sup

0≤t≤T
| ◦s ◦ ωn(t) − ◦s ◦ ω(t)| = 0.

That completes the proof. �

Define the following image measures on Ω◦
s
:

Qx
n := P

◦
t(x)
n ◦ η−1

◦
s
, Qx := P

◦
t(x) ◦ η−1

◦
s
, x ∈ ◦J

and

Qn := Qμn◦◦s
−1

n = Pμn
n ◦ η−1

◦
s
, Q := Qμ◦◦s−1

= Pμ ◦ η−1
◦
s
.

Then

(Ω◦
s
, Z = (Zt)t≥0,Qx

n)
x∈ ◦J (resp. (Ω◦

s
, Z = (Zt)t≥0,Qx)

x∈ ◦J)

is the associated coordinate-variable process of the spatial transformed process
◦
s(Xn) (resp.

◦
s(X)). On the other hand, we also write Pμn

n as Pn and Pμ as P for short. Due to Lemma 4.1,
the following lemma is trivial and we omit its proof.

Lemma 4.2. The probability measure Pn is weakly convergent to P as n→ ∞ if and only
if Qn is weakly convergent to Q as n→ ∞.

This lemma indicates that we may do the spatial transform induced by
◦
s on Xn and X

simultaneously. The results in [10] showed that the relation of associated Dirichlet forms
(say (n,n) and ( , )) is invariant. Furthermore, the basic assumptions (H1), (H2) and
(H3) are still satisfied. In other words, without loss of generality, we may assume that

◦
s is

the natural scaling function, i.e.
◦
s(x) = x, x ∈ I.
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Let (
◦
 ,
◦
 ) be the associated regular subspace with respect to

◦
s. The direct corollary is

C∞c (I) ⊂ ◦
 , which is equivalent to that the coordinate function f (x) = x is locally in

◦
 , i.e.

f ∈ ◦
 loc. Since

◦
 is the smallest Dirichlet space in the sequence, we may deduce that for

any n ≥ 1,

f ∈ n
loc, f ∈ loc.

Then we can write Fukushima’s decompositions (hence Lyons-Zheng decompositions) with
respect to f for Xn and X, which is an essential technique to prove the tightness of {Pn : n ≥
1}.

4.2. Weak convergence of finite dimensional distributions.
4.2. Weak convergence of finite dimensional distributions. From now on, we always

assume that
◦
s(x) = x, x ∈ I.

We use Ex
n (resp. Ex) to stand for the expectation with respect to Px

n (resp. Px). For any
0 ≤ t0 < t1 < · · · < tk < ∞ and fi ∈ b(I) ∩ L2(I,m) (0 ≤ i ≤ k), define

En
[
f0(Zt0 ) · · · fk(Ztk )

]
:=

∫
x∈I

Ex
n
[
f0(Zt0 ) · · · fk(Ztk )

]
μn(dx),

E
[
f0(Zt0 ) · · · fk(Ztk )

]
:=

∫
x∈I

Ex [
f0(Zt0 ) · · · fk(Ztk )

]
μ(dx).

We need to prove the following proposition.

Proposition 4.3. As n→ ∞,

(4.2) En
[
f0(Zt0 ) · · · fk(Ztk )

]→ E
[
f0(Zt0 ) · · · fk(Ztk )

]
.

Proof. Let (T n
t )t≥0 and (Tt)t≥0 be the semigroups of Xn and X respectively. Note that

Ex
n
[
f0(Zt0 ) · · · fk(Ztk )

]
= T n

t0

(
f0 · T n

t1−t0

(
· · ·

(
fk−1 · T n

tk−tk−1
fk
)
· · ·

))
(x).

On the other hand, since (n,n) converges to ( , ) in the Mosco sense (Cf. Theorems 3.8
and 3.11), we know that for any t ≥ 0 and f ∈ L2(I,m), ‖T n

t f − Tt f ‖ → 0 as n → ∞. Thus
we may deduce that

E·n
[
f0(Zt0 ) · · · fk(Ztk )

]→ E·
[
f0(Zt0 ) · · · fk(Ztk )

]
in L2(I,m). Then it follows from the second term of (H2) that (4.2) holds. That completes
the proof. �

4.3. Tightness.
4.3. Tightness. To show {Pn : n ≥ 1} is tight, we only need to prove (see [15, Theo-

rem 1.3.2])
(1) limA↑∞ infn Pn(|Z0| ≤ A) = 1;
(2) for any ρ > 0, T < ∞,

lim
δ↓0

lim sup
n→∞

Pn

(
sup

0≤s<t≤T,t−s<δ
|Zt − Zs| ≥ ρ

)
= 0.

Proof of “tightness”. For the first term (1), we have

Pn(|Z0| ≤ A) =
∫

x∈I
μn(dx) Px

n(|Z0| ≤ A) = μn(I ∩ [−A, A]).
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It follows from the first term of (H2) that (1) is right. Thus we only need to prove the second
term in the above equivalent conditions.

Fix n, ρ > 0 and T > 0. Since f (x) = x is locally in n, we have the following Lyons-
Zheng decomposition: for any t, s > 0,

Zt − Zs =
1
2

(M[ f ]
t − M[ f ]

s ) +
1
2

(M[ f ]
T−t − M[ f ]

T−s) ◦ rT , Pm
n -a.e.,

where rT is the time reverse operator at T , i.e. Zt ◦ rT = ZT−t, and M[ f ] is the martingale
part in Fukushima’s decomposition with respect to f . In particular, for any T -measurable
function F, we have

(4.3) Em
n (F ◦ rT ) = Em

n (F).

We assert that the energy measure, denoted by μ〈 f 〉, of M[ f ] equals
◦
s(dx) (i.e. the Lebesgue

measure on I). In fact, for any u ∈ C∞c (I) ⊂ bn,
∫

I
u(x)μ〈 f 〉(dx) = 2n( f , f · u) − n( f 2, u) =

∫
I
u(x)

(
d f
ds

)2

(x)s(dx).

Note that d f /ds = d
◦
s/ds and (d

◦
s/ds)2 = d

◦
s/ds. Thus μ〈 f 〉(dx) =

◦
s(dx). Furthermore, it

follows from (H3) that

〈M[ f ]〉t =
∫ t

0

d
◦
s

dm
(Zs)ds, Pm

n -a.e.

Therefore, for m-a.e. x,

Px
n

(
sup

0≤s<t≤T,t−s<δ
|Zt − Zs| ≥ ρ

)

= Px
n

(
sup

0≤s<t≤T,t−s<δ

∣∣∣∣∣12(M[ f ]
t − M[ f ]

s ) +
1
2

(M[ f ]
T−t − M[ f ]

T−s) ◦ rT

∣∣∣∣∣ ≥ ρ
)

≤ Px
n

(
sup

0≤s<t≤T,t−s<δ

∣∣∣∣M[ f ]
t − M[ f ]

s

∣∣∣∣ ≥ ρ
)

+ Px
n

(
sup

0≤s<t≤T,t−s<δ

∣∣∣∣(M[ f ]
T−t − M[ f ]

T−s

)
◦ rT

∣∣∣∣ ≥ ρ
)
.

Clearly, {
sup

0≤s<t≤T,t−s<δ

∣∣∣∣M[ f ]
t − M[ f ]

s

∣∣∣∣ ≥ ρ
}
=

{
sup

0≤s<t≤T,t−s<δ

∣∣∣B〈M[ f ]〉t − B〈M[ f ]〉s
∣∣∣ ≥ ρ

}
,

where B = (Bt)t≥0 is a Px
n-Brownian motion. Note that d

◦
s/dm is bounded and denote its

bound by C. Particularly, 〈M[ f ]〉t ≤ C · t. Hence{
sup

0≤s<t≤T,t−s<δ

∣∣∣∣M[ f ]
t − M[ f ]

s

∣∣∣∣ ≥ ρ
}
⊂

{
sup

0≤s<t≤C·T,t−s<C·δ
|Bt − Bs| ≥ ρ

}
.

Let

Aδ :=
{
ω : sup

0≤s<t≤T,t−s<δ

∣∣∣∣M[ f ]
t (ω) − M[ f ]

s (ω)
∣∣∣∣ ≥ ρ

}
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and

Bδ :=
{
ω : sup

0≤s<t≤C·T,t−s<C·δ
|Bt(ω) − Bs(ω)| ≥ ρ

}
.

Then we have Px
n(Aδ) ≤ Px

n(Bδ) and Px
n(Bδ) is actually independent of n. By using the

property of time reverse operator rT and (H2), we attain that

lim
δ↓0

lim sup
n→∞

Pn

(
sup

0≤s<t≤T,t−s<δ
|Zt − Zs| ≥ ρ

)

≤ lim
δ↓0

lim sup
n→∞

(Pn(Aδ) + Pn(r−1
T Aδ))

≤ lim
δ↓0

lim sup
n→∞

∫
x∈I

(gn(x) + Pn
Tgn(x))Px

n (Bδ) m(dx)

= lim
δ↓0

∫
x∈I

(g(x) + PTg(x))Px
n (Bδ) m(dx)

= 0.

That completes the proof. �
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