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Abstract
We present a spectral rigidity result for the Dirac operator on lens spaces. More specifically,
we show that each homogeneous lens space and each three dimensional lens space L(g; p) with
q prime is completely characterized by its Dirac spectrum in the class of all lens spaces.

1. Introduction

Let M be a compact Riemannian spin manifold, i.e., a compact oriented Riemannian
manifold with a fixed spin structure. Then there is a canonical first order differential op-
erator D on M called the (spin-) Dirac or Atiyah-Singer operator. This operator is elliptic
and self-adjoint and hence possesses a discrete real spectrum Spec,(M) consisting of eigen-
values with finite multiplicities. A typical question in spectral geometry is to what extent
the geometry of M is determined by Spec,,(M) or by the spectrum of any other canonical
geometric operator.

In this article, we investigate this question for three dimensional lens spaces and for ho-
mogeneous lens spaces. A lens space is a quotient of the sphere S2"~! by a cyclic group of
isometries.

Spectrally, lens spaces were first examined by A. Ikeda and Y. Yamamoto in [13] and
[20]. These authors proved that homogeneous lens spaces and three dimensional lens spaces
are completely determined by the spectra of their Laplace-Beltrami operators in the class of
all lens spaces.

Spectra are seldom explicitly computable. For a 2m — 1 dimensional lens space L =
L(q; p1,- - ., pm) (see Section 2 for notation and definitions), the eigenvalues of the Laplacian
are k(k + 2(m — 1)), k € Ny, with corresponding multiplicities m;, which depend on the lens
space L. Ikeda and Yamamoto introduced the generating function F* of the Laplace operator
on L, defined by

Fi(z) = Z mz~ .
k=0

By definition, this power series encodes the whole spectrum. Hence, two lens spaces L and
L’ are Laplace isospectral if and only if FX© = F. Ikeda and Yamamoto prove that the
generating functions have meromorphic extensions to C of the form
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= 1-7
9 & - 0™ -2

where £, denotes the g-th root of unity e*™/9.

They then use formula (1.1) to prove spectral rigidity of homogeneous lens spaces by
determining the order of the poles of F~. In the non-homogeneous case, a careful analysis
of the poles and residues of F* leads to the following set of equations if the three dimensional
lens spaces L(g; p) and L(g; s) are isospectral:

k(p+1 k(p—1 k(p™+1 k(p* -1
(P )7r — cot —(p )7'[ + cot —(p )7r — cot —(p )77

q q q q

k(s+1) k(s—1) k(s*+ 1) k(s* =1)
ot ———m — cot ———n + cot ———71 — cot ——— 71

q q q q

forall 1 <k <g-1st k(p+1) %0 (mod g) and k(s + 1) # 0 (mod ¢g), where p* and
s* are multiplicative inverses modulo ¢ of p and s, respectively. The solutions of this set of
equations are p = s (mod ¢) and p-s = =1 (mod ¢g). This, in turn, is equivalent to L(g; p)
and L(g; s) being isometric.

The key ingredient to solving the equations in (1.2) is the fact that the numbers cot gn

(1.1) FX(z) =

(1.2) cot

with 1 <k <%, (k,q) = 1 are linearly independent over Q (see e.g. [4]), a fact that goes back
to a very interesting problem of Chowla [8].

Inspired by Ikeda’s and Yamamoto’s work, C. Bér introduced the generating functions
of the Dirac operator on lens spaces, and more generally on spherical space forms, in his
Ph.D. thesis [1] (see also [2]). The eigenvalues of the Dirac operator on the lens space
L =L(g;pi1,--., pm) With a fixed spin structure are + (2’"2—_1 + k), k € Ny, with corresponding

multiplicities m;;. The associated generating functions are

Fi(z) = Z m,fzk .
k=0
Bir proves that these generating functions have meromorphic extensions to C. For odd ¢
these are (see Corollary 3.6):
(g+DkZ;€pj (q+Dk X ;€ipj
DI ), &y

q

1 O aen=-1m! € =(-1)"
Fl) == :
' 1= - Pj —kp;
[ & -2 -2
J=1
Z g(q+1)k Zj€pi Z- Z f(q”)k 2 €Pj
—1 2q 2q
FL(Z) = l < =" 61‘“6,,,:(—])"'*]
q k=0

[ & -2¢"™ -2
j=1

The aim of this article is to shed light on the relationship between the Dirac spectrum
and the geometry of lens spaces which are homogeneous or three-dimensional. We will use
Bir’s formulas and the path that has been paved by lkeda and Yamamoto to do so. Namely,
we will analyse the poles and residues of F£, which encode spectral information, to deduce
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geometric properties of L.

There are, however, some differences to the Laplace case. The Dirac spectrum depends
not only on the metric, but also on the orientation and the spin structure. The dependence on
the orientation is already immanent in the definition of a spin structure and one can easily see
that a change of orientation causes the spectrum to be reflected about zero. The second de-
pendence is more complicated, i.e., there is in general no relation between the spectra associ-
ated to inequivalent spin structures; see, e.g., [3]. If, however, the Riemannian spin manifold
M has two inequivalent spin structures (P, ¢) and (Q,n) and an, say orientation preserving,
isometry f that relates the two spin structures, i.e., the differential df : SO(M) — SO(M)
as a map of the oriented orthonormal frame bundle SO(M) of M lifts to a map a]” :P— 0,
then the spectra of the Dirac operators associated with the spin structures (P, ¢) and (Q, 1)
coincide.

Because of the above, we introduce the notion of two Riemannian spin manifolds being
e-spin-isometric, which means there is an isometry that relates their spin structures and is,
according to € = 1 or £ = —1, orientation preserving or reversing. We then extend the well-
known Theorem 2.4, which states an equivalent condition of isometry for two lens spaces,
to Theorems 2.6 and 2.8 which state equivalent conditions for e-spin-isometry of two lens

spaces.
Of course, &-spin-isometric manifolds are e-isospectral; that is for € = 1 their spectra
coincide (including multiplicities) whereas for € = —1 their spectra coincide after one of

them is reflected about zero. Isospectrality is then understood as e-isospectrality for some
g e {£l}.

The two main results of this paper, Theorems 3.8 and 4.10, are concerned with the inverse
direction. Theorem 3.8 states that if two lens spaces, one of which is homogeneous, are
isospectral, then they are isometric. In dimension three, this statement is strengthened to
state that two e-isospectral lens spaces, one of which is homogeneous, are e-spin-isometric.

Theorem 4.10 states that for prime ¢, if the lens spaces L(g; p) and L(g;s) are e-
isospectral, then they are e-spin-isometric. The proof starts out for general ¢ in the same
way as lkeda’s and Yamamoto’s proof did and arrives at the following set of equations in
the case that ¢ is odd (the case g even is similar, see Corollary 4.7) and both lens spaces are
non-homogeneous:

g | ~1 - 41 1
(13) §q2 kp (COt @ﬂ' %ﬂ') + fqz kp (COt %ﬂ' —cot %ﬂ)

g k 1 k(s—1 g k(s*+1 k(s*—1
=& ks (cot%n—cot(sT)n)hfjk (cot%n—cot%n)

forall 1 <k <g-1st k(px1) %0 (mod g) and k(s = 1) # 0 (mod ¢). Unlike in the
case of the numbers cot gn, (k,q) = 1, there is no theorem about the linear independence

— cot

of the numbers f’q‘ cot éﬂ'. In fact, it is hard to even formulate such a statement as there are
nontrivial linear dependences among these numbers due to dimensional reasons.

However, at the end of [20], Yamamoto gave an alternative proof for the solutions of
the equations (1.2) in case ¢ is a prime number. That proof uses techniques from analytic
number theory, namely, the theory of A-adic series in the cyclotomic fields Q, = Q (fq), and
it carries over to the case of the Dirac operator. Thus, we will use this technique to solve the
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equations (1.3).

Unfortunately, that proof does not work for arbitrary g € N. Numerical calculations for g
in a large range suggest that Theorem 4.10 is true if one drops the assumption that g is prime,
see Remark 4.13 and Conjecture 4.12, but the method of proof would have to be different.

This paper’s main focus lies on three dimensional lens spaces; one can also ask about
Dirac isospectrality of higher dimensional lens spaces. This has been investigated in [6].
With a representation theoretic approach, explicit formulas for the multiplicities m; have
been found, and from this criteria for the isospectrality of lens spaces have been derived.
Furthermore, we were able to construct families of isospectral lens spaces in higher dimen-
sions.

We refer the reader who is new to spin geometry to [15] for a comprehensive introduction.
A thorough treatment of the Dirac spectrum is given in [11]. In particular, several examples
of Dirac isospectral pairs and families are given in that book.

This paper is organised as follows. In Section 2 we introduce lens spaces, describe their
spin structures and their +1-spin-isometry classes. Section 3 contains the description of the
spectra of lens spaces via generating functions and closes with Theorem 3.8, the statement
about the spectral rigidity of homogeneous lens spaces. In Section 4, we restrict to three di-
mensional non-homogeneous lens spaces and carry out the details that lead to Theorem 4.10
and Conjecture 4.12. In Section 5, we mention how the technique used in Section 4 car-
ries over to give a new proof of a known result about n-invariants of three dimensional lens
spaces.

Dedication

I dedicate this article to Jorg Schiilke, my dear father and first teacher in mathematics.

2. Lens Sapces, Spin Structures and Isometry classes

This section contains the setup used throughout the paper. We define lens spaces, describe
their spin structures and isometry classes.

DermniTiON 2.1. Letg € N, py, ..., pm € Z with (g, p;) = 1 for 1 < i < m. Define yg by

P _ . PlesPm . ; cos(2pim/q) sin(2pi7m/q) cos(2pmn/q) sin2pum/q)
Ya = Yq = diag ([ ~SinQpi/q) cos(zplm/m] e [—sin(zpmn/q) cos(2pu/q) ) €S0@2m).

The lens space L(g; p1,. .., pm) 1s defined as the quotient
L(G; 1., pw) = Py \ 2

The matrix y;' is of order ¢ and has, by assumption, only primitive g-th roots of
unity as eigenvalues. Therefore, it generates a freely acting finite group of orientation pre-
serving isometries of $2"~!, and L(g; p1,..., pn) is thus canonically given the structure of
an oriented Riemannian manifold.

The bundle of oriented orthonormal frames SO(S 2"~1) of § 2"~! is SO(2m) with projection
onto the last column vector. A spin structure is a fibrewise non-trivial two-sheeted covering
of the bundle of oriented orthonormal frames (see [15, Theorem 1.4]), which, in this case,
is seen to be Spin(2m). Due to its simply-connectedness, this is the only spin structure of
§2m=1_ Since lens spaces L(g; p1,.. ., pm) are quotients of the sphere, their spin structures
arise as certain quotients of the sphere’s spin structure Spin(2m) (see [11, Proposition 1.4.2]),

----- Pm
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which are in one-to-one correspondence with group homomorphisms 7 : I' = Spin(2m) such
that ® o 7 = Idr, where © : Spin(2m) — SO(2m) is the universal covering homomorphism.

Spin structures on lens spaces were first classified in [10], though not in the language
described above.

Proposition 2.2. The lens space L = L(q; p1,. .., pm) admits a spin structure if and only
if g is odd or m is even. If q is odd, the unique spin structure is given by

m
k k(g+1)p; . kig+Dp;
T((yf,’) ) = n(cos (q+q)p’" + sin (q+q)p’”e2j_lezj) .
J=1

If g and m are even, there are precisely two spin structures given by

m
k » kp;: . kp:
T (()/f;) ) 1= (= 1)k+he) l_l (cos —Z’” + sin —pq’”ezj-ij) ,
j=1

Proof. A group homormorphism 7 : (y,) — Spin(2m) with ® o 7 = Id has to map y} to
one of its preimages under ®, which are + H’;’: | (cos ]% + sin ka’”ez j-1€2 j) (see, e.g., [7, pp.
173]). It thus suffices to determine the order of these elements. By elementary calculations
in the group Spin(2m) (see, e.g., [15, Chapter 1])

m q m
[i 1_[ (COS kl;jn + sin kquﬂezjlegj)] = (x1)? l_[ (cos (kpjyr) + sin (kpjn) ezj,lezj)

J=1 J=1

= @] [
j=1

= (DT (=)=,

If g is odd, exactly one of the two preimages, depending on the parity of ) ; p;, has order g.
If g is even, the p; are necessarily odd so that each preimage has order ¢ if and only if m is
even. For 7y and 7, to be invariant modulo ¢ instead of 2¢, we introduce hg . |

Nortarion 2.3. If ¢ is odd, let L(g; pi,. .., pm) be equipped with its unique spin struc-
ture. If, on the other hand, ¢ and m are even, denote by L(q; p1,..., pm; h) the lens space
L(g; p15 - . ., pm) together with the spin structure 7,, where A € {0, 1}.

We now turn our attention to the isometry classes of lens spaces. The following theorem
is well known.

Theorem 2.4. Let L := L(g; p1,...,pm) and L’ := L(q; s1,. .., Sn). Then the following
assertions are equivalent:

(1) Land L’ are isometric.
(2) There is a number € € Z, a permutation o € S, and there are numbers &; € {+1}
such that

poiyeoiy = 5 (mod q)

foreveryl <i<m.
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Proof. (1) — (2): If L and L’ are isometric, they are certainly homeomorphic. Now [9,
§31] asserts (2).
To prove (2) — (1), we associate the S >"~!-isometry

(2.1) WX, Yt1s o X Ym) = (Xo(1)s Ec ()Y r(1)s - - - » Xor(m)» Em)Yor(m))
with the data £, 0 and ¢;, 1 <i < m. One easily checks that
2.2) ) =¥oy oV,

so that ¥ induces an isometry ¢ : L — L’ by [x] — [P(x)]. m]

For any odd dimensional oriented Riemannian manifold M we denote by M the reversely
oriented Riemannian manifold M and define a SO(n; R)-equivariant map F : SO(M) —
SO(M) by (v1,...,0)x = (U1, ..., =U)x = (U1,...,0)x - (=1d), where (v;...,v,) is an
orthonormal basis of 7M. Next, we associate with any spin structure (P, &) of M a spin
structure (P, &) of M by setting P:=Pand&:=Fo¢&: P — SOM).

Let M and N be odd dimensional spin manifolds with spin structures (P, &) and (Q, 1),
respectively, and let f : M — N be a smooth map.

DEeFiNITION 2.5. (1) The map f relates the spin structures (P, &) and (Q, n) if f is ori-
entation preserving and f*(Q, n) is equivalent to (P, ¢), or if f is orientation reversing
and f*(Q,n) is equivalent to (P, £).

(2) The map f is a +1-isometry if it is an orientation preserving isometry and a —1-
isometry if it is an orientation reversing isometry.

(3) The spin manifolds M and N are spin-isometric if there exists an isometry f : M —
N that relates their spin structures.

(4) Let £ € {#1}. Then M and N are e-spin-isometric if there exists an e-isometry
f : M — N that relates their spin structures.

Theorem 2.6. Let ¢ € {1} and L := L(q; p1,...,pm), L' := L(g; s1,...,S,). Then the
following assertions are equivalent:

(1) Land L' are e-isometric.
(2) There is a number € € Z, a permutation o € S, and there are numbers &; € {1}
such that

Ipoiyeo@y = s (modgq) V1<i<m

m

1_[8,' = €&.

i=1
Proof. (1) — (2): We assume g > 2. Let f : L — L’ be an g-isometry. Identify (L) and
m(L") with (75 Y and (7;), respectively, and denote by fi : 71(L) — m1(L’) the induced map
on fundamental groups. Define £ € Z as the smallest non-negative integer satisfying

ACANES
By [9, 30.1], there are numbers &; € {+1} and a permutation o € S, such that

lesiyPoiy = 5i (mod q) 1<i<m.
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It remains to show that []; &; = €. Suppose not. By [9, 29.6], the isometry  induced by the
one given by (2.1) is homotopic to f through homotopy-equivalences. In particular, f and ¥
have the same orientational behaviour, which is a contradiction.

To prove (2) — (1), we note that ¥ given by (2.1) is an e-isometry. ]

Remark 2.7. Note that for odd ¢, the lens spaces L(q; pi,...,pn) have a unique spin
structure. In this case, (1) of Theorem 2.6 is equivalent to the statement that L and L’ are
&-spin-isometric.

Theorem 2.8. Let g be even and € € {+1}. Let L := L(q;p1,...,pm:h) and L’ =
L(g; s1,...,Sm; h'). Then the following assertions are equivalent:
(1) Land L’ are e-spin-isometric.
(2) There is a number € € Z, a permutation o € S, and there are numbers &; € {1}
such that

IpoirEai si (modg) V1<i<m,

m
& = &,
i=1

h+ i +h)+h = é Zl (IPotreoi — 5i)  (mod 2).

Proof. The statement about the isometry and the orientation is clear from the previous
theorem. Since the mapping of spin structures is a homotopy invariant of a map (in the class
of homotopy equivalences), we can work with the isometry  : L — L’ induced by the one
given by (2.1). Its lift ¥ € O(2m) is covered by two elements +¥ € Pin(2m). Now the
relation (2.2) lifts to Spin(2m) as

wNH =¥ 1, () ¥

if and only if /1 + I' + hy + k) = 5 " UpeiyEoay — i) (mod 2). m]

For any lens space L(g; pi,. - ., pm) We can always, either by one of the two last theorems
or simply by choosing another generator (y} ¥, k € Z with (g,k) = 1, find a (+1)-spin-
isometric lens space of the form L(g; 1, s2,. .., s,;). In particular, every three dimensional
lens space can be written as L(g; 1, p), which we will abbreviate as L(g; p) from now on.
Theorems 2.6 and 2.8 then take the following form.

Corollary 2.9. Let € € {£1}. The lens spaces L(q; p) and L(q; s) are e-isometric if and
only if
p=es (modg) or p-s=e (modgq).
Corollary 2.10. Let g be even and € € {x£1}. The lens spaces L(q; p; h) and L' = L(q; s; h")
are g-spin-isometric if and only if

ep=s (modq) and h+h +h+h=""2" (mod 2)
q

or
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ep-s=1 (modq) and h+K +h +h="""2" (mod2).
q

To facilitate the understanding of Corollaries 2.9 and 2.10, we provide the following

ExampLE 2.11. The lens space L(7;2) is +1-spin-isometric to L(7;4) because 2 - 4 = 1
(mod 7) whereas L(17;4) is —1-spin-isometric to itself because 4> = —1 (mod 17). In
particular, L(17;4) has symmetric spectrum. Analogously, L(8; 3;0) is +1-spin-isometric to
L(8;3;1) because 3> = 1 (mod 8) and 0 + 1 + 0+ 0 = 23=1 (mod 2) and L(10;3;0) is —1-
spin-isometric to L(10; 3; 1). Note that there is a —1-spin-isometry of L(g; p; h), h € {0, 1},
if and only if p> = —1 (mod g) and % is even, which is never the case.

At last, we cite a theorem that characterises those lens space, which are Riemannian
homogeneous.

Theorem 2.12 ([19], Corollary 2.7.2). The lens space L(q; p1, . - ., Pm) IS homogeneous if
and only if p; = £p; (mod q) for all 1 <i < j < m. In particular, two homogeneous lens
spaces of the same dimension and volume are isometric.

3. The Spectrum of the Sphere and its Quotients

In this section, we describe the spectrum of the Dirac operator on the sphere and its
quotients, the spherical space forms. We then specialise the formulas to lens spaces and end
the section with a theorem about the spectral rigidity of homogeneous lens spaces.

The spectrum of the Dirac operator on the three dimensional sphere was first calculated
in [12], though the round metric was only one among a large class of metrics for which
Hitchin calculated the spectrum. In [18], S. Sulanke calculated the spectrum of S" for all
n > 2 by a representation theoretic approach. C. Bér found an alternative and shorter method
to calculate the spectrum in [1] (cf. [2]) using Killing spinors, which also paved the way for
the description of the spectrum on spherical space forms. It is this approach which we will
follow and use in this and the following sections.

Theorem 3.1 ([12], [18], [2]). The eigenvalues of the Dirac operator on the round sphere
S™ are

n
L (2 k),k N
+(2+ € No

with corresponding multiplicities

n nfn+k—1

We now pass to spherical space forms I'\S?”~!, where I' € SO(2m) is a finite and freely
acting group of orientation preserving isometries of §2”~!. Restricting to odd dimensions
is no loss of generality since the only spherical space forms in even dimensions are the
sphere S itself and real projective space PR?™, which is not orientable and, in particular,
not spin. Suppose that the quotient I'\S?"~! is spin, and let a spin structure be given by
7 : I' = Spin(2m). The spinor fields on I'\S?"~! can be identified with the I'-invariant
spinor fields on S2"~! by a unitary isomorphism (see [11, Proposition 1.4.2]). In particular,



DirAc SPECTRA OF LENS SPACES 755

the eigenspinor fields of the Dirac operator on I'\S >"~! can be identified with the I'-invariant
eigenspinor fields of the Dirac operator on S >"~!. It follows that the eigenvalues of the Dirac
operator on I'\S "1 are + (2’"7‘1 + k), k > 0, with corresponding multiplicities

2m-1 2m—1
0 < mult(r\szm—l’T) (i (mT + k)) < multszm—l (i (mT + k)) .
We weave these multiplicities into two power series.

DerintTion 3.2. Let I'\S?"~! be a spherical space form equipped with a spin structure
7 : I' — Spin(2m). The generating functions of (the spectrum of the Dirac operator on)
r\S ! are

- - 2m—1
F‘_(,_F\S2 I’T)(Z) = Z mult(r\szm—l 7) + n +k Zk .
- k=0 ’ 2

Using the multiplicities on S$?"~!, a standard argument shows that these power series
converge absolutely for |z| < 1. In accordance with Definition 2.5 we now make the

DErinition 3.3. Let M and N be compact Riemannian spin manifolds. Then M and N
are +1-isospectral if the spectra of their Dirac operators Dy, and Dy coincide, where each
eigenvalue is counted with its multiplicity. The Riemannian spin manifolds M and N are —1-
isospectral if the following condition is met: A € R is an eigenvalue of Dj, with multiplicity
m = multy () if and only if —A is an eigenvalue of Dy with multiplicity m = multy(—2).
The manifolds M and N are isospectral if they are e-isospectral for some € € {+1}.

Proposition 3.4. Let T\S>"~! and T"\S>"~! be spherical space forms with spin structures
7 : T — Spin(@m) and 7 : I — Spin(2m), respectively. Then T'\S>"~' and T"\S*"~! are

2m-1 v 2m—1 s

(+1)-isospectral if and only if F\S™ 7 = pIS™0)
(r\SZm—l’T) _ (l—v\S2m—l,T/)
FO — F( .

and (—1)-isospectral if and only if

For the following Theorem, denote by y* : Spin(2m) — C the positive and negative
half-spin characters, respectively.

Theorem 3.5 ([2, Theorem 2]). Let IT\S*"~! be a spherical space form equipped with
a spin structure T : I — Spin(2m). Then the eigenvalues of the Dirac operator are
+ (% + k), k > 0, with multiplicities determined by

msrio, Lo X @) -z X @)
G- Fy @@= ; det@d—z-y)

Denote by & := &, the n-th root of unity ¢2*/". Then, for lens spaces, Theorem 3.5 takes
the following form.

Corollary 3.6. Let L = L(q; p1,...,pw)- If q is odd, the generating functions of L are
(qg+Dk X €ipj (g+Dk 2 €ipj
—1 Z fzq - Z é:‘2‘1

51"'€m:(71)m+1 €€y =(=1)"

[ & -2¢" -2
j=1

S

3.2) F7() =

Q| =
~
I
(=]
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(g+Dk X ;€ip; (q+Dk X j€ip;
DN LTI DR

€1 €u=(—1)" 51"'€m=(—l)m+l
- k
Pj —kpj
[ & -2 -2
j=1

If g and m are even and L is equipped with the spin structure Ty, then the generating functions

of L are
k). i€ip;j kY, i€ipj
E fzq]jj_Z'E é;zquj

n:(_l)"Hl El"'emz(_l)m

[ & -2¢" -2
j=1

2j€pj kZj€p;
IR Y

€n=(—1)" € En=(—1)yn*1

l—l (é:]‘;ﬁ.f _ Z) (é_‘;kp.i _ Z)
j=1

<

(3.3) F&7 () =

| =
o~
Il
(=)

-1

14 e

(34) F(+L,Th)(z) — 5 § (_1)k(h+hf1) €16
k=0

1 Kl Py €l
(L,t1) _ k(h+h?)
3.5 F2o M (2) = = § (=D)F"
(3.5) q £

Proof. The values of the half-spin characters on the image of the homomorphisms induc-
ing the spin structures can be found on [7, p. 290]. O

Remark 3.7. Heat kernel methods for the Dirac Laplacian D? on an arbitrary compact
spin manifold show that the dimension as well as the volume of M are spectrally determined
(see [5]). Thus, for a lens space L(g; p1, .- -, pm), m and q are spectrally determined.

The first application of the preceding corollary is the following spectral rigidity result for
homogeneous lens spaces.

Theorem 3.8. Let L = L(q; p1,..., pm)and L' = L(q; s1, . . ., Sy) be lens spaces with fixed
spin structures. Assume L is homogeneous. If L' is isospectral to L, then L' is homogeneous
as well and so, in particular, isometric to L. Moreover, if m = 2, g > 2, and L' is &-
isospectral to L, then L and L are e-spin-isometric and carry the same spin structure.

Proof. Let F. and F’, be the generating functions of L and L', respectively. Formu-
las (3.2)-(3.5) show that the poles of F. are precisely the g-th roots of unity and that these
are at most of order 2m. In fact, the term for k = 0 generates a pole of order 2m — 1 atz = 1
and in case ¢ is even, the term for k = ¢g/2 generates a pole of order 2m — 1 at z = —1. By
the homogeneity assumption, the denominator of every term for k ¢ {0, ¢/2} has a zero of
order m. In case m is even, the numerators of these terms have real coefficients, hence, no
zeros cancel the ones from the denominator. Let m be odd and fix 1 < ky < ¢. Since the
coeflicients of the numerator of the term for k = ky are complex conjugate to the coefficients
of the numerator of the term for k = g—ko, at least one of these terms has a pole of order m at
z= f’;. If L and L’ are isospectral, then, by Proposition 3.4, F’. must have a pole of order m
at every g-th root of unity that is not 1 or —1, hence 5; = +s5; (mod ¢) forall 1 <i < j<m.

Now letm = 2 and g > 2. If ¢ is odd, the multiplicities of the first positive and respectively
negative eigenvalue of the Dirac operator on L = L(g; 1) are F SL’T)(O) =2and F (_L’T)(O) =0.
If g is even, then FZ™(0) = 2 and F“™(0) = 0, whereas FE™(0) = 0 = FE™(0).
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To distinguish the positive from the negative spectrum when L is endowed with the spin

structure 71, we note that lim,_,_1(1 + 2)3F*™(z) = 2= —lim.,(1+ FE (). O
ReMARK 3.9. Let L = L(2:1) = RP?, then F&"™ = o Lo = F™)_ This symmetry
is generated by the isometry of RP® corresponding to the choices £ = 1, & = —&, = 1

and o0 = (12) (see Theorem 2.8). Thus, by Theorem 3.8, the spin manifold RP? is the
only three dimensional homogeneous lens space for which the spectrum is invariant under a
simultaneous change of orientation and spin structure.

4. Three dimensional Lens Spaces

In this section we consider lens spaces of dimension three. We denote by ¢ a positive
integer, by p and s integers that are coprime to ¢ and p, s # =1 (mod ¢). Furthermore, let
p*,s* € Zbe any integers such that p - p* = s-s* =1 (mod g).

We note that in the three dimensional case, the generating functions of L(g; p) simplify to

S k(p¢1)(q+1)7r _ k(pil)(q+l)7r

F()—Zqz_lco - .
i E e ) E ) ET )

for odd g, whereas the generating functions of L(g; p; h) for even g simplify to

Z - COoS

y ! ) cos D 7 7 cos KoL 4
Fo@) =23 (<1l q '
SRR S P T e P

We do not give proofs for Lemma 4.1, Corollary 4.2, Lemma 4.3, and Corollary 4.4 as
the statements are the same as those of the corresponding lemmata and corollaries in [13]
and the proofs go through with at most minor modifications.

Lemma 4.1.
(¢.p+1)=(g.p" +1)
(@.p-D=(qp -1
Corollary 4.2. Let k be an integer such that
k(px1)£0 (mod gq).
Then
k(p+£1)#£0 (mod q).
Lemma 4.3. If L(q; p) and L(g; s) are isospectral, then
(g.p-D=(s-1)
(¢.p+1)=(g.s+1)
or

(¢ p—-1)=(qs+1)
(gp+t1)=(gs—-1).



758 S. BoLbt

] 1 ifqisodd
In particular, (¢, p — 1),(q,p+ 1)) =
2 ifqiseven.
Corollary 4.4. If L(q; p) and L(q; s) are isospectral and k is an integer satisfying
kpx1)#£0 (mod q),
then
k(sx1)#0 (mod g).

Proposition 4.5. Let k € Z such that k(p = 1) # 0 (mod q). If q is odd, the residues of
the generating functions F. of the lens space L(q; p) at z = §'(; are
21 f y

=gy

4.1)

q q q p
= LN LU PR

If q is even, the residues of the generating functions F. of the lens space L(q; p; h) at z = §f;
are

2 &
(4.2) S
( - 4)
» k(p¥1 k(p+1 k(p—-1 k 1
(o108 cos M E D gt s K02 D) (o K0 KD
q q q q
(1)K ) up.p) (cos k(p* ¥ 1) f cos k(p* 1) )( k(p* - l)n—cot k(p* + 1)77)),
q q q q

where u(p, p*) is defined by p - p* = u(p, p*)q + 1.

Proof. The condition on k ensures that the F. have a pole of order one at z = f’;. There
are precisely four terms that contribute to the residue of F. atz = §’q‘. Let g be odd. Then we
calculate straightforwardly:

g-1 co l(p+l)(q+l) T —7Cos l(pil)(q+l)ﬂ_

lim(& - )F, = 1 .
lim (€ — OFs = 7 lim(¢; z>;(§q_z)(§q J& )@

4 [COS k(pﬂ;(qﬂ)ﬂ _ é_-l‘; cos k(pirl;(qﬂ)ﬂ cos kp* (p+1)(q+1)ﬂ _ fk kp*(p+ql)(q+1)ﬂ)

P q Cos

G-aE@ -8 -4 @ -4 -4k -4)

4 é:]z; {COS k(p¢1)(q+1)7r _ é;k cos k(pil)(q+1)7r cos lqn*‘(zzﬁl)(q+1)7r _ fk cos kp*(pil)(q+l)ﬂ)

q 4q q + q 9q q
(1-&07) (1= &0 (1= &0 (1= £00)

Using the formula cot8 = Lz,%—’_l + i, we transform the denominators to

= 2k
ql_»q
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1 1

(1-£07) (1= &0 - KD (1= K D) (1 - ;k(ml))

1

1 1 )
l{;(p+1) (ér;k(p—l) _ ;k(p+l)) [1 _ §;k(p+l) 1 _ é_.;k(p—l)
1 i k(p -1 k(p + 1
i (Cot (p )ﬂ_ (p )ﬂ) ‘

To1-gka

cot
q q

The case when ¢ is even is very similar. |

DermniTioN 4.6. Let k be an integer such that k(p = 1) # 0 (mod ¢). If ¢ is odd, let
. axl k(p—1 k(p+1
= .g-‘;z k (cot Mp=1) )JT — cot Mp+1) )71') .
q q

If g is even, define

T k(p—1 k 1
PR = (e 1;5 (cot p=D K+ )ﬂ)
q

forh e Z.

For the the next corollary, let o : C — C denote complex conjugation.

Corollary 4.7. If q is odd and the lens spaces L(q; p) and L(q; s) are g-isospectral, then
. . l . o
4.3) * s+ 17 = a2 (15 4 15

foreveryk € Zs.t. k(px1) #0 (mod g). Now assume q is even. If the lens spaces L(q; p; h)
and L(q; s; h') are e-isospectral, then

iy * PonP” o e l ey * s 7" ER N
(4.4) Ig,k,h + (_1)k(u(p,p )+hyg+hg ) I hh _ 5 (1-e) ( I;,k,h + (_1)k(u(s,s )+ I ik )

foreveryk e Zs.t. k(p£1) £ 0 (mod g).

Proof. Assume ¢ is odd and the lens spaces L = L(g;p) and L’ = L(g;s) are +1-
isospectral. By Proposition 3.4, the generating functions of these lens spaces satisfy FL =
FL'. In particular, the residues of their poles at every z = f’; with k such that k(p = 1) £ 0
(mod g) coincide. Dividing the residues (4.1) by their common factor —2i/q - & /(1 =€),
considering the imaginary parts of the resulting equations and dividing again by the common
factor sin (27ik/q), we obtain the set of equations

cos XpF@+D) o (cot M=l _ cot Mﬂ') + cos XzFDEHD o (cot Mp=Dr _ cot Mﬂ)
q q q q q q

k(sxl)(q+l)n_(

k(s—1) k(s+1)

= COS cot Tﬂ' — cot Tﬂ') + Ccos Mﬂ' (cot Mn — cot @ﬂ') .

Addition and subtraction of the equations ”+”” and - yield, up to a common factor, the real
and imaginary parts of equation (4.3). The case of —1-isospectrality is very similar. The
case of even ¢ is similar, too. O

REMARK 4.8. One can show by either straightforward calculations or using Corollary 2.10
that the term (—1)”(p’1’*)+hg+hg in the equations (4.4) is an invariant of the +1-spin-isometry
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class of L(g; p; h) = L(g; p*sh + bl + BY + u(p, p*)).

We denote by Q, the g-th cyclotomic field Q(&,). Its ring of integers is Z[&,]. Let A :=
1 - &, € Q,. Then (4) is a prime ideal in Z[£,] and we have (g) = (7. From now on, we
consider on Q, the A-adic valuation and the corresponding metric. This provides a notion of
convergence (see e.g. [17, Chapter 17.1.2]).

Lemma 4.9. Let g > 5 be prime. Then forall 1 < [,k < g — 1, the number

A
é‘:‘lll_é:lc; EZ[fq]

has the convergent power series expansion

oA _l(1+—1—21+k/l
N-g k& 2
_ 2 2
LTIk 6P
12
—1 + k> — 6kl — 2K*1 + 6% + 6kI> — 4P
+ 74 A+,

all of whose coefficients are elements of Z,), the localization of Z by the maximal ideal (g).
Proof. To prove the first claim, choose 1 < k* < g — 1 such that kk* = 1 (mod g). Then
e
k
A 1 - fq _ - ( ‘1)

- 1-& 1-&
=148+ + .+ 60D,

To prove the statement about the power series, we expand the individual parts separately.
The first part is

L1 .
g=0-2'=%" (J.)(—A)f

=0
W=D p W=DA=2) 5

2 6

Next, we expand 1 — f’q‘ into the power series

k=1 i
I-&=1-(1-2= ﬂkZ(k_ 1)(_’0J
j=0

=1-I1+

j Jj+1
~ k=1 (k=D(k=2) , (k=Dk=-2(k=3) ,
—/Uc(l A+ A A o PLI

Because of 1 < k < g — 1, all coeflicients of this power series are elements of Z . The same
is then true for the series of 4/(1 — f’;) and its Cauchy product with the series of 1 — fé. This
is sufficient for the claimed convergence statement. |

Theorem 4.10. Let g € N be prime. If two lens spaces with fundamental groups of order
q are g-isospectral, then they are g-spin-isometric.
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Proof. The case g = 2 was discussed in Remark 3.9. For ¢ = 3,5,7 there are at most
two different isometry classes, one of which is homogeneous. Thus, these are spectrally
determined by Theorem 3.8. Let ¢ > 11 and L = L(q; p) and L” = L(g;s) be two +1-
isospectral lens spaces. By the same theorem we can assume p # =1 (mod ¢) and thus by
assumption s # +1 (mod ¢). By Corollary 4.7 we have

p:l Pl _ sl |
Iy +1 _Iq +Iq .

Using the formula cot6 = 125 — i and Lemma 4.9, we see that é’,l([f;;l * 15*;1) - %A(I;;l "
I;*;l) c Z[é‘:q] LetR = {0, 1, ‘e ,q - 1} and

A = Y g,
n=0

J s:1 sy S 7 n
SAL + 15 = ) g
n=0

be the unique power series with g,, g, € R for all n € N (see e.g. [16, Chapter 2.2 O]). By
assumption, g, = ¢g,, for all n € N. Furthermore, by Lemma 4.9

1 1 62 , AP
R Y E k-6 -2k + — + 6 - —

24 k
(1K) ~—— =II =III =1V ~—— =VI ~——
=I =V =VII
1 1 ’ ’ 3 61’2 72 3
~a | K-S 2K =+ 617~ o | (mod g),
k) ~—— =IT’ =IIT =1V ~—— =VI ~——
=1 =V =VII

where we sum over ([, k) € {(%lp,p - 1),(%1p*,p* - 1)} and (I', k") € {(ﬂzlp,p + 1) ,
g+l s«
(5ptpr+ 1)),
We calculate the summands in pairs. Obviously, IIT — IIT’ = VI — VI’ = 0 (mod g).
Furthermore, we have
1 1 1 1
- + +
p—-1 p*—1 p+1 p+1
1 1
__P + + P
p—-1 1-p p+1 1+p

I-I'=-

=2 (mod g),
II-II'=p-1+p'—-1-p-1-p"—-1=-4 (mod gq),

1 1
IV - IV = —2%;9(;9 - 2%;7*(;9* —1)

+1 +1 ., .,
21— pp+ 2=y + 1)

=(g+ D(=p*+p-(p)+p
+ PP+ p+ (P +p)=2g+ D(p+pY) (mod q),
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3 2 #\2 2 \2
V—V'Ei(q+1)2 L (*p) AV
p—-1 p—1 p+1 p+1
3 2 * 2 *
Ei(q“)z P
p—-1 p-1 p+1 p+1
3 2 % 2+ %
EE(qH)z(p P’ p p)
p—1 p+1
_3 ey PHp-1-p -p-1+p+p
) pr-1
3 2p% -2
Ei(q+1)2(p2 )53(q+1)2 (mod q),
pr—1
3 3 \3 3 #\3
VII-vip = 9+t (p ) p )
2 p—-1 p—=1 p+1 p*+1
_ @+ (P =) P+
B 2 p—1 p+1
_ @+ (P =p PP - =P -+ P ()
B 2 pr-1
_ (g+ 1) (2pP-2p
B 2 pr-1
2_( *)2
= (q+1)3(pp L )E—(q+1)3(p+p*) (mod ¢)

Putting everything together, we obtain
1 .
g3 = 572 -4+2g+ Dp+p)
+3(g+ 1)’ =g+ 1’ (p+p")

= L (243 + P =+ p) g+ D(F +2g- 1)) (mod g).

24
Analogously,
g =~ (-2+3(g+ 1 = (s+ ) (g+ 1) (q* +2g-1)) (mod gq)
3724 '

Since, by assumption, g3 = g}, we have
4.5) p+p =s+s" (modg).
Squaring both sides of (4.5) yields
P2+ =5 +2+ (s (mod q)
which, after subtracting 4 on both sides, leads to
(p=p ) =(s=5)° (modg).

This means

(4.6) (p-pH)=+(s—s") (modg).
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Addition and subtraction of equations (4.5) and (4.6) yields
p=s (modg)orp=s" (modyg),

which means, by Corollary 2.9, that L and L’ are +1-isometric. Since for odd ¢ the lens
spaces L(q; p) admit only one spin structure, L and L’ are trivially +1-spin-isometric. |

RemaRrk 4.11. A nontrivial question is whether the assumption that ¢ be prime in The-
orem 4.10 is necessary for the conclusion to hold. High precision computer calculations
of the numbers 1] * and 1 *h for 2 < g < 10%, p from a full set of representatives of Z,,
1<k<qgk(pxl)#0 (mod ¢g)and all & € {0, 1} suggest that the condition can probably be
dropped. These calculations were verified with a computer and the exact method from [6]
for all parameters in the same range, so that the following conjecture is reasonable:

ConJecTURE 4.12. Any two three dimensional e-isospectral lens spaces are e-spin-
isometric.

RemARk 4.13. Note that Theorem 4.10 implies for each odd prime g that L(g; p) has
symmetric spectrum if and only if p> = —1 (mod g). If Conjecture 4.12 is true, then this
will hold for all odd g. Furthermore, under this assumption, L(g; p;0) will have the same
spectrum as L(g; p; 1) if and only if p?> = 1 (mod ¢) and (p*> — 1)/q is odd. Expanding on
Remark 3.9, L(g; p; 0) will then be —I-isometric to L(g; p; 1) if and only if p?> = —1 (mod ¢)
and (p? + 1)/q is odd.

5. the n-invariant

The n-invariant measures the asymmetry of the Dirac spectrum in dimension n = 3
(mod 4) and appears in the Atiyah-Patodi-Singer index Theorem (cf. [11, Chapter 8.7]).
We here present a formula due to C. Bér for the n-invariant on spherical space forms and,
more specifically, on lens spaces. Using this formula and the method from the last section,
we prove that, in case g is a prime, any two lens spaces L = L(q; p) and L' = L(g; s) with
n" = en" are e-spin-isometric. Example 5.4 shows that this statement does not generalize
to all ¢ € N. Note that (modulo the e-statement) both of these results are already known (see

[14]), though the method of proof of the first one is new.

Theorem 5.1 ([3, Theorem 5.2]). Let I\ S@"=Y be a spherical space form with spin
structure given by T : T — Spin(2m). The n-invariant of T\ S*"~! is
2 0 —xHE»)

7= det(Idz, — )

yel\{Idy,}

Corollary 5.2. Let L = L(q; p1,- .., pm) be a lens space. If q is odd, then the n-invariant
of the Dirac operator on the lens space L is given by

g-1

k=1 j=l

nL — (_l)m/2+l

If g and m are even and L is equipped with the spin structure T, then the eta-invariant of L
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is

nt = (=1 —— 2m 1 Z( l)k(h+h")ncsc —7r

Theorem 5.3. Let g € N be a prime, € € {+1}, and let L = L(q; p), L' = L(q; p) be lens
spaces such that n* = en* . Then L and L' are e-spin-isometric.

Proof. The case ¢ = 2 was already discussed in Remark 3.9. Let ¢ > 3. Represent csc x
as 2ie*i"m A simple generalization of Lemma 4.9 to the case of products of the form
g;ﬁ oz yields convergent power series in A for n* and 5%, along with expressions for the

Sq °q
coefficients of 1°. Comparing the latter yields p = es (mod g) or p = &s* (mod q). m|

ExampLE 5.4. There are six isometry classes of three dimensional lens spaces whose fun-
damental groups have order 25. Representatives are L(25; 1), L(25;2), L(25' 3), L(25' 4),
L(25;7) and L(25;9). The corresponding n-invariants are % —%, % 25, 0 and _E In
particular, Theorem 5.3 does not generalize to all ¢ € N.
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