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1.Introduction

Stochastic differential equations have been considered to
construct diffusion processes on Rd and on manifolds. From 1970°s
to the early part of 80°s, it was proved (see, e.g., [31,[51,[11],
[16]) that the solutions of stochastic differential equations with
smooth coefficients define the Brownian motions of diffeomorphisms
group as in the case of the deterministic dynamical‘systems.
After that, Brownian motions on the diffeomorphisms groups
themselveg have been considered and the theory of stochastic flows
has beenk§§$2£g;$%é by many authors. See, for example; (21,[71,
[17],[18] and so on. All of the works above are concerned with
the flows of smooth maps.

Recently Harris [8], taking into account of a model of infinite
particle systems called coalescing Brownian motions, considered
'stochastic flows of non-smooth maps on R1. In this paper,
following [8], we will study the stochastic flows of non-smooth maps
on R1 called coalescing flows, which we will describe below. We
refer Arratia [1] for the coalescing Brownian motions.

Let us imagine that, from each xeR1, the Brownian motion
‘{xolt(x)}tgo starts and that, if there exists time T satisfying
XO'T(x)=xO'T(y) for x=#y, the paths of the two Brownian motions

coalesce into a single one. Firstly let us consider the case

S —



where the infinitesimal correlation function a(x,y) defined by

a(x,y) = lin LT EL(Xy ((x) - x) (X, (¥) - V],
t 4 . 14

which determines the stochastic flow uniquely under suitable

assumptions and is called the local characteristic of X, is written
as b(x-y) by some function b on R1. Then whether such coalescence
in finite time occurs or‘not is known by a integral condition for b.

That is, sinse {Xolt(x)—xolt(y)}tzo is proved to be a diffusion

process generated by

2
(1 - bz,
dz
the coalescence oécurs if
(. Jou (1 - p(z)) 20z

is finite and does not occur if infinite by Feller’s criterion.
For details, see Section 3.

Now let us consider the map xO,t:x -+ xO,t(x) for each fixed t.
Then, taking adequate modification, we have the stochastic flow
{Xo,t}tao valued in A, the space of all right-continuous,
non-decreasing functions on R1. |

At first let us consider the case (1.1) is finite. Then
coalescence in finite time occurs and, moreover Harris [8] has showed

that, if there exists £ with 0<e<2, such that



(1.2) b(0) - b(z) z |z|% ¢

holds in some neighborhood of z=0, we have

(1.3) Xy ()1 < =,

and, in particular,

P( (K) is a finite set)

X0, t

P(X

(rR") (1 XK is a finite set)

for every t>0 and every compact interval K. On the other handg,
Harris [8] also has showed that, if b'(0) exists, which implies that

(1.1) is infinite, we have
(1.4) P(X0 £ is a homeomorphism of R1) = 1
4

for every t>0.

We will study in detail when (1.3) or (1.4) occurs and
characferize it in terms of the function b. Then we will see
that (1.3) holds if (1.1) is finite and b satisfies a monotonicity
condition in some sense (see (3.3) below). " On the other hand, if
(1.1) is infinite, we will see that (1.4) holds, that is, we have a

stochastic flow of homeomorphisms of R1.



In the proof of the countable range case (1.3), we will consider
the eigenfunction expansion for the transition probability density of
one-dimensional diffusion process with respect to the speed measure.
The purpose there is to give some estimates for the eigenfunction by a
similar method to that in Hille [9]. Those estimates are related
to the boundedness of the fundamental solution for some
one-dimensional diffusion operators, which might be called the
ultra-contractivity for the diffusion operator. For details; see
Section 4 and for the ultra-contractivity, see,e.g., Davies-Simon K@]
and references therein. &

Moreover in the final part of this paper, we will consider some
spatially inhomogeneous stochastic flows whose local characteristic
a{x,y) is not written as b(x-y). We will consider the case where
{xo,t(X)'Xo,t(Y)}tzo can be compared with the one-dimensional
diffusion process with the same probability law as that of the
diffusion process defined in the same way as that for the spatially
homogeneous stochastic flows. Then we will have spatially
inhomoéeneous flows satisfying (1.3) or (1.4).

This paper is organized as follows. In Sectipn 2, following
Harris [8]), we will mention the construction theorem for the
stochastic flows. The main theorems for the spatially homogeneous
flows will be stated in Section 3 and their proofs will be
stated in Sections 5 and 6. In Section 4 we will prove the
boundedness of transition densities of certain one-dimensional
diffusion processes with respect to the speed measures. The

result in Section 4 will play a key role in the prdof of the



countable range case. In the last section, Section 7, we will
study the spatially inhomogeneous flows which has the same
propérties mentioned above.

Finally the author wishes to thank Professor S.Kotani for
valuable suggestions on one-dimensional diffusion operators.
Moréover he wishes to thank Professor M.Tomisaki and the

anonymous referee for their helpful comments.



2. Construction of stochastic flows

In this section we will give the definition of the stochastic
flows treated in this paper and state when there exist unique (in
law) stochastic flows with non-smooth local characteristics. The
result is due to Harris [8]. The formulation here is a little
bit different from his, but the proof is the same. Therefore we

state only the result without proof. For details, see [8].

Let a be a real valued function on R1xR1. Throughout

this paper we call X={Xs t;Ossst<°°} a stochastic flow on R1 with a
14

as its local characteristic if and only if X satisfies the following:

(i) for each s and t, Xs is a non-decreasing and

,t

right-continuous mapping from R1 into R1 a.s.,

(ii) for s,t and u with sstsu, xt,uqxs,t=xs,u a.s.,
1

Y, (x !

(iii) for each xoGR is a diffusion process on R

s,t(xo)}tzs

starting from x, at time s which is generated by

0

2
% a(x,x)—g§ .
dx

. | 1 v
(iv) for each X11X,€& R and szo,{(Xs,t(x1),xs’t(x2))}tas is a
diffusion process starting from (x1,x2) at s which is generated by
2 2 32

1
5a(x,X)-—a§ +a(x,y)5i—3§ + -;—a(y.y)—-—g

ax oy

up to the coalescing time t=inf{tzs;xslt(x1)=Xs’t(x2)} and,

fo; t2T, xs,t(x1)=xs,t(x2).



In order to state the result, we give some assumptions on the

local characteristic a. We assume throughout that a satisfies

(2.1) a:R1><R1+R1 is (i) symmetric, bounded, continuous, (ii)locally

Lipschitz continuous outside each neighborhood of the diagonal set in
14r! and (iii) strictly positive definite in the sense that, for

R XR
each KyreeorXy with x1<...<xk and £=(£1,...,§k)€Rk\{0}, it holds that

k i3 .
Zi,j=1 a(xi,xj)g £’ > 0.

. Then, by Harris [8], we have the following fundamental result:
under the assumption (2.1), there exists a unique (in law)
stochastic flow X={xs t;0555t<w} on R1 with a as its local

14

characteristic.



3. Spatially homogeneous stochastic flows

In this section and Sections 5 and 6, we will consider
stochastic flows whose local characteristié is given in the form
b(x-y). We assume that b(x-y) satisfies the assumption (2.1) as
a function of (x,y)eR2 and call also b the local characteristic of
~ the flow. Moreover we assume b(0)=1 for simplicity_only.
In particular, the assumption (iii) reads that b is a positive

definite function on Rj and, therefore, that b is written as

(3.1) b(z) = J o128 dr(g) = J cos(z&) dF(E), z & R1,

-0 -

by some probability measure F on R1. By the strictly positive
definiteness of b, we seé that the support of F is not a finite set.

Denote by X={X Ossst<»} the stochastic flow with b as its

s,t;
local characteristic defined on some probability space,(Q,%,P).
z

Such stochastic flows were studied by Harris [8] for the first time.

A typical property of such spatially homogeneous stochastic flows is

the following. In order to mention it, denote by {Qz} the

zz20

probability law of the one-dimensional diffusion processes on (0,x)

withbits absorbing boundary 0 and generator

a2 o
(1 - b(Z))——E f(z), fe Cb((OI“)).
dx

Then Harris [8] has showed:



9
 Lemma 3.1.([8]) Let XrYéR1 with x>y and define ”={”t}tzo by
vﬂt=xo t(x)—XO t(y). Then the probability law of n coincides with
: 4 7
Qx-y'_

From Lemma 3.1 we see that the coalescence of any two distinct
trajectories in finite time occurs with probability 1 if and only if

b satisfies

: zdz
(3.2) J0+ tl—_'Tz) { @

by Feller’s criterion for accesibility of one-dimensional diffusion
processes. | See, for example, Ito [12]. Note that, under the
integral condition (3.2), the bouﬁdary 0 is regular or exit in the
sense of Feller (see, McKean [19] or [12]). On the other hand,
when the integral in (3.2) is infinite, the boundary 0 is natural
‘in the sense of Feller and, therefore, the coalescence in finite
time does not océur with probability 1.

Firstly we consider the case where (3.2) holds. In this case

we will consider the problem under the following assumption:

Assumption. There exists a continuous function B:(0,1]}+(0,«x)

such that
(i) 1 - b(z) 2 B(z)
(ii) j0+ 2(B(z)) 'dz ¢

(iii) z-ZB(z) is monotone decreasing on (0,a) for some a>0;
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Before stating our main result, we introduce some notations.

LY

2

d
(1-b(z))—=
d22

as an operator on [0,1] whose boundaries 0 and 1 are absorbing and

reflecting, respectively, and denote by {en}:=1 the eigenfunctions of
o)

n=1" Sinse en(0)=0, we

B corresponding to the eigenvalues {—An}
7 v
assume that en(x) is positive for sufficiently small x. Then we

see easily that x_1en(x) is bounded for each n, so we set

1
M = sup — |e (x)].
osxst = °

Now we can state our main result.

Theorem 3.2. If b satisfies the assumption above, then we have

. 1
lim — log M =0
n-c An n

and.

# e M

1

(3.3) E[

TR

XO,t(K)] s 1+ |K|n

for any bounded interval K with length |K| and for any t>0,

" where E denotes the expectation with respect to P.



11 -

‘Note that the finiteness of the right hand side of (3.3) is
geen by virtue of the first assertion and the fact that the Green
operator for % is of trace class under the assumption. See, for
example, [13] or [19].

As an immediate»consequence of (3.3), we get:

‘Corollary 3.3. For any t0>0 and compact interval K, it holds

that
P(X (K) is a finite set for all t 2z t,) = 1.
o,t 0

Moreover, combining the proof of Theorem 3.2 with the result

mentioned in Section 10 of Harris [8], we will prove:

Theorem 3.4. Under the same assumption as in Theorem 3.2,

P(X, ((R')NI is a finite set for all t z tj) = 1
, ,
holds for any compact interval I and to>0.

The proofs will be given in Section 5. Note that (1.2) implie:
the assumption and that, if it holds that
1 - b(z) = 0(z%(log z7)...(log__, 2~ ) (log z )% (1)
as z¥0 for Some ¢>1 and fdr some positive integer n, the assumption

is'also satisfied. For this we will mention again in Section 6.




12

’Sécondly we consider the non-coalescing case, that is, the case

the integral in (3.2) is infinite. Then we will prove:

Theorem 3.5. If the integral in (3.2) is infinite, then XO £
14

is a homeomorphism of R1 with probability 1 for any tz0.

The proof of Theorem 3.5 will be given in Section 6. We note
here that, if b is smooth, we can apply the general theory of
stochastic flows ahd have that X is a stochastic flow of
diffeomorphisms of R1. Since b(z) attains its maximum 1 only at
z=1 by the strictly positive definiteness of b, we have

b’ (0)=0 and, therefore, that the integral in (3.2) is infinite, which

shows that Theorem 3.5 is consistent with the general theory.



4. Some asymptotics of eigenfunctions of one-dimensional diffusion

operators

In this section, apart from the stochastic flows, we will

consider the one-dimensional generalized diffusion operator G
z7

defined by

d —————
dM(x) dx

o]}

G
Y/

on [1,®), where M is a real valued nontrivial right-continuous

13

non-decreasing function on [1,®) with M(1)=0 and dM is the naturally

induced measure by M. The purpose of this section is to study the

increasing order of supxlvn(x)l for the eigenfunction vn(x) as n tends

to infinity, which will play the most important role in the proof of

Theorem 3.2 in the next section and is of independent interest because

of its relation to the ultra-contractivity of this operator.

We assume the following for M: it holds that

(4.1) ,JT xdM(x) < ®
and

w2 [T e ax <,
where

p(x) = sup g(y), gly) = yj; am(z). -
yaXx



y sufficient condition for (4,3} in the case dAM has its density m is

:hat'there exists a continuoué function f such that -

(i) m(x) s m(x) and m satisfies (4.1),

(4.3)

(ii) xzﬁ(x) is monotone decreasing on [a,«) for some az1.

(4.1) means that the boundary « is of entrance type and we give

the boundary condition at x=1 by
+
pu(1) + (1 - plu (1) =0
for 0sps1, where u' denotes the right derivative of u and

u(1) = lim u(x), u+(1) = lim u+(x).
x+1 x+1

Now denote by {vn}z=1 the eigenfunctions for KC’;I corresponding to the
eigenvalues {-un}:=1 under the boundary conditions mentioned above.
Since it is easily seen that 1imx+°° vn(x) exists and is not equal to
zero for each n, we assume that vn(x) is positive for large x.

The main result of this section is the following theérem. This
imﬁediately implies that the fundamental solution p(t,x,y) for G,

; v 7
for which we have the following eigenfunction expansion

p(t,x,y) = { e v, (x)v (y),



15
is bounded in (x,y) for each fixed t>0.

Theorem 4.1. Under the assumptions (4.1) and (4.2), it holds
that
(4.4) lim — log( sup Ivn(x)l) = 0.

v ’ nte Hp xel[1,«)

Remark 4.2. Without the assumption (4.2), (4.4) does not hold
in general and some counterexamples are known ([13],[14]). In
those cases p(t,>,»)=x holds for all t>0.

Proof. Hille [9] has mentioned the same result for classical
ordinary differential operators like

2
a(x)S= .
dx
His idea is applicable also to the generalized operators. We will
give the sketch of it for the completeness. Let X be the
maximum root of 4unp(x)=1. It is easy to see that xn exists and

tends to @ as n tends to «, because p(x) decreases monotonically
to 0 .

For fixed yZXn let us consider the integral equation

co 2 -2 0
vix) = xjx viz)” z dz + unxjx daM(z) X 2yze Xn'
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Then, by using the method of succecive approximation, we see that it

has a unique solution v(x) and that O<v(x)so, where o is the smaller

. . . b St'/,(”((:))_p
root of the quadratic equation s——s%g{y)=0. Moreover if we set

wix)=v(x)/x, w satisfies the following integral equation of Riccati

type;
© ¢ © 2 oo"
Jx w (z) dz + Jx w(z)” dz = -unjx am(z).
Therefore w(x) coincides with (log vn(x))+, and since

o =3 - (- u@yn'? s 2 gy,

ZI,. }’J /3

we get

(4.5) log v (x) - log v_(y) s 2uﬁ?¥y){log x - log y}.
Deviding [y,x] into small intervals, applying (4.5) to each interval

-dh& using the limiting argument, we have

x 1
log yn(x) - log vn(y) s Zun IY - gyz)dz .

}9

- We have then proved that for every xzX

Saiga

vn(x) s vn(xn)exp{ZunI; % p(z,dz}.
n




On the other hand, by the eigenfunction expansion for the Green

function, we have

vn(X)2

"Jn—TT = u1 (x)uz(x) ’

where'u1 [u2] is the positive and non-decreasing [non-increasing,

respectively] solution for u=Gu whose Wronskian

%7
+ +
u1(x)u2(x) - u1(x)u2(x)
is equal to 1. Moreover it is known ([13],[19]) that, under

the boundary conditions, ul and u, are bounded functions.
_ 1 2

Therefore there exists a constant C such that

/2 X1/2

\vn(x)‘ﬁ c(1 + un)1 n

holds.for 15xsxn.

Now we have, for all xe[1,=),

/2 X1/2

i < 1
]vn(x)|- C(1 + up) n

© 1
exp{2un Ixn r p(z)dz}.

Furthermore, since p(x) is monotone decreasing, we have




18
log xn = 4UnD(Xn)109 Xn

1
s-8un J/E_ > p(z) dz.

n

Now the fact that My and Xn tend to @ as n tends to « implies

limsup 1 log( sup lvn(x)l) s 0.
n--o Hh XGE[1,o)

Finally we prove

(4.6)  liminf 1 log( sup lv._(x)]) = o.
nso  HMp xe[1,®)
Let us assume the contrary. Then there exist £>0 and a

subsequence {n(i)}:=1 tending to « such that

)(x)l s exp(—eun(i))-

o [y,

Fo; such n(i) we have

.2
T = v_, i s exp(-2eu_,.\)dM([1,=)),
n(i) Lz(dM) n(i)
which gives a contradiction for large n(i). Therefore we have

Proved (4.6) and the assertion of Theorem 4.1.




4unp(xn)log X o ;“'(/X

-
rj o
/Qa
T
=}
"

A

Now the fact that

Remark 4.4 The above proof shows that the assumption (4.3)(ii)

can be replaced by

C(ii)’ lim (log x)J°° dy J“ am(z) = 0.
' xte X Y

We close this section by giving some examples, where we assume

thét dM has its density m(x) and that (4.3) holds.

2-¢

Example 1.(cf.[9]) Assume that m(x)s x for large x and for

0€e<2. Then Xﬁ is defined by

1/€).

and we see xn=0(un Therefore in this case we have

|v (x)| s constx(1 + ”n)(1+€)/2€-




Example 2.(cf. [151]) Assume that there exist a positive

integer k and a>1 such that
-2 -1 -1 -0 s
m(x) s x “(log x) "'tlagk-1 x) {logk x) ( = m(x), say)
holds for every sufficiently large x. Then, using

oW -
211Il Kn [xn m{x) dx = 1,

direct calculations show that

1%

log xn = D(un{logk_1 My

and

ivn(xll s exp {const x untlogk_1un)1fu}_



5. Proof of Theorems 3.2 and 3.4

In this section we will prove Theorems 3.2 and 3.4 by using the
result in the previous section. Before giving the complete proof,
we give a formula for the expectation of the number of the ranges

of finite sets under the stochastic flows, which was found by

Harris [8]. This formula not only shows the connection between
4(1.3) and one-dimensional diffusion processes but also it will be used
in the proof of Theorem 3.5 (Section 6) and of the same results for

- spatially inhomogeneous flows (Section 7).

Lemma 5.1. For anyvx1,x2,...,xn with x1<x2<...<xn, we have

n-1
Xt({x1,x2,...,xn})] = 1 + kE

#

(5.1) E[ P(Xt(xk+1) > X (x)).

1
In particular, if we set Dn={k2-n;k=0,1,...,2n}, we have

#

n
(5.2) E["X, (D)1 =1+ 2% _ (n,>0),

2

Where E denotes the expectation with respect to P and Q is the

probability law of the diffusion process n mentioned in Lemma 3.1.
Now ‘'we are in the position to give the proof of Theorem 3.2.

Proof of Theorem 3.2. By the spatial homogeneity it is

R

sufficient to show in the case K=[0,1] and to show that

Qx(nt>0)SCx for some C.




22
24
At first we note that, denoting by E={€t}t20 the diffusion

process on (0,1] generated by

2
B = (1-b(z))i5
X7 dax)

whose.boundaries 0 and 1 are absorbing and reflecting, respectively.
Moreover the assumption (iii) in (2.1), the strictly positive
aefiniteness of b, implies that b(z)=1 if and only if 'z=0 and,
therefore ,that the boundary 1 is regular in the sense of Feller.

Then we have, denoting by R the probability law for &,

Qx(nt > 0) = Qx(nt > 0 and 0 < ng < 1 for all s with 0 < s s t)

+ Qx(nt > 0 and Ng = 1 for some s with 0 < s s t) .
s RX(Et > 0) + x.

Therefore, combining this with Lemma 5.1, if we can prove that

there exists a constant C>0 such that
RX(Et > 0) s Cx
holds for any x, the proof is completed.

Now let us denote by p(t,x,y) the transition probability

density of £ with respect'to its speed measure (1—b(z))—1dz.

Then we have its eigenfunction expansion which we will denote by




pl(t,x,y) = e e (x)e (y),

. ea . 1 + - .
so e, satlsfleslgfn——knen, llmx+0en(x)—11mx+1en(x) 0. Since

. +
X+0en(x) exists for each n, we assume en(0)>0.

. Moreover we have

e;(0)=lim

(1 -1
R (ng > 0) = |5 p(t,x,y)(1 - b(y)) ™ dy.
Now we prove the first assertion of Theorem 3.2, which says
(5.3) lim Il log M_ = 0.
It is easy to see that (5.3) implies (5.1) and assertion of the

second assertion of the theorem.

To see (5.3), define un(x)=en(x)/x. Then it is easy to see that

’un is an eigenfunction corresponding to the eigenvalue —An for

_ 1 -b(x) 4,2 _4d
A = 2 dx (x dx)

X

under the boundary conditions

lim x2u+(x) = .lim (xzug(x) + un(X)) = 0.
x40 - xM

Moreover, to change the scale into the Lebesgue measure, set

ﬁn(x)=un(x-1) for x21. We have that Ui is an eigenfunction with




eigenvalue —An for

2
A, = 1 - b(x'1))g—§
dx

under the boundary conditions

lim ¥ (x) = lim (¥_(x) + @ (x)) = 0.
n n
x40 x+1

Since the assumption is translated into (4.3) under the

'l{m WY 1‘»\({"';1'6 N . . ,
above translation, we can use the result in the previous section and.

have proved (5.3). The proof is completed.
Secondly we will give the proof of Theorem 3.4..

Proof of Theorem 3.4. By virtue of Theorem 3.2 and the right-

"continuity of Xt(-), we see that Xt is a step function on R1 with

‘finite steps on each compact interval. Now denéte by {ai} the end
point of the steps of Xt(-) and set Bi=xt(ai) according to the
notation in [8]. Then Harris [8] haé proved that,‘for any fixed

- £>0, the probability law of the random sets {ai} and {Bi} are the
same. In particular, we have that

E[#Xt +S(R1)f]I] = E[#Xt ||,

. slD s

t0+s

where ¢, is the constant which appeared in Theorem 3.2. From this

t
':'the assertion of Theorem 3.4 follows.




T e

Before closing this section we give several examples related to
those mentioned in the last part of the previous section. Now we
gssume that b can be written as a Fourier transform of a probability

.measure with density, that is,

b(z) = j %8 £(ryae - 2J cos(zE) £(£)dE.
0

-00

Example 1.(cf. Harris [8]) Let us assume that f(§)=0(£'3+€)
with 0<e<2 as & tends to . Then we see easily that '
1 - b(z) 2 c|z|2_€
in'some neighborhood of z=0 for some c>0 and b satisfies the
assumption in Section 3.
Example 2. Let us set, for a positive integer k and a>1,

L(§) = £72(Log,&)...(log, ;&) (log,£)®
ahd assume that

£(g) = 0(L(§))

aé £ tends to «. Then we can show that




(5.4) 1 - b(z) 2 zz(log z-1)...(logk_1z-1)(logkz-1)a

1

= z—1(log 2-1)L(z- )

~holds in some neighborhood of z=0. Therefore, also in this case,

the assumption is satisfied and we have (1.3). (5.4) can be seen

as follows. Fix 8§>0 satisfying z6<1, then direct calculations show
Jg (1 - cos(z£))£(£)AE 5 C z°6°
‘and

[3/, (1 - costzentierae

A

1

o(zz(log z )...(logk_1z—1)(logkz-1)a)

Moreover the integration by parts shows

[37% (1 - costzenf(eras

2 [1/z 1 - cos(z&) ,2
2 cy2? |} S5 e

é

2 c,z° J1/Z £™ (log,€) ... (log, _,&) (log,&)%dE




“2234—3
-1 -1 -1 .
= C4z (log z ")L(z ') + the negligible terms.

Here C;s are positive constants. Therefore, since the first two

integrals are also negligible and the last is the main term, we have

(5.4).




6. Proof of Theorem 3.5

Before giving the complete proof of Theorem 3.5, we state a key
lemma for it. The statement is stronger than is needed for the
proof of Theorem 3.5 but this stronger result will be needed for the

proof of the similar result on the spatially inhomogeneous stochastic

flows studied in Section 7.

Lemma 6.1. Let n be the one-dimensional diffusion process

mentioned in Lemma 3'1“h_ Then for any t>0 and €>0, it holds that

4—-—-—-—-—_
 wand assume tht Hie a'm’-}:;;m,f m Rl g fﬂﬁ'n,‘f‘&

1 |
Lim 3 0,(9, B ) = 0,

.

where O is the first hitting time to e of 7. In particular, we

have

lim L @ (n, G 0 = 0.
x+0 * ¥ ®

i

g
Proof. First of all we have, by Tchebycheff’s inequality,

A

=
Qx(aE st) se Ex!exp(-AaE}]

for all A>0, where Ex denotes the expectation with respect to Qx'

Then it is known ([13],p.129) that u[x}uEx[exp{-tggllA&iJE:

increasing solution of 10<UE,

dzu
{1-b(x)) == = Au,
dx




ij%&

Such solutions are unigue up to the multiplicative constant and,
moreover, it is known (see, e.g., [13] or [19]) that, since the

boundary 0 is natural in the sense of Feller,

lim u(x) = lim %-u(x) = 0,

x+0 x+0

which immediately implies that u(x)=o(x) as x tends to 0 and the

assertion of the lemma.

Now we are in the position to give the complete proof of Theorem

Procf of Theorem 3.5. Firstly we prove the one-to-one

property of xt=xn,t'
We note that, under the integral condition,

C Il -
_JP+ m(z)zdz % o tLT T—b(z) =&,
3 = ‘\_ ¥

the boundary 0 of n={nt]t=0 is natural and, therefore, that

Qx(nt>ﬂ}=1 for any x>0. Then we have, by (5.2),
# n
E[ xt(Dn}] =1 + 2
for any n. But, since #xt(nn}s 1+2" ; it means that #xtlbn}-1+2n

with probability 1 for any n, which, by virtue of the monotonicity of

xt(-), implies the one-to-one property of Xy -
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Secondly we prove the continuity of Xt{x) in x on (0,1).
We have, by using the monotonicity of xt, that, for any £>0 and

sufficiently small §:0,

P(sup{X (y) - X (x);0 s x s ys 1, ly-x] < &) 2 €)

P(sup{xt(x+ﬁ) - xt(x);O s xs1 -6} 2 €)

A

P(sup{X, ((k+2)§) - X,_(k8)7k=0,1,..., (5]} 2 €)

A

L0 TR (x, ((k+1)8) - X, (K8) 2 €)

A

(1 + %1q?{ntﬁ?m.

28 ze _
Now, applying Lemma 6.1, these can be arbitrary small if we choose §
sufficiently small. Therefore Xt{xj is continuous in x on (0,1)
with probability 1. By using the spatial homogeneity of xt{x), we
have proved the continuity of Xt[x} in x on R1.

Finally we prove the onto property of xt. To show this we

note, as in Section 4 of Harris [8], that

o -~}
(5.3) ¥} P(X,(n) s a) <= and | P(X.(-n) 2 -a) ¢« =
. t t
n=1 n=1

for any a»>0, which can be easily seen because {xt{x]}tzu is a

standard Brownian motion on R starting from x. By Borel-Cantelli's

lemma, we have



lim thx] = t= with probability 1,

X+iow

which, combined with the two properties proved above, implies the

onto property of xt. The proof is completed.

Jlag
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7. Spatially inhomogeneous stochastic flows

In this section we will consider spatially inhomogenecus
stochastic flows whose local characteristics cannot be written as
bix-y). We will see that there exist flows which have the same
property mentioned in Theorems 3.2 and 3.5. For this we let a
be a function on R1XR1 which satisfies (2.1) and denote by

X={X Dssst<e} the stochastic flow with its local characteristic a.

s,t'
To study the property of X, the process "'{xu,t(x’_xﬂ,t[Y]}tzﬂ'
which is a diffusion process for a spatially homogeneous flows, plays
an important role as was seen in Theorems mentioned in Section 3

and their proofs. Here we consider the case that, roughly
speaking, n is bounded from above or below by some diffusion process
as appeared in the spatially homogeneous flows. We will apply the
comparison theorems studied by Ikeda-Watanabe ([10],[11]). For

*
this purpose we define functions b and b, on (0,=) by

b*(z) = sup a(£,z) and b,(z) = inf a(£,Z),
£C R EcR

respectively, where

b -

0(E,2) = 3 al€,€) - alE,E-2) + 3 al&-L,&-%).

Then the main result in this section is the following.

*
Hereafter we assume that b and b, are locally Lipschitz continuous

outside each neighborhood of 0.
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Theorem 7.1. (1)(1.3) holds for the stochastic flow X if the

assumption mentioned in Section 3 holds by replacing 1-b(z) with

b,(z). (2)(1.4) holds for X if

% aed
(7.1) IU+ b (g) ¢dg = =.
Proocf. (1) For x,y¢R1 with x>y, let us consider the 2-point process
= h =X . Then it is a diffusion
X(x,y) {Xt(x],xt(ylltzﬂ, where X =X, . s

process on R2 generated by the operator

2 2 2

1 3 3 i 3
L = 5 alx),x )= + alx; i Xy)gp75 + 7 alXyXy) =
2% 13%, ax2

up to the coalecing time t=inf{t20;X (x)=X_(y)}.
At first we note that, by virtue of the assumption (2.1), there

%! which is

exists a 2x2-matrix valued function G=G(x1,x2) on R

bounded, locally Lipschitz continuous outside each neighborhood of
: *

the diagonal set and satisfies 00 =A. Here k“{a{xi'xj}}1si,j£2'

Let us consider the stochastic differential equatiocon

dxt = G(xt}dwt ¢ Xy = (x,¥),
on D={[x1,x2);x1>x2} under the assumption that 3D, the diagonal set,
is the absorbing boundary. Here {“t]tzo is the standard
2-dimensional Brownian motion. Then a solution X(x,y)=
{[Zt{x},it{y))}tzn exists and the pathwise uniqueness holds by

virtue of the conditions for ¢ above. £(x,y) is the minimal



P4

L-diffusion on D and we have, denoting by P1 the probability law

of X(x,v),
P(X (x) > X, (y)}) = Py (K (x) > Et{y}}

Now let n-={n1_:}tzﬂ be the diffusion process on (0,*) generated by

2
2

d
dz

= by(z)

with absorbing boundary 0 and apply the comparison theorem of Ikeda-
Watanabe, Theorem 3.1 in [10] or Theorem 4.1 in Chapter 6 of [11],
which holds for the minimal diffusion processes on a domain as is
pointed out in [10]. Then we can construct the processes, for
which we will use the same notations, with the same probability laws

on some probability space ({,¥,P) such that

min ﬁs s min n_
Ossst Oss=st

for t<%, where T is the first hitting time of R{x,y}-to 3D and

ﬁs'is{x)_is{y}' Therefore we get

P(X (x) > X (y)) B it{x} > Rtfy}}

B( min f_ > 0)

Ossst

s
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s P( min n; > 0 )
Ossst

= Dx-y{“t > 0),
where Q  is the probability law of n . Therefore, since (5.1)
holds for the spatially inhomogeneous flows, we obtain

#

Il -
E["X (D )] s 1 + 2 Q_

(n, > 0).
5 t

n
Since b, satisfies the assumption mentioned in Section 3, we have
Q;tn;>n}scz for some c>0 and this implies the assertion.

(2) Let x,yeR1 with x»y and denote by n+=[n;}tau the diffusion

process starting from x-y generated by the operator

Then the Ikeda-Watanabe’s comparison theorem shows that

min nt s min §

0ssst °  0ssst ©

for t<T if we construct the processes with the same probability law .
as those of the above two processes, for which we have used the same
notation. But, under our integral condition (7.1), the boundary 0
of n+ is natural in the sense of Feller and so, since n;>0 for

any s almost surely, we have



%

B( min ﬁE > 0 for any t > 0) = 1
Ossst

for any x,y with x>y, which implies the one-to-one property of xﬂ "
[
by the similar argument to that of the proof of the spatially

homogeneocus flows.

To prove the continuity of xt(x) in x, we first note that the

integral condition implies that
b,(g) 'gdg = =
0+ % '

Therefore, for any £>0, we have, by the comparison theorem, that

P(Xt{z+61 - thzj 2 E)

ﬁ{ﬁt[z+61 - ?t{z) 2 g)

P( max {i5[z+61 - %X (z) 2 )
Ossst ¥

A

Q.( max n_ 2 ¢)
¢ ossst °

Qﬁ_“’a 5.¢),;

for sufficiently small §>0, where O is the first hitting time of n~

to E. Moreover we have proved in Lemma 6.1 that

; [
lim + Q. (o_ s t) = 0.
540 d “6 ¢
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Now, tracting the argument in the proof of Theorem 3.5, we get

lim P(sup(X (x) - X, (y);0sysxs1 and ly - x| < 68) & €)

§+0
s lim = Q. (0. s t) = 0O,
540 § “26' €
which implies the continuity of Xt{x] in x&(0,1). Therefore we

have proved that xt{x) is continuous in xeR1 with probability 1.
The onto property can be shown by comparing the 1-point process

{xt{x}}tzn with a Brownian motion by means of the boundedness of

a(x,x) and by the same argument as in the proof of Theorem 3.5. The

proof is completed.

Finally we would like to remark on the connection between
Theorem 7.1 (2) and the known result for the solutions of one-
dimensional stochastic differential equations. For this purpose

let us consider the following;

(7.2) dxt = U(xt}dBt P tzs
wherg {Bt}taﬂ is a one-dimensional Brownian motion. Following

Yamada-Ogura [20], we assume that

lo(x) - oty)] s pt]x - ¥])



holds for some bounded continuous function p satisfying p(0)=0 and

(7.3) [os otm7% nan = =.

Although the local characteristic a for the stochastic flow

constructed from the solution (7.2) should be given by
alx,y) = o(x)o(y)
and this is not strictly positive definite in general, we can

}

characteristic by virtue of the simple form of a. The 1-point

construct the stochastic flow X={X with a as its local

g,k tzs

process {xs t[x}}tzs has the same probability law as that of the
r
solution of (7.2).
Under the assumption above, Yamada-Ogura [20] has shown that,
for any x>y, Ks,t(x}>xs,t(y} holds for any tzs and xs,t is a
one-to-one map with probability 1. Now note that (7.3) implies

1

* -
ju+ (b7 (n)) " 'ndn = =,

Therefore, by means of Theorem 7.1 (2), Xs £ is a homeomorphism
I

of R1 with probability 1.

&
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below still works-however small this interval—is.

log,x = log(log x), logx = log(logy ,x), k=3,4,...
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