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Attraction of neutrally buoyant deformable particles towards a vortex
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We conduct direct numerical simulations (DNS) by the full Eulerian finite difference
method of a neutrally buoyant hyperelastic particle in Taylor–Green vortical flow. We
investigate the case that the initial shape of the particle is spherical with a diameter compa-
rable with the vortex radius. The particle orbit depends on the degree of its deformation due
to the flow. When the particle is stiffer (i.e., the capillary number Ca is smaller than about
0.1), the particle is hardly deformed and slowly swept out from the vortex. In contrast,
softer particles with Ca � 0.1 are significantly deformed, in an initial period, and they are
attracted towards the vortex; then, afterward, the deformation is relaxed so that they can
stay around the vortex center. Such an attraction of anisotropic neutrally buoyant particles
towards a vortex occurs, even if particles are rigid. We demonstrate this phenomenon by
additional DNS of a rigid prolate spheroidal particle in the vortical flow. We also develop
analytical arguments to show that the angle between the major axis of the particle and the
pathline determines whether the vortex attracts or repulses the particle. This feature well
explains the radial motion of neutrally buoyant elastic particles in vortical flow.

DOI: 10.1103/PhysRevFluids.9.014301

I. INTRODUCTION

Fluid-particle interaction is one of the most fundamental issues in fluid mechanics and it plays a
crucial role in many circumstances. Among various phenomena caused by fluid-particle interactions,
in the present study we treat a fundamental problem; namely, particle orbits about a tubular vortex.
For example, bubbles in water swirl around a vortex tube and finally accumulate into the vortex core.
This phenomenon is well known and we sometimes utilize it for flow visualizations. On the other
hand, heavy particles are centrifuged out from vortices. These phenomena occur when the velocity
relaxation time τp of particles is sufficiently longer than the characteristic timescale of vortices, i.e.,
ω−1 with ω being the vorticity. This is because if τp � ω−1, then particles can follow swirling flow
and behave like a tracer. Here, under the assumption that the particle is spherical and the fluid force
is approximated by the Stokes drag, we may estimate the velocity relaxation time as

τp = ρ (p)D2

18ρ ( f )ν ( f )
, (1)

where D and ρ (p) are the diameter and mass density of the particle, respectively; and ρ ( f ) and ν ( f )

are the mass density and kinematic viscosity of the fluid. Hence, in general, particle’s attraction and
repulsion by vortices occur when the particle size D or the density ratio ρ (p)/ρ ( f ) is large enough.

We can easily treat particles with small D, because if the particle Reynolds number is low
enough, then fluid-particle interaction is simple. In fact, there are many previous studies on the
clustering of pointwise particles in vortical flow. This phenomenon, that is the clustering of small
particles, is sometimes called the preferential concentration [1], which occurs, as mentioned above,
for particles with mass density different from fluid density. The clustering is observed even in
statistically homogeneous turbulent flows [1–8] because turbulence is composed of a hierarchy of
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coherent vortices [9–12]. This is also the case in wall turbulence, and many authors explained the
clustering phenomena in terms of coherent flow structures [13–20]. Particle clustering plays an
important role in many phenomena including the planet formation [21], droplet growth in cloud
[22], cell culture in bioreactors [23], and so on because it enhances the collision of particles.
Apart from clustering, the vortex action on small particles is also important in some fundamen-
tal problems such as the effects on the settling velocity of particles in turbulence [24] or the
effect of the secondary flow (the Dean vortex) in a curved tube on the Segre–Silberberg effect
[25,26].

We may explain the clustering of small particles with long enough τp in vortical flow. When
the particle Reynolds number is small, particles move by the Stokes drag and added mass force.
Suppose that flow u is turbulence, which is composed of vortices with a range of turnover times.
Then, since particles cannot follow fluid motion faster than τp, their motions are approximated by
those in the coarse-grained flow u> where flow faster than τp is removed [7,8]. Then, Maxey’s
argument [27] leads to the conclusion that the particle velocity field, vp, obeys

∇ · vp = −τp (β − 1)Q>. (2)

Here, Q> is the second invariant of the gradient of u> and β (= 3ρ ( f )/(2ρ (p) + ρ ( f ) )) is the mass
parameter which is smaller/lager than 1 when particles are heavier/lighter than the fluid. Since Q>

is positive/negative inside/outside vortices, (2) describes the clustering of small particles. Heavy
particles are swept out from vortices, where Q�0, whereas light ones accumulate into the vortices.
In other words, neutrally buoyant small particles (β = 1) behaves like a tracer, and they do not
cluster by the action of vortices.

Thus, the clustering of particles with β �= 1 is well understood for small, i.e., point-wise,
particles. It is however unknown whether or not particles can form clusters when they have finite
sizes. If particle mass density ρ (p) is different from fluid density ρ ( f ), then the aforementioned
preferential concentration for small particles can occur even for finite-size ones. Therefore, the
target of the present study is neutrally buoyant finite-size particles.

More concretely, we investigate the fundamental process of the accumulation of nonspherical
neutrally buoyant particles in vortical flow. The main conclusions will be the following. (i) Even if a
particle is neutrally buoyant, if it is finite-size and nonspherical, then it can be attracted or repulsed
by vortices. (ii) If the particle is elastic and deformable, then the shear flow around a vortex can
deform the particle, and it is attracted to the vortex. Then, once the particle migrates into the vortex
core, its deformation is relaxed so that it can stay there.

Since conclusion (ii) is related to deformable particles, it is worth presenting relevant studies
of deformable neutrally buoyant particles in turbulence. For example, Ray and Vincenzi [28] nu-
merically simulated small deformable particles in isotropic turbulence to show the statistics of their
deformation and breakup. Hajisharifi et al. [29,30] also simulated wall turbulence with finite-size
deformable particles, and point-wise ones, to examine particle-turbulence interactions. Although
these are pioneering studies, since the behavior of deformable particles in turbulence is complex,
there are also studies of such particles in simpler systems. As a particularly relevant study to the
present one, Kabacaoğlu and Lushi [31] recently investigated vesicular particles, which contain a
fluid inside, in the Taylor–Green vortex flow, and showed that the particle behavior depended on its
deformability and the viscosity ratio.

In the rest of the present article, after describing numerical method (Sec. II), we first demonstrate
in Sec. III the phenomenon (ii) of the attraction of deformable particles towards a vortex by means of
direct numerical simulations (DNS) of elastic particles around the Taylor–Green columnar vortices
by full Eulerian finite difference method [32]. Then, conducting additional DNS by immersed
boundary method [33,34] of rigid spheroidal particles (Sec. IV A) and developing theoretical ar-
guments in two-dimensional flow (Sec. IV B), we show the physical mechanism of the phenomenon
(i), and explain the numerical observation (ii) for elastic particles.
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II. NUMERICAL METHODS

A. Governing equations

We investigate the motion of neutrally buoyant incompressible hyperelastic particles in an
incompressible Newtonian fluid. Then, the continuity equation and the equations of motion have
a common expression both for particles and fluid phases as

∂v
(α)
i

∂xi
= 0 (3)

and

ρ

(
∂v

(α)
i

∂t
+ v

(α)
j

∂v
(α)
i

∂x j

)
= ∂σ

(α)
i j

∂x j
, (4)

respectively. Here, ρ (= ρ ( f ) = ρ (p)) is the mass density, and v
(α)
i (x, t ) and σ

(α)
i j (x, t ) are the velocity

and stress tensor at position x and time t . Superscript α is either p for particles or f for fluid. We
assume a Newtonian fluid for the fluid phase and a hyperelastic particle with the Saint Venant–
Kirchhoff model [35,36]. Then the stress tensor σ

(α)
i j in Eq. (4) is expressed as

σ
( f )
i j = μ( f )

(
∂v

( f )
i

∂x j
+ ∂v

( f )
j

∂xi

)
(5)

for the fluid and

σ
(p)
i j = μ(p)

(
∂v

(p)
i

∂x j
+ ∂v

(p)
j

∂xi

)
+ μlame(BikBk j − Bi j ) + 1

2
λlame(tr(Bi j ) − 3)Bi j (6)

for the particles. Here, μ(α) is the viscosity and μlame and λlame are Lamé’s constants of the particles.
In Eq. (6), Bi j is the left Cauchy–Green tensor, which obeys

∂Bi j

∂t
+ vk

∂Bi j

∂xk
− ∂vi

∂xk
Bk j − Bik

(
∂vk

∂x j

)T

= 0. (7)

We impose the triply periodic boundary conditions for the cubic domain with side 2π . The
boundary conditions between the particle and fluid phases are the continuity conditions of
the velocity, v

( f )
i = v

(p)
i , and the stress, σ

( f )
i j n j = σ

(p)
i j n j, with ni being the unit normal vector on

the boundary.

B. Numerical scheme

We use a full Eulerian finite difference method [32], where the governing equations both for the
fluid and particle phases are solved in the Eulerian coordinate. In this method, using the volume
fraction φ(x, t ), where φ = 0 for the fluid and 1 for the particles, we employ the volume-averaging
procedure [37] so that the continuity conditions of the velocity and stress can be automatically
satisfied. More concretely, introducing the unified velocity,

vi = (1 − φ)v( f )
i + φv

(p)
i , (8)

and the unified stress tensor,

σi j = (1 − φ)σ ( f )
i j + φσ

(p)
i j , (9)

we rewrite Eqs. (3) and (4) as

∂vi

∂xi
= 0 (10)

014301-3



FUJIKI, AWAI, MOTOORI, AND GOTO

and

ρ

(
∂vi

∂t
+ v j

∂vi

∂x j

)
= ∂σi j

∂x j
, (11)

respectively. Then, we numerically solve Eqs. (10) and (11) together with the advection equation for
φ,

∂φ

∂t
+ v j

∂φ

∂x j
= 0, (12)

and Eq. (7). We use the finite difference method on the staggered grid [38]. We estimate the spatial
derivatives by the second-order central difference except for the advection terms in Eqs. (7) and
(12), for which we use the fifth-order WENO method.

The concrete numerical procedures are as follows. (i) First, we integrate Eqs. (7) and (12) for
Bi j and φ by the second-order Adams–Bashforth scheme. We use the CLSVOF method [39] to
avoid the numerical diffusion of φ. (ii) Next, we integrate Eq. (11) to obtain vi, where we use
the second-order Adams–Bashforth method for the advection and elastic stress terms, the second-
order Crank–Nicolson method for the viscous stress term, and the first-order Euler method for the
pressure term. To effectively solve the elliptic partial differential equation for the implicit scheme
with space-dependent viscosity, we use the method proposed in Ref. [40], where we use the fast
Fourier transform. (iii) Then, by the SMAC method, we solve the Poisson equation to correct vi and
p so that Eq. (10) is satisfied.

C. Numerical setup

An aim of the present study is to show the accumulation of elastic particles into vortices. To this
end, we investigate particle motions in the Taylor–Green columnar vortices,

v( f ) = ρ f0(− sin x cos y, cos x sin y, 0)

2μ( f )
, (13)

which are sustained by the external force,

f = f0(− sin x cos y, cos x sin y, 0), (14)

when the Reynolds number Re = ρUL/μ( f ) is sufficiently low. Here, L (= π ) and U = ρ f0/2μ( f )

are the size and the maximum swirling velocity of the Taylor–Green vortices. Here, we set f0 = 1.
This flow (13) is simple but useful to investigate the behavior of particles around a vortex. Indeed,
Jayaram et al. [41] and Kabacaoğlu and Lushi [31] also used the Taylor–Green vortex flow to
investigate interactions between particles and a vortex.

Since the Taylor–Green flow (13) is composed of four vortex columns in a periodic cube, we
simultaneously track four particles in a single DNS, each of which is located around one of the
four vortices. Then, we can investigate the dependence on the internal distance r(0) from the vortex
center, we examine four cases [r(0) = iL/16 with i = 3, 4, 5, and 6] in a single DNS. Note that we
set the initial z coordinate of the particles different so that interaction between the particles can be
negligible. The initial shape of the particles is spherical with diameter D.

An important dimensionless parameter for particle deformation is the capillary number,

Ca = μ( f )U

μlameD
. (15)

In addition to Ca, there are four other dimensionless parameters, which control particle motions:
namely, the particle Reynolds number (Rep = ρUD/μ( f )), the dimensionless particle diameter
(D̃ = D/L), the viscosity ratio (ξ = μ(p)/μ( f )), and the number of particles (N). Fixing Rep = 0.01,
D̃ = 0.375, ξ = 1, and N = 4, we conduct DNS by changing Ca in a wide range from a nearly rigid
case (Ca = 0.01) to very deformable one (Ca = 10). Incidentally, since Rep = 0.01 and D̃ = 0.375,
the global Reynolds number Re = Rep/D̃ ≈ 0.027 is sufficiently small so that the Taylor–Green
vortices (13) are stable in the single-phase flow.
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It is crucial to confirm that the spatial resolution is fine enough for accurate DNS. We use 2563

grid points so that the initial particle diameter D (= 0.375L) contains 48 grid points, which ensures
the sufficient resolution [42]. Concerning the temporal resolution, we set the time increment so that
it is smaller than 0.1 max{Ta, Te}, where Ta = �x/U and Te = �x/

√
μlame/ρ with �x being the grid

width are the timescales of the advection and the spread of elastic waves, respectively.

III. NUMERICAL RESULTS

A. Attraction of elastic particles towards a vortex

To demonstrate that softer particles tend to accumulate into a vortex center, we show in Fig. 1 the
temporal evolution of elastic particles with two different values of the capillary number (Ca = 10
and 0.01). This figure shows the particle position and deformation around one of the four Taylor–
Green vortices, the axis of which is denoted by the black straight line, at time t ′ = 0, 2, 4, and
6. Here, t ′ = t/τv is the time normalized by the swirling time, τv = 2πL/U , of the Taylor–Green
vortices. We visualize the particle shape by the isosurface of φ = 0.5.

Figure 1(a) (Supplemental movie is also available online [43]) shows that the softer particle with
Ca = 10 deforms into a lunar shape for 0 � t ′ � 2, and it swirls and approaches the vortex center.
After reaching the vortex center the particle deformation is relaxed and it becomes cylindrical, and
then it stays around there. In contrast, Fig. 1(b) shows that the harder particle (Ca = 0.01) keeps the
initial spherical shape and it is slowly swept out from the vortex. These visualizations demonstrate
that even if a particle is neutrally buoyant, it can accumulate into a vortex by the effect of the
deformation, and that the behavior is dependent on the deformability of the particle.

To quantitatively show the attraction of the deformable particle towards a vortex, we show
in Fig. 2(a) the distance r(t ) between the particle’s mass center xG and the vortex axis. This
figure shows the results with a common initial condition [r(0) = 5L/16] with four different values
of Ca as 10, 1, 0.1, and 0.01. Darker lines correspond to larger Ca. It is evident that a softer particle
is attracted towards the vortex center more rapidly; for the softest particle (Ca = 10) only five
revolutions results in the attraction to the vortex center. For this initial condition, r(0) = 5L/16,
the hardest particle with Ca = 0.01 is swept out from the vortex (as observed in Fig. 1). Kabacaoğlu
and Lushi [31] also observed a similar Ca-dependence of the migration of vesicle particles whose
viscosity ratio between inner and outer fluids was about unity. Incidentally, the fast temporal
oscillation observed in Fig. 2(a) is due to the nonaxisymmetric property of the Taylor–Green vortex
(13).

As observed in Figs. 1 and 2(a), soft particles are rapidly attracted to the vortex center. Therefore,
here we investigate particle motion in an initial period (i.e., t ′ � 2). Figure 2(b) shows the value of
the distance r(t ′ = 2) between the particle and vortex axis for different values of Ca. The distance
r(t ′ = 2) is a monotonically decreasing function of Ca, and if Ca � 0.1, then the particle is swept
out from the vortex, otherwise it accumulates into the vortex.

We have shown only the result with a fixed initial condition [r(0) = 5L/16], but even for
different initial locations, r(0) = iL/16 with i = 3, 4, and 6, particles with Ca � 0.1 are eventually
attracted to the vortex. Evidence for Ca = 10 is shown in Fig. 3(a). The degree of deformation
shown in Fig. 3(b) will be discussed in the next subsection.

In summary, Ca � 0.1 is the condition for the attraction of the particle towards the vortex center,
and softer particles with larger Ca more rapidly accumulate into the vortex center.

B. Deformation of particles

As observed in the previous subsection, the deformation is essential for the attraction of the
particles towards the vortex center. We estimate the inertial tensor Gi j of a particle by

Gi j =
∫

φ(xi − xGi )(x j − xG j )dV∫
φdV

, (16)
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FIG. 1. (a) Location and deformation of an elastic particle with Ca = 10 at (i) t ′ = 0, (ii) 2, (iii) 4, and
(iv) 6. The blue curve denotes the orbit during (ii) 0 � t ′ � 2, (iii) 2 � t ′ � 4, and (iv) 4 � t ′ � 6. The solid
black line is the axis of the Taylor–Green vortex. (b) Similar to panel (a) but for a particle with Ca = 0.01.
Supplemental movie for panel (a) is available online [43].

where xG is the center of mass of the particle. We have confirmed that one of the principal axis of
Gi j is almost perfectly parallel to the z axis; more precisely, even in the most deformable case with
Ca = 10, the cosine of the angle between the principal axis and the z axis is 0.999, which is the
average over four initial conditions and over the time between 0 � t ′ � 10. Therefore, we use the

014301-6
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FIG. 2. (a) Temporal evolution of the distance r(t ) between the elastic particle’s mass center and the axis
of the Taylor–Green vortex. The initial condition is r(0) = 5L/16. Different lines correspond to results with
different values of the capillary number: Ca = 10, 1, 0.1, and 0.01 from dark to light colors. (b) The Ca-
dependence of the distance r(t ′) at time t ′ = 2 (•) and t ′ = 4 (◦).

two eigenvalues λ1 and λ2 (λ1 > λ2) corresponding to the principal axes on the x-y plane to quantify
the deformation on the plane by the Taylor parameter,

T = λ1 − λ2

λ1 + λ2
. (17)

This parameter takes a value in the range 0 � T � 1, and T = 0 and 1 correspond to a circle and a
line, respectively.

We show the temporal evolution of T for the four different values of Ca in Fig. 4(a), where
we observe that the deformation in the initial period (t ′ � 5) is more pronounced for softer particles
(i.e., larger Ca). Looking at the softest case (i.e., Ca = 10), we notice that the deformation is initially
large (T attains its maximum at t ′ ≈ 0.43) and then the deformation gradually becomes smaller for
t ′ � 5. It is important that t ′ ≈ 5 is the time when the particle reached at the center of the vortex
[see Fig. 2(a)]. This implies that the soft particle is significantly deformed in the initial period to

FIG. 3. Initial-condition dependence of the location and deformation of the elastic particle with Ca = 10.
We show (a) the distance r(t ′) from the vortex axis and (b) Taylor parameter T (t ′), which is defined by Eq. (17),
as functions of the normalized time t ′. Four different curves denote results with different initial locations:
r(0) = iL/16 with i = 3, 4, 5 and 6 from lighter (thicker) to darker (thinner) lines.
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FIG. 4. (a) Temporal evolution of the Taylor parameter T (t ) defined by Eq. (17). Similarly to Fig. 2(a),
different lines correspond to different Ca. (b) The Ca-dependence of the temporal average 〈T 〉0�t ′�2 of T in the
period 0 � t ′ � 2. The initial condition is r(0) = 5L/16.

be attracted towards the center of the vortex, and then the deformation becomes weaker so that
the particle can stay inside the vortex. This is consistent with the observation in Fig. 1(a); that
is, the particle deforms into the lunar shape during the attraction towards the center of the vortex
(t ′ � 5), while it stays in the vortex with a cylindrical shape (t ′ � 5). Note that T → 0 in the final
period corresponds to a cylindrical, rather than spherical, shape of the particle [see Fig. 1(a)–1(iv)].
Incidentally, similar temporal evolution of the deformation is observed irrespective of the initial
location, r(0), of the particle with Ca = 10 [Fig. 3(b)].

We show the Ca-dependence of the temporal average 〈T 〉0�t ′�2 in the period 0 � t ′ � 2 in
Fig. 4(b). It is of importance that 〈T 〉0�t ′�2 is a monotonically increasing function of Ca. This result
implies that Ca determines the initial deformation of the particles, and more deformed particles can
be more rapidly attracted to the center of the vortex.

IV. DISCUSSIONS

A. Importance of the incline angle

The observations in Figs. 2 and 4 imply the correlation between the degree T of the deformation
and the attraction towards the vortex center. However, in this section, we emphasize that the
deformation of a particle is a necessary condition for the attraction. Another important factor is
the angle between the anisotropic particle and the pathline of the fluid particle.

To demonstrate the importance of the orientation of the anisotropic particle with respect to
pathline, we show here numerical results of the motion of a rigid prolate spheroidal particle. To
this end, we conduct another simulation for rigid spheroidal particles in the Taylor–Green vortical
flow by the immersed boundary method [34]. The fluid parameters are same as for the DNS of
elastic particles. Details of the numerical methods are given in the Appendix.

First, let us observe in Fig. 5 the temporal evolution of a prolate spheroidal particle with the
Taylor parameter T = 0.5 and the volume same as the examined elastic particles. The angle of the
particle is initially set as in Fig. 5(a) so that its major axis is parallel to the pathline, which is the
streamline in steady flow, of the Taylor–Green vortex. The particle swirls about the vortex, but it
is important to see that the distance from the center of the vortex is not monotonic. Looking at the
particle orbit in the period 0 � t ′ � 1.5 in Figs. 5(a) and 5(b), we can see that the particle is swept
out from the vortex. However, the orbit in Fig. 5(c) shows that the particle is attracted to the vortex
in the period 1.5 � t ′ � 3.

014301-8
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FIG. 5. Location and orientation of the rigid prolate spheroidal particle with T = 0.5 at (a) t ′ = 0, (b) 1.5,
and (c) 3. The black line is the vortex axis, and the blue line is the trajectory of the particle in the periods
(b) 0 � t ′ � 1.5 and (c) 1.5 � t ′ � 3.

We can confirm this nonmonotonic behavior also in Fig. 6(a), where the black thin line shows
the distance r between the particle and vortex. We also plot in Fig. 6(a) results for rigid spheroidal
particles with T = 0.3 (gray) and 0.2 (light gray). Stronger anisotropy (i.e., larger T ) leads to
the larger nonmonotonic radial motion of the particle. Besides, we can observe a similar periodic
behavior for the particle initially placed with its major axis perpendicular to the pathline, although in

FIG. 6. (a) Temporal evolution of the distance r between the vortex axis and the particle center. The light
gray, gray and black lines show the results for T = 0.2, 0.33, and 0.5, respectively. (b) Temporal evolution
of the angle ψ [see Fig. 7(a)] for T = 0.5. The dashed line indicates ψ = 0. Shaded periods in both panels
correspond to the internals with ψ < 0 for T = 0.5.

014301-9
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FIG. 7. The definition of ψ , which is the angle between the major axis of the prolate spheroidal particle
and the radial direction. Here, O denotes the center of the vortex. (b) The rod model examined in Sec. IV B,
which is composed of two neurally buoyant particles connected by a massless rod with length L. The angle ψ

is defined similarly to panel (a).

such a case it initially moves inward instead of outward (figure is omitted). However, we emphasize
that the anisotropic shape is not sufficient to explain the accumulation of the elastic particles into
the vortex center.

To show the importance of the orientation of the particle with respect to the pathline, we define
angle ψ as in Fig. 7(a); ψ is the angle between the major radius of the spheroidal particle and
the radial direction. Hence, the angle between the major radius and the pathline is ψ − π/2, if
the vortex is axisymmetric. We set the range of ψ as −π/2 � ψ � π/2. Note that ψ = π/2 and
−π/2 correspond to the same orientation. When ψ < 0 (or ψ > 0), the major radius is inwardly
(or outwardly) inclined with respect to the path line.

We show in Fig. 6(b) the temporal evolution of ψ for the spheroidal particle with T = 0.5 (shown
in Fig. 5). The shaded periods in Fig. 6 correspond to those with ψ < 0. Looking again at the black
thin line in Fig. 6(a), it is evident that when ψ < 0 the particle accumulates into the center of the
vortex (i.e., dr/dt < 0), whereas it is swept out from the vortex (i.e., dr/dt > 0) when ψ > 0.

In fact, it is the angle ψ that also controls the attraction of the elastic particles (Fig. 1) towards
the vortex. To show this, we define ψ for the deformed particle by using the eigen-vector of Gi j

corresponding to λ1 in place of the major axis of the spheroid. Then, we plot in Fig. 8(a) the temporal
evolution of ψ for four different values of Ca. The angle ψ is mostly negative. More precisely,
ψ < 0 in the initial period (t ′ � 5) when the particle with Ca � 1 is significantly deformed. We
emphasize that this is similar to the observation in Fig. 6(b) that the rigid spheroidal particle migrates
into the vortex center when ψ < 0. Therefore, we may conclude that both the anisotropy T and the
angle ψ are important for the attraction of particles towards a vortex. In fact, analytical arguments in
the next subsection imply that the product of T and sin ψ (rather than ψ) is the key to the explanation
of the attraction. To demonstrate this, we show in Fig. 8(b) the temporal average 〈T sin ψ〉0�t ′�2 in
the initial period 0 � t ′ � 2. Comparing this panel with Fig. 2(b), we can see that |〈T sin ψ〉| indeed
correlates with the attraction rate of the particle to the vortex. We can also see that for the examined
deformable particles, the Taylor parameter T mainly determines the attraction rate, since ψ < 0
irrespective of Ca [see Fig. 8(a)]. This explains the reason why the particles with larger Ca are more
rapidly attracted to the vortex (Fig. 2).

To summarize results in this subsection, a rigid prolate spheroidal particle moves nonmonoton-
ically in the radial direction of the vortex; more precisely, the particle is periodically attracted and
repelled by the vortex [Figs. 5 and 6(a)]. This behavior is related to the orientation of the particle
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FIG. 8. (a) Temporal evolution of ψ of the elastic particles. Different lines correspond to results with
different values of Ca: 10, 1, 0.1 and 0.01 from dark to light colors. (b) The Ca-dependence of the temporal
average of 〈T sin ψ〉 over the period 0 � t ′ � 2.

with respect to pathline [Fig. 6(b)]. When the particle head is inclined inwardly with respect to the
pathline, it moves towards the vortex axis; otherwise, the particle is swept out from the vortex. We
reemphasize that not only the degree T (Fig. 4) of deformation but also the angle ψ are likely to be
important for the movement of elastic particles in the radial direction (Fig. 8).

B. A simple model to explain the attraction towards a vortex

1. Governing equations for the rod model

We have shown that the angle between the particle and pathline plays a crucial role to determine
the radial motion of a neutrally buoyant particle in vortical flow. In this subsection, we develop
a simple model to explain this behavior. Here, we consider motion of two neutrally buoyant
particles connected by a massless rod with length L [Fig. 7(b)], which we call the rod model, in
two-dimensional vortical flow,

u(x) = ω × x, (18)

where ω is a vector parallel to the z axis and its magnitude ω(|x|) is a function of the distance |x|
from the origin. We assume that the inertia of the particles is negligible, and therefore their velocity
rapidly tends to the fluid velocity at the position of the each particle. We denote the ith (i = 1, 2)
particle’s position and velocity by x(i) = (x(i), y(i) ) and u(i), respectively. Then, the latter can be
expressed as

u(i) = u(x(i) ) = (−ω(i)y(i), ω(i)x(i) ), ω(i) = ω(|x(i)|) (i = 1, 2). (19)

Here, we have set the x-y coordinates as in Fig. 7(b). We also define the distance r(t ) between the
center of mass of the model and its angle ψ (t ), which is similar to the definition in Fig. 7(a).

Let us derive the governing equations for r(t ) and ψ (t ). Noting that x(i)(t ) is expressed as

x(1) = (x(1), y(1) ) =
(

r + L

2
cos ψ,

L

2
sin ψ

)
, (20a)

x(2) = (x(2), y(2) ) =
(

r − L

2
cos ψ,−L

2
sin ψ

)
, (20b)

in terms of r(t ) and ψ (t ), we can show that the x component of the velocity,

U = 1
2 (u(1) + u(2) ), (21)
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of the center of mass of the model is, from Eqs. (19) and (20), expressed as

Ux = 1

2
(−ω(1)y(1) − ω(2)y(2) ) = L(−ω(1) + ω(2) ) sin ψ

4
= −LW− sin ψ

4
. (22)

Similarly, its y component is expressed as

Uy = 1

2
(ω(1)x(1) + ω(2)x(2) ) = rW+

2
+ LW− cos ψ

4
. (23)

Here, we have defined W± as ω(1) ± ω(2).
Next, we consider the rotational motion of the rod model. Let � be the angular velocity of the

model about its center of mass. Then, since

L�

2
=

(
u(1) − u(1) + u(2)

2

)
·
(− sin ψ

cos ψ

)
, (24)

we obtain, by substituting Eqs. (19) and (20) into above equation,

� = W+
2

+ rW− cos ψ

L
. (25)

Note that the angular velocity �G of the center of mass about the origin O is

�G = Uy

r
= W+

2
+ LW− cos ψ

4r
. (26)

Therefore, in the rotating coordinate which is fixed with the center of mass of the model, the angular
velocity is

� − �G = LW−
4r

(
4r2

L2
− 1

)
cos ψ. (27)

Thus, we obtain, from Eqs. (22) and (27), the governing equations for r(t ) and ψ (t ) as

dr

dt
= −LW− sin ψ

4
(28)

and

dψ

dt
= LW−

4r

(
4r2

L2
− 1

)
cos ψ, (29)

respectively.
Equation (28) for r immediately leads to the conclusion that the sign of ψ determines the

direction of the radial motion of the model. This is consistent with results of the rigid prolate
spheroidal particle in vortical flow; recall that the sign of ψ almost perfectly coincides with that
of dr/dt (Fig. 6). Before discussing the behaviors of rigid spheroidal and elastic particles (see
Sec. IV B 3) on the basis of Eqs. (28) and (29), we briefly discuss the solution to these equations for
the rod model in the next subsection.

2. Behavior of the rod model in vortex

We discuss the motion of the rod model by using Eqs. (28) and (29). These equations imply
that W− is also important for the motion of the rod model. The simplest example is the solid-body
rotational flow, where ω(|x|) is constant. In this case, W− vanishes, and therefore dr/dt = 0 and
dψ/dt = 0, which implies that the rod model is frozen in fluid to keep its initial ψ and r. In general,
however, W− is nonzero, and therefore, as will be shown below, the rod model can migrate in the
radial direction.

First, we note that

ψ = ±π/2 (30)
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are steady solutions because |x(1)| = |x(2)| and therefore W− = 0 even if ω(|x|) is not constant.
However, these solutions (30) are unstable. To show this, from Eq. (29), we derive

dδψ

dt
= ∓LW−

4r

(
4r2

L2
− 1

)
δψ (for ψ = ±π/2) (31)

for the infinitesimal perturbation δψ (t ) around ψ = ±π/2. Here, we have assumed that the rod
model is apart from the vortex center so that

r >
L

2
. (32)

When W− < 0, according to Eq. (29), ψ monotonically decreases and tends to ψ = −π/2. Since
the coefficient of δψ on the right-hand side of Eq. (31) is negative for ψ = −π/2, it seems
stable. However, since ψ = +π/2 and −π/2 correspond to the same state, if there is a negative
perturbation δψ < 0 at ψ = −π/2, then ψ becomes π/2 + δψ . Then, since the coefficient of δψ

in Eq. (31) is positive around ψ = π/2, the solution is unstable. This behavior is exactly what we
observe in Fig. 5 for the prolate spheroidal particle; namely, the tumbling motion. Similarly, when
W− > 0, ψ monotonically increases and tends to π/2; and when a perturbation makes ψ to be
−π/2 + δψ , the rod model starts again tumbling with dψ/dt > 0.

3. Behavior of anisotropic particles in vortex

We are now ready to explain, by using the above analysis, the behavior of anisotropic particles
in Taylor–Green vortical flow. In the following, we assume W− < 0 because this is the case for the
Taylor–Green vortices.

First, we show that Eqs. (28) and (29) well explain the behavior of the rigid spheroidal particle
shown in Sec. IV A. According to Eq. (29), when Eq. (32) holds, ψ is a monotonically decreasing
function of time. This is consistent with the observation in Fig. 6; Eq. (32) holds and dψ/dt < 0.
On the other hand, Eq. (28) implies that the sign of ψ determines the sign of dr/dt . The concrete
behavior of the model can be described as follows recalling the definition of ψ shown in Fig. 7.
We suppose that, at initial time, the major axis of the prolate spheroidal particle is almost parallel
to the pathline, but its head is located outside of the pathline with a small angle ε. By definition of
ψ (Fig. 7), this orientation corresponds to ψ = π/2 − ε. Then, since ψ > 0, the particle migrates
outwards (dr/dt > 0) with a clockwise tumbling (dψ/dt < 0). When ψ gets negative, then the
head of the particle (note that the head and tail are exchanged at ψ = 0) is inside the pathline. Then,
the particle is attracted towards the vortex (dr/dt < 0). However, ψ gets continuously smaller and
tends to ψ = −π/2 corresponding to the orientation that the major axis of the particle is parallel
to the pathline. Then, when the particle further rotates, then it returns to the initial orientation with
ψ = π/2 − ε; recall again that ψ = +π/2 and −π/2 are the same orientation. Thus, the described
motion is consistent with the observed periodic motion (Fig. 6) for the rigid spheroidal particle. The
model also explains the observed fact in Fig. 6 that more anisotropic particle can be attracted more
rapidly because the larger degree T of anisotropy corresponds to larger |W−| and larger L. Note that,
according to Eq. (28), |dr/dt | is proportional both to |W−| and L.

Next, we discuss the behavior of the elastic particles examined in Sec. III. When Ca is large
enough [see Fig. 1(a) for example], the elastic particle is deformed in an initial period (t ′ � 5) and
T has finite values [Fig. 4(a)]. Note that larger T corresponds to the larger magnitude of W−, which
is negative in the Taylor–Green vortical flow. Therefore, (28) implies that the attraction (dr/dt < 0)
towards the vortex occurs when ψ < 0. This is indeed the case as demonstrated in Fig. 8(a). Hence,
the simple model equation (28) also explains the radial attraction of the elastic particles in the
initial period. Furthermore, as the particle approaches the vortex center, the deformation is relaxed
[Fig. 1(a)–1(iii)], which corresponds to the decline in T [Fig. 4(a)] and therefore W− also gets
smaller; as a result, |dr/dt | decreases so that the particle can stay around the vortex center. In fact,
Fig. 8(b) shows that the average |〈T sin ψ〉0�t ′�2|, in an initial period, of the product of the degree
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T of deformation and the sine of the angle ψ between the major axis and the radial direction is
an increasing function of Ca. This is consistent with the results shown in Fig. 2(b) that softer (i.e.,
larger Ca) particles can be more rapidly attracted by vortex. Incidentally, if we decrease the length L
of the rod with time, then the rod model, Eqs. (28) and (29), can numerically reproduce the behavior
of the deformable particles in a qualitative manner. It is also worth mentioning that the model can
explain the observation in Ref. [31] that the migration of deformable vesicle particles is determined
by the angle of the particle with respect to the pathline in the Taylor–Green vortex flow.

Thus, by using the governing equations (28) and (29) for the rod model in vortical flow, we may
explain the essence of the behavior of the anisotropic particles: namely, the rigid spheroidal particles
and the deformable elastic particles. In summary, the degree of particle anisotropy and the angle ψ

between the major axis of particle and the radial direction are the two important parameters for the
attraction of neutrally buoyant particles towards a vortex.

V. CONCLUSION

We have investigated the motion of a single neutrally buoyant hyperelastic particle in Taylor–
Green vortices (13) by means of DNS with the full Eulerian finite difference method [32]. The
parameters controlling this system is D̃ (the initial diameter of the particle normalized by the vortex
size), Ca (the capillary number), Rep (the particle Reynolds number), and ξ (the viscosity ratio).
Fixing D̃ (= 0.375), Rep (= 0.01), and ξ (= 1), we have investigated Ca-dependence in the range
0.1 � Ca � 10. Then, we have found an interesting event that softer particles can be attracted
towards a vortex center [Figs. 1(a), 2, and 3]. We quantify the degree of the deformation by the
Taylor parameter (17) to show that more deformed particle can be attracted to the vortex more
rapidly [Figs. 2(b) and 4(b)].

We emphasize that the deformation is a necessary condition for neutrally buoyant particles to
be attracted by vortex. In fact, an additional DNS of a rigid spheroidal particle demonstrate that
it is periodically attracted and repulsed by vortex [Figs. 5 and 6(a)]. It is of importance that the
orientation of the anisotropic particle determines the motion in the radial direction; more precisely,
if the particle is inwardly inclined with respect to the pathline (i.e., the angle ψ , defined in Fig. 7,
is negative), then the particle is attracted towards the vortex; otherwise, it is repulsed (Fig. 6).
This behavior is also confirmed in the rod model [Fig. 7(b)] examined in Sec. IV B. The derived
equation (28) implies that the sign of dr/dt is determined by that of ψ .

On the basis of these analyses, we may explain the physical mechanism of the attraction of the
elastic particles towards a vortex center. The elastic particle is strongly deformed by shear flow
around a vortex, and the particle is inclined inwards with respect to the pathline [i.e., ψ < 0; see
Fig. 8(a)], it accumulates into the center of vortex. Then, the deformation is relaxed gradually as the
particle approaches the vortex center [Fig. 4(a)] and therefore it cannot move in the radial direction
to stay around the vortex center.

Some issues are left for future studies. First, in the present study, we have restricted ourselves
in the case with a single-scale vortical flow. As discussed in the Introduction, however, it is more
interesting to investigate the effect of deformability of particles on the particle clustering in turbulent
flows. Since high-Reynolds-number turbulence is composed of a hierarchy of coherent tubular
vortices [9–12], we may extend the present analysis for single-scale flow to turbulence by taking into
account its multi-scale nature. Such an extended investigation may lead to a deeper understanding
of the results [29,30,44] in more realistic situations. Another future study is about the effect of
particle deformation on the cross-sectional migration (i.e., the axial concentration [45]) in a tube.
In particular, when the tube is curved, it is important to understand the effects of cross-sectional
secondary flow (the Dean vortex) [26]. The present system is much simpler than flow in a tube
because there is neither wall nor shear flow in the axial direction. Nevertheless, the proposed action
due to swirling flow may affect the phenomenon in a curved tube. Furthermore, since the main aim
of the present article is to demonstrate the attraction of deformable particles towards a vortex, more
systematic parameter survey is left for a future study. For example, it is interesting to investigate
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other cases with different values of ξ and D̃. The latter is particularly interesting because Eq. (28)
implies that the speed of the radial migration is proportional to particle size. It is also important
to study competition between the present effect due to particle deformation and the inertial effects
(i.e., finite τp effects due to a mass density difference in particle and fluid) on particle clustering in
vortical flow.
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APPENDIX: DNS OF RIGID PROLATE SPHEROIDAL PARTICLES

In this Appendix, we describe the numerical methods and parameters for the DNS, which is used
in Sec. IV A, of a rigid prolate spheroidal particles in the Taylor–Green vortical flow.

1. Numerical method

Fluid is governed by the continuity equation with α = f in Eq. (3) and the Navier–Stokes
equation,

∂v
( f )
i

∂t
+ v j

∂v
( f )
i

∂x j
= − 1

ρ

∂ p

∂xi
+ μ( f )

ρ

∂2v
( f )
i

∂x2
j

+ fi + f ←p
i , (A1)

where f ←p
i is the force due to particles. We employ an immersed boundary method originally

proposed by Uhlmann [33] and improved by Kempe and Fröhlich [34] to simulate neutrally buoyant
rigid particles. In this method, the fluid-particle interface is represented by a set of Lagrangian points
distributed uniformly on it. To obtain uniform distribution of the points, we first locate points spirally
on the surface of the spheroid [46]; and then we simulate point charges, with this distribution as the
initial condition, moving on the spheroidal surface to obtain an uniform state with the minimum
potential energy [47]. We evaluate the fluid-particle interaction force so that the nonslip boundary
condition of fluid velocity is satisfied on each Lagrangian point. By interpolating the adjacent forces,
we obtain the force f ←p

i in Eq. (A1) acting on the Eulerian grid. For the spatial discretization of
the other terms in Eq. (A1), we use a second-order central difference scheme on the staggered grid.
We temporally integrate the convection and viscous terms by the second-order Crank–Nicolson and
Adams–Bashforth methods, respectively.

As for particle motions, we evaluate the force F← f and the moment L← f around the particle
center acting on the particle by integrating the reaction force − f ←p on its surface. Then, we
numerically integrate Newton’s equations of motion,

m
dv

dt
= F← f (A2)

and
dIω
dt

= L← f , (A3)

where m, I, v, and ω are the mass, inertial moment, velocity, and angular velocity of the particle.
We solve Eqs. (A2) and (A3) in the frame attached to the particle with the origin being the particle

mass center and with axes being the major and minor axes of the spheroidal particle. We express the
transformation between the two frames by the quaternion. Numerically evolving the quaternion, we
obtain the particle orientation. More details of the numerical method are found in Ref. [48].
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FIG. 9. Temporal evolution of the rotational speed for a rigid spheroidal particle in the Couette flow. Solid
lines denote the analytical solutions by Jeffery [49], and circles are the result of the present DNS. Different
colors correspond to different values of the Taylor parameter: red, T = 1.5; black, 2; blue, 3.

2. Numerical parameters

Similarly to the case for elastic particles, to investigate the behavior of a particle in a vortical flow,
we impose the external force (14) that induces four vortices in a periodic cube. The global Reynolds
number is set to be sufficiently small (Re = 0.1). We distribute a single spheroidal particle around
one of these vortices whose major axis is initially parallel to the pathline. Fixing its sphere-converted
diameter D = 2(ab2)1/3 = π/4 (a and b are major and minor radii, respectively), we examine three
cases for particles with different aspect ratios: a/b = 1.5, 2, and 3; i.e., T = 0.2, 0.33, and 0.5,
respectively. We set the number of grid points of the DNS 2563 so that particles are well resolved
(D/�x = 32).

3. Validations

Jeffrey [49] theoretically derived the temporal evolution of the rotational speed of a spheroidal
particle without inertia in the Couette flow. Here, to validate the present DNS, we simulate three
cases of a prolate spheroidal particle in the Couette flow with the shear rate G = 0.004 with three
different values of the Taylor parameter (T = 0.2, 0.33, and 0.5). In each case, we set the major
and minor radii of the spheroid as (a, b) = (6,4), (8,4), and (12,4); therefore, the particle Reynolds
number is small (GD2/ν ( f ) = 0.5). The Couette flow is driven by two walls moving in opposite
directions. The numbers of the grid points are 128 in the wall-normal direction and 256 in the
other directions. The grid widths are uniform, and therefore particles in each case are resolved with
D/�x = 18.3, 20.2, and 23.1. Looking at the temporal evolution for the rotational speed, ωy, shown
in Fig. 9, we verify that the DNS results are in almost perfect agreement with the theoretical curves
in all the three cases with T = 1.5, 2, and 3.
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