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We introduce transfer learning for nonlinear dynamics, which enables efficient predictions of chaotic dynamics
by utilizing a small amount of data. For the Lorenz chaos, by optimizing the transfer rate, we accomplish more
accurate inference than the conventional method by an order of magnitude. Moreover, a surprisingly small
amount of learning is enough to infer the energy dissipation rate of the Navier-Stokes turbulence because we
can, thanks to the small-scale universality of turbulence, transfer a large amount of the knowledge learned from
turbulence data at lower Reynolds number.
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I. INTRODUCTION

Machine learning (ML) is becoming a powerful tool for a
broad range of problems in physics, and it is likely to solve
certain long-standing problems in nonlinear physics, such as
turbulence modeling [1–3], in the near future. Solving these
problems is not only crucial in fundamental physics, but also
has an immeasurable impact upon practical problems, e.g., in
fields such as mechanical engineering and weather forecast-
ing.

As an ML method suitable for nonlinear dynamics, we
focus on reservoir computing (RC) [4]. RC has been suc-
cessfully applied to the problems of nonlinear dynamics such
as the inference of unmeasured variables and the prediction
of future states of spatiotemporal chaos [5–10]. Similarly to
other ML methods, RC requires a large amount of training
data. However, this requirement is often unsatisfied, i.e., the
amount of training data is often limited. This fundamental
problem would be a major bottleneck of making RC appli-
cable, especially for spatiotemporal chaos with a large degree
of freedom.

The ML-based turbulence modeling is a typical example.
Although the ML-based turbulence modeling will be useful in
practical engineering applications, these modeling requires a
large amount of high-Reynolds-number turbulence data col-
lected over a long period of time. The length of the training
data required for RC exceeds the turnover time of the largest
eddies by several thousand times, for which we give a theo-
retical estimation in Appendix A. Generating such turbulence
data for practical applications, e.g., using the direct numerical
simulation, is usually impossible. Therefore, it is essential to
learn the knowledge of the high-Reynolds-number turbulence
from a small amount of data.

To solve the fundamental problem, we employ transfer
learning, which is a concept to utilize knowledge learned in
a task for another different but similar task. Although transfer
learning has been successfully used for ML tasks such as
image classifications [11], it is unclear how useful this concept
is and how to implement it for problems in physics.

*inubushi@me.es.osaka-u.ac.jp

In this paper, we develop a transfer learning method for
RC [12] with an optimization of transfer rate (defined below),
and then, we show that the method is indeed effective for
tasks of chaotic dynamics. Taking the Lorenz equations as
an example, we demonstrate that optimizing the transfer rate
is essential, which leads to more accurate inference than the
conventional method by an order of magnitude.

More importantly, concerning the inference of the energy
dissipation rate of the Navier-Stokes turbulence, we uncover
that the amount of learning can be drastically reduced, by
transferring the knowledge learned from turbulence data at
lower Reynolds number. A main conclusion is that the uni-
versality of the energy cascade of turbulence enables us to
use a large transfer rate, which is crucial for the ML-based
turbulence modeling.

II. METHOD

We study a dynamical system x(k + 1) = f ρ[x(k)] with
some control parameter ρ and the inference task, although
our proposed method is not limited to this task. The goal of
the task is to infer an unmeasurable quantity v[x(k)] from
a measurable quantity u[x(k)] at a parameter denoted by
ρ = ρT . The training data DT consists of the input data
u(k) = u[x(k)] and the output data v(k) = v[x(k)], i.e., DT =
{u(k), v(k)}1�k�T ′

L
. We consider that the length of the training

data T ′
L is not sufficiently long.

Here we assume that a sufficient amount of training data
DS = {u(k), v(k)}1�k�TL is available at a parameter ρ = ρS
which differs from the parameter ρT , and these training data
DT and DS are similar to each other. We refer to the parameter
ρS and ρT as the source and target domains (parameters),
respectively. Our method utilizes knowledge learned from the
source domain to realize the inference in the target domain
(see Fig. 1).

To derive explicit formulas, we use the echo state network
(ESN) introduced by Jaeger (2001) [13] as a conventional
RC method. The state variable ri of the ith node in the ESN

evolves in time as follows: ri(k + 1) = φ[
∑N

j=1 Ji jr j (k) +
εu(k) + ηξi], where N is the number of nodes, and Ji j and
ξi are the fixed random connections and biases, respectively.
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FIG. 1. Illustrative example of transfer learning for RC applied to the inference problem of z(t ) from x(t ) of the Lorenz chaos. The
red-shaded region on the left shows the data of the Lorenz chaos in the source domain (ρS = 28). The blue-shaded region on the right shows
the data in the target domain (ρT = 40). (a, a′) Projection of the attractor onto the x − z plane. (b, b′) Lorenz plot. The data plotted in (b) is
replotted in (b′) for comparison. (c, c′) Training data in DS and DT . We consider the case that the training data in DT is limited.

Further, φ[·] is the so-called activation function, and we em-
ploy φ[x] = tanh[gx]. Here g, ε, η ∈ R are hyperparameters.
We used N = 100 nodes of ESN with the following hyper-
parameters: g = 0.95, ε = 0.2, and η = 0.01. Elements Ji j of
the connection matrix and the bias terms ξi are independently
and identically drawn from the Gaussian distribution: Ji j ∼
N (0, 1/N ) and ξi ∼ N (0, 1). The time-series {u(k), v(k)} are
normalized to have zero mean and unit variance.

Our method consists of the following two steps: (I) training
in the source domain with DS , and (II) training in the target
domain with DT .

(I) Training in the source domain: The readout from
the ESN is given by v̂(k) = ∑N

i=1 wS
i ri(k). The hat symbol

indicates the inferred quantities. The readout weight wS is de-
termined with DS to minimize the mean-square error (MSE)
E (w) = 〈(v − v̂)2〉TL = 〈(v − ∑N

i=1 wiri )2〉TL , where 〈a〉T :=
1
T

∑T
k=1 a(k). Calculating ∂

∂w j
E (w) = 0 ( j = 1, · · · , N ), the

trained readout weight is given by

wS = R−1q, (1)

where Ri j := 〈rir j〉TL and qi := 〈vri〉TL .
(II) Training in the target domain: We use the same ESN

as in the source domain, and train the readout weight wT .
Because of the similarity of the training data DS and DT , the
relation wT � wS + δw would hold with a small correction
δw. Thus, we consider the readout from the ESN as v̂(k) =

∑N
i=1(wS

i + δwi )ri(k) with the weight wS already trained by
Eq. (1). The correction weight δw is determined to minimize
the following function:

E (δw) =
〈(

v′(t ) −
N∑

i=1

(wS
i + δwi )r

′
i (t )

)2〉
T ′

L

+ μ‖δw‖2
2,

(2)
where ‖δw‖2

2 = ∑N
i=1 δw2

i . The variables with primes, such
as v′, denote variables in the target domain. We refer to
the parameter μ ∈ [0,∞] as the transfer rate. Calculat-
ing ∂

∂δw j
E (δw) = 0 ( j = 1, · · · , N ), the correction weight is

given by

δw = [R′ + μI]−1q′, (3)

where R′
i j := 〈r′

i r
′
j〉T ′

L
, I is the identity matrix and q′ :=

〈v′r′〉T ′
L
− R′wS .

The transfer rate μ, which is similar to l2 regularization,
controls the amount of knowledge transferred from the source
domain to the target domain. If the transfer rate is zero, μ = 0,
then the above formula is reduced to the conventional RC
method which is supervised learning by using the target data
DT only, i.e., transferring no knowledge from the source
domain. In the limit of the large transfer rate, μ → ∞, we
have ‖δw‖2 → 0 (see Appendix B for proof). Namely, in this
limit, the above formula is reduced to a method that simply
reuses the weight wS , i.e., no learning in the target domain.

043301-2
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FIG. 2. (a) Generalization error (mean-square error, MSE) of the inference task for the Lorenz equations with ρT = 32. The horizontal
axis shows the transfer rate μ. The red circles represent the median MSE. The blue shaded area indicates the range of the MSEs from the first
to the third quartile. Inset: the logarithmic graph of the same MSE data. The broken and solid lines represent the median MSE in the cases of
μ = 0 and μ = ∞, respectively. (b) The blue lines are the inferred values ẑ( j)(t ) ( j = 1, · · · , 100) by the conventional method (μ = 0, upper
panel) and the proposed transfer learning (μ = 10−8, lower panel). The red broken lines represent the answer data z(t ).

The above-mentioned formula for transfer learning constitutes
a one-parameter family of learning methods, which connects
the conventional RC (μ = 0) and the simple transfer method
(μ → ∞).

III. TRANSFER LEARNING FOR LORENZ CHAOS

To verify the effectiveness of the proposed method, we
use the Lorenz equations: dx/dt = σ (y − x), dy/dt = x(ρ −
z) − y, dz/dt = xy − bz. We fix the parameters σ, b to σ =
10, b = 8/3 and change the parameter ρ (Fig. 1). The task
is to infer z(t ) from the sequence of x(t ) [5]. For RC, the
continuous time-series x(t ) and z(t ) are sampled with a period
τ = 0.01, and used for the input and output signal, respec-
tively. We assume that a sufficient amount of the training data,
DS = {x(t ), z(t )}0�t�TL , is available for ρS = 28. We show
that our method utilizes knowledge learned from DS to realize
the inference in the target domains ρT = 32 and ρT = 40.

Figure 2(a) shows the MSE of the inference by the pro-
posed method. The source domain is ρS = 28 and the target
domain is ρT = 32. To evaluate the inference accuracy by
the proposed method statistically, we perform the following
training-testing procedure of the transfer learning:

The length of the training data DS in the source do-
main is TL = 104. In the above procedure, M denotes
the number of samples in the training data, DT

( j) =
{x j (t ), z j (t )}0�t�T ′

L
( j = 1, · · · , M ), in the target domain.

Training-testing procedure

1: Train wS by Eq. (1) with DS
2: Fix the transfer rate μ ∈ [0, ∞]
3: for j = 1, · · · M do
4: Train δw( j) by Eq. (3) with DT

( j)

5: Test with wS + δw( j) and output the jth MSE
6: end for

We use M = 100 and T ′
L = 5 (� TL ). Each training data sam-

ple only includes less than ten cycles around the fixed points
of the Lorenz attractor. Figs. 1(c) and 1(c′) present examples
of the training data. The MSE is the generalization error with
common test data in the target domain, which differ from
the training data, with the length Ttest = 5 × 103. The median
MSE over M = 100 samples of training data, indicated by the
red circle, is plotted for each value of μ. The blue shaded
area indicates the range of the MSE from the first to the
third quartile, which characterizes the statistical dispersion
of the MSE. In the inset, we show the same result for the
MSE, plotted using the logarithmic values, and the dashed
(solid) line represents the median MSE in the case of μ = 0
(μ = ∞). At each end, the proposed method is reduced to the
conventional and simple transfer methods, respectively. In the
case of μ = ∞, we set δw = 0.

In the case of ρT = 32, the attractor is expected to be
similar to that at ρS = 28, and thus, transfer learning is effec-
tive. In fact, as shown in Fig. 2(a), if we conduct the transfer
learning with the optimal transfer rate μ � 10−8, then the
median of the MSEs decreases drastically and it becomes
smaller than, by an order of magnitude, that of the conven-
tional method (μ = 0). Note that the statistical dispersions are
also reduced.

In practice, we must find the optimal parameter with a
small amount of data. Even in such a situation, i.e., M is
small and the length of the test data Ttest is short, the above
procedure gives an estimation of the optimal transfer rate as
will be discussed in Sec. V.

The time-series of the values ẑ(t ) inferred by the conven-
tional method and transfer learning at the optimal transfer
rate are shown in the upper and lower panels in Fig. 2(b),
respectively. In the figure, the solid blue lines of the in-
ferred ẑ( j)(t ) correspond to the each training data sample,
DT

( j) ( j = 1, . . . , 100), and the broken red line represents
the answer data z(t ). When we use the conventional method,
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the inferred time-series significantly differs from the true
time-series. However, the transfer learning method enables the
time-series of z(t ) to be inferred with a smaller error and less
statistical dispersion.

Even in the case of ρT = 40, which is far from the source
domain, transfer learning can reduce the median MSE and the
statistical dispersion compared with the conventional method
(see Appendix C).

IV. TRANSFER LEARNING FOR FLUID TURBULENCE

We tackle a critical problem associated with turbulence:
the inference of the energy dissipation rate ε(t ). Although the
energy dissipation rate plays an important role in statistical
turbulence theory and turbulence modeling, the direct mea-
surement of ε(t ) is difficult. As an easily measurable quantity,
we use the kinetic energy K (t ) of the turbulent flow. The task
is to infer ε(t ) from K (t ).

As described before, the ML-based turbulence modeling
requires training data of high-Reynolds-number turbulence,
such as {K (t ), ε(t )}, collected over a long period of time.
However, such turbulence data are not available in practice.
Alternatively, the calculation of turbulence at low Reynolds
number is much easier. Since the energy cascade dynamics is
insensitive to variation in the Reynolds numbers (see Ref. [14]
for the details), we expect that there is a similarity of turbu-
lence attractors over a wide range of the Reynolds numbers.
Hence, the knowledge learned from turbulent data at a low
Reynolds number to be useful for the same task at a high
Reynolds number. This gives a reason why transfer learning
is effective.

We conducted direct numerical simulations of the Navier-
Stokes equations with a steady forcing term in a periodic
box, using the Fourier spectral method. For the temporal inte-
gration, the fourth-order Runge–Kutta–Gill scheme was used
(see Appendix D for details).

Here we use the time-series of the spatial average of the en-
ergy and the energy dissipation rate at Rλ � 35 as the training
data DS = {K (t ), ε(t )}0�t�TL in the source domain, and those
at Rλ � 120 as the training data DT = {K (t ), ε(t )}0�t�T ′

L
in

the target domain, where Rλ is the Taylor microscale Reynolds
number and it plays the role of ρ. We emphasize that the
integral-scale Reynolds number R in the target domain is
approximately an order of magnitude higher than that in the
source domain, since R ∝ R2

λ [15].
Figure 3 shows the normalized time-series of the energy

K (t ) and energy dissipation rate ε(t ) at (a) Rλ � 35 and (b)
Rλ � 120. The gray solid line and red broken line represent
K (t ) and ε(t ), respectively. The mean turnover time of the
largest eddies, defined by 〈T 〉 = 〈L/

√
2K/3〉 with L being

the integral length, are 〈T 〉 � 0.7 at Rλ � 35 and 〈T 〉 � 0.5
at Rλ � 120. The energy dissipation rate ε(t ) at Rλ � 35
changes in time following the energy K (t ) with a delay owing
to the energy cascade. At Rλ � 120, the time delay is still
found in the relation between K (t ) and ε(t ); however, the
relation becomes more than merely a delay.

Training data collected for a sufficiently long time DS with
TL = 3.0 × 103 are used to obtain wS at Rλ � 35. We assume
that the amount of available training data is highly limited for
the calculation of δw at the target domain, Rλ � 120. The

FIG. 3. Normalized time-series of the energy K (t ) and energy
dissipation rate ε(t ) at (a) Rλ � 35 and (b) Rλ � 120. The gray solid
line and red broken line represent K (t ) and ε(t ), respectively.

length of the each training data of DT
( j) ( j = 1, · · · , M ) is

T ′
L = 50 (� TL ), which includes roughly ten quasi-periodic

cycles of the energy cascade events [16]. The number of
samples of training data is M = 20. The length of the test data
is Ttest = 2.0 × 103. For RC, the continuous time-series K (t )
and ε(t ) are sampled with a period τ = 0.2, and used for the
input and output signal, respectively.

Figure 4(a), which uses the same symbols and lines as
in Fig. 2, shows the dependency of the inference MSE on
the transfer rate μ. The most accurate inference (the smallest
MSE) is achieved by the proposed transfer learning method
with μ � 1, which implies that the ESN learned from the
low-Reynolds-number turbulence data requires only slight
corrections by the high-Reynolds-number turbulence data.
Compared with the conventional method (μ = 0), transfer
learning effectively reduces the inference errors and the sta-
tistical dispersion. As mentioned above, there is the similarity
between the training data DS and DT for this particular task,
which is explained by the energy cascade dynamics of turbu-
lence [14].

The corresponding time-series of the inferred value ε̂(t )
in the target domain, Rλ � 120, by the conventional method
and transfer learning with the optimal transfer rate (μ = 1)
are shown in the upper and lower panels in Fig. 4(b), respec-
tively. In each panel, the solid blue lines represent the inferred
ε̂ ( j)(t ) ( j = 1, · · · , M ), corresponding to each training data
sample DT

( j), and the broken red line represents the answer
time-series ε(t ).

The conventional method produces a large inference error
and considerable statistical dispersion. However, the transfer
learning method achieves almost perfect inference of the en-
ergy dissipation rate.

V. ESTIMATION OF OPTIMAL TRANSFER RATE
WITH A SMALL AMOUNT OF DATA

In the previous sections, we used a large amount of
data, e.g., a large number of samples of training data and a
sufficiently long test data, in order to statistically verify the
performance of the transfer learning method. However, in
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FIG. 4. (a) Generalization error (mean-square error, MSE) as a function of the transfer rate μ. Similar plots to Fig. 3 but for the inference
of the energy dissipation rate of the Navier-Stokes turbulence at Rλ � 120. The red circles represent the median MSE. The blue shaded area
indicates the range of MSEs from the first to the third quartile. Inset: the logarithmic graph of the same MSE data. The broken and solid lines
represent the median MSE in the cases of μ = 0 and μ = ∞, respectively. (b) The blue lines are the inferred values ε̂ ( j)(t ) ( j = 1, . . . , 20)
at Rλ � 120 by the conventional method (μ = 0, upper panel) and the proposed transfer learning (μ = 1, lower panel). The red broken lines
represent the answer data ε(t ).

practice, we need to estimate the optimal transfer rate from
a small amount of data.

To investigate the optimization with a small amount of
data, we conduct numerical experiments in both cases of
the Lorenz equations and the Navier-Stokes equations. The
target domain of the Lorenz case is ρT = 32. Here we as-
sume that we can use a single sample of data, i.e., M = 1,
in the target domain with the length of 3T ′

L , and divide it
into three. The first one (0 � t < T ′

L) is used to obtain the
reservoir state being synchronized with the input signal, the
second one (T ′

L � t < 2T ′
L) is used for training, and the third

one (2T ′
L � t < 3T ′

L) is used for testing. The other settings
of the experiments including the values of T ′

L for the Lorenz
and Navier-Stokes equations are the same as in the previous
sections.

Figures 5(a) and 5(b) show the MSE of the inference task
for the Lorenz equations and for the Navier-Stokes equa-
tions, respectively. For the Lorenz equations, while the inset
of Fig. 2(a) shows the optimal transfer rate is in the range
10−9 � μ � 10−6, Fig. 5(a) shows it is in the range 10−11 �
μ � 10−8. For the Navier-Stokes equations, while the inset
of Fig. 4(a) shows the optimal transfer rate is in the range
10−2 � μ � 1, Fig. 5(b) shows it is in the range 10−4 � μ �
10−1. These demonstrations suggest that we can estimate the
optimal transfer rate from such a small amount of data, in
particular, for the turbulence case, the data for at most 15-fold
of the correlation time [16] is sufficient for the optimization.

VI. CONCLUSIONS

We have developed the transfer learning method of RC and
shown that the optimization of the transfer rate is essential for

the inference problem of the Lorenz chaos. Furthermore, if
we choose a suitable physical quantity for learning, as shown
in the successful inference of the energy dissipation rate of
turbulence, the amount of learning in the target domain can be
drastically reduced.

In this paper, we showed in a statistically reliable manner
that there exists an optimal transfer rate by using a large
amount of data. However, in practice, we must find an optimal
transfer rate with a small amount of data, i.e., M is small and
the length of the test data Ttest is short. As demonstrated in
Sec. V, the transfer learning method gives an estimation of the
optimal transfer rate even when only a small amount of data is
available. To improve the accuracy of the estimation, it will be
useful to employ ML-techniques such as the cross-validation
or the quantification of similarity between attractors in the
source and target domains.

We implemented transfer learning for parameter changes
of the dynamical systems. Once we train a reservoir computer
for a dynamical system with a certain parameter, the proposed
method can eliminate most of the computational cost of train-
ing for the same dynamical system with different parameters.
The applications of the proposed method are not restricted to
the parameter change; for instance, it is possible to train a
reservoir computer with numerical simulations, and then uti-
lize it in predictions for physical experiments via the proposed
transfer learning. Although the present study focused on the
nonlinear dynamics, transfer learning for RC is a model-free
flexible ML-method, and hence, can be applied to any other
physical system. Physical RC, physical implementations of
RC using physical devices such as lasers, is highly active
research topic [17–19], and the transfer learning is also useful
to realize the physical RC.
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FIG. 5. MSE (red circles) of the inference task for (a) the Lorenz equations and (b) the Navier-Stokes equations, as a function of the
transfer rate μ. The target domain of the Lorenz case is ρT = 32. The MSE is estimated with a short test data Ttest = T ′

L and M = 1. The
broken and solid lines represent the MSE in the cases of μ = 0 and μ = ∞, respectively.

We hope that the proposed method will open up new pos-
sibilities of ML methods for nonlinear dynamics, and will be
an effective tool for the long-standing problems in physics.
In particular, we expect the present study to be a crucial step
toward the development of the ML-based turbulence modeling
that utilizes the attractor similarity associated with the univer-
sality of the small-scale statistics of turbulence.
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APPENDIX A: REQUIRED LENGTH OF TRAINING DATA
FOR ECHO STATE NETWORK

Usually, machine learning methods such as RC require
a large amount of training data. In this Appendix, first, we
estimate the required amount of training data explicitly in the
general setting of the linear ESN. Then, focusing on the tur-
bulence case studied in the main text, we discuss the required
length of the training data, and describe the numerical results
for the nonlinear ESN.

Training of the ESN requires the convergence of 〈rir j〉t and
〈riv〉t , where 〈a〉t := 1

t

∑t
k=1 a(k). For the linear ESN, we can

generally estimate the required length of training data. The
linear ESN is a signal-driven dynamical system: r(k + 1) =
Jr(k) + εu(k)1, where all the components of the vector 1 are
one. We obtain the following expression:

r(k + 1) = Jr(k) + εu(k)1

= Jmr(k − m + 1) + ε

m−1∑
�=0

u(k − �)J�1

→ ε

∞∑
�=0

u(k − �)J�1 (m → ∞). (A1)

In the last step, we assume the spectral radius of the matrix
ρ(J ) is strictly less than one, ρ(J ) < 1, which ensures syn-
chronization with the input signal. Therefore, we have

〈rir j〉t = ε2
∞∑

�,�′=0

[J�1]i[J
�′

1] jCuu(� − �′), (A2)

and

〈riv〉t = ε

∞∑
�=0

[J�1]iCuv (�), (A3)

where Cuu(� − �′) is the auto-correlation function,
Cuu(� − �′) := 〈u(k − �)u(k − �′)〉t , and Cuv (�) is the
cross-correlation function, Cv (�) := 〈u(k − �)v(k)〉t . Thus,
the convergence of 〈rir j〉t and 〈riv〉t requires the convergence
of Cuu(� − �′) and Cuv (�), respectively.

Considering the inference task of the energy dissipation
rate as discussed in the main text, u = K and v = ε, and suf-
ficient training data is necessary such that the auto-correlation
CKK and the cross-correlation CKε converge. The length of
such the data exceeds the turnover time of the largest eddies
by several thousand times [16]. For the nonlinear ESN used
in this paper, we have numerically studied the convergence of
〈rir j〉t and 〈riv〉t , and confirmed that the convergence of these
values requires a long period of turbulence data as mentioned
above.

APPENDIX B: PROOFS OF ASYMPTOTIC FORMULAS
OF THE TRANSFER LEARNING METHODS

1. Reduction to conventional RC (μ = 0)

When μ = 0, Eq. (3) of the main text becomes

δw = R′−1q′ = R′−1(〈v′r′〉T ′ − C′wS ) = R′−1〈v′r′〉T ′ − wS .

(B1)

Thus, wS + δw = R′−1〈v′r′〉T ′ , which is Eq. (1) in the main
text for the conventional RC.
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FIG. 6. MSE of the inference task for the Lorenz equations with
ρT = 40 as a function of the transfer rate μ. The red circles represent
the median MSE. The blue shade indicates the range in MSEs from
the first to the third quartile. The broken and solid lines represent the
median MSE in the cases of μ = 0 and μ = ∞, respectively.

2. Simple transfer method (μ → ∞)

In the limit of μ → ∞, we have

‖δw‖ = ‖[R′ + μI]−1q′‖ � ‖[R′ + μI]−1‖ · ‖q′‖
= 1

μ
‖(I − Tμ)−1‖ · ‖q′‖ (Tμ := −R′/μ)

� ‖q′‖
μ(1 − ‖Tμ‖)

→ 0 (μ → ∞). (B2)

In the last step, we have used the Neumann series.

APPENDIX C: TRANSFER LEARNING FOR LORENZ
CHAOS FAR FROM SOURCE DOMAIN

Even in the case of ρT = 40, which is far from the source
domain, the transfer learning can reduce the median MSE
and the statistical dispersion compared with the conventional
method. The results are presented in Fig. 6, in which the
symbols and lines have the same meaning as those in the main
text.

Compared with the case of ρT = 32, the similarity be-
tween the attractors in the source domain and the target
domain are lower. In fact, the simple transfer method (μ =
∞) is ineffective. Although the target domain is far from
the source domain, the transfer learning with the optimal
transfer rate μ � 10−8 still reduces the median MSE and
the statistical dispersions compared with the conventional
method (μ = 0).

The time-series of the inferred values ẑ(t ) are shown in
Fig. 7. Figures 7(a), 7(b) and 7(c) correspond to the results
with the conventional (μ = 0), the transfer learning (μ =
10−8), and the simple transfer method (μ = ∞), respectively.
The conventional method leads to large errors and statisti-
cal dispersions. When the simple transfer method is used,

FIG. 7. The time-series of the inferred values ẑ( j)(t ) ( j =
1, . . . , M ) at ρT = 40 corresponding to the M = 100 samples of
the training data. The inferred values by the conventional (μ = 0),
the transfer learning (μ = 10−8), and the simple transfer method
(μ = ∞) are shown in (a), (b), and (c), respectively. The red broken
lines depict the answer data z(t ).

inference errors around the maximal values of z(t ) inevitably
arise. However, when the transfer learning method is used, the
time-series of z(t ) can be inferred with a smaller error and less
statistical dispersion.

APPENDIX D: DIRECT NUMERICAL SIMULATIONS
OF THE NAVIER-STOKES EQUATIONS

We numerically solve the three-dimensional Navier-Stokes
equations in a periodic box, using the Fourier spectral method.
The aliasing errors are removed by the phase shift method. In
particular, the vorticity equation,

∂ω

∂t
= ∇ × (u × ω) + ν∇2ω + ∇ × f , (D1)

is integrated in time with the fourth-order Runge-Kutta-Gill
scheme, where ω = ∇ × u. The forcing term [20] is

f (x, y, z) =
[− sin(2πx/L) cos(2πy/L)
+ cos(2πx/L) sin(2πy/L)

0

]
, (D2)

where L is the length of the side of the period box. The pa-
rameters of the number n3 of the Fourier modes, the kinematic
viscosity ν of the fluid, the step �t for the temporal inte-
gration, the mean of the Taylor microscale Reynolds number
〈Rλ〉, and the mean turnover time of the largest eddies 〈T 〉 are
summarized in Table I.

TABLE I. Parameters and statistics.

Domain n3 ν �t 〈Rλ〉 〈T 〉
Source 323 0.064 4 × 10−3 35 0.7
Target 1283 0.008 2 × 10−3 120 0.5
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