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We investigate the streamwise evolutions of energy and pressure spectra along the shear-
layer region of very near-field grid-generated turbulence. The energy and pressure spectra
evolve significantly in this near-field. The shear-layer and vortex-shedding frequencies
appear immediately in different spectra but the shear-layer’s spectral signature is very soon
replaced by a broad power-law spectrum on both sides of that frequency. The spectra evolve
further by filling the gap between the vortex shedding and the shear-layer frequencies
eventually leading to near —5/3 power-law energy spectra at the point on the shear-layer
region where the turbulence intensity reaches a maximum. The pressure spectrum reaches
a —7/3 power-law shape significantly further downstream. These spectral scalings cover a
range between the vortex-shedding frequency and frequencies larger than the shear-layer
frequency. They are discussed in relation to turbulent coherent structures of various
sizes, obtained by using Gaussian low-pass filtering of instantaneous turbulent flow fields.
High enstrophy small-scale structures originate from the shear-layer instability whereas
low enstrophy large-scale structures originate from the vortex shedding. The generation
of near-field —5/3 energy and —7/3 pressure spectra involves cooperative interactions
between these two different size structures.

DOI: 10.1103/PhysRevFluids.5.014601

I. INTRODUCTION

In laboratory and numerical experiments, we often observe the —5/3 power-law scaling of the
energy spectrum E(k) and the frequency power spectrum E(f) of turbulence. For statistically
homogeneous turbulence, the energy spectrum E (k) and the pressure fluctuation spectrum E, (k)
are defined in terms of the Fourier transform of velocity and pressure fluctuations. One can show
that these spectra are proportional to k~>/ and k~7/3, respectively, by using a dimensional analysis
[1,2] based on the average of the energy dissipation rate € and the wave number k, which have
been confirmed by experiments [3,4] and numerical simulations [5]. If turbulence is statistically
stationary and homogeneous, this dimensional analysis may be justified by the concept of the energy
cascade; namely, the scale-by-scale energy transfer from larger to smaller scales ensures that the
energy flux is independent of k and is balanced by €.
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FIG. 1. Schematic of the grid used in this study. The length L, and the thickness #; are defined in the figure.
This single square grid is placed on the inlet plane x = 0 of the numerical domain of size L, X L, X L, =

8Ly x 2Ly x 2L,. The x axis is vertically upward with respect to the page. The red-double square denotes the
starting point of the shear-layer line shown in Fig. 2.

We emphasize, however, that this Richardson-Kolmogorov energy cascade picture assumes
statistical homogeneity and stationarity. Since the energy cascade takes a finite time, when the
turbulence is unsteady, the energy flux cannot be balanced by the energy dissipation rate. This
implies that Kolmogorov’s local equilibrium hypothesis does not hold for statistically non-stationary
turbulence, even if it is statistically homogeneous (e.g., decaying turbulence in a periodic cube).
In other words, although we sometimes observe —5/3 power-law scaling of the energy spectrum
E(k, t) in decaying turbulence, its origin remains not fully explained. Incidentally, even in statisti-
cally stationary turbulence, large-scale motions can show significant unsteadiness [6,7].

The target of the present study is the turbulence which is statistically stationary but inhomo-
geneous. For this kind of turbulence (e.g., the near-field turbulence generated behind a grid in a
wind tunnel), we can define the frequency power spectrum E (f, x) but it depends on the location x.
Interestingly, the —5/3 power-law scaling of the frequency energy spectrum has been observed
both experimentally and numerically, even in statistically inhomogeneous turbulent flows. For
example, Laizet et al. [8] and Gomes-Fernandes et al. [9] found a decade of —5/3 power-law
scaling of frequency energy spectrum in a very near-field region, where the flow is still statistically
inhomogeneous, of a turbulent flow generated by a fractal square grid. Furthermore, in a turbulent
flow generated by a single square element of a fractal square grid, Paul ez al. [10] found a —5/3 slope
in the frequency energy spectrum for half a decade of frequencies, despite the value of Re; being
approximately 20. It is important to emphasize that finding a well-defined —5/3 frequency energy
spectrum in the very near-field is not limited to grid-generated turbulence but also other kinds of
turbulent flows such as axisymmetric turbulent wakes [11] and wakes of a square prism [12]. These
reports motivate us to tackle the following questions: (i) how are power-law scalings of energy
spectra established in the very near-field of grid-generated turbulence, i.e., highly inhomogeneous
turbulence? (ii) does the Kolmogorov scaling of the pressure spectrum develop together with the
energy spectrum? (iii) what kind of flow structures are relevant to realizing such power-law scalings?

To this end, we numerically investigate a turbulent flow generated with a single square grid
[see Fig. 1] and a constant inflow velocity [10,13—17], using direct numerical simulation (DNS).
In the previous studies, the presence of the power-law scalings of energy spectra and second-order
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velocity structure functions has been investigated along the centerline of the grid and along the
bar-centerline. Our interest is to understand the origin of power-law scalings of energy and pressure
spectra in the near-field of the grid where the flow is statistically inhomogeneous. For this purpose,
we have conducted long-time DNS so that we can investigate well-defined frequency spectra along
a shear-layer line which we define in Sec. III.

The origin of multiscale fluctuations related to power-law scalings of energy spectra is also
discussed in terms of coherent structures across various length scales. We therefore use a
coarse-graining method to filter specific length-scale fluctuations from continuous signals/fields
of turbulence (e.g., Refs. [6,7,18-22]). The visualization method based on enstrophy isosurfaces
can only detect small-scale dissipative structures, whereas our aim is to detect coherent vortical
structures at various scales. Such methods have been exploited for several turbulent flows [7,19,22—
24]. For example, Goto et al. [7] and Motoori and Goto [22] have demonstrated a hierarchy of
tubular vortical structures of different sizes in the inertial subrange in triply periodic turbulence
(see, e.g., Fig. 1 in Ref. [7]) and in a turbulent boundary layer (see, e.g., Fig. 4 in Ref. [22]).
This approach is effective when investigating multiscale spatial fluctuations relevant for power-law
scalings of spectra in our grid-generated turbulence.

Our aim in this paper is to investigate the spatial origin of power-law scalings in energy and
pressure spectra and multiscale coherent structures related to them in the inhomogeneous and
anisotropic near-field of grid-generated turbulence. This paper is composed as follows. In Sec. II, we
explain the numerical methods, conditions, and our analysis tools. In Sec. IIl, we first examine the
streamwise evolution of turbulence statistics along the shear-layer line. Second, we pay some special
attention to two characteristic frequencies detected in the grid-generated turbulence. Third, we
present evidence of turbulent coherent structures at several scales in the grid-generated turbulence,
by exploiting three-dimensional flow field data of DNS. To the best of our knowledge, this is the
first such attempt in the grid-generated turbulence. Fourth, we discuss interscale energy fluxes in
relation to the other results of this section. Finally, we summarize our conclusions in Sec. I'V.

II. DIRECT NUMERICAL SIMULATIONS
A. Numerical schemes and parameters

We perform DNS of single-square grid-generated turbulence by solving the momentum equation,

ou 1 ’
—+4+u-Vu=——Vp+vVu+f, (D
ot P

with the continuity equation,
V.u=0, 2)

where u is the velocity field, p and v are, respectively, the density and the kinematic viscosity
of the fluid, both of which are assumed to be constant, and f is the external force used in an
immersed boundary method. As shown in Fig. 1, x is the streamwise direction and y and z are
the two-cross flow directions. The periodic boundary conditions are imposed for y and z directions.
The inflow velocity at the beginning of the computational domain in the streamwise direction is Ux,
and no disturbance is imposed on the inlet flow. For the outlet flow at x = L,, a standard convection
equation is used.

We use a flow solver, Incompact3d [25,26], to integrate Eqgs. (1) and (2), which can be run
on parallel supercomputers using a two-dimensional domain decomposition strategy. The solver
is based on sixth order compact finite schemes [27] for spatial differentiation and the third-order
Adams—Bashforth scheme for time integration. To treat the incompressibility condition Eq. (2), a
fractional step method is employed and the Poisson equation is solved in Fourier space. More details
about the solver are given in Refs. [25,26].

The grid is modelled by using an immersed boundary method [28]. This method enables, by
adding an extra forcing f in Eq. (1), to enforce the no-slip boundary condition on the wall of
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the grid. The shape of the grid used is shown in Fig. 1. Ly is the lateral length of each bar
of the grid and # is their lateral thickness, where Ly = 5.37y, and their streamwise thickness
is 0.25#g. The computational domain is L, x L, x L, = 8Ly x 2Ly x 2L and is descritized with
2881 x 720 x 720 grid points. Our parameter setting is the same as the one used for the highest
resolution DNS of Laizet et al. [29]. The spatial resolution A = A, = A, = A, lies between

0.5(n) and 2(n) throughout the domain, where n = pie~T is the Kolmogorov length scale and
the brackets (-) denote the time average. More details on the validation of the simulation can
be found in Ref. [29], where the resolution effects on fine-scale features and in particular on
vorticity and strain rate statistics using the Q-R diagram [30] are demonstrated. We have run a
set of simulations for 6.94 < 1/(Ly/Us) < 55.56, so that the total time length of our simulation
is 48.61Ly/Us. The initial condition of our simulation is taken from fully developed turbulent
flow. We have stored the numerical data of 17500 snapshots of velocity and pressure fields in the
subdomain (0 < x/x, < 0.315,—-0.75 < y/Ly < 0.25,—0.25 < z/Ly < 0.25), with a time interval,
2.8 x 1073Ly/U,.,. We emphasize that this sufficiently long time series data enables us to precisely
estimate time averages (denoted by brackets (-)) and power spectra of the three velocity components
and pressure. We have also stored the numerical data of fewer snapshots of velocity and pressure
fields in the full computational domain which are used for flow visualizations (see, e.g., Fig. 9).

In the present study, the streamwise distance x from the grid is nondimensionalized using the
wake interaction length-scale [31,32],

= L2Jt0 3)

and the full computational domain is set to —0.236 < x/x, < 1.27, —1 < y/Lo, z/Lo < 1. Our

global Reynolds numbers Re;, = LyUs /v and Re;, = 19U /v are 21600 and 4075, respectively.

The Reynolds number Re;, = 4075 lies in the range (Re > 1300) where, for circular cylinder wakes,

Kelvin—Helmholtz vortices can be generated in the shear layer past the bluff body (see Ref. [33]).
We also introduce the nondimensional frequency,

St = fto/Use, @)

based on the bar thickness #y. In our setup, the vortex shedding Strouhal number St, (defined in
terms of 7y and Ux,) is found to be 0.186. This value of the shedding Strouhal number is in good
agreement with those of experiments. Melina et al. [16] determined experimentally that the vortex
shedding Strouhal number of grid-generated turbulence with a single square grid (Lo = 229.0 mm
and 7y = 43 mm) as the one investigated in this study is about 0.19 for two different inlet velocities
(Uso = 5 and 17 m/s). Their Taylor scale-based Reynolds number at x/x, = 0.5 on the centerline is
Re; &~ 200 for Uy, = 5 m/s and Re; =~ 350 for Uy, = 17 m/s, while our simulation returns Re; ~
100 at x/x, = 0.5. Numerical results for the streamwise evolution of Re, along the centerline have
been reported in Fig. 7 of Ref. [29].

B. Coarse-graining method

Turbulent flows are composed of coherent structures [34,35]. Topologies of fine-scale coherent
structures have been investigated in terms of invariants of the velocity gradient tensor [8,36—41].

One may decompose the velocity gradient tensor into the rate of strain tensor s;; = 2(‘?;;/ a)’:" )
Bu/

and the rate of rotation tensor w;; = 5 ( d”’ — ) The second invariant Q of the velocity gradient

tensor can be written as
0=0,+0s, (&)
where
O, = wua),j and Q, = s,js,j (6)
Locations in the flow where Q > 0 are dominated by vorticity rather than strain. This is one of the

quantities exploited to visualize fine-scale coherent motions in a variety of flow geometries [37,38].
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Since the velocity gradient is predominately determined by dissipation-scale motions, flow
visualizations of physical quantities based on velocity gradients, by nature, highlight dissipative
small-scale coherent structures in the flow. Our interest lies in multiscale flow structures in the flow
relating to the broad spectra which will be shown in Sec. III B. Therefore, in this study we apply
coarse-graining to instantaneous turbulent flow fields [6,7,18-21] to extract spatial fluctuations with
several length scales.

In the present study, we use the three-dimensional Gaussian low-pass filter, which is written in
physical space as

Ir2

G(r,o) = 7, @)

1
—e
(V2rmo)?
Here, o is the filter width. By using this filter, a quantity A(x) is coarse-grained as follows:

X(x;a):f Gx —x';0)A(X) dx'. (8)

It is sometimes useful to do the coarse-graining in Fourier space because the Fourier transform of
A(x;0) is expressed by

Ak: ko) = Gl ko) Alk), ©)
with
~ k2
Gl k) = e 22, (10)

where k. = 1 /o is the cutoff wave number. We apply Gaussian filtering in either real space Eq. (8) or
Fourier space Eq. (9) depending on the data structure. Gaussian filters were used in previous studies
to investigate multiscale structures in triply periodic turbulence [19] and wall-bounded turbulence
[22-24].

It is useful to connect spatial with temporal variations of velocity signals. For this, we need to
relate the cutoff wave number k. of the Gaussian filter Eq. (10) to a frequency f. Guided by the
concept encapsulated in Taylor’s frozen hypothesis [42,43], we define the cutoff wave number,

ko(St) = 27 f /Uso = 27 St/to, (11)

in terms of the inflow velocity Uy, so that k. is a function of nondimensional frequency
St(= f1y/Usx). This cutoff wave number k. is used in Sec. III C to make a link with frequency
spectra, which are shown in Sec. I1I B.

Finally, we define the coarse-grained quantities used in the present study. After obtaining the

coarse-grained velocity gradient tensor % with the use of Egs. (8) or (9), we decompose it into

ax;
. . ~ ou; 3 . .
the coarse-grained strain-rate tensor s;; = %(TL;] + 37”) and the coarse-grained rotation-rate tensor
1 J
~ En N . . . ~ . .
w;j = %(% - g%) Using these, we define the second invariant Q of the coarse-grained velocity
i j

gradient tensor, as
where

51~ ~ = I~
Qv = 50ijw;j and Qs = —35i;Sij. (13)

III. RESULTS

A. Streamwise evolution of energy and pressure fluctuations

In grid-generated turbulence, there exist shear-layer regions past the bars of the grid. The
Reynolds number Re; based on #; of our simulation is 4075 and therefore lies in the range
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FIG. 2. The mean field of streamwise velocity obtained by subtracting the inflow velocity Uy, on the plane
at z = 0. The time average is taken over the period 6.94 < 1/(Ly/Us) < 55.56. The black line denotes the

locations which satisfy (u,) — Uy, = 0. The cross-section of the grid shown in Fig. 1 is illustrated by the black
rectangle.

(Re > 1300) where Kelvin—Helmholtz vortices can be generated in the shear-layer regions past
a circular cylinder (see Ref. [33]). Similarly to this observation in the wake of a circular cylinder,
intense turbulent fluctuations start to be generated in shear layers behind the bars of the grid shown
in Fig. 1. Let us first demonstrate how the signatures of developed turbulence such as the —5/3

power-law scaling of energy spectra appear and develop along a shear layer. For this purpose, we
define the shear-layer line by the locations x past a bar of the grid which satisfy

() (x) —Uss = 0. (14)

In Fig. 2, the shear-layer line is represented by the black thick line, which separates (u,) > Uy from
(uy) < Uso. The starting point of the shear-layer line is indicated by the red double square in Fig. 1,
whose coordinate is (x, y, z) = (0, — (Lo — #p)/2 + 0.0589, 0).

Figure 3 shows streamwise evolutions of turbulent intensities I, = /(u/?) /Uso, I, = v/ (u;z) /Uso,
and I, = v (uf) /Us in x-, y-, and z-directions, and root-mean-square pressure fluctuation

0.4
0.3
0.2
0.1 —
—— ],
—— ],
—
% 0.05 0.1 0.15 0.2 0.25 0.3

X/

FIG. 3. The streamwise evolution of root mean square velocity components and pressure along the

shear-layer line as a function of the streamwise coordinate. The time average is taken for the period 6.94 <
t/(Lo/Us) < 55.56.
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FIG. 4. Space-time diagrams of (a) u., (b) u’v (c) u}, and (d) p'. The horizontal axis shows the streamwise
coordinate (0 < x/x, < 0.315), and the vertical axis shows the time (48.6 < 1/(Ly/Uy) < 51.6).

p™ = /(p?)/p UL, along the shear-layer line, where u, = u, — (i), uy, = uy — (uy), and u, =
u, — (u;) are the three fluctuating velocity components and p’ = p — (p) is the pressure fluctuation.
The evolutions of the turbulent intensities are qualitatively similar to those previously found along
the centerline of grid-generated turbulence [9,31,32,44,45] and within shear layers in the near-field
of the turbulent flow past a square cylinder [41]. The peak of I, is found at x/x, =~ 0.15. We
hereinafter refer to 0 < x/x, < 0.15 as the production region and 0.15 < x/x, as the decay region.
I is much larger than I, and I, until x/x, = 0.15 and I, becomes the largest beyond x/x, = 0.15.
Evidently, turbulent velocity fluctuations are statistically anisotropic along the shear-layer line,
particularly in the very near-field (0 < x/x, < 0.05).

In Fig. 4 we plot the space-time diagrams which show the time evolutions (48.6 < 7/(Ly/Ux) <
51.6) of fluctuating velocity components u /Uso, u;,/Uso, t;/Uso, and fluctuating pressure p'/ U2
along the shear-layer line. It is found in the diagrams that, going downstream from the starting point
x/x, = 0, intense high-frequency fluctuations start to appear at x/x, = 0.05 for all the quantities.
Going further downstream (0.15 < x/x,), the frequency of alternations of positive-valued and
negative-valued contours becomes lower. As shown below, the former high-frequency fluctuations
stem from the shear-layer instability, whereas the latter from the vortex shedding.
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FIG. 5. Logarithmic plots of the compensated power spectra (a) EXSt% ,(b) EySt% ,(c) EZSt%, and (d) E ,,St% R
against the Strouhal number St = f#,/Uy, at the six different locations in the shear-layer line: x/x, = 0, 0.01,
0.031, 0.058, and 0.10.

B. Streamwise evolution of energy and pressure spectra

We now move to the frequency spectra of the three fluctuating velocity components and the
fluctuating pressure, which are defined, respectively, by

I ~ 1 ~
Ei(f)=lim —Jui(H (=xy2) and E(f)= lim —p'(HI* (15)

They are computed on the basis of the Fourier transforms IZ i, LZ, and ;)\’ of long time series
data for u/, u;, u, and p'[6.94 < 1/(Ly/Us) < 55.56]. Figure 5 shows the compensated frequency
spectra of velocity and pressure fluctuations at five different locations x/x, = 0, 0.01, 0.031, 0.058,
and 0.10 along the shear-layer line. The velocity and pressure spectra are multiplied by St? and St%,
respectively. It is clear that the spectra undergo a drastic change while moving downstream. The
energy spectra seem to be developing a continuous region at x/x, =~ 0.1.

Another observation regarding the spectra in the production region is that they have strong peaks
at two characteristic frequencies: one is at St = 0.186 and the other is around 2 < St < 3. The lower
frequency is the so-called vortex-shedding frequency [16]. The higher frequency is related to the
shear-layer instability [46—48]. Around the streamwise location x/x, =~ 0.031, energy and pressure
spectra, especially E\(St) and E,(St), start to demonstrate a significant growth around 2 < St < 3
[see Figs. 5(b) and 5(d)]. This frequency is about 10 times larger than the vortex-shedding frequency.
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FIG. 6. Streamwise evolution of power spectra (a) E,, (b) Ey, (c) E;, and (d) E,. The horizontal axis shows
the streamwise coordinate (0 < x/x, < 0.315).

It is important to note that the spectra first acquire (see the spectra at x/x, = 0.058) the energy at the
shear-layer instability frequency and the spectra around the vortex-shedding frequency grow later.

To identify the origin of these two characteristic peaks of the spectra, we show, in Fig. 6, plots
of power spectra of velocities and pressure as functions of the streamwise location. It is clear in
Figs. 6(a) and 6(b) that E, and E, at the vortex-shedding frequency St = 0.186 start to become
intense at x/x, ~ 0.1. Because the central axis of rotation of large-scale vortices shed in the shear
layers is aligned parallel to z axis, as seen in Fig. 10, the peak at the vortex-shedding frequency in
E. is not high relative to those in E; and E, [compare Fig. 6(c) with Figs. 6(a) and 6(b)]. Crucially,
the significant peak of E, at the vortex shedding frequency is observed throughout the streamwise
range shown in Fig. 6(d).

Next, let us look at the evolution of the shape of the spectra in the downstream region, 0.058 <
x/x, < 0.28 (Fig. 7). There is a clear tendency that, in the production region [see black lines in
Figs. 7(a)-7(c)], the energy spectra at the shear-layer frequency first become intense, and then those
around the vortex-shedding frequency become stronger while those at the shear-layer frequency
become weaker. As the spectra at the shear-layer frequency become weaker, the energy spectra
gradually start to demonstrate a very defined —5/3 power-law scaling. The energy spectra in the
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FIG. 7. Logarithmic plots of the power spectra (a) E,, (b) E,, (¢) E., and (d) E,, against the Strouhal number
St = fty/Ux. The spectra are computed at the six different streamwise locations in the shear-layer line: x/x, =
0.058, 0.1, 0.13, 0.16, 0.2, and 0.28 from top to bottom. For clarity, the spectra shown are shifted downward
along the vertical axis by multiplying by a factor of 5.0 x 1075, 5.0 x 1077, 5.0 x 107, 5.0 x 10~'!, and
5.0 x 107'3, with the exception of the ones on the top. The black-colored and blue-colored spectra belong to
the production and decay regions, respectively. The red lines from top to bottom denote the slopes of power-law
exponents (a), (b), (c) —11/3, -7/3, -2, -5/3, =5/3, —=5/3 and (d) —4, -3, =5/3, —=5/3, =2, =7/3.

decay region, on the other hand, keep the —5/3 power-law scaling [see blue lines in Figs. 7(a)-7(c)],
where the peaks of E, and E, at the shedding frequency are persistent.

We emphasize that this spatial evolution of the energy spectrum along the shear-layer line is
qualitatively different from the one along the centerline of the grid. This is seen by comparing the
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FIG. 8. Space-time evolution of coarse-grained enstrophy éw along the shear-layer line. The cutoff wave
numbers Eq. (11) used are (a) k.(2) and (b) k.(0.186). We observe the periodic behaviors with the period
(a) about 0.1Ly/Uy in the production region at the scale 1/k.(2) and (b) about Ly/U in the decay region at
the scale 1/k.(0.186).

above observation (Fig. 7) with Fig. 20 in Ref. [8] and Fig. 8 in Ref. [9]. The first difference is that
the shear-layer frequency is absent on the spectra along the centerline before a —5/3 power-law
scaling emerges. The second difference is that along the shear-layer line the slope of the inertial
range spectra is found to be steeper before —5/3 energy spectrum appears, whereas they are
shallower along the centerline. Along the shear-layer line, as examined in the next subsection,
turbulent fluctuations start to build up from smaller to larger scales.

Another intriguing observation relates to the streamwise evolution of the pressure spectrum. The
way that the flow approaches the turbulent state characterized by the Kolmogorov-like scaling is
different between the energy and pressure spectra in the decay region (see blue lines in Fig. 7).
Beyond the location where turbulence intensities are maximal (*0.15x,), the energy spectra show
the —5/3 power-law scaling and this scaling exponent remains the same up to x/x, = 0.315. For
the pressure spectrum, on the other hand, the scaling exponent is decreasing along the downstream
direction such that it is close to —5/3 at x/x, = 0.16, —2 at x/x, = 0.2, and —7/3 at x/x, =
0.28. This dissimilarity of behaviors of the energy and pressure spectra may be attributed to the
nonlocality of the pressure field.

C. Streamwise evolution of coherent vortices

In Sec. III B, we have demonstrated the streamwise evolutions of energy and pressure spectra
along the shear-layer line. In the spectra, we have detected two characteristic frequencies, the
vortex-shedding frequency (St = 0.186) and the shear-layer frequency (2 < St < 3), and confirmed
their streamwise evolution. It is noticeable in Figs. 5(b) and 5(d) that rapid temporal fluctuations are
first excited along the shear-layer line, which is the spatial origin of intense temporal fluctuations.
The purpose of this subsection is to elucidate a connection between the energy and pressure spectra
observed in the previous subsection and several-scale coherent structures in the grid-generated
turbulence.

For achieving this, we use the coarse-graining method introduced in Sec. II B. Recall that we
need to determine the filter scale o in Eq. (7), or equivalently the cutoff wave number k. in Eq. (10).
Here, we show evidence for the validity of Eq. (11) for determining k. as a function of frequency
f. Figure 8 shows the space-time diagrams of the enstrophy Q, coarse-grained at two different
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FIG. 9. Visualizations of multiscale coherent vortices in the computational domain whose streamwise
range and spanwise ranges are 0 < x/x, < 0.42 and —1 < y/Ly, z/Ly < 1. They are visualized by isosurfaces
of (a) Q and (b), (¢) é The cutoff wave numbers used for low-pass filtering are (b) k.(St =2.0) and
(c) k.(0.186). The values of isosurfaces are (a) 12000(Us/Ly)?, (b) 200(Us/Lg)?, and (c) 1.5(Us/Lo)>.
(d) Superimposed visualization. The snapshots are taken at time t = 48.61Ly/U. The grid width indicates
0.05x..

wave numbers. The cutoff wave numbers used in Figs. 8(a) and 8(b) for Gaussian low-pass filtering
are k.(2) and k.(0.186), respectively, which correspond to the shear-layer frequency St = 2 and
the vortex-shedding frequency St = 0.186. We can confirm that high-frequency coherent signals
are observed in the contour of Q, with k.(2) in the range 0.05 < x/x, < 0.1 [see Fig. 8(a)]. The
high-frequency coherent signals are relevant to the shear-layer dynamics because the period of
the temporal oscillation is about 0.1Ly/Us,, which corresponds approximately to St = 2 because
2Us/to = 10U /Ly. Recall that Ly/fy = 5.3. As the cutoff wave number is decreased, such signals
become less and less evident as smaller-scale spatial fluctuations are filtered out. As a result, only
slowly evolving and large-scale fluctuations are observed in the space-time diagram for the cutoff
wave number k. (St = St; = 0.186) [Fig. 8(b)]. This figure shows that the time scale of the temporal
oscillation is about Ly/Us, which corresponds approximately to the nondimensional frequency
St = f19/Usx = 0.186. Hence, temporal and spatial signals are reasonably connected using the
low-pass filtering with the cutoff wave number Eq. (11).

We now compare the isosurfaces [Fig. 9(a)] of the unfiltered second invariant Eq. (5) of the
velocity gradient tensor with those [Figs. 9(b) and 9(c)] of filtered ones. The streamwise range
in Fig. 9 is 0 < x/x, < 0.419 and the two spanwise ranges are —1 < y/Lg and z/Ly < 1. The
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FIG. 10. Snapshot of multiscale coherent structures in the subdomain (0 < x/x, < 0.315, —0.75 <
y/Lo < 0.25). Red isosurfaces denote Q = 12000(Us/Ly)>. Yellow isosurfaces denote (~2 = 120Uy /Lo)?
with the cutoff wave number k.(2). Blue isosurfaces denote é = 1.5(Uy/Ly)? with the cutoff wave number
k.(0.186). Transparent gray isosurface denote u, = Uy. The snapshot is taken at time ¢ = 48.89Ly/U. The
cuboid domains drawn with red and blue lines are used in Figs. 11(a) and 11(b), respectively. The grid width
indicates 0.05x,.

iso-surfaces visualized in Fig. 9(a) are found to be small-scale tubelike structures and large-scale
spatial coherence is not observed. Figure 9(a) clearly shows that we need coarse-graining (Sec. II B)
of the velocity gradients to capture coherent vortical structures larger than the dissipative scale.

Let us move to the larger-scale coherent vortices observed in Figs. 9(b) and 9(c), which are
coarse-grained with the cutoff wave numbers k.(2) and k.(0.186). Looking at blue vortices in
Fig. 9(c), we observe large-scale coherent shedding vortices whose spatial scale is comparable to
the scale of the single-square grid. These large-scale structures have shapes of squares. There are
smaller square-shaped coherent structures shed by the inner square wall and larger ones shed by the
outer square wall, which appear alternately.

We observe in Fig. 9(b) that the (yellow) vortical structures coarse-grained with the cutoff wave
number k.(2) are parallel to the bars in the near-field region. This verifies that they are due to a shear-
layer instability [46,47,49-52]. In the downstream region (x/x, = 0.15), however, the orientation of
most of the yellow vortices is not parallel to the bar but they are in quasistreamwise direction. Next,
we investigate the generation process of coherent vortical structures in more detail.

Figure 10, which is a magnification of the subdomain of Fig. 9(d) shown by the green box in
Fig. 9(a), is a snapshot of coherent structures of different sizes in the near-field region. To further
clarify that the yellow vortices are due to shear-flow instability in the region x/x, < 0.1, we show
a magnification of Fig. 10 in Fig. 11(a). In this very near-field region the yellow vortical structures
are indeed observed as spanwise vortices aligned parallel to the bar. Looking at Fig. 10 again, in the
downstream region x/x, 2 0.15, the intermediate (yellow) vortices tend to align with the stretching
direction which bridges the counter-rotating large vortices. It is a mechanism which could be a
priori linked to a cascading event originating from the largest (shedding) vortices. However, recall
that broad continuous energy spectra, even —5/3 power-law spectra, are established well before this.
They are in fact established in the region 0.1 < x/x, < 0.15. In this upstream region, a stretching
field between a yellow vortex created by the shear-layer instability and a shedding (blue) vortex
plays an important role. In fact, we observe in the lower region in Fig. 10 that an anticlockwise
yellow vortex located around x/x, & 0.1 and an anticlockwise blue vortex located around x/x, ~ 0.2
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(a)

FIG. 11. Snapshot of coherent structures in the cropped domains shown in Fig. 10: (a) the cuboid
domain with red lines (0 < x < 0.105), and (b) the cuboid domain with blue lines (0.157 < x < 0.262).
t =49.58Ly/Uy. (a), (b) Red isosurfaces denote Q = 2000(U.,/Ly)*>. Yellow isosurfaces denote é =
120(Uy/Ly)* with the cutoff wave number k.(2). (a) Transparent gray isosurface denote u, = U,,. The grid
width indicates 0.01x,.

cooperate to stretch and create intermediate-scale vortices between them. This may be related to the
reason why the continuous energy spectrum is established in the region 0.1 < x/x, < 0.15.

We now examine how the smallest-scale (red) vortices are created. In the very near-field
[Fig. 11(a)], the smallest-scale (red) vortices align in the direction perpendicular to the axes of
the yellow vortices, which are created by the shear-layer instability. This suggests that the smallest-
scale vortices are generated by vortex stretching in the straining fields between intermediate-scale
(yellow) spanwise corotating vortices.

Figure 11(b) shows the smallest-scale vortices further downstream, specifically the cropped
domain with blue lines in Fig. 10, whose streamwise range (0.157 < x/x, < 0.262) is within the
decay side on the shear-layer line. A large number of clustered small-scale tubular (red) vortices
appear in the vicinity of intermediate-scale (yellow) vortices. The orientation of these small-scale
vortices is random in the decay side of the shear-layer line, whereas it is strongly anisotropic in the
very near-field side of this line [see Fig. 11(a)].

In summary, the development of the energy spectrum is related to the generation process of
the coherent vortical structures. In the very near-field region, intermediate (yellow) vortices are
first generated due to the shear-layer instability [Fig. 11(a)]. Their spectral signature is the strong
spectral peak at St &~ 2-3 observed at x/x, = 0.05; see Figs. 7(a)-7(d). When the (blue) shedding
vortices are established around x/x, =~ 0.1, the peak at St = 0.186 becomes conspicuous in E, and
E, [Figs. 7(a) and 7(b)]. One can expect the interactions between these shedding vortices and the
shear-layer vortices to excite turbulence fluctuations and vortices at intermediate length-scales, see
Fig. 10, so that frequencies in the range 0.186 < St < 2 acquire energy. Perhaps surprisingly, the
energy spectrum appears to tend to a close to —5/3 power-law scaling as a result of this cooperative
process (Fig. 7) in the region 0.1 < x/x, < 0.15 on the shear-layer line. Further downstream on this
line, where the near to —5/3 power law of the energy spectra persists, the blue large-scale vortices
remain present. This is consistent with the persistence of peak at St = 0.186 which remains clearly
well-defined in the spectra (Fig. 7).

D. Streamwise evolution of scale-by-scale energy transfer

The presence of large-scale coherent structures can be expected to interfere with interscale
energy transfer and may be a key ingredient leading to nonequilibrium, i.e., unsteadiness in time
and nonuniformity across scales of interscale transfer rates [9,12,53-56]. Having demonstrated
the streamwise evolution of spectra (Sec. IIIB) and characteristic coherent vortical structures
(Sec. I C), we now discuss interscale energy transfers by evaluating the streamwise evolution of the
scale-by-scale turbulent energy flux along the shear-layer line. A reference situation is homogeneous
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FIG. 12. Scale distribution of normalized spherically-averaged energy flux IT*(x, r,) in physical space. x
is chosen at six different locations on the shear-layer line whose streamwise location is x/x, = 0.031, 0.058,
0.10, 0.16, 0.20, 0.28.

stationary turbulence where the spherically averaged interscale flux is balanced by the turbulence
dissipation rate [9,45,57-59], as

/?- <8—u|5u|2>d§2 ~ 20T, (16)
p 3

where Su(x,ry,t) =u(é,t) —u(,t) is the two-point velocity difference, x = (§ + &')/2 is the

centroid, r; = £ — & is the separation vector, r =r;/2, 7 =r/r and dS is the differential of the

solid angle in the r-space. The minus sign on the right-hand side indicates a forward cascade, from

large to small scales. If turbulent velocity field is locally isotropic such that7 - (Su|su|?) is the same

irrespective of the orientation of the unit vector 7, then Eq. (16) leads to the 4/3 law [9,57,59-61].

This law is equivalent to the 4/5 law for the third-order longitudinal velocity structure function.
We define and compute the normalized spherically averaged energy flux IT*(x, r;)

T*(x, ry) = </? 87u|8u|2d9>/< - 167”(6)) (17)

where (€) is computed at the centroid x. If the energy flux balances over scales, a constant scale
range emerges in the distribution of IT*(x, r;) against ;. Figure 12 shows the scale distribution
of IT*(x, ry) at six different centroids x on the shear-layer line. The streamwise locations of
these centroids are x/x, = 0.031, 0.058, 0.1, 0.16, 0.2, 0.28. With the use of Eq. (11), the
spatial scale r; = 0.5¢y relates to the shear-layer instability frequency St = 2. We find that the
distribution of IT*(x, r;) against r,; varies significantly with centroid position. The three black-
colored curves correspond to the production region (0 < x/x, < 0.15) where the spectra do not
exhibit Kolmogorov-like scalings yet, whereas the three blue-colored curves are obtained in the
decay region (0.15 < x/x,). Very near the grid bar (x/x, = 0.031), IT*(x, r;) is negative over the
entire range of r,, suggesting the energy flowing from small to large scales. IT*(x, r;) becomes
clearly positive over all scales r; up to at least 1.25¢fy once the decay region is reached. From
x/x, = 0.10 to 0.16, where we identified the cooperative action between the shear-layer and the
shedding vortices, the power-law exponent of the energy spectra transients from near —7/3 to near
—5/3 [see Figs. 7(a)-7(c)]. The behavior of IT*(x, r;) in this region evolves quickly and involves
both positive and negative values of IT*(x, r;). The end of the production region and start of the
decay region around x/x, = 0.16 coincides with the appearance of near —5/3 spectra. It is from
that point and moving downstream along the shear-layer line that the sign of IT*(x, ;) is uniformly
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positive (at least in the range 4 /1y < 1.25, i.e., St 2 0.8), suggesting that fluctuating kinetic energy
is transferred, on average, from larger to smaller scales. However IT*(x, r;) is neither equal to 1
nor in fact constant with varying r; in the decay region (see Fig. 12), which is what one would
have expected in homogeneous stationary turbulence in the presence of —5/3 energy spectra. Of
course, the present flow field is not statistically homogeneous and one should not necessarily expect
Kolmogorov equilibrium scalings, but it is noteworthy that —5/3 energy spectra appear without
constant IT*(x, r4). Moving further downstream on the shear-layer line, IT*(x, r;) shows a tendency
towards a broad range constancy but does not reach it till the most downstream position in Fig. 12,
which is x/x, = 0.28. However, the pressure spectrum which varies with downstream position on
the shear-layer line [see Fig. 7(d)] achieves its Kolmogorov-like —7/3 shape at x/x, = 0.28, i.e.,
before any constancy of IT*(x, r;) might be achieved. The results of Refs. [12] and [9] suggest that
IT*(x, ry) might well achieve constancy further downstream, perhaps even a constant value close to
—1, but in a region which remains highly inhomogeneous.

IV. CONCLUSIONS

Near —5/3 and —7/3 power-law scalings of the energy and pressure frequency spectra are rapidly
established in the near-field region behind bars of a grid obstructing a uniform laminar stream. The
flow generated by the bars is statistically highly inhomogeneous, yet the exponents of the spectra
are reminiscent of Kolmogorov’s theory [1] predictions. In this study, by virtue of long-time DNS
integrations, we have shed some light on the origin of these spectra.

We have found peaks at two characteristic frequencies in both the energy and the pressure spectra:
a vortex-shedding frequency (St = 0.186) and a shear-layer frequency (St =~ 2). These frequencies
appear immediately in different spectra, but the shear-layer’s spectral signature is very soon replaced
by a broad spectrum on both sides of that frequency. The spectra evolve further by filling the gap
between the vortex shedding and the shear-layer frequencies, eventually leading to a near —5/3
power-law energy spectra at the point on the shear-layer line where the turbulence intensity reaches
a maximum. Interestingly, the pressure spectrum does not evolve in the same way, but reaches a
—7/3 power-law shape significantly further downstream [Fig. 7(d)].

We discussed the spatial development of these spectra in terms of turbulent coherent structures
of various sizes, obtained by using Gaussian low-pass filtering Eq. (8) of instantaneous turbulent
flow fields. Concretely, in this very near-field turbulence, intermediate-scale vortices (the yellow
isosurfaces in Figs. 9-11) emerge in a slightly downstream region (x/x, = 0.05) because of the
shear-layer instability, while large shedding vortices (the blue isosurfaces in Figs. 9 and 10) are
fully established in a downstream region (x/x, = 0.1). These two different coherent vortices at two
different length scales have a large gap in their time scales and interact cooperatively to generate
intermediate-scale vortices in the region 0.1 < x/x, < 0.15 (Fig. 10), thereby rapidly leading to
energy spectra proportional to, approximately, f~>/3 in a broad range of frequencies (Fig. 7). We
emphasize that this process is different from the conventional concept of an energy cascade with
constant scale-by-scale energy flux (Fig. 12).

Although we observe smaller-scale vortices (the red isosurfaces in Figs. 9-11) around the
intermediate-scale yellow vortices, which are relevant to frequencies higher than St > 3 in the
spectra of Fig. 7, this high-frequency region does not appear to be so important for the establishment
of the near —5/3 power-law scalings at the Reynolds number examined here. The pressure spectrum
established a near —7/3 power-law scaling significantly further downstream, though also in the
near-field very inhomogeneous turbulence. At the downstream point where this —7/3 power-law
scaling finally appears, the scale-by-scale energy flux which evolves significantly along the shear-
layer line is still not constant over a broad range of scales (Fig. 12). Further future investigations
of the differences in the way energy and pressure spectra develop (Fig. 7) are needed for a better
understanding of turbulent interscale transfers and their potentially important relations with spatial
energy transfers.
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