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Determination of Optimum Thickness of Corner Bracket
Considering Buckling and/or Plastic Co]lapse7L

Yukio UEDA ™ and Tetsuya YAO™ ™

Abstract

A method is proposed to determine the optimum thickness of a corner bracket in relation to the buckling and/or
plastic strength. The fundamental idea of the proposed method is that the collapses of a frame and a bracket take place at
the same time, since it is of no use for a bracket to carry more loads after the frame has collapsed. The determined thick-
ness of a bracket is confirmed to be optimum by performing a series of elastic-plastic large deflection analyses by the

finite element method.

KEY WORDS:
(Flange) (Required Thickness)

1. Introduction

A corner bracket is usually provided at the connection
of, for example, a deck beam and a side frame of a ship
structure to reduce stress concentration and to attain
smooth flow of forces. Such a bracket has sufficient
strength so that no buckling takes place under usual
design loads. However, it may be desirable that a bracket
does not undergo buckling and/or plastic collapse until
the beam with this bracket collapses under extreme loads,
At the same time, it should be noticed that a bracket is
the secondary one as a strength member, and it is of no
use for a bracket to carry more loads after the main
strength member has collapsed and lost its function.
Therefore, it may be said that the necessary and sufficient
conditions for a bracket are to have the thickness so that
its buckling and/or plastic collapse occurs when a deck
beam attains its ultimate strength. From this point of
view, a method to determine the optimum thickness of a
corner bracket is proposed in this report. The procedure
of this method is as follows:

(1) Evaluate the plastic collapse load of a beam with ef-
fective platings,

(2) Evaluate the elastic buckling strength for a thinner
bracket and the ultimate strength for a thicker bracket,
either of which is considered as the limit load carrying
capacity of a bracket without loosing its fundamental

(Optimum Thickness) (Buckling) (Plastic Collapse) (Corner Bracket) (Stress Distribution)

function, and
(3) Determine the optimum thickness of a bracket from

the condition that the beam and the bracket collapses

at the same time.

If the thickness of a corner bracket is determined
according to the above mentioned procedure, it may be
said that the bracket has necessary and sufficient thick-
ness as to buckling or plastic strength. In practical design,
the thickness of a bracket should be determined not only
from buckling and/or plastic strength but also from
fatigue strength. Additional care to fatigue strength
should be paid.

2. Determination of the Optimum Thickness of Corner
Bracket

2.1 Notations for corner bracket

In this report, a triangular corner bracket is considered
with and without a flange alongits free side. The lengths of
supporting sides are denoted as 4 and b as indicated in Fig.
1. Supposing a bent flange as a basic example, the thick-
ness of a flange is taken equal to that of a bracket, and its
hight as:

belt =1.6a/t-\oy[E+4.0 1)
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be/t=1.6a/t- /cry/E+4.0

Fig. 1 Triangular corner bracket

The above equation represents the minimum necessary
hight of the flange to prevent its collapse, and is derived
based on the concept of the minimum stiffness ratio
against the ultimate strenth of a bracket!: 2).

2.2 Maximum load carrying capacity of beam

First, the plastic collapse load of a beam with brackets
will be derived supposing that the length and the section
modulus of a beam and the geometry of a bracket are
specified as shown in Fig. 2. The both ends of a beam are
assumed to be clamped. This boundary condition may
give the highest collapse load of a beam. In general, many
types of loads may act along the span of a beam such as
distributed and concentrated loads and their combina-
tions. However, uniformly distributed lateral load is as-
sumed in the following.

Figure 2(a) represents the elastic bending moment dia-
gram of the beam with brackets subjected to uniformly
distributed lateral loads, which is expressed in the follow-
ing form.

M=q(6x* —6Lx+L*)[12 +AM 2)
where AM represents the influence of the brackets at-
tached to the both ends of the beam due to change of the
effective span length.

According to the magnitudes of M; and M, in Fig. 2(a),
the first plastic hinge may be formed at the toe points
of the brackets (Fig. 2(b)) or at the mid-span point (Fig. 2
(c)). In both cases, however, the final collapse mechanism
shown in Fig. 2(d) is formed. The plastic collapse load for
this mechanism is given as:
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(c) Formation of initial plastic hinge when |[M¢| > |M¢|

(d) Plastic collapse mode

Fig. 2 Bending moment diagram and plastic collapse mode of beam

qp = 16Mp /(L — 20°)? (3)
where M,, is the full plastic moment of the beam.

When the lateral load expressed by Eq. (3) is acting on
the beam, the bending moment at the toe point of the
bracket is equal to M, and the shear force is;

Vp = 8Mp[(L — 2a°) 4)

In the actual case, a beam can carry more load than
that by Eq. (3) owing to the strain hardening of the
material and large deflection effect. However, at the
load level above g,, the deflection of the beam may
become too large to maintain its fundamental function.
So, the load expressed by Eq. (3) is regarded as the
ultimate load of a beam in the following study.
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2.3 Stress in bracket at the collapse of beam

Stress distribution in a bracket may depend on the
rigidities of a beam, a frame and a bracket and the type of
load acting on a beam. It my depend also on the detail of
a structure if a frame is continuous above and below the
beam. In general, a bracket may be subjected to less load
if a frame is continuous. However, it is assumed not to be
continuous as indicated in Fig. 3 so that the thickness of a
bracket is determined in a safe side.

Here, attention is focussed on the stress distribution
along section ff* which intersects a beam with 45°.
Normal and shear stresses on ff” are assumed in the follow-
ing forms.

Oy = N\ycosmx/h, + Ay

)

Txy = A3Sin Wx[hy — Ny (X — By )[hy 6)
where 7, is indicated in Fig. Al in Appendix. A, A, and
A; in Eqgs. (5) and (6) are so determined as described in
Appendix.

It is confirmed that stresses by Egs. (5) and (6) satisfy
the equilibrium condition at least along ff” introducing the
Airy’s stress function of the form3);

F(x,y)=Zf;(x)gi (¥) )

To check the validity of stress distributions proposed
here, a series of stress analyses is performed by the finite
element method. Figure 4 shows one of the calculated
results. In this case, right-angled brackets are provided at
both ends of a beam of type F in Table 1. The side length
ratio, b/a, of the bracket is varied as 1/2,1/1 and 2/1. The
side length of the bracket is taken as ¢ = 600mm and the
beam length as L = 8m. The thickness of bracket is chang-
ed from 4mm to 16mm.

In the case of b/a = 1/2, some differences are observed
between the predicted and the calculated results. How-
ever, it may be said that the most of the stress distribu-
tions predicted by Eqgs. (5) and (6) show good agreement
with the calculated results.

Here, it should be noticed that the sectional forces
evaluated by the proposed method are discontinuous at
x = h; as indicated in Fig. 4. On the other hand, they
become continuous if #3 is taken equal to ¢. Also for this
case, the sectional forces are evaluated and shown in Fig,
5, being compared with the same results in Fig. 4. It is
observed that the predicted results assuming t3 = ¢ re-
present the average values of the calculated results for
various thicknesses by tlie finite element method.

In the following, the case of #3 = ¢ shall be called the
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qp = 16My/(L - 2a')?
Vp=8Mp/(L-2a")

a' 5 g/
% / -
)
3 A T
BEAM t,
-2 ©
ts Shear force
e 4\|r. vp ¥ Mp
x P
D A 45° L[ B
N°r’}’glce BRACKET =g
FRAME FLANGE
C f
X
a

Fig. 3 Assumed distribution of normal and shear forces in bracket
and frame

Ist approximation and that of #;3 = ¢ the 2nd approxima-
tion.

In both cases, the mean stress in a bracket on section
Jf”in Fig. 3 is expressed as follows.

om=( [ o) G0 h)= @) ®)
where
B(@)=hy N\ (t) (sin wh/hy — sin why/hy) |
(- 1)+ M () ©)

It should be noticed that the mean stress expressed by
Eq. (8) represents the one when a beam collapses.

2.4 Limit strength of bracket

It may be said that a limit state of the fundamental
function of a bracket is the beginning of reduction in
its in-plane rigidity. In the case of a thin bracket, lateral
deflection increases above the elastic buckling strength
accompanying reduction of the in-plane rigidity. In con-
trast with this, in the case of a thick bracket, the in-plane
rigidity decreases with local plastification due to bending
caused by initial deflection, but it does not decrease so
much until the ultimate strenth is attained*> 3). So the
limit states may be the elastic buckling for a thinner
bracket, and the ultimate strength state for a thicker
bracket.

A series of elastic buckling analyses is performed by
the finite element method, and the results are represented
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Fig. 4 Comparison of predicted and calculated sectional forces (1st approximation)
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F.E.M. analysis

Predicted forces
— ;5 Normal forces
N ----; Shear forces

b/a=1/1

b/a=2/1

]
=

Fig. 5 Comparison of predicted and calculated sectional forces
(2nd approximation)

in Figs. 6(a) and (b) for brackets with and without a
flange, respectively. The supporting sides of a bracket are
assumed to be clamped. This boundary condition was
found to be appropriate comparing the calculated results
with the experimental ones* ). The following two
boundary conditions are applied in the analyses. In one
case, linearly forced displacements are prescribed along
the supporting sides, and the results are plotted by O in
Fig. 6. In another case, load is applied through the beam
and the frame to which the bracket is provided. The
scatter band of the calculated results are indicated by ¢ in
Fig. 6.

Based on the calculated results, the following formulae
are proposed as a conservative elastic buckling strength.

e_ kn®

12(1 10)

Ger

7 ( )
where

k= {3/(b/a —0.2) + 1.5}(1.0 + cos® @)
......... without a flange (11)

k= {10/(b/a — 0.2) + 4.5} {1.87 — cos (e — 60°)}
......... with a flange

(12)
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20 O : Under rotating edge condition

1 : Under various edge condition

a(°)
60
(a) Bracket without flange
100 O : Under rotating edge condition
k I : Under various edge condition
%
a(®)
60

(b) Bracket with flange

Fig. 6 Elastic buckling coefficient of triangular bracket

~ On the other hand, the ultimate strength is also calcu-
lated performing a series of elastic-plastic large deflection
analyses by the finite element method. The load is applied
as the linearly forced displacements along the supporting
sides. The analyses are carried out for several combina-
tions of the side length ratio, b/a, and the angle, a, be-
tween the two supporting sides. Here, the calculated
results for b/a = 2/1 and o = 90° are plotted by the chain
line with one dot in Fig. 7. The dashed line represents
the elastic buckling strength and the chain line with two
dots the elastic-plastic buckling strength modified by
Jhonson’s formula.
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As mentioned above, the ultimate strength is employed
as the strength at the limit state for thicker brackets.
Here, the ultimate strength is rather sensitive to the initjal
deflection when a/t- \/oy/E is between 2.0 and 4.0. So,
the ultimate strength may become lower than that indi-
cated by the chain line with one dot in Fig. 7 in this range
of aft-/oy/E, and the following expression is proposed
as a conservative ultimate strength for a thicker bracket.

ouloy =1 —(a/m)3(1 — v¥)oy[2kE (13)
The limit strength expressed by Eq. (13) varies linearly
from o,/oy = 1.0 to 0.5, and continues to the elastic
buckling strength calculated by using the coefficient of
Eq. (12).

The limit strengths calculated by Egs. (10) and (13) are

plotted by the solid line in Fig. 7. This seems to be too"

conservative comparing to the calculated results. However,
it may be appropriate considering the variations of loading
conditions and the influence of initial deflection in the
actual cases. :

2.5 Determination of the optimum thickness

The optimum thickness of a corner bracket is deter-
mined from the condition that the collapse of a beam and
a bracket take place at the same time. This condition may
be rephrased that avarage stresses in the bracket at the
respective collapses should be equal, and is expressed as:
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(oy [2<om) (15)

Om = Oy
Substituting Egs. (8), (10) and (13) into Egs. (14) and

(15), the following equations are derived to determine the
optimum thickness.

1B(te)/te? = km?E[12(1 — v?)d®

(om § oy/2) (1)
B {1 — (a/nty) -3 — v?)2KE} = oy 17
(oy/2<opm) an

In the calculation, 7, has to be first determined by Eq.
(16). If the mean stress, g,,, calculated by this z, is
smaller than or equal to oy/2, t, is the optimum thick-
ness. If it is not, 7, determined by Eq. (17) is the opti-
mum one.

3. Example Calculations and Discussions
3.1 Optimum thickness of corner bracket

A series of calculations is performed supposing that
brackets are provided at both ends of the beam of which
cross section is shown in Table 1. In the calculation, the
full plastic moment of a cross section is approximated as;

My =1.5Zoy (18)

where Z is the elastic section modulus. 1.5 in Eq. (18)

Om = 05° (om Soy/2) 14) corresponds to the shape factor of a rectangular cross
1.0 —— \\
Uu/Uy \.\\\- \ 0 Mear'x stress E.lt Section ff
\ T \ Wo 3 Maximum magnitude of
0.8 - R ~ initial deflection
f (wo/t = 1/100)
Nt
V..
0.6 \ 45°
\
1t £
\
a \ \_\
\ Wo
0.4 } |
/ ———— ; Elastic buckling strength \‘\\\
—--—  ; Elastic-plastic buckling strength
0.2 | by Johnson's Formula
—-—; Ultimate strength
b/a=2/1 ———— ; Proposed strength standard
1 1 1 1 1 i i
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
a/t-/O'Y/E

Fig. 7 Buckling and ultimate strengths of bracket with flange
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section. This value may be a little larger for the cross
section considered here, but it is employed to determine
the optimum thickness of a bracket a little conservatively.

First, the optimum thickness is calculated employing
both the Ist and the 2nd approximations for distribution
of sectional forces. The results indicate that the thickness
by the 2nd approximation is larger than that by the Ist
one in almost all cases?). So, the 2nd approximation is
employed in the following, which is expected to give the
optimum thickness in a conservative side.

The optimum thickness for the right-angled isosceles
bracket with no flange is plotted in Fig. 8(a). The length
of a beam is taken as 8m, and the side length to beam

(389)

depth ratio, a/d, is varied between 1/1 and 4/1. The
dashed lines represent the optimum thickness by Eq. (16),
and the solid lines by Eq. (17). It may be said that the
limit strength of a bracket is the elastic buckling strength
when its side length is long, and is the ultimate strength
when it is short. It is also said that a thicker bracket is
necessary for a deeper beam because of its larger full
plastic moment.

Here, O in Fig. 8 (a) indicates the necessary thickness
specified by NK Rule®). Tt seems that NK Rule is based
con the elastic buckling criterion, and some corrosion
margin may be included since the chain line representing
the mean value of dashed lines in the same figure keeps a

Table 1 Beam with effective plating

le b |
Type d b, ta t, to bo z C i v
(mm) (mm) (mm) (mm) (mm) (mm) (cm®) o
A 100 75 7 7 10 610 72.5 N
B 125 , 90 10 10 10 610 130.0 d t
C 150 90 12 12 15 610 230.0 '
D 200 90 9 14 15 610 340.0 t
E 250 90 12 16 15 610  540.0 0
F 300 90 11 16 15 610 681.0 <—b2—’l
qp = 16Mp/ (L - 2a)*
L
VIid 3 I3 P TTTd T 1 T 1 T 1 U7 1
16 x 1d =3 16 ¥
t | 2 Tca/dss Ny d ? ﬂ
(mm) *—eaJ _La = Laa—*‘ (mt;'n) (93./3=b, lsa/dgd
L=8 e} o
b b/a=1/1 o O : NKRULE %} : NK Rule(No flange ) o a _
° : NK Rule( With flange ) "
NS
w 0
12+ o 2 r
TYPE F
o
o
10 | 10 F
8 F /\‘ 8
TYPE D
: BUCKLING
6 - TYPE STRENGTH 6 F
CRITERION
TYPE B (cm=crcre)
& ULTIMATE
L STRENGTH L
4 TYPE A CRITERION ‘
(0= 0y,)
0, : MEAN STRESS AT SECTION £f' AT THE PLASTIC =607 =907 w120
2 - COLLAPSE OF A BEAM 2 " Bracket without flange
U.r& : ELASTIC BUCKLING STRENGTH .
0, : ULTIMATE STRENGTH Bracket with flange
0 700 700 500 800 T000 7200 0 200 200 500 300 To00 1500
a(mm) a(mm)

(a) Right-angled isosceles bracket with no flange

(b) Isosceles bracket with and without flange

Fig. 8 Optimum thickness of triangular corner bracket
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Tran

nearly constant distance from O.

Figure 8 (b) shows the results for the isosceles bracket
with and without a flange. In this case, the angle between
the two supporting sides is taken as 60°, 90° and 120°. It
is known that the optimum thickness is reduced if a flange
is provided along the free side of the bracket.

3.2 Appropriateness of the proposed method

To demonstrate the accuracy of the proposed simple
method, a series of elastic-plastic large deflection analyses
is performed by the finite element method. The brackets
and the beam are discretized into plate and beam-column
elements, respectively. The both ends of the beam are
assumed to be clamped, and a uniformly distributed load
is applied. The relationships between lateral load and
deflection of the beam are shown in Fig. 9. For each case
of example calculation, the thickness of bracket is taken
equal to the optimum one evaluated by the proposed
method except the case of # =7 mm when ¢ = 300 mm. In
these cases, plastic hinges are formed at the toe points of
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the brackets and the mid-span point, and the beam can
carry more load than g, evaluated by Eq. (3). In addition
to this, the brackets attain their ultimate strengths soon
after g, has been attained. It may be concluded that the
thickness evaluated by the proposed method is the opti-
mum one. o

Contrary to these, in the case of ¢ = 7mm, the bracket
reaches its ultimate strength before a plastic mechanism is
formed in the beam. However, this is an example calcula-
tion for an extreme case when a small bracket is provided
to a long beam.

4. Conclusions

In this report, a method is proposed to determine the
optimum thickness of a corner bracket considering its
buckling and/or plastic strength. The fundamental idea is
that the bracket could collapse at the same time when the
beam does. This is becausethat a bracket is the secondary
strength member, and it is of no use for a bracket to carry
more load after the beam has collapsed.

-
q _ . . . .
qp = 16Mp/(L - 2a)2 ; Collapse Toad of a beam with brackets predicted
(kg/mm?) P P by Plastic Analysis
16
S-S
P - a = 1200 mm
t=8.26mm ap _
\/
t=7.85mm 72 t=9.02mm
12 |- 'y
’ .
7, O ; Initial yielding of a bracket
// A ; Initial yielding of a beam
10+ ,// ¥ ; Collapse of a bracket
S t=9.44 mm
" N\
sl 2 ____‘_‘*__,_.—-—&‘——
1 — -
! % t=7.35mm\ /  2z300m
£=7.00mm t=28.30mm
6 ; 5 b/a=1/2 -
/ (. ; b/a=1/1 .
—— == b/a=2/1
ok / L=8m "0
—--—— 3 b/a=1/2 (NK Rule) wo = 17100
f N ] N
NERERERREEEEEENNEN
2+ N IN
TN N"F
PN § ; Deflection at the N o
_LQ center of a beam Ry
N a R
N L
1 1 ] 1 1 1 1 |
0 10 20 30 40 50 60 70 80
§ (mm)

Fig. 9 Behaviour of beam with brackets subjected to uniformly distributed load

162



Optimum Thickness of Corner Bracket with Collapse

The evaluated thickness is demonstrated to be opti-
mum by performing a series of elastic-plastic large deflec-
tion analyses by the finite element method.

In the derivation of the optimum thickness, a uniform-
ly distributed lateral load is assumed to act along the span
of a beam. If other types of loads are considered, only
Egs. (3) and (4) have to be changed. This leads to the
changes in v, and v; in Eq. (A16) in Appendix.
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Appendix: Determination of Coefficients Representing Stress
Distributions

To determine Aq, Ay and A3 in Eqgs. (5) and (6), the comer part
shown in Fig. 3 is cut by sections ff and gg’. The forces and
moment acting on free-body ABCDE are represented in Fig. Al.
Here, the forces per unit length, Ny and Nxy, along section CE are
given as:
for 05x <hy (A1)

Ny=t30'y, ny=t37xy

Ny=toy  Nxy=trxy forhy <x <h (A2)
On the other hand, the concentrated forces at flanges of the
beam and the bracket are obtained considering the equilibrium

conditions of forces shown in Fig. A2 as follows.

Ny‘cos 6 — Nxy'sin 0 =5 (A3)

Ny 'sind foy'cos 6=V=0 (A4)
where

Ny’ = (B — ty) foydx/cos 6 (A3)

In the above expressions, B and ty, represent the breadth of flange
and the thickness of web, respectively. Applying Egs. (A3) and
(A4) for each flange, Sy, Sj and Sy are determined as:

Sy =miky T mady (A6)
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Fig. A2 Forces acting on sections of flange

S7=m3aA; + mady (AT
Sf=mS)\1 +mehy (A8)
where

my =\/2hy(bo — t3) sin \/2nto[hy), %)
ma = 2(bo — t3)to
m3 =\/2hy(b — t3) (sin whylhy — sin mxp/hy)/m, (A10)
ma =2 (b — t3) (1 — x2)
ms=>b sin nh/hy — sin mx3/h cos 0, :

s = bfhy (sin whihy mx3/ho)m A1)
me =bf(h — x3)/cos 6
Xp=hy —/2ts, x3=h — tlcos 8, h1 =N/2 (d + to),
hy =hy +a/\/§—, h = (ab sin @)/ {a — (cos & — sin b},

(A12)

cos 6 = afrfa? + 2 (hy — h)?
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Here, considering the equilibrium conditions of forces and
moment shown in Fig. A1, the following equations are derived.

@11Ag +agodz ta13n3=0 (A13)
a2101 taz2202 taz3h3 = vaMp (A14)
23173 ta3ahg =vsMp (A15)

where

211 =my +m3 + mgcos (45° — 0) + hy {tasin nh,/ hy
+1 (sin whihy — sin wh1/ha) YN2n

212 = my + my + mecos (45° — 6) + {h1’t3 + t(h2 — hi2)}/
2/2h,

ay3 =hy{t3(cos nh1/hy — 1)+t (cos wh/h,
—co: nhllhz)}/\/fﬂ

a1 = mgsin (8 — 45°) + hy {tasin why/hy + t(sin wh [ B,
— sin wh 1/h2)}/\/51r

822 = mesin(45° —8) + hyt3(2 — hy/2h) /2
+t(n = h) {2 — i+ h)RIY N2

az3 = —hy {tg(COS nhifhy —1) + 1t (cos "h/h2 -

coswhy/hy)}\ 21 (A16)

Transactions of JWRI

164

Vol. 16 No. 2 1987

a31 = tomy/2+ (hyN/2 — t5/2yms +{(h + x3)mscose} 2
+ho[hytasin nhyfhy +hots (cos nhylhy — Dfm
+ t{hsin whfhy — hysin whylhy
+hy (cos mhihy — cos why[hy)w}]

a3 = toma 2 + (h1/\/2 — t/2)ma + {(h + x3)mgcos 6}/2
+{n12t3 +t(h2 — hy2)})2

vy = —8L/(L — 22")2

v3=-8{(to+d+a) L —aa’ — 2a’(to+d) cos &}/
@ - 2a92 —1

cos (45° — 8) ={a/\/2 + (hy — W)}/\/a2 + 2(hy — h)2
sin (45° — 0) ={a/\/2 = (02 — W)}/\/a? +2 (h2 — h)?

Solving Eqs. (A13), (A14) and (A15), Ay, A, and A3 are deter-
mined as follows.

Ay ={a13a3202 + (12023 — 213222 03}Mp/A

Az ={-a3181305 + (@21013 - audzs)vs}Mp/A (A17)
A3 ={(e31021 — 81183202 + (@11022 — @1212) V3 I Mp/D

where
A=a33(e21a13 — ay1023) +a31 (@12423 — a22031)  (A18)



