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We perform Brownian dynamics simulations of the finitely extensible nonlinear elastic
(FENE) dumbbells in spatially periodic turbulence to investigate the relationship between
the dynamics of polymers and the hierarchy of coherent vortices. We decompose the
velocity field into different scales to directly evaluate the effect of vortices with different
sizes on dumbbells. Scale-decomposition analysis provides quantitative evidence that the
smallest-scale vortices dominantly stretch dumbbells with a relaxation time shorter than the
Kolmogorov time, whereas the contribution from large-scale vortices relatively increases
when the relaxation time exceeds the Kolmogorov time. To explore the origin of this scale-
dependent stretching mechanism, we investigate the alignment between dumbbells and the
scale-decomposed strain-rate tensor. We find that dumbbells with a shorter relaxation time
than the Kolmogorov time preferentially align in the most extensional direction induced
by the smallest-scale vortices. However, as the relaxation time increases, dumbbells tend
to align in the most extensional direction induced by 2–4 times larger vortices than the
smallest-scale vortices. We explain this relaxation-time dependence of the effect of vortices
with different sizes on dumbbells by focusing on how persistently the vortices stretch
dumbbells.

DOI: 10.1103/PhysRevFluids.9.123303

I. INTRODUCTION

It is well-known that small quantities of polymers can suppress turbulence [1–3]. Since turbu-
lence causes a significant increase in friction drag, turbulence suppression by polymers has attracted
practical interest. For example, it has been applied to the transport of oil [4] and firefighting [5,6]. It
is widely believed that the dynamical interaction between polymers and turbulence is a key aspect of
the physical mechanism of this turbulence suppression [2]. Considering that turbulence is composed
of vortices with different sizes [7], as depicted in a well-known schematic of the energy cascade [8],
this paper focuses on how polymers are stretched and aligned by vortices with different sizes in
turbulence.

Many studies have been conducted on the dynamics and statistics of polymers in turbulent flows
[9–17]. Stone and Graham [10] investigated the dynamics of polymer models in an “exact coherent
state” in plane Couette flow using Brownian dynamics (BD) simulations. They showed that the
bead-spring chains are significantly stretched when the Weissenberg number, defined as the product
of the relaxation time and the maximum Lyapunov exponent for the velocity field (i.e., the mean
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stretching rate in turbulent flows), exceeds 1/2. Watanabe and Gotoh [15] performed BD simulations
of polymer models in isotropic turbulence and demonstrated that the coil-stretch (CS) transition
occurs when the Weissenberg number based on the Kolmogorov time is around 3–4. Terrapon et al.
[12] analyzed the dynamics of dumbbell models in a Newtonian turbulent channel flow, focusing on
the flow topologies. They found that strong biaxial elongational flows contribute to the stretching of
dumbbells in turbulence. However, they also suggested that even strong flows in turbulence cannot
stretch polymers unless the flows persist enough. Hence, the timescale of turbulence fluctuations
also plays an important role in the polymer dynamics. Musacchio and Vincenzi [16] examined the
effect of correlation time of the velocity gradient on the statistics of the end-to-end distance of
dumbbells in random flows. They revealed a scenario of the CS transition for a large Kubo number,
defined as the product of the maximum Lyapunov exponent and the correlation time of the velocity
gradient. In summary, previous studies on the behavior of polymers in turbulence have revealed the
relevance of the strength, topology, and persistence time of turbulence.

Besides the above-mentioned characteristics of turbulence, the multiscale nature of turbulence
is also an essential aspect of the interactions between polymers and turbulence. Lumley [18,19]
proposed that polymers can be affected by vortices with shorter timescales than those of polymers.
In contrast, Tabor and de Gennes [20] determined an upper bound on the scale of vortices capable
of interacting with polymers by focusing on the energy balance. Afterward, Xi et al. [21] introduced
the characteristic scale of vortices based on the energy flux balance. Meanwhile, the interactions
between polymers and turbulence cause nontrivial energy transfer. Valente et al. [22] numerically
demonstrated that polymers partly contribute to the energy cascade when the relaxation time is
longer than the eddy turnover time. They suggested that the origin of the polymer-induced energy
cascade is based on the interactions between polymers and large-scale vortices. In these ways,
the multiscale feature of turbulence is closely related to the interactions between polymers and
turbulence.

On the other hand, recent studies have uncovered the hierarchy of coherent vortices in Newtonian
turbulence using scale-decomposition analysis to extract vortices at each scale [23]. Goto et al. [24]
revealed the hierarchy of coherent vortices in turbulence driven by a steady force in a periodic
cube by applying the bandpass filter to the velocity field. Successively, the hierarchy of coherent
vortices is also confirmed in more realistic flows by applying the Gaussian filter to the velocity field,
including turbulent boundary layers [25], turbulent channel flows [26], and turbulent wake flows
behind a cylinder [27]. Scale-decomposition analysis has remarkably developed our understanding
of the small-scale universality of turbulence. Thus, scale-decomposition analysis is also expected to
shed light on how vortices with different sizes interact with polymers in turbulence.

In the present paper, we investigate the scale-dependent role of vortices in the stretching and
alignment of polymers by decomposing the turbulent flows into different scales. There have been
two-way coupled simulations of turbulent flows containing polymer models [28–32]. However,
since the turbulent flows are significantly modified depending on the relaxation time, the maximum
extension length, and the concentration of polymers, it is difficult to systematically evaluate the
effect of the hierarchy of turbulence on polymer dynamics by using two-way coupled simulations.
Thus, we adopt the one-way coupled method where polymer models are dissolved in Newtonian
turbulent flows [10,12,15,17], corresponding to the extremely dilute limit. We aim to pave the
way for understanding the physical mechanism of turbulence modulation due to polymers by
quantitatively demonstrating the scale-dependent effect of vortices on the stretching and alignment
of polymer models.

II. METHOD

A. Brownian dynamics simulation

We adopt the finitely extensible nonlinear elastic (FENE) dumbbell model, where the polymer
molecule is considered as two beads connected by a nonlinear spring. The end-to-end vector R of
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the dumbbell obeys

dR
dt

= κ · R − 1

2τ

R
1 − R2/R2

max

+
√

4kBT

ζ
ξ, (1)

where κi j = ∂ui(x, t )/∂x j |x=RG is the velocity gradient at the position RG of the center of mass of
the dumbbell with u(x, t ) being the fluid velocity, τ is the relaxation time, Rmax is the maximum
extension length, kB is the Boltzmann constant, T is the temperature, ζ is the friction coefficient,
and ξ is a random variable that satisfies

〈ξi(t )〉 = 0, (2)

〈ξi(t )ξ j (s)〉 = δi jδ(t − s), (3)

where δi j is the Kronecker delta, δ(t ) is the delta function, and 〈·〉 denotes the ensemble average.
Throughout this paper, we fix R2

max at 3000kBT/H , where H is the spring constant. We have
confirmed that our results remain unchanged for other Rmax, as shown in Appendix A. We assume
that the thermal fluctuation has little effect on the motion of the center of mass of the dumbbell
compared with the advection by turbulent flows [12,15,17]. Thus, the center-of-mass RG of the
dumbbell follows

dRG

dt
= u(RG, t ). (4)

We note that this model assumes the overdamped case, i.e., the inertial term is neglected in Eqs. (1)
and (4), because the momentum relaxation is generally fast compared with the bond relaxation in
polymers [33,34].

To integrate Eqs. (1) and (4), we use a semi-implicit predictor-corrector scheme [12,35] and the
fourth-order Runge–Kutta–Gill scheme, respectively. The trilinear interpolation is used for κ(t ) and
u(RG, t ) [12,15]. We set the ratio of the time step �tBD in BD simulations to the time step �tDNS in
direct numerical simulations (DNSs) as 0.1 to prevent the length of dumbbells from exceeding Rmax.
We use linearly interpolated κ(t ) between κ(n�tDNS) and κ((n + 1)�tDNS) obtained from DNS with
n ∈ N such that n�tDNS � t < (n + 1)�tDNS.

B. Direct numerical simulation

To generate Lagrangian trajectories in turbulent flows, we perform DNS of an incompressible
Newtonian fluid under periodic boundary conditions in three orthogonal directions with period 2π .
The three-dimensional Navier–Stokes equation with an external force f (x, t ) is numerically solved
using the Fourier spectral method. We use two types of external force to test the robustness of the
results to the choice of forcing. The first is the steady force f (V)(x) expressed as

f (V)(x) = (− sin x cos y, cos x sin y, 0)T. (5)

The forcing wave number k f of f (V) is
√

2. The second is the time-dependent force f (I)(x, t ) whose

Fourier coefficient f̂
(I)

(k, t ) is expressed as

f̂
(I)

(k, t ) =
{

P
2Ek f (t ) û(k, t ) 0 < |k| � k f

0 otherwise,
(6)

where P is the energy input rate, û(k, t ) is the Fourier coefficient of u(x, t ), and Ek f (t ) is defined as

Ek f (t ) =
∑

0<|k|�k f

1

2
|̂u(k, t )|2. (7)
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TABLE I. Parameters and statistics of turbulence: f is the external force, N3 is the number of Fourier
modes, Reλ is the Reynolds number based on the Taylor microscale λ, kmax = √

2N/3 is the largest resolved
wave number, η is the Kolmogorov length, and Nt is the number of Lagrangian trajectories. The Courant–
Friedrichs–Lewy (CFL) number is defined as

√
2K/3�tDNS/�x, where K is the kinetic energy per unit mass,

�tDNS is the time step, and �x is the grid width.

f N3 Reλ kmaxη CFL number Nt

f (V) 1283 30 2.9 6.0 × 10−2 163

f (V) 5123 120 1.7 7.0 × 10−2 323

f (I) 5123 220 1.4 5.4 × 10−2 323

f (I) 10243 310 1.6 5.5 × 10−2 323

The forcing by f (I) leads to a constant energy input rate P [36]. We set P = 1 and k f = 2.5. The time
integration uses the fourth-order Runge–Kutta–Gill scheme, and the phase shift method removes
the aliasing errors. Table I shows the DNS parameters and statistics of turbulence. In the table, N3

is the number of Fourier modes, Reλ is the Reynolds number based on the Taylor microscale λ,
kmax = √

2N/3 is the largest resolved wave number, η = (ν3/ε′)1/4 is the Kolmogorov length, and
Nt is the number of Lagrangian trajectories, where ε′ is the turbulent energy dissipation rate per unit
mass and ν is the kinematic viscosity. Here, we define Reλ as

Reλ =
√

20

3νε′ K
′, (8)

where K ′ is the turbulent kinetic energy per unit mass. To investigate the effect of the hierarchy of
coherent vortices in turbulence, we consider four cases with different Reλ. The Courant–Friedrichs–
Lewy (CFL) number is defined as

√
2K/3�tDNS/�x, where K is the kinetic energy per unit mass

and �x is the grid width. For each trajectory, we consider Nd = 10 dumbbells with different initial
conditions and realizations of ξ(t ). In what follows, to nondimensionalize τ , we use the Weissenberg
number Wiη = τ/τη defined as the ratio of the relaxation time τ of dumbbells to the Kolmogorov
time τη = √

ν/ε′.

III. RESULTS

In this section, we identify the most influential scale of vortices in the stretching and alignment
of dumbbells in turbulence using scale-decomposition analysis. Specifically, we define the velocity
u(kc )(x, t ) at wave number kc as the velocity obtained using the Fourier bandpass filter with passband
[kc/

√
2,

√
2kc] [24,37]. We have confirmed that our conclusions are insensitive to the choice of

passband, as shown in Appendix B. Figure 1 shows the isosurfaces of the enstrophy |ω|2 and the
bandpass-filtered enstrophy |ω(kc )|2 for Reλ = 120 with forcing f (V) and Reλ = 310 with forcing
f (I). The scale decomposition with the bandpass filter extracts the hierarchy of coherent vortices
with different length scales [Figs. 1(b) and 1(d)]. Otherwise, we only observe the seemingly
randomized small-scale vortices [Figs. 1(a) and 1(c)]. In the following, we evaluate the scale-
dependent contribution of vortices to the stretching and alignment of dumbbells using u(kc )(x, t ).
Here, we describe our scale-decomposition analysis in more detail to relate the spatial filtering of
the Eulerian velocity field and the Lagrangian history experienced by dumbbells. The Lagrangian
velocity gradient [∇u]L(t |x0, t0) is determined by the Eulerian velocity gradient ∇u(x, t ) at the
instantaneous particle position xL(t |x0) as follows:

[∇u]L(t |x0, t0) = ∇u(xL(t |x0, t0), t ), (9)

where t0 is the labeling time, x0 is the position of the particle at t = t0, and xL(t |x0, t0) is the position
of the particle with the initial position x0 at t = t0. In the present paper, [·]L denotes the Lagrangian
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FIG. 1. Isosurfaces of [(a),(c)] raw |ω|2 and [(b),(d)] bandpass-filtered enstrophy |ω(kc )|2 for [(a),(b)] Reλ =
120 with forcing f (V) and [(c),(d)] Reλ = 310 with forcing f (I). In (b), kc = k f (red), 4k f (yellow), and 16k f (=
0.16η−1) (cyan) with the forcing wave number k f = √

2. In (d), kc = 8
√

2k f /5 (red), 32
√

2k f /5 (yellow), and
128

√
2k f /5(= 0.3η−1) (cyan) with k f = 2.5. In (a) and (c), the threshold value E of the isosurface is set at

μ + 3σ . In (b) and (d), E is set at μ + 3σ for the largest kc and μ + 2σ for the other kc. Here, μ and σ denote
the spatial average and standard deviation of |ω|2 and |ω(kc )|2.

flow variable. On the other hand, the bandpass filter enables us to decompose the Eulerian velocity
gradient ∇u(x, t ) as follows:

∇u(x, t ) =
∑

kc

∇u(kc )(x, t ). (10)

Thus, with Eqs. (9) and (10), the velocity gradient [∇u]L(t |x0, t0) along the Lagrangian trajectory
is decomposed into the contribution from each scale:

[∇u]L(t |x0, t0) =
∑

kc

[∇u(kc )]L(t |x0, t0), (11)

where we introduce [∇u(kc )]L(t |x0, t0) = ∇u(kc )(xL(t |x0, t0), t ) as the contribution to [∇u]L(t |x0, t0)
from wave number kc. According to Eq. (11), we can evaluate the contribution of flows at wave
number kc to the stretching and alignment of dumbbells using [∇u(kc )]L(t |x0, t0). However, it should
be noted that the time evolutions of the end-to-end vector R and the center-of-mass RG of dumbbells
[Eqs. (1) and (4)] are based on the raw velocity field u(x, t ).
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FIG. 2. Mean-squared end-to-end length R2 of dumbbells normalized by R2
max as a function of the Weis-

senberg number Wiη for Reλ = 30 (blue circle) and 120 (black square) with forcing f (V) and Reλ = 220 (red
diamond) and 310 (orange triangle) with forcing f (I).

A. Polymer stretching

In this subsection, we investigate the scale-dependent contribution of vortices to the stretching of
dumbbells. First, we show the average stretching properties of dumbbells in turbulence without
using scale-decomposition analysis. Figure 2 shows the mean-squared end-to-end length R2 of
dumbbells normalized by the square of the maximum extension length Rmax as a function of the
Weissenberg number Wiη = τ/τη for different Reλ. Here, (·) denotes the average value over time
and all the dumbbells in the system. Figure 2 demonstrates that R2 significantly increases with Wiη
for Wiη � 3, indicating that the CS transition [38] occurs around Wiη = 3. The observed CS transi-
tion around Wiη = 3 is consistent with previous results in homogeneous isotropic turbulence [15].
Interestingly, Wiη dependence of R2 is almost independent of Reλ and f . In other words, the ratio of
the relaxation time τ of dumbbells to the Kolmogorov time τη (i.e., the characteristic timescale of the
smallest-scale vortices in turbulence) determines the degree of the dumbbell stretching. Thus, one
may expect that the smallest-scale vortices, which induce the strongest strain-rate fields, dominantly
stretch dumbbells. However, as will be described below (see Fig. 3), the stretching mechanism of
dumbbells has different characteristics depending on Wiη. It may be worth noting that Picardo et al.
[17] reported that dumbbells in turbulent flows and random flows only exhibit a minor difference
in the stretching dynamics in spite of the significant non-Gaussianity of turbulence. Their results
suggest that for fixed Wiη, R2 does not greatly depend on the detailed characteristics of turbulent
flows, which is consistent with the independence of R2 from Reλ and f (Fig. 2).

We have seen that Wiη determines the average stretching of dumbbells regardless of Reλ and
f (Fig. 2). However, R2 does not reveal the scale-dependent effect of vortices on the stretching of
dumbbells, which is necessary for understanding the interactions between polymers and each vortex
in turbulence. Thus, we investigate the contribution of vortices with different sizes in turbulence to
the stretching of dumbbells. With Eq. (1) and the normalized end-to-end vector eR = R/R, we can
write the governing equation of R as

dR

dt
= γ R − 1

2τ

R

1 − R2/R2
max

+
√

4kBT

ζ
(ξ · eR) + 4kBT

ζ

1

R
, (12)
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FIG. 3. Contribution γ (kc ) of flows at wave number kc to the stretching of dumbbells normalized by the
total contribution γ in turbulent flows with (a) Reλ = 30 and forcing f (V) and (b) Reλ = 220 and forcing f (I)

for Wiη = 0.1 (green right triangle), 0.5 (blue circle), 1(black square), 2 (orange inverted triangle), 20 (red
diamond), and 50 (gray triangle). The dotted lines in (a) and (b) indicate kcη = k∗

c η, where k∗
c is defined as the

wave number where the average of the largest eigenvalue of the bandpass-filtered strain-rate tensor S(kc ) takes
the maximum value: k∗

c = 4k f and 64
√

2k f /5 in (a) and (b), respectively.

where γ is defined as

γ = eR, j

[
∂ui

∂x j

]
L

eR,i = eR, j[Si j]LeR,i, (13)

with S = {∇u + (∇u)T}/2 being the strain-rate tensor. From Eq. (12), we can interpret γ as the
indicator of the stretching of dumbbells by flows. Using the scale decomposition of the Lagrangian
velocity gradient [Eq. (11)], γ is expressed as

γ =
∑

kc

eR, j

[
∂u(kc )

i

∂x j

]
L

eR,i, (14)

where u(kc ) is the bandpass-filtered velocity at wave number kc. Thus, we define the contribution
from flows at wave number kc as

γ (kc ) = eR, j

[
∂u(kc )

i

∂x j

]
L

eR,i = eR, j
[
S(kc )

i j

]
L
eR,i, (15)

where S(kc ) = [∇u(kc ) + {∇u(kc )}T]/2 is the bandpass-filtered strain-rate tensor. In the following, we
investigate the scale-dependent contribution to the dumbbell stretching by focusing on γ (kc ).

Figure 3(a) shows the average γ (kc ) of γ (kc ) as a function of kcη for Reλ = 30 with forcing f (V),
where η is the Kolmogorov length. Here, γ (kc ) is normalized by γ . The dotted lines in Fig. 3
indicate kcη = k∗

c η, where k∗
c is defined as the wave number where the average of the largest

eigenvalue of the bandpass-filtered strain-rate tensor S(kc ) takes the maximum value [see Fig. 9(b)].
Figure 3(a) demonstrates that for Wiη = 0.1, γ (kc ) takes the largest value at kc � k∗

c (= 0.27η−1).
Thus, the smallest-scale vortices have the largest value of γ (kc ), which appears to be consistent
with the observation that τη, which corresponds to the characteristic timescale of the smallest-scale
vortices, is the essential timescale of turbulence in terms of the average dumbbell stretching (Fig. 2).
However, as Wiη increases, γ (kc )/γ at kc � k∗

c decreases, and γ (kc )/γ at kc � k∗
c increases instead.

Finally, γ (kc )/γ at kc � k∗
c has comparable and even slightly larger values than that at kc � k∗

c for
Wiη = 20. Therefore, dumbbells with significantly long relaxation times are stretched in a different
manner from those with short relaxation times; large-scale vortices also contribute to stretching
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dumbbells as well as the smallest-scale vortices. Looking at the results for Wiη = 50, an increase
in Wiη does not affect the behavior of γ (kc ) for large Wiη. Since γ is insensitive to Wiη for large
Wiη [see Fig. 11(b)], γ (kc ) is also almost independent of Wiη for large Wiη. We will discuss the
details of the stretching mechanism of dumbbells, including the saturation of γ (kc ) for large Wiη,
in Sec. IV A. Figure 3(b) demonstrates that similar characteristics exist in a different system at
Reλ = 220 with forcing f (I). For Wiη � 1, γ (kc )/γ has a similar dependence on kc regardless
of Wiη and shows the maximum at kc � k∗

c (= 0.25η−1), which indicates that the smallest-scale
vortices have a dominant effect on the stretching of dumbbells for small Wiη. In contrast, for
Wiη � 1, γ (kc )/γ at kc � k∗

c increases while γ (kc )/γ at kc � k∗
c decreases. This indicates that the

contributions from large-scale vortices relatively increase for Wiη � 1. Although both cases with
different Reλ exhibit the qualitatively same stretching mechanism of dumbbells depending on Wiη,
there is a quantitative difference between Figs. 3(a) and 3(b). The results of Reλ = 220 do not
exhibit a significant change in the kc dependence of γ (kc )/γ compared with those of Reλ = 30.
This discrepancy is mainly attributed to the mean flow effect at low Reλ because in Fig. 3(a),
kc = 0.068η−1 corresponds to the wave number k f of the mean flow for forcing f (V). In addition,
the observed low-Reynolds-number effect is consistent with the fact that, in general, fully developed
turbulence appears for Reλ � 100 [39].

In summary, we have demonstrated that the scale-dependent contribution of flows to the stretch-
ing of dumbbells varies with the relaxation time τ of dumbbells; for τ � τη, the smallest-scale
vortices dominantly stretch dumbbells, whereas for τ � τη, the contribution from large-scale vor-
tices relatively increases. It should be noted that since we rely on one-way coupled simulations,
turbulent flows remain unchanged when changing τ . If we conduct two-way coupled simulations,
we will observe a complicatedly combined effect of turbulence modulation by dumbbells and the
change in the scale-dependent contribution of flows to the stretching of dumbbells. It is worth
emphasizing that we clearly demonstrate the variation of the scale-dependent contribution by
changing only τ for a given turbulent flow with various Reλ and f . In Sec. III B, we will focus
on the alignment properties of dumbbells to explore the origin of the complex kc dependence of
γ (kc ) for different Wiη (Fig. 3).

B. Polymer alignment

In Sec. III A, the contribution γ (kc ) of the smallest-scale flows to the stretching of dumbbells
predominates for small Wiη, whereas γ (kc ) of large-scale flows relatively increases for large Wiη.
In this subsection, we explore the relationship between dumbbells and vortices with different sizes
from the alignment perspective to gain further insight into this stretching mechanism. Using the
eigenvalue σi (σ1 � σ2 � σ3) of the strain-rate tensor [S]L and the cosine of the angle θi ∈ [0, π/2]
between the end-to-end vector R and the eigenvector ei of [S]L, we can write γ as

γ =
3∑

i=1

σi(cos θi )
2. (16)

The equality σ1 + σ2 + σ3 = 0 holds because of the incompressibility ∇ · u = 0 of the fluid. Thus,
σ1 � 0 and σ3 � 0, indicating that e1 is the most extensional direction. Since σi in Eq. (16) is
unaffected by dumbbells in one-way coupled simulations, the change in γ with Wiη originates from
cos θi (i.e., alignment between R and [S]L). Therefore, we investigate the alignment properties of
dumbbells in terms of the hierarchy of coherent vortices using scale-decomposition analysis.

We first demonstrate the alignment between R and [S]L without the scale decomposition. We
show the probability density function (PDF) P(cos θi ) of cos θi at Reλ = 220 with forcing f (I)

in Fig. 4. Figure 4(a) shows that dumbbells preferentially align with e1 for Wiη = 0.5, which
means that dumbbells align in the most extensional direction. However, Fig. 4(b) demonstrates
that dumbbells preferentially align with e2 rather than e1 for Wiη = 20. This crossover behavior of
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FIG. 4. PDF P(cos θi ) of the cosine of the angle θi ∈ [0, π/2] between the end-to-end vector R and the
eigenvectors ei of the strain-rate tensor for (a) Wiη = 0.5 and (b) 20 at Reλ = 220 with forcing f (I). Different
colors correspond to different angles: blue, θ1; black, θ2; red, θ3.

the alignment with an increase in Wiη has also been observed in two-way coupled simulations [31]
as well as in one-way coupled simulations [15]. As observed in previous studies [15,31], P(cos θ3)
takes the maximum value at cos θ3 � 0 regardless of Wiη, which indicates that dumbbells tend
to be perpendicular to e3. Thus, we focus on the dumbbell alignment with e1 and e2 in terms of
the dumbbell stretching [Eq. (16)]. Figure 5 shows the average cos θi of cos θi as a function of
Wiη for different turbulent flows. We find similar alignment properties irrespective of Reλ and f .
Specifically, cos θ1 > cos θ2 for Wiη � 3, whereas cos θ1 < cos θ2 for Wiη � 3. In addition, cos θ1

takes the maximum value at Wiη � 1, which is larger than the maximum value of cos θ2. Valente
et al. [22] performed DNSs of viscoelastic fluids using the FENE-P model. They demonstrated
that for long relaxation times, the eigenvector of the conformation tensor C with the largest
eigenvalue tends to align with e2, which is consistent with Fig. 5. They suggested that the weak but
persistent strain-rate fields induced by the large-scale flows, rather than the strong but short-lived
strain-rate fields induced by the smallest-scale flows, contribute to the stretching of polymers with
long relaxation times. However, the quantitative evidence of this scenario has yet to be provided.

10−1 1 10 102
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0.1

co
s
θ i
−

1/
2

η

FIG. 5. Average cos θi of cos θi as a function of the Weissenberg number Wiη for Reλ = 30 (blue circle)
and 120 (black square) with forcing f (V) and Reλ = 220 (red diamond) and 310 (orange triangle) with forcing
f (I). The open symbols and the filled symbols correspond to cos θ1 and cos θ2, respectively.
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FIG. 6. PDF P(cos θ
(kc )
1 ) of the cosine of the angle θ

(kc )
i ∈ [0, π/2] between the end-to-end vector R and the

eigenvector e(kc )
1 of the bandpass-filtered strain-rate tensor at kc = k∗

c /16 (black dashed), k∗
c /4 (blue dotted), and

k∗
c (red solid) for (a) Wiη = 0.5 and (b) 20 at Reλ = 220 with forcing f (I). Here, k∗

c = 0.25η−1(= 64
√

2k f /5).

The insets show the average cos θ
(kc )
1 of cos θ

(kc )
1 as a function of kcη, and the vertical lines indicate the

corresponding wave numbers kc chosen for P(cos θ
(kc )
1 ).

Therefore, we will reveal the origin of the loss of alignment between R and e1 for large Wiη by
using scale-decomposition analysis.

To reveal the alignment properties of dumbbells from the perspective of multiscale features of
turbulence, we focus on the eigenvector e(kc )

1 of the bandpass-filtered strain-rate tensor [S(kc )]L.
Figure 6 shows PDF P(cos θ

(kc )
1 ) of the cosine of the angle θ

(kc )
1 ∈ [0, π/2] between R and e(kc )

1 at
Reλ = 220 with forcing f (I). Here, we show the alignment properties for kc = k∗

c , k∗
c /4, and k∗

c /16,
where k∗

c = 0.25η−1(= 64
√

2k f /5), corresponding to the smallest scale in turbulence. Figure 6(a)
demonstrates that dumbbells align more in the most extensional direction induced by larger kc

for Wiη = 0.5. In other words, smaller-scale vortices have a greater effect on the alignment of

dumbbells with small Wiη. In fact, the inset of Fig. 6(a) demonstrates that cos θ
(kc )
1 monotonically

increases up to kc � k∗
c , which is considered as the smallest scale in turbulence. However, Fig. 6(b)

shows that for Wiη = 20, dumbbells align most with e(kc )
1 at kc = k∗

c /4, which corresponds to 4 times
larger scale than the smallest scale in turbulence. We note that as shown in the inset of Fig. 6(b),

cos θ
(kc )
1 at kc = k∗

c /2 has a similar value to that at kc = k∗
c /4, indicating that dumbbells tend to

align in the most extensional direction induced by 2–4 times larger vortices than the smallest-scale
vortices. Hence, we directly demonstrate that dumbbells with enough relaxation times to be affected
by weak large-scale strain-rate fields tend to align in the most extensional direction induced by 2–4
times larger vortices rather than the smallest-scale vortices. In addition, the preferred alignment
between R and e(kc )

1 at kc = k∗
c /4 for large Wiη is consistent with the preferred alignment between R

and e2 [Fig. 4(b)] because e(kc )
1 at kc = k∗

c /4 tends to align with e2 [see Fig. 14(b) in Appendix C].

Figure 7 shows the average cos θ
(kc )
1 of cos θ

(kc )
1 as a function of Wiη for different Reλ. We show the

results of two wave numbers k∗
c , which corresponds to the smallest scale, and k∗

c /4. We find that
regardless of Reλ and f , dumbbells preferentially align with e(kc )

1 at kc = k∗
c for Wiη � 1, whereas

they change the alignment direction to e(kc )
1 at kc = k∗

c /4 for Wiη � 1. Note that for the lowest
Reynolds number Reλ = 30, dumbbells remarkably align in the most extensional direction induced
by large-scale vortices at kc = k∗

c /4 because k∗
c /4 is equivalent to the wave number of the mean flow

for forcing f (V).
To summarize this subsection, from the perspective of vortices with different sizes in turbulence,

the preferential direction of dumbbells depends on Wiη (Fig. 7), indicating that the alignment of
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FIG. 7. Average cos θ
(kc )
i of cos θ

(kc )
i as a function of the Weissenberg number Wiη for Reλ = 30 (blue

circle) and 120 (black square) with forcing f (V) and Reλ = 220 (red diamond) and 310 (orange triangle)
with forcing f (I). The open symbols indicate the values at kc = k∗

c , where k∗
c = 4k f , 32k f , 64

√
2k f /5, and

128
√

2k f /5 for Reλ = 30, 120, 220, and 310, respectively. The filled symbols indicate the values at k∗
c /4.

dumbbells is not necessarily determined by the smallest-scale vortices with the largest velocity
gradient. Specifically, the alignment of dumbbells is strongly affected by larger-scale vortices for
Wiη � 1 [Fig. 6(b)], although they preferentially align in the most extensional direction of strain-
rate fields induced by the smallest-scale vortices for Wiη � 1 [Fig. 6(a)]. While we have focused
on the instantaneous alignment between dumbbells and the strain-rate tensor, it is also important
to consider the cumulative effect of the strain-rate tensor on the dumbbell alignment along the
Lagrangian trajectory [40], which is left for a future study. In Sec. IV, we discuss the physical
mechanism behind the scale-dependent contribution to the stretching and alignment (Figs. 3 and 7)
and the effect of the Reynolds number.

IV. DISCUSSION

A. Persistence of the polymer stretching by vortices with different sizes

In Sec. III B, we have demonstrated that the preferential direction of dumbbells shifts from the
most extensional direction induced by the smallest-scale flows to that by 2–4 times larger-scale
flows for Wiη � 1 (Figs. 6 and 7). Consequently, large-scale flows also contribute to stretching
dumbbells for large Wiη (Fig. 3). Regarding this stretching mechanism, this subsection aims to
address the following questions: (i) How do weak large-scale strain-rate fields affect dumbbells?
(ii) Why does the contribution of large-scale flows to the stretching of dumbbells saturate when
increasing their relaxation time (Fig. 3)? On the first question, Valente et al. [22] conjectured that
small-scale velocity gradients are not effective in stretching and aligning dumbbells with a long
relaxation time in terms of the persistence time of velocity gradients. Thus, we explore the stretching
mechanism of dumbbells under the hierarchy of coherent vortices by focusing on the persistent
effect of the scale-decomposed strain-rate fields on dumbbells.

First, we quantitatively evaluate the strength and persistence of strain-rate fields induced by
different-scale vortices, leaving aside the dynamics of dumbbells. We show the Lagrangian time
series of the bandpass-filtered strain-rate tensor [S(kc )

11 ]L at Reλ = 220 with forcing f (I) in Fig. 8(a).
Here, we choose kc = k∗

c , k∗
c /2, and k∗

c /4, where k∗
c = 0.25η−1(= 64

√
2k f /5) corresponding to the

smallest scale in turbulence. We also show [S11]L without the scale decomposition for comparison.
Figure 8(a) demonstrates that [S(kc )

11 ]L at larger kc tends to exhibit larger and faster fluctuations,
which is consistent with the classical picture of turbulence. In addition, [S(kc )

11 ]L at kc = k∗
c , which
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FIG. 8. (a) Bandpass-filtered strain-rate tensor [S(kc )
11 ]L as a function of time t normalized by the Kol-

mogorov time τη and (b) autocorrelation function C (kc )
S (t ) of [S(kc )]L at Reλ = 220 with forcing f (I) for

kc = k∗
c /4 (orange dotted line), k∗

c /2 (blue dash-dotted line), and k∗
c (red dashed line), where k∗

c = 0.25η−1

(= 64
√

2k f /5). The black solid line shows the results of the raw strain-rate tensor [S]L . The inset in (b) shows
C (kc )

S (t ) as a function of tk2/3
c .

corresponds to the length scale of 4η, strongly correlates with S11 for 40 � t/τη � 50. Interestingly,
however, [S11]L is dominated by [S(kc )

11 ]L at kc = k∗
c /2 rather than kc = k∗

c for 60 � t/τη � 70,
indicating that the dominant scale in strain-rate fields varies depending on the location and time.
It is an interesting future problem to relate the hierarchy of coherent vortices with the detailed
characteristics of Lagrangian trajectories, although we concentrate on the average strength and
timescale of fluctuations in the following.

To characterize the fluctuations of [S(kc )
i j ]L at different kc, we calculate the autocorrelation

function C(kc )
S (t ) defined as

C(kc )
S (t ) =

[
S(kc )

i j

]
L(t )

[
S(kc )

i j

]
L(0)[

S(kc )
i j

]2

L

. (17)

Note that [S(kc )
i j ]L = 0 in the systems considered. Figure 8(b) shows C(kc )

S (t ) for different kc at Reλ =
220 with forcing f (I). As expected from Fig. 8(a), C(kc )

S (t ) decays faster as kc increases, which means
that strain-rate fields induced by smaller-scale flows fluctuate faster. We also show CS (t ) of [Si j]L

without the scale decomposition in Fig. 8(b) and find that CS (t ) exhibits a slower decay than C(kc )
S (t )

at kc = k∗
c . Since [Si j]L is the superposition of [S(kc )

i j ]L, it is reasonable that CS (t ) is not only affected
by the smallest scale but also by larger scales, as suggested from Fig. 8(a).

We then focus on the correlation time τ
(kc )
S of [S(kc )

i j ]L, defined as

τ
(kc )
S =

∫ ∞

0
C(kc )

S (t )dt, (18)

to systematically compare the fluctuation timescale of [S(kc )
i j ]L at different kc. Figure 9(a) shows

τ
(kc )
S /τη as a function of kcη. We find that τ

(kc )
S /τη exhibits a scaling law τ

(kc )
S /τη ∝ (kcη)−2/3 in

the inertial range irrespective of Reλ and f , which is consistent with the Kolmogorov similarity
hypothesis. In fact, the inset of Fig. 8(b) demonstrates that C(kc )

S (t ) for various kc collapses on a
single function of tk2/3

c . In addition, we also evaluate the strength of the strain-rate fields by the

average σ
(kc )
1 of the largest eigenvalue σ

(kc )
1 of [S(kc )]L. We show τησ

(kc )
1 as a function of kcη in

Fig. 9(b). We confirm a scaling law τησ
(kc )
1 ∝ (kcη)2/3 derived from the Kolmogorov similarity
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FIG. 9. (a) Correlation time τ
(kc )
S and (b) average σ

(kc )
1 of the largest eigenvalue σ

(kc )
1 of the bandpass-filtered

strain-rate tensor [S(kc )]L nondimensionalized by the Kolmogorov time τη as functions of kcη for Reλ = 30
(blue circle) and 120 (black square) with forcing f (V) and Reλ = 220 (red diamond) and 310 (orange triangle)

with forcing f (I). The black dashed lines in (a) and (b) indicate τ
(kc )
S /τη ∝ (kcη)−2/3 and τησ

(kc )
1 ∝ (kcη)2/3,

respectively. The inset in (a) shows the product of τ
(kc )
S and σ

(kc )
1 as a function of kcη. Open symbols indicate

the corresponding value τSσ1 of [S]L . The dotted black lines in (a) and (b) correspond to kcη = 0.3.

hypothesis in the inertial range, indicating that smaller-scale vortices induce stronger strain-rate

fields. These scaling laws for σ
(kc )
1 and τ

(kc )
S reveal the trade-off between the strength and the

persistence time of the strain-rate fields. The inset of Fig. 9(a) confirms that the product of τ
(kc )
S

and σ
(kc )
1 has an almost constant value (� 0.4) in the inertial range k f η � kcη � 0.3. This indicates

that the bandpass-filtered strain-rate tensor at each scale fluctuates with a timescale inversely
proportional to the amplitude. We mention in passing that [S]L also exhibits a similar relationship
between the amplitude and timescale of fluctuations, as indicated by the product τSσ1 of τS and σ1

for the raw strain-rate tensor [S]L shown in the inset of Fig. 9(a). In summary, we provide evidence
that larger-scale strain-rate fields are weaker [Fig. 9(b)] but more persistent [Fig. 9(a)], which gives
a clue to the reason why larger-scale flows become influential in the dynamics of dumbbells as Wiη
increases.

However, it is worth emphasizing that τ
(kc )
S is the characteristic timescale of strain-rate fields

itself. To quantitatively answer the two questions mentioned at the beginning of this subsection, we
directly quantify how persistently different-scale flows stretch dumbbells. Since γ (kc ) represents the
contribution of flows at wave number kc to the stretching of dumbbells, we evaluate the persistence
of γ (kc ) for various Wiη. For this purpose, we define the autocorrelation function C(kc )

γ (t ) of γ (kc ) as

C(kc )
γ (t ) = {γ (kc )(t ) − γ (kc)}{γ (kc )(0) − γ (kc)}

{γ (kc )}2
. (19)

Figure 10(a) shows C(kc )
γ (t ) for Wiη = 10. To characterize the persistence of γ (kc ), we introduce the

correlation time τ (kc )
γ of γ (kc ) defined as

τ (kc )
γ =

∫ ∞

0
C(kc )

γ (t )dt . (20)

Larger τ (kc )
γ means that flows at wave number kc persistently stretch dumbbells more. Figure 10(b)

shows τ (kc )
γ /τη as a function of kcη for various Wiη. We find that τ (kc )

γ /τη exhibits a different behavior
depending on Wiη. We now consider kc dependence of τ (kc )

γ /τη for Wiη � 1 and Wiη � 1 by focus-
ing on the competition between the fluctuation timescales of dumbbells and the bandpass-filtered
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FIG. 10. (a) Autocorrelation function C (kc )
γ (t ) of γ (kc ) for Wiη = 10. Different lines denote different values

of the wave number: orange dotted line, kc = k∗
c /4; blue dash-dotted line, k∗

c /2; red dashed line, k∗
c . Here, k∗

c =
0.25η−1(= 64

√
2k f /5). The black solid line shows the autocorrelation function Cγ (t ) of γ . (b) Correlation

time τ (kc )
γ of γ (kc ) normalized by the Kolmogorov time τη as a function of kcη for Wiη = 0.1 (orange circle),

0.3 (black square), 1 (blue triangle), 10 (red diamond), and 30 (gray inverted triangle). For clarity, τ (kc )
γ /τη for

Wiη = 0.3 is replotted in the inset in a linear scale. The horizontal dashed lines indicate τ/τη for each case.
The vertical black dotted lines indicate kcη = k∗

c η. The black filled circles indicate τ
(kc )
S /τη for comparison.

The results are for turbulence at Reλ = 220 with forcing f (I).

strain-rate tensor. For Wiη � 1, τ (kc )
γ is of the same order as the relaxation time τ of dumbbells

regardless of kc, as demonstrated by the dotted lines in Fig. 10(b). Since τ of dumbbells with
Wiη � 1 is shorter than τ

(kc )
S for any kc [Fig. 9(a)], flows at different scales can only persistently

stretch dumbbells over a period of O(τ ) regardless of their scales due to the faster relaxation of
dumbbells than the fluctuations of flows. Thus, the persistence of large-scale vortices is not relevant,
and only the strength of the strain-rate fields is a crucial factor for stretching dumbbells. This
is why the smallest-scale vortices with the largest velocity gradient mainly affect the dynamics
of dumbbells for Wiη � 1 (Fig. 3). Incidentally, a close look shows that τ (kc )

γ /τη for Wiη = 0.3
takes the maximum value at kc � k∗

c , which corresponds to the smallest scale in turbulence [see
also the inset of Fig. 10(b)]. In contrast, for Wiη � 1, τ (kc )

γ increases as kc decreases. The results

demonstrate that since there exists kc such that τ � τ
(kc )
S for Wiη � 1, large-scale flows at the wave

number kc can stretch and align dumbbells more persistently than the smallest-scale flows at k∗
c

because τ
(kc )
S � τ

(k∗
c )

S . This increase in τ (kc )
γ at small kc explains the reason why the contribution from

large-scale flows to the stretching of dumbbells relatively increases for Wiη � 1 (Fig. 3). However,
τ (kc )
γ exhibits a weaker growth than the correlation time τ

(kc )
S of the bandpass-filtered strain-rate

tensor [S(kc )]L, as shown in Fig. 10(b). We attribute this weak growth of τ (kc )
γ to the fluctuation

of eR with the timescale of τη. In the governing equation of R [Eq. (1)], since κi j = O(1/τη ),
κ · R becomes dominant over R/{2τ (1 − R2/R2

max)} when Wiη = τ/τη � 1. Thus, for Wiη � 1,
R(t ) fluctuates with the timescale of the temporal fluctuations of κ(t ), i.e., τη. Consequently, the
correlation time τ (kc )

γ of γ (kc ) = eR · [∇u(kc )]L · eR at kc � k∗
c cannot be as long as the correlation

time τ
(kc )
S of [S(kc )]L for Wiη � 1. In other words, while large-scale vortices attempt to stretch

dumbbells persistently, neighboring smallest-scale vortices quickly rotate dumbbells, thus leading
to the decorrelation between the direction of dumbbells and the most extensional direction of the
strain-rate fields at large scales. Thus, in spite of their persistence, larger-scale vortices than the
smallest-scale vortices cannot be effective in stretching dumbbells even when Wiη is significantly
large, although their relative contribution increases for Wiη � 1. To summarize this subsection, the
correlation time τ (kc )

γ of γ (kc ) explains the relaxation-time dependence of the stretching mechanism
of dumbbells by vortices with different sizes.
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FIG. 11. (a) Average cos θ
(kc )
1 of cos θ

(kc )
1 as a function of kcη and (b) average γ of γ nondimensionalized

by τη as a function of the Weissenberg number Wiη for Reλ = 30 (blue circle) and 120 (black square) with
forcing f (V) and Reλ = 220 (red diamond) and 310 (orange triangle) with forcing f (I). The black dotted line in
(a) corresponds to kcη = 0.3. In (a), the open and filled symbols correspond to Wiη = 0.5 and 20, respectively.
The black dashed line in (b) indicates τηγ = 0.127, which corresponds to the value for passive vector elements
in isotropic turbulence [41].

B. Reynolds-number dependence

In Sec. III B, the evaluation of the alignment between dumbbells and the bandpass-filtered strain-
rate tensor has revealed that the scale of flows relevant to the alignment of dumbbells depends on
their relaxation time (Figs. 6 and 7). The results indicate that dumbbells undergo the hierarchy of
coherent vortices in turbulence. Meanwhile, the mean-squared end-to-end length R2 of dumbbells
as a function of Wiη collapses on a single curve irrespective of Reλ and f (Fig. 2). In this subsection,
we discuss the effect of Reλ on the stretching and alignment of dumbbells in terms of the hierarchy
of coherent vortices.

Using the scale decomposition [Eq. (15)] and the eigenvalues of the strain-rate tensor [Eq. (16)],
we can write the contribution γ of flows to the stretching of dumbbells as

γ =
∑

kc

γ (kc ) =
∑

kc

3∑
i=1

σ
(kc )
i

{
cos θ

(kc )
i

}2
. (21)

With t̃ = t/τη, R̃ = R/R0, and R̃max = Rmax/R0, we render Eq. (12) dimensionless as

dR̃

dt̃
=

⎧⎨⎩∑
kc

3∑
i=1

τησ
(kc )
i

(
cos θ

(kc )
i

)2

⎫⎬⎭R̃ − 1

2Wiη

R̃

1 − R̃2/R̃2
max

+ 1

Wiη

1

R̃
. (22)

Here, R0 = √
kBT/H , and we ignore the stochastic term for simplicity. We have confirmed that

τησ
(kc )
1 , which is the dominant contribution to the stretching in Eq. (22), exhibits a common

scaling law τησ
(kc )
1 = C(kcη)2/3 in the inertial range irrespective of Reλ, where C is a universal

dimensionless constant [Fig. 9(b)]. Therefore, for fixed Wiη, only cos θ
(kc )
i can be a cause of Reλ

dependence in Eq. (22). We show cos θ
(kc )
1 as a function of kcη for Wiη = 0.5 and 20 in Fig. 11(a).

As already shown in Figs. 6 and 7, dumbbells tend to align in the most extensional direction induced
by 2–4 times larger vortices rather than the smallest-scale vortices in turbulence (i.e., kcη � 0.3) for
Wiη = 20. Note that the mean flow is still dominant due to the low-Reynolds-number effect for
Reλ = 30, thus leading to a remarkable alignment in the most extensional direction at the forcing
scale k f . Consequently, as expected from Eq. (21), the scale-dependent contribution γ (kc )/γ to the
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stretching of dumbbells for Reλ = 30 exhibits drastic changes [Fig. 3(a)] compared with higher
Reλ [Fig. 3(b)]. To summarize, γ (kc ) has Reλ dependence through the alignment of dumbbells,
especially for low Reλ. In contrast, Fig. 11(b) shows that τηγ , which corresponds to the sum of
each contribution γ (kc ), is almost independent of Reλ for fixed Wiη, although τηγ has a slightly
larger value for Reλ = 30 than that for higher Reλ. This collapse of τηγ for different Reλ means that
Eq. (22) does not possess a significant Reλ dependence and is almost dominated by Wiη. This is why
the mean-squared end-to-end length R2 follows a single function regardless of Reλ. In other words,
although Reλ can change the scale-dependent contribution γ (kc ) to the stretching of dumbbells for
fixed Wiη, the resultant change is not so large to alter the overall contribution γ , thus leading to
the independence of Reλ. However, it is worth emphasizing again that although Wiη dominates the
average stretching of dumbbells, the contribution to the stretching of dumbbells from vortices with
different sizes in turbulence exhibits a nontrivial scale dependence (Fig. 3). The scale-dependent
contribution to the dynamics of polymers will be crucial for understanding turbulence modulation
in terms of the interactions between vortices and polymers. Before closing this subsection, it is worth
mentioning that for Wiη � 3, τηγ takes the value similar to that found for passive vector elements
in isotropic turbulence [41], as indicated by the black dashed line in Fig. 11(b). This tendency is
consistent with the fact that the governing equation of R for dumbbells [Eq. (1)] asymptotically
approaches that for passive vector elements in the limit of large τ (i.e., dR/dt = κ · R).

V. CONCLUSIONS

We have investigated the stretching and alignment of FENE dumbbell models in turbulence using
the Brownian dynamics simulations. An essential ingredient for this study is scale-decomposition
analysis, which reveals the behavior of dumbbells in terms of the hierarchy of coherent vortices
in turbulence. We have found that the mean-squared end-to-end length R2 is determined by the
Weissenberg number Wiη = τ/τη, defined as the ratio of the relaxation time τ of dumbbells to
the Kolmogorov time τη, regardless of the Reynolds number Reλ based on the Taylor microscale
and the type of external force f (Fig. 2). One might expect that this universality indicates that
the smallest-scale vortices dominate the stretching of dumbbells. However, we have demonstrated
that larger-scale vortices also affect the dynamics of dumbbells when τ exceeds τη. For Wiη � 1,
the contribution γ (kc ) [Eq. (15)] of flows at wave number kc to the stretching of dumbbells
takes the maximum value at a wave number k∗

c which corresponds to the smallest scale in turbulence.
In contrast, γ (kc ) at smaller kc, which corresponds to larger length scales, relatively increases for
Wiη � 1 (Fig. 3). To explore the origin of this nontrivial scale dependence, we have evaluated
the alignment between dumbbells and the bandpass-filtered strain-rate tensor [S(kc )]L for various
Reλ and Wiη (Figs. 6 and 7). For Wiη � 1, dumbbells preferentially align in the most extensional
direction induced by the smallest-scale vortices. In contrast, for Wiη � 1, dumbbells tend to align in
the most extensional direction induced by 2–4 times larger vortices than the smallest-scale vortices.
This shift of a preferential direction of dumbbells is consistent with the previously reported results
[15,22,31] that in turbulent flows, dumbbells with a long relaxation time exhibit a preferential
alignment with the the eigenvector e2 of the raw strain-rate tensor [S]L with the second largest
eigenvalue (Figs. 4 and 5), because e2 tends to align with the eigenvector e(kc )

1 of [S(kc )]L at kc = k∗
c /4

with the largest eigenvalue [Fig. 14(b) in Appendix C].
We have explained the scale-dependent effect of flows on dumbbells depending on their relax-

ation time by focusing on how persistently each-scale flow stretches dumbbells. To characterize
the strain-rate fields at different scales, we have analyzed the temporal fluctuations of [S(kc )]L

along the Lagrangian trajectories (Fig. 8). As expected from the Kolmogorov similarity hypothesis,
smaller-scale vortices induce stronger strain-rate fields [Fig. 9(b)] with shorter correlation times
τ

(kc )
S [Fig. 9(a)]. In terms of these scale-dependent characteristics of flows, we have investigated

the persistence of the stretching process of dumbbells by the strain-rate fields at different scales.
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The most important conclusion is that the correlation time τ (kc )
γ of γ (kc ) = eR · [∇u(kc )]L · eR reveals

the stretching mechanism of dumbbells by vortices with different sizes [Fig. 10(b)]. For Wiη � 1,
τ (kc )
γ = O(τ ) irrespective of kc because eR fluctuates with the timescale of τ faster than [∇u(kc )]L, i.e.,

τ � τ
(kc )
S for any kc. Thus, the smallest-scale flows most contribute to the stretching of dumbbells

(Fig. 3) because only the strength of the strain-rate fields is relevant to the contribution to the
stretching of dumbbells. In contrast, for Wiη � 1, τ (kc )

γ increases as kc decreases because of the
persistence of large-scale flows. Consequently, the contribution of large-scale flows to the stretching
of dumbbells relatively increases for Wiη � 1 (Fig. 3). However, τ (kc )

γ at kc � k∗
c is much shorter

than τ
(kc )
S . This indicates that larger-scale vortices than the smallest-scale vortices cannot fully utilize

their persistence because eR fluctuates with the timescale of τη due to neighboring smallest-scale
vortices and loses the correlation with the larger-scale strain-rate fields. Thus, the contribution from
large-scale vortices gets saturated when increasing Wiη (Fig. 3). In addition, we have demonstrated
that this scale-dependent effect of vortices on dumbbells is almost independent of Reλ and f ,
although there exists a slight effect of the mean flow only for low Reλ (Fig. 11).

One-way coupled simulations have allowed us to systematically investigate the scale-dependent
contribution of vortices to the stretching and alignment of dumbbells. There will be other scenarios
on the interactions between polymers and vortices in realistic two-way coupled cases. When
polymer solutions are dilute enough to have little effect on turbulence, polymers with a relaxation
time longer than the Kolmogorov time will interact with not only the smallest-scale vortices but
also larger-scale vortices, as demonstrated in this study. However, when their concentration is
large enough to suppress turbulence, the smallest-scale vortices will almost disappear due to the
interactions. As a result, polymers will mainly interact with larger-scale vortices simply because
the original smallest-scale vortices do not exist, which is a qualitatively distinct mechanism from
that demonstrated in this paper. We should also note a qualitative change in turbulent carrier flows
due to polymers. The present paper assumes the Kolmogorov scaling E (k) ∝ k−5/3 in the inertial
range, where E (k) is the energy spectrum at wave number k. Thus, smaller-scale vortices induce
stronger strain-rate fields, as confirmed in Fig. 9(b). However, since some polymer solutions are
known to exhibit a steeper scaling law [42,43], there will be a case where the scale-dependence
of the velocity gradient is reversed, which will bring about a significantly different picture of the
interactions between polymers and vortices. In general, these qualitatively distinct effects coexist
depending on the parameters of polymers and flows. Therefore, it is a crucial future study to apply
the scale-decomposition analysis proposed in this paper to various systems.
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APPENDIX A: EFFECT OF THE MAXIMUM EXTENSION LENGTH OF DUMBBELLS

In the main text, we have shown the stretching and alignment of dumbbells for R2
max/R2

0 = 3000.
Here, we demonstrate that the choice of Rmax has little effect on our conclusion. Figure 12 shows

γ (kc )/γ and cos θ
(kc )
1 as functions of kcη for various Rmax at Reλ = 220 with forcing f (I). We

confirm that the scale-dependent contribution to the stretching and alignment of dumbbells is almost
independent of Rmax. However, we should note that our results are based on one-way coupled
simulations. For two-way coupled simulations, since the stress tensor from dumbbells depends on
Rmax, the resultant carrier velocity field varies with Rmax, thus leading to Rmax dependence of the
stretching and alignment of dumbbells.
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FIG. 12. (a) Scale-dependent contribution γ (kc ) to the stretching of dumbbells normalized by the total

contribution γ and (b) average cos θ
(kc )
1 of cos θ

(kc )
1 as functions of kcη at Reλ = 220 with forcing f (I) for

R2
max/R2

0 = 50 (diamond), 3000 (circle), and 100000 (square). Blue and red symbols correspond to Wiη = 0.5
and 20, respectively.

APPENDIX B: EFFECT OF THE BANDWIDTH

In the main text, we have shown the scale-dependent contribution of flows to the stretching
and alignment of dumbbells using the passband [kc/

√
2,

√
2kc] with the logarithmic bandwidth

�(log10 kc) = log10 2. Here, we confirm that our conclusions are insensitive to the choice of the

bandwidth. Figure 13 shows γ (kc )/{γ�(log10 kc)} and cos θ
(kc )
1 as functions of kcη for �(log10 kc) =

log10 2 and log10

√
2 at Reλ = 220 with forcing f (I). To compensate for the difference in �(log10 kc),

γ (kc )/γ is divided by �(log10 kc) in Fig. 13(a). We confirm that γ (kc )/{γ�(log10 kc)} for different

�(log10 kc) exhibits excellent agreement. In addition, cos θ
(kc )
1 also shows a qualitatively similar

tendency regardless of �(log10 kc), although quantitative values of cos θ
(kc )
1 slightly depend on

�(log10 kc) due to the nonlinear decomposition of cos θ
(kc )
1 unlike γ (kc ). Therefore, our conclusions

about the increased contribution from large-scale flows for Wiη � 1 are independent of the choice
of the passband.

FIG. 13. (a) Scale-dependent contribution γ (kc ) to the stretching of dumbbells normalized by the total

contribution γ and the logarithmic bandwidth �(log10 kc ) and (b) average cos θ
(kc )
1 of cos θ

(kc )
1 as functions

of kcη at Reλ = 220 with forcing f (I) for �(log10 kc ) = log10 2 (filled) and log10

√
2 (open). Blue and red

symbols correspond to Wiη = 0.5 and 20, respectively.
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FIG. 14. (a) PDF P(cos θ
(kc )
S,1 ) of the cosine of the angle θ

(kc )
S,1 ∈ [0, π/2] between the eigenvector e1 of the

strain-rate tensor and the eigenvector e(kc )
1 of the bandpass-filtered strain-rate tensor and (b) PDF P(cos θ

(kc )
S,2 ) of

the cosine of the angle θ
(kc )
S,2 ∈ [0, π/2] between e2 and e(kc )

1 at Reλ = 220 with forcing f (I) for kc = k∗
c /4 (or-

ange dash-dotted), k∗
c /2 (black solid), k∗

c (red dashed), and 2k∗
c (blue dotted), where k∗

c = 0.25kη(= 64
√

2k f /5).

APPENDIX C: ALIGNMENT PROPERTIES OF THE BANDPASS-FILTERED
STRAIN-RATE TENSOR

In this Appendix, we describe the alignment properties of the bandpass-filtered strain-rate tensor
S(kc ). Figure 14(a) shows the PDF P(cos θ

(kc )
S,1 ) of the cosine of the angle θ

(kc )
S,1 ∈ [0, π/2] between

e1 and e(kc )
1 for kc = k∗

c /4, k∗
c /2, k∗

c , and 2k∗
c , where k∗

c = 0.25η−1(= 64
√

2k f /5). For kc shown in
Fig. 14(a), P(cos θ

(kc )
S,1 ) has the maximum value at cos θ

(kc )
S,1 � 1. The alignment tendency between

e1 and e(kc )
1 is reasonable because S is a superposition of S(kc ). Notably, for kc � k∗

c , P(cos θ
(kc )
S,1 )

at cos θ
(kc )
S,1 � 1 increases with kc, which is consistent with the fact that smaller-scale flows (i.e.,

flows at larger kc) induce stronger strain-rate fields [Fig. 9(b)]. In contrast, increasing kc further
to 2k∗

c reduces P(cos θ
(kc )
S,1 ) at cos θ

(kc )
S,1 � 1 because 2k∗

c is almost located in the dissipation range.

We also show the PDF P(cos θ
(kc )
S,2 ) of the cosine of the angle θ

(kc )
S,2 ∈ [0, π/2] between e2 and

e(kc )
1 in Fig. 14(b). Unlike P(cos θ

(kc )
S,1 ), P(cos θ

(kc )
S,2 ) exhibits a complicated dependence on kc. For

0 0.2 0.4 0.6 0.8 1

cos θ
(kc,1,kc,2)
S,1

0.5

1
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P
(c
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θ(k

c,
1
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c,
2
)

S
,1

)

FIG. 15. PDF P(cos θ
(kc,1,kc,2 )
S ) of the cosine of the angle θ

(kc,1,kc,2 )
S ∈ [0, π/2] between e(kc,1 )

1 and e(kc,2 )
1 of the

bandpass-filtered strain-rate tensor at Reλ = 220 with forcing f (I) for kc,1 = k∗
c and kc,2 = k∗

c /4 (blue dashed),
k∗

c /2 (red solid), and 2k∗
c (black dotted), where k∗

c = 0.25kη(= 64
√

2k f /5).
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kc = k∗
c , which corresponds to the smallest scale in turbulence, P(cos θ

(kc )
S,2 ) has the maximum value

at cos θ
(kc )
S,2 � 0, indicating that e2 and e(kc )

1 at kc = k∗
c are orthogonal. However, for kc = k∗

c /4,

P(cos θ
(kc )
S,2 ) has the maximum value at cos θ

(kc )
S,2 � 1. This alignment indicates that the smallest-scale

vortices tend to align with the most extensional direction induced by 4 times larger vortices than the
smallest-scale vortices because it is well-known that the vorticity ω preferentially aligns with e2

[44]. This observation is consistent with Ref. [45]. Next, we show the PDF P(cos θ
(kc,1,kc,2 )
S ) of the

cosine of the angle θ
(kc,1,kc,2 )
S ∈ [0, π/2] between e(kc,1 )

1 and e(kc,2 )
1 in Fig. 15. Here, to investigate the

relationship between the smallest-scale vortices and other-scale vortices, we fix kc,1 at k∗
c and change

the value of kc,2. Since P(cos θ
(kc,1,kc,2 )
S ) takes the maximum value at cos θ

(kc,1,kc,2 )
S � 0 irrespective

of kc,2 considered, the most extensional direction of the smallest-scale strain-rate fields tends to be
orthogonal to that of other-scale strain-rate fields. However, we should note that the maximum value
of P(cos θ

(kc,1,kc,2 )
S ) is not large partly because P(cos θ

(kc,1,kc,2 )
S ) is obtained without conditioning the

turbulence intensity.
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