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We perform Brownian dynamics simulations of the finitely extensible nonlinear elastic
(FENE) dumbbells in spatially periodic turbulence to investigate the relationship between
the dynamics of polymers and the hierarchy of coherent vortices. We decompose the
velocity field into different scales to directly evaluate the effect of vortices with different
sizes on dumbbells. Scale-decomposition analysis provides quantitative evidence that the
smallest-scale vortices dominantly stretch dumbbells with a relaxation time shorter than the
Kolmogorov time, whereas the contribution from large-scale vortices relatively increases
when the relaxation time exceeds the Kolmogorov time. To explore the origin of this scale-
dependent stretching mechanism, we investigate the alignment between dumbbells and the
scale-decomposed strain-rate tensor. We find that dumbbells with a shorter relaxation time
than the Kolmogorov time preferentially align in the most extensional direction induced
by the smallest-scale vortices. However, as the relaxation time increases, dumbbells tend
to align in the most extensional direction induced by 2—4 times larger vortices than the
smallest-scale vortices. We explain this relaxation-time dependence of the effect of vortices
with different sizes on dumbbells by focusing on how persistently the vortices stretch
dumbbells.

DOI: 10.1103/PhysRevFluids.9.123303

I. INTRODUCTION

It is well-known that small quantities of polymers can suppress turbulence [1-3]. Since turbu-
lence causes a significant increase in friction drag, turbulence suppression by polymers has attracted
practical interest. For example, it has been applied to the transport of oil [4] and firefighting [5,6]. It
is widely believed that the dynamical interaction between polymers and turbulence is a key aspect of
the physical mechanism of this turbulence suppression [2]. Considering that turbulence is composed
of vortices with different sizes [7], as depicted in a well-known schematic of the energy cascade [8],
this paper focuses on how polymers are stretched and aligned by vortices with different sizes in
turbulence.

Many studies have been conducted on the dynamics and statistics of polymers in turbulent flows
[9-17]. Stone and Graham [10] investigated the dynamics of polymer models in an “exact coherent
state” in plane Couette flow using Brownian dynamics (BD) simulations. They showed that the
bead-spring chains are significantly stretched when the Weissenberg number, defined as the product
of the relaxation time and the maximum Lyapunov exponent for the velocity field (i.e., the mean
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stretching rate in turbulent flows), exceeds 1/2. Watanabe and Gotoh [15] performed BD simulations
of polymer models in isotropic turbulence and demonstrated that the coil-stretch (CS) transition
occurs when the Weissenberg number based on the Kolmogorov time is around 3—4. Terrapon et al.
[12] analyzed the dynamics of dumbbell models in a Newtonian turbulent channel flow, focusing on
the flow topologies. They found that strong biaxial elongational flows contribute to the stretching of
dumbbells in turbulence. However, they also suggested that even strong flows in turbulence cannot
stretch polymers unless the flows persist enough. Hence, the timescale of turbulence fluctuations
also plays an important role in the polymer dynamics. Musacchio and Vincenzi [16] examined the
effect of correlation time of the velocity gradient on the statistics of the end-to-end distance of
dumbbells in random flows. They revealed a scenario of the CS transition for a large Kubo number,
defined as the product of the maximum Lyapunov exponent and the correlation time of the velocity
gradient. In summary, previous studies on the behavior of polymers in turbulence have revealed the
relevance of the strength, topology, and persistence time of turbulence.

Besides the above-mentioned characteristics of turbulence, the multiscale nature of turbulence
is also an essential aspect of the interactions between polymers and turbulence. Lumley [18,19]
proposed that polymers can be affected by vortices with shorter timescales than those of polymers.
In contrast, Tabor and de Gennes [20] determined an upper bound on the scale of vortices capable
of interacting with polymers by focusing on the energy balance. Afterward, Xi et al. [21] introduced
the characteristic scale of vortices based on the energy flux balance. Meanwhile, the interactions
between polymers and turbulence cause nontrivial energy transfer. Valente et al. [22] numerically
demonstrated that polymers partly contribute to the energy cascade when the relaxation time is
longer than the eddy turnover time. They suggested that the origin of the polymer-induced energy
cascade is based on the interactions between polymers and large-scale vortices. In these ways,
the multiscale feature of turbulence is closely related to the interactions between polymers and
turbulence.

On the other hand, recent studies have uncovered the hierarchy of coherent vortices in Newtonian
turbulence using scale-decomposition analysis to extract vortices at each scale [23]. Goto et al. [24]
revealed the hierarchy of coherent vortices in turbulence driven by a steady force in a periodic
cube by applying the bandpass filter to the velocity field. Successively, the hierarchy of coherent
vortices is also confirmed in more realistic flows by applying the Gaussian filter to the velocity field,
including turbulent boundary layers [25], turbulent channel flows [26], and turbulent wake flows
behind a cylinder [27]. Scale-decomposition analysis has remarkably developed our understanding
of the small-scale universality of turbulence. Thus, scale-decomposition analysis is also expected to
shed light on how vortices with different sizes interact with polymers in turbulence.

In the present paper, we investigate the scale-dependent role of vortices in the stretching and
alignment of polymers by decomposing the turbulent flows into different scales. There have been
two-way coupled simulations of turbulent flows containing polymer models [28-32]. However,
since the turbulent flows are significantly modified depending on the relaxation time, the maximum
extension length, and the concentration of polymers, it is difficult to systematically evaluate the
effect of the hierarchy of turbulence on polymer dynamics by using two-way coupled simulations.
Thus, we adopt the one-way coupled method where polymer models are dissolved in Newtonian
turbulent flows [10,12,15,17], corresponding to the extremely dilute limit. We aim to pave the
way for understanding the physical mechanism of turbulence modulation due to polymers by
quantitatively demonstrating the scale-dependent effect of vortices on the stretching and alignment
of polymer models.

II. METHOD
A. Brownian dynamics simulation

We adopt the finitely extensible nonlinear elastic (FENE) dumbbell model, where the polymer
molecule is considered as two beads connected by a nonlinear spring. The end-to-end vector R of
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dR 1 R 4ksT
ek R-— / , 1
o R TR T 8 o

where k;; = du;(x,1)/0x;|x=r, is the velocity gradient at the position R¢ of the center of mass of
the dumbbell with u(x, ¢) being the fluid velocity, T is the relaxation time, Ry, is the maximum
extension length, kp is the Boltzmann constant, T is the temperature, ¢ is the friction coefficient,
and & is a random variable that satisfies

the dumbbell obeys

(5i(1)) =0, 2)
(§i(0)§j(s)) = 8i;8(t — 9), 3)

where §;; is the Kronecker delta, §(¢) is the delta function, and (-) denotes the ensemble average.
Throughout this paper, we fix R2__ at 3000kzT /H, where H is the spring constant. We have
confirmed that our results remain unchanged for other Ry,,x, as shown in Appendix A. We assume
that the thermal fluctuation has little effect on the motion of the center of mass of the dumbbell
compared with the advection by turbulent flows [12,15,17]. Thus, the center-of-mass Rg of the
dumbbell follows

dd% =u(Rg,1). 4
We note that this model assumes the overdamped case, i.e., the inertial term is neglected in Eqs. (1)
and (4), because the momentum relaxation is generally fast compared with the bond relaxation in
polymers [33,34].

To integrate Eqgs. (1) and (4), we use a semi-implicit predictor-corrector scheme [12,35] and the
fourth-order Runge—Kutta—Gill scheme, respectively. The trilinear interpolation is used for «(¢) and
u(Rg, 1) [12,15]. We set the ratio of the time step Atgp in BD simulations to the time step Afpns in
direct numerical simulations (DNSs) as 0.1 to prevent the length of dumbbells from exceeding Rp,x.
We use linearly interpolated «(¢) between k(nAfpns) and k((n + 1) Atpns) obtained from DNS with
n € N such that nAfpns <t < (n+ 1)Afpns.

B. Direct numerical simulation

To generate Lagrangian trajectories in turbulent flows, we perform DNS of an incompressible
Newtonian fluid under periodic boundary conditions in three orthogonal directions with period 27.
The three-dimensional Navier—Stokes equation with an external force f(x, t) is numerically solved
using the Fourier spectral method. We use two types of external force to test the robustness of the
results to the choice of forcing. The first is the steady force £ (x) expressed as

Y (x) = (—sinxcosy, cosxsiny, O)T. 5
The forcing wave number k; of f V) is /2. The second is the time-dependent force £ (x, r) whose

. .= .
Fourier coefficient f ( )(k, t) is expressed as

k1) 0 < k| <ky

?(D(k, 1) = {SEk/(t) (©6)

otherwise,

where P is the energy input rate, u(k, ) is the Fourier coefficient of u(x, t), and Ej ,(¢) is defined as

L .
By = ) Sk 0P ™

0<|k|<k;
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TABLE I. Parameters and statistics of turbulence: f is the external force, N* is the number of Fourier
modes, Re, is the Reynolds number based on the Taylor microscale A, kyax = V2N, /3 is the largest resolved
wave number, 71 is the Kolmogorov length, and A, is the number of Lagrangian trajectories. The Courant—
Friedrichs—Lewy (CFL) number is defined as /2K/3Atpns/ Ax, where K is the kinetic energy per unit mass,
Atpys 1s the time step, and Ax is the grid width.

f N3 Re, max CFL number N,
v 1283 30 2.9 6.0 x 1072 163
v 5123 120 1.7 7.0 x 1072 323
fo 5123 220 1.4 5.4 %1072 32°
fo 10243 310 1.6 55x%x 1072 32°

The forcing by £ leads to a constant energy input rate P [36]. We set P = 1 and ks = 2.5. The time
integration uses the fourth-order Runge—Kutta—Gill scheme, and the phase shift method removes
the aliasing errors. Table I shows the DNS parameters and statistics of turbulence. In the table, N3
is the number of Fourier modes, Re; is the Reynolds number based on the Taylor microscale A,
kmax = ~/2N/3 is the largest resolved wave number, 7 = (v3/€’)!/* is the Kolmogorov length, and
N, is the number of Lagrangian trajectories, where €’ is the turbulent energy dissipation rate per unit
mass and v is the kinematic viscosity. Here, we define Re; as

20
3ve’

Re;, = K, 8)
where K’ is the turbulent kinetic energy per unit mass. To investigate the effect of the hierarchy of
coherent vortices in turbulence, we consider four cases with different Re; . The Courant—Friedrichs—
Lewy (CFL) number is defined as /2K /3 Atpns/Ax, where K is the kinetic energy per unit mass
and Ax is the grid width. For each trajectory, we consider Ny = 10 dumbbells with different initial
conditions and realizations of &(¢). In what follows, to nondimensionalize 7, we use the Weissenberg
number Wi, = 7/7, defined as the ratio of the relaxation time 7 of dumbbells to the Kolmogorov
time 7, = /v/€’.

III. RESULTS

In this section, we identify the most influential scale of vortices in the stretching and alignment
of dumbbells in turbulence using scale-decomposition analysis. Specifically, we define the velocity
u*<)(x, t) at wave number k. as the velocity obtained using the Fourier bandpass filter with passband
[kc/ V2, ﬁkc] [24,37]. We have confirmed that our conclusions are insensitive to the choice of
passband, as shown in Appendix B. Figure 1 shows the isosurfaces of the enstrophy |w|> and the
bandpass-filtered enstrophy |@*)|> for Re; = 120 with forcing £ and Re, = 310 with forcing
f®. The scale decomposition with the bandpass filter extracts the hierarchy of coherent vortices
with different length scales [Figs. 1(b) and 1(d)]. Otherwise, we only observe the seemingly
randomized small-scale vortices [Figs. 1(a) and 1(c)]. In the following, we evaluate the scale-
dependent contribution of vortices to the stretching and alignment of dumbbells using u*)(x, 7).
Here, we describe our scale-decomposition analysis in more detail to relate the spatial filtering of
the Eulerian velocity field and the Lagrangian history experienced by dumbbells. The Lagrangian
velocity gradient [Vu]p(¢|xg, tp) is determined by the Eulerian velocity gradient Vu(x,t) at the
instantaneous particle position x (¢|xo) as follows:

[VulL(t|xo, o) = Vu(x,(tlxo, 20). 1), 9

where 1 is the labeling time, x is the position of the particle at # = 7y, and x (¢|xo, #p) is the position
of the particle with the initial position x( at t = fy. In the present paper, [-]; denotes the Lagrangian
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FIG. 1. Isosurfaces of [(a),(c)] raw |@|? and [(b),(d)] bandpass-filtered enstrophy || for [(a),(b)] Re;, =
120 with forcing £ and [(c),(d)] Re; = 310 with forcing . In (b), k. = ks (red), 4k; (yellow), and 16k;(=
0.16n~") (cyan) with the forcing wave number k; = +/2. In (d), k. = 8+/2k;/5 (red), 32+/2k; /5 (yellow), and
128ﬁkf /5(=0.3n7") (cyan) with k; =2.5.In (a) and (c), the threshold value £ of the isosurface is set at
u+ 30.In(b) and (d), £ is set at u + 3o for the largest k. and u + 20 for the other k.. Here, i and o denote
the spatial average and standard deviation of |w|? and |@®*)|2.

flow variable. On the other hand, the bandpass filter enables us to decompose the Eulerian velocity
gradient Vu(x, t) as follows:

Vu(x,t) = Z Vu*)(x, 1). (10)
kv

Thus, with Egs. (9) and (10), the velocity gradient [Vu]y (¢]xo, tp) along the Lagrangian trajectory
is decomposed into the contribution from each scale:

[Val, (t1xo, 10) = Y _[Vu* 1. (tIxo, 10), (1)
ke

where we introduce [Vu®], (¢|xo, to) = Vu*) (x.(t|xo, o), t) as the contribution to [Vu], (|xo, ty)
from wave number k.. According to Eq. (11), we can evaluate the contribution of flows at wave
number k. to the stretching and alignment of dumbbells using [Vu*)]; (¢|xo, t). However, it should
be noted that the time evolutions of the end-to-end vector R and the center-of-mass Rs of dumbbells
[Egs. (1) and (4)] are based on the raw velocity field u(x, ).
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FIG. 2. Mean-squared end-to-end length R? of dumbbells normalized by R as a function of the Weis-
senberg number Wi, for Re;, = 30 (blue circle) and 120 (black square) with forcing f ™ and Re;, = 220 (red

diamond) and 310 (orange triangle) with forcing f©.

A. Polymer stretching

In this subsection, we investigate the scale-dependent contribution of vortices to the stretching of
dumbbells. First, we show the average stretching properties of dumbbells in turbulence without
using scale-decomposition analysis. Figure 2 shows the mean-squared end-to-end length R? of
dumbbells normalized by the square of the maximum extension length Ry« as a function of the
Weissenberg number Wi, = 7 /7, for different Re;. Here, (-) denotes the average value over time

and all the dumbbells in the system. Figure 2 demonstrates that R significantly increases with Wi,
for Wi, > 3, indicating that the CS transition [38] occurs around Wi, = 3. The observed CS transi-
tion around Wi, = 3 is consistent with previous results in homogeneous isotropic turbulence [15].
Interestingly, Wi, dependence of R? is almost independent of Re; and f. In other words, the ratio of
the relaxation time 7 of dumbbells to the Kolmogorov time ) (i.e., the characteristic timescale of the
smallest-scale vortices in turbulence) determines the degree of the dumbbell stretching. Thus, one
may expect that the smallest-scale vortices, which induce the strongest strain-rate fields, dominantly
stretch dumbbells. However, as will be described below (see Fig. 3), the stretching mechanism of
dumbbells has different characteristics depending on Wi,,. It may be worth noting that Picardo et al.
[17] reported that dumbbells in turbulent flows and random flows only exhibit a minor difference
in the stretching dynamics in spite of the significant non-Gaussianity of turbulence. Their results
suggest that for fixed Wi,, R? does not greatly depend on the detailed characteristics of turbulent

flows, which is consistent with the independence of R? from Re; and f (Fig. 2).

We have seen that Wi, determines the average stretching of dumbbells regardless of Re; and
f (Fig. 2). However, R? does not reveal the scale-dependent effect of vortices on the stretching of
dumbbells, which is necessary for understanding the interactions between polymers and each vortex
in turbulence. Thus, we investigate the contribution of vortices with different sizes in turbulence to
the stretching of dumbbells. With Eq. (1) and the normalized end-to-end vector eg = R/R, we can
write the governing equation of R as

dR 1 R 4ksT kT 1
&R — / . - 12
a "R TR, T T ST T (12)
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FIG. 3. Contribution y %) of flows at wave number k. to the stretching of dumbbells normalized by the
total contribution ¥ in turbulent flows with (a) Re; = 30 and forcing f ™ and (b) Re; = 220 and forcing f ®
for Wi, = 0.1 (green right triangle), 0.5 (blue circle), 1(black square), 2 (orange inverted triangle), 20 (red
diamond), and 50 (gray triangle). The dotted lines in (a) and (b) indicate k.n = k}n, where k' is defined as the
wave number where the average of the largest eigenvalue of the bandpass-filtered strain-rate tensor S* takes
the maximum value: k) = 4k, and 64ﬁkf /5 in (a) and (b), respectively.

where y is defined as

3”[
y = eR,j[§:| eri = ep j[SijlLer,, (13)
idr

with § = {Vu + (Vu)T} /2 being the strain-rate tensor. From Eq. (12), we can interpret y as the
indicator of the stretching of dumbbells by flows. Using the scale decomposition of the Lagrangian
velocity gradient [Eq. (11)], y is expressed as

dult)
Yy =) er; a; €R.i» (14)
, L

k. j

where u*”) is the bandpass-filtered velocity at wave number k.. Thus, we define the contribution
from flows at wave number k. as

k ou* k)
]/( o) — R, a;: eri = eR’j[Sij( ]LER’i’ (15)
J

where §*) = [Vu*) 4+ {Vu*}T]/2 is the bandpass-filtered strain-rate tensor. In the following, we
investigate the scale-dependent contribution to the dumbbell stretching by focusing on y *<).
Figure 3(a) shows the average y %) of *) as a function of k.n for Re, = 30 with forcing £,
where 71 is the Kolmogorov length. Here, y &) is normalized by 7. The dotted lines in Fig. 3
indicate k.n = k’n, where k is defined as the wave number where the average of the largest
eigenvalue of the bandpass-filtered strain-rate tensor S%) takes the maximum value [see Fig. 9(b)].
Figure 3(a) demonstrates that for Wi, = 0.1, y &) takes the largest value at k. > k(= 0.27p7 1.
Thus, the smallest-scale vortices have the largest value of y %), which appears to be consistent
with the observation that 7,, which corresponds to the characteristic timescale of the smallest-scale
vortices, is the essential timescale of turbulence in terms of the average dumbbell stretching (Fig. 2).
However, as Wi, increases, y /¥ at k. >~ k¥ decreases, and y*) /¥ at k. < k* increases instead.
Finally, y &) /7 at k. < k has comparable and even slightly larger values than that at k. ~ k* for
Wi, = 20. Therefore, dumbbells with significantly long relaxation times are stretched in a different
manner from those with short relaxation times; large-scale vortices also contribute to stretching
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dumbbells as well as the smallest-scale vortices. Looking at the results for Wi, = 50, an increase
in Wi, does not affect the behavior of y %) for large Wi,. Since ¥ is insensitive to Wi, for large
Wi, [see Fig. 11(b)], y*) is also almost independent of Wi, for large Wi,. We will discuss the

details of the stretching mechanism of dumbbells, including the saturation of y %) for large Wi,
in Sec. IV A. Figure 3(b) demonstrates that similar characteristics exist in a different system at
Re; = 220 with forcing f. For Wi, <1, y*)/7 has a similar dependence on k. regardless
of Wi, and shows the maximum at k. >~ k(= 0.25n71), which indicates that the smallest-scale
vortices have a dominant effect on the stretching of dumbbells for small Wi,. In contrast, for

Wi, 2 1, y&)/y at k. < k¥ increases while y &) /y at k. ~ k¥ decreases. This indicates that the
contributions from large-scale vortices relatively increase for Wi, 2 1. Although both cases with
different Re;, exhibit the qualitatively same stretching mechanism of dumbbells depending on Wi,,

there is a quantitative difference between Figs. 3(a) and 3(b). The results of Re; = 220 do not

exhibit a significant change in the k. dependence of y %)/ compared with those of Re; = 30.
This discrepancy is mainly attributed to the mean flow effect at low Re; because in Fig. 3(a),
k. = 0.068n~"! corresponds to the wave number k; of the mean flow for forcing f ™) In addition,
the observed low-Reynolds-number effect is consistent with the fact that, in general, fully developed
turbulence appears for Re; 2 100 [39].

In summary, we have demonstrated that the scale-dependent contribution of flows to the stretch-
ing of dumbbells varies with the relaxation time v of dumbbells; for v < 7, the smallest-scale
vortices dominantly stretch dumbbells, whereas for v 2 t,, the contribution from large-scale vor-
tices relatively increases. It should be noted that since we rely on one-way coupled simulations,
turbulent flows remain unchanged when changing t. If we conduct two-way coupled simulations,
we will observe a complicatedly combined effect of turbulence modulation by dumbbells and the
change in the scale-dependent contribution of flows to the stretching of dumbbells. It is worth
emphasizing that we clearly demonstrate the variation of the scale-dependent contribution by
changing only t for a given turbulent flow with various Re, and f. In Sec. III B, we will focus
on the alignment properties of dumbbells to explore the origin of the complex k. dependence of
y % for different Wi, (Fig. 3).

B. Polymer alignment

In Sec. IIT A, the contribution y %) of the smallest-scale flows to the stretching of dumbbells
predominates for small Wi,, whereas y &) of large-scale flows relatively increases for large Wi,.
In this subsection, we explore the relationship between dumbbells and vortices with different sizes
from the alignment perspective to gain further insight into this stretching mechanism. Using the
eigenvalue o; (07 = 0, > 03) of the strain-rate tensor [S]; and the cosine of the angle 9; € [0, 7 /2]
between the end-to-end vector R and the eigenvector e; of [S],, we can write y as

3
y =) oicost;). (16)

i=1

The equality o + 02 + 03 = 0 holds because of the incompressibility V - u = 0 of the fluid. Thus,
o; 2 0 and o3 < 0, indicating that e; is the most extensional direction. Since o; in Eq. (16) is
unaffected by dumbbells in one-way coupled simulations, the change in y with Wi, originates from
cos 6; (i.e., alignment between R and [S].). Therefore, we investigate the alignment properties of
dumbbells in terms of the hierarchy of coherent vortices using scale-decomposition analysis.

We first demonstrate the alignment between R and [S]; without the scale decomposition. We
show the probability density function (PDF) P(cos6;) of cos6; at Re; = 220 with forcing f O
in Fig. 4. Figure 4(a) shows that dumbbells preferentially align with e; for Wi, = 0.5, which
means that dumbbells align in the most extensional direction. However, Fig. 4(b) demonstrates
that dumbbells preferentially align with e, rather than e; for Wi, = 20. This crossover behavior of
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
cos b; cos b;

FIG. 4. PDF P(cos6;) of the cosine of the angle 6; € [0, /2] between the end-to-end vector R and the
eigenvectors e; of the strain-rate tensor for (a) Wi, = 0.5 and (b) 20 at Re; = 220 with forcing f’ O Different
colors correspond to different angles: blue, 6;; black, 6,; red, 6;.

the alignment with an increase in Wi, has also been observed in two-way coupled simulations [31]
as well as in one-way coupled simulations [15]. As observed in previous studies [15,31], P(cos 63)
takes the maximum value at cos 3 2~ 0 regardless of Wi,, which indicates that dumbbells tend
to be perpendicular to e3. Thus, we focus on the dumbbell alignment with e; and e; in terms of
the dumbbell stretching [Eq. (16)]. Figure 5 shows the average cos6; of cos8; as a function of
Wi, for different turbulent flows. We find similar alignment properties irrespective of Re, and f.
Specifically, cos 6; > cos 6, for Wi, < 3, whereas cos6; < cos 6, for Wi, 2 3. In addition, cos 6;
takes the maximum value at Wi, >~ 1, which is larger than the maximum value of cos 6,. Valente
et al. [22] performed DNSs of viscoelastic fluids using the FENE-P model. They demonstrated
that for long relaxation times, the eigenvector of the conformation tensor C with the largest
eigenvalue tends to align with e, which is consistent with Fig. 5. They suggested that the weak but
persistent strain-rate fields induced by the large-scale flows, rather than the strong but short-lived
strain-rate fields induced by the smallest-scale flows, contribute to the stretching of polymers with
long relaxation times. However, the quantitative evidence of this scenario has yet to be provided.

0.1f % ' ]
NN N
0.08} SR & i

< & 1
To.oe’- & P OO0 o+
?0.04- O 1
~ 0.02} & 4 ]

Q
oo mmond} .

1071 1 10 102
Wi,

FIG. 5. Average cos6; of cos; as a function of the Weissenberg number Wi, for Re; = 30 (blue circle)
and 120 (black square) with forcing f ™) and Re; = 220 (red diamond) and 310 (orange triangle) with forcing
f©. The open symbols and the filled symbols correspond to cos 8; and cos 65, respectively.
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FIG. 6. PDF P(cos 01(1“)) of the cosine of the angle 9,.("“) € [0, /2] between the end-to-end vector R and the
eigenvector e(lkL of the bandpass-filtered strain-rate tensor at k. = k7 /16 (black dashed) k? /4 (blue dotted), and
k* (red solid) for (a) Wi, = 0.5 and (b) 20 at Re; = 220 with forcing . Here, k* = 0. 25;7*1( 64+/2ks/5).

The insets show the average cos 6" of cos8*’ as a function of k.n, and the vertical lines indicate the
corresponding wave numbers k. chosen for P(cos ka")).

Therefore, we will reveal the origin of the loss of alignment between R and e; for large Wi, by
using scale-decomposition analysis.

To reveal the alignment properties of dumbbells from the perspective of multiscale features of
turbulence, we focus on the eigenvector e1 ) of the bandpass-filtered strain-rate tensor [S*e )]L
Figure 6 shows PDF P(cos G(k )) of the cosine of the angle 0“‘ <) € [0, 77 /2] between R and e(k o)
Re;, = 220 with forcing f. Here, we show the alignment properties for k. = kX, kX/4, and k}/ 16,
where k* = 0.2577!(= 64+/2. 2ky/5), corresponding to the smallest scale in turbulence. Figure 6(a)
demonstrates that dumbbells align more in the most extensional direction induced by larger k.
for Wi, = 0.5. In other words, smaller-scale vortices have a greater effect on the alignment of

dumbbells with small Wi,,. In fact, the inset of Fig. 6(a) demonstrates that cos 01(1“) monotonically
increases up to k. 2 k, which is considered as the smallest scale in turbulence. However, Fig. 6(b)
shows that for Wi,, = 20, dumbbells align most with egk") atk, = k /4, which corresponds to 4 times
larger scale than the smallest scale in turbulence. We note that as shown in the inset of Fig. 6(b),
cos 0% at k. = k*/2 has a similar value to that at k. = k*/4, indicating that dumbbells tend to
align in the most extensional direction induced by 2—4 times larger vortices than the smallest-scale
vortices. Hence, we directly demonstrate that dumbbells with enough relaxation times to be affected
by weak large-scale strain-rate fields tend to align in the most extensional direction induced by 2—4
times larger vortices rather than the smallest-scale vortices. In addition, the preferred alignment
between R and egk") at k. = k /4 for large Wi, is consistent with the preferred alignment between R
and e, [Fig. 4(b)] because egk") at k. = k7 /4 tends to align with e [see Fig. 14(b) in Appendix C].
Figure 7 shows the average cos Ql(k‘) of cos Gl(k“) as a function of Wi, for different Re;. We show the
results of two wave numbers k7, which corresponds to the smallest scale, and £*/4. We find that
regardless of Re, and f, dumbbells preferentially align with e(lk < atk, = k! for Wi, < 1, whereas
they change the alignment direction to e(k) at k. =k’ /4 for Wi, 2 1. Note that for the lowest
Reynolds number Re; = 30, dumbbells remarkably ahgn in the most extensional direction induced
by large-scale vortices at k. = k' /4 because k' /4 is equivalent to the wave number of the mean flow
for forcing V).

To summarize this subsection, from the perspective of vortices with different sizes in turbulence,
the preferential direction of dumbbells depends on Wi, (Fig. 7), indicating that the alignment of
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FIG. 7. Average cos 6" of cos6 as a function of the Weissenberg number Wi, for Re, = 30 (blue
circle) and 120 (black square) with forcing f ™) and Re; = 220 (red diamond) and 310 (orange triangle)
with forcing f. The open symbols indicate the values at k. = k*, where k* = 4k, 32k;, 64+/2k;/5, and
128ﬁkf /5 for Re;, = 30, 120, 220, and 310, respectively. The filled symbols indicate the values at k7 /4.

dumbbells is not necessarily determined by the smallest-scale vortices with the largest velocity
gradient. Specifically, the alignment of dumbbells is strongly affected by larger-scale vortices for
Wi, 2 1 [Fig. 6(b)], although they preferentially align in the most extensional direction of strain-
rate fields induced by the smallest-scale vortices for Wi, < 1 [Fig. 6(a)]. While we have focused
on the instantaneous alignment between dumbbells and the strain-rate tensor, it is also important
to consider the cumulative effect of the strain-rate tensor on the dumbbell alignment along the
Lagrangian trajectory [40], which is left for a future study. In Sec. IV, we discuss the physical
mechanism behind the scale-dependent contribution to the stretching and alignment (Figs. 3 and 7)
and the effect of the Reynolds number.

IV. DISCUSSION

A. Persistence of the polymer stretching by vortices with different sizes

In Sec. III B, we have demonstrated that the preferential direction of dumbbells shifts from the
most extensional direction induced by the smallest-scale flows to that by 2—4 times larger-scale
flows for Wi, 2 1 (Figs. 6 and 7). Consequently, large-scale flows also contribute to stretching
dumbbells for large Wi, (Fig. 3). Regarding this stretching mechanism, this subsection aims to
address the following questions: (i) How do weak large-scale strain-rate fields affect dumbbells?
(il)) Why does the contribution of large-scale flows to the stretching of dumbbells saturate when
increasing their relaxation time (Fig. 3)? On the first question, Valente et al. [22] conjectured that
small-scale velocity gradients are not effective in stretching and aligning dumbbells with a long
relaxation time in terms of the persistence time of velocity gradients. Thus, we explore the stretching
mechanism of dumbbells under the hierarchy of coherent vortices by focusing on the persistent
effect of the scale-decomposed strain-rate fields on dumbbells.

First, we quantitatively evaluate the strength and persistence of strain-rate fields induced by
different-scale vortices, leaving aside the dynamics of dumbbells. We show the Lagrangian time
series of the bandpass-filtered strain-rate tensor [S f’i‘)] L at Re; = 220 with forcing f M in Fig. 8(a).

Here, we choose k. = k', k* /2, and k* /4, where k = 0.2577' (= 64+/2k;/5) corresponding to the
smallest scale in turbulence. We also show [S;], without the scale decomposition for comparison.
Figure 8(a) demonstrates that [Si'i”)] 1 at larger k. tends to exhibit larger and faster fluctuations,

which is consistent with the classical picture of turbulence. In addition, [Sﬁ’i")]L at k. =k, which
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FIG. 8. (a) Bandpass-filtered strain-rate tensor [Silj‘)]L as a function of time ¢ normalized by the Kol-
mogorov time 7, and (b) autocorrelation function Cy'(t) of [§%], at Re, =220 with forcing f© for
k. =k} /4 (orange dotted line), k?/2 (blue dash-dotted line), and k} (red dashed line), where k} = 0.2597!
(= 64ﬁkf/5). The black solid line shows the results of the raw strain-rate tensor [S];. The inset in (b) shows
C;k“)(t) as a function of k>3,

corresponds to the length scale of 47, strongly correlates with Sy, for 40 < ¢/7, < 50. Interestingly,
however, [S1;], is dominated by [$*’], at k., = k*/2 rather than k. = k* for 60 <1/z, <70,
indicating that the dominant scale in strain-rate fields varies depending on the location and time.
It is an interesting future problem to relate the hierarchy of coherent vortices with the detailed
characteristics of Lagrangian trajectories, although we concentrate on the average strength and
timescale of fluctuations in the following.

To characterize the fluctuations of [Sl.(;‘“)]L at different k., we calculate the autocorrelation

function Cék")(t) defined as

Sk s*)7 (0
C;vkc)(l‘): [ ij ]L(t)[ ij ]L( ) an

[s5T,

Note that [Si(;.‘”)] © = 01in the systems considered. Figure 8(b) shows C;k“)(t) for different k. at Re; =
220 with forcing f. As expected from Fig. 8(a), C ék")(t) decays faster as k. increases, which means
that strain-rate fields induced by smaller-scale flows fluctuate faster. We also show Cs(¢) of [S;;].
without the scale decomposition in Fig. 8(b) and find that Cs(#) exhibits a slower decay than C;k“) ()
at k. = k. Since [S;;]; is the superposition of [Si(j.“’)] L, it is reasonable that Cs(#) is not only affected
by the smallest scale but also by larger scales, as suggested from Fig. 8(a).

‘We then focus on the correlation time ts(k”) of [Sl.(f“)] L, defined as

) = fo Cy (t)dt, (18)

to systematically compare the fluctuation timescale of [Sf]]f")]L at different k.. Figure 9(a) shows
/7, as a function of k.. We find that 7\ /7, exhibits a scaling law 7{*)/z, o (k)™ in
the inertial range irrespective of Re; and f, which is consistent with the Kolmogorov similarity
hypothesis. In fact, the inset of Fig. 8(b) demonstrates that Cgk“)(t) for various k. collapses on a
single function of tk2/>. In addition, we also evaluate the strength of the strain-rate fields by the

average al(k“) of the largest eigenvalue Ul(k‘) of [S*],. We show rnal(k") as a function of k.n in

Fig. 9(b). We confirm a scaling law f,,ol(k") o (ke1)?’? derived from the Kolmogorov similarity
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FIG. 9. (a) Correlation time ts(k“) and (b) average ol(k") of the largest eigenvalue crl(k") of the bandpass-filtered

strain-rate tensor [S*”]; nondimensionalized by the Kolmogorov time 7, as functions of k.n for Re; = 30
(blue circle) and 120 (black square) with forcing f ™) and Re; = 220 (red diamond) and 310 (orange triangle)
with forcing f*. The black dashed lines in (a) and (b) indicate 7{*/7, o (k.n)~%? and 7,0* o (k.)*?,

respectively. The inset in (a) shows the product of rs(k‘) and Jl(k") as a function of k.n. Open symbols indicate

the corresponding value 5oy of [S].. The dotted black lines in (a) and (b) correspond to k.n = 0.3.

hypothesis in the inertial range, indicating that smaller-scale vortices induce stronger strain-rate
fields. These scaling laws for ol(k“) and ts(k‘) reveal the trade-off between the strength and the

persistence time of the strain-rate fields. The inset of Fig. 9(a) confirms that the product of ts(k”)

and ol(k") has an almost constant value (=~ 0.4) in the inertial range kyn < k.n < 0.3. This indicates
that the bandpass-filtered strain-rate tensor at each scale fluctuates with a timescale inversely
proportional to the amplitude. We mention in passing that [S]; also exhibits a similar relationship
between the amplitude and timescale of fluctuations, as indicated by the product 7507 of T and o7
for the raw strain-rate tensor [S]; shown in the inset of Fig. 9(a). In summary, we provide evidence
that larger-scale strain-rate fields are weaker [Fig. 9(b)] but more persistent [Fig. 9(a)], which gives
a clue to the reason why larger-scale flows become influential in the dynamics of dumbbells as Wi,
increases.

However, it is worth emphasizing that tékC) is the characteristic timescale of strain-rate fields
itself. To quantitatively answer the two questions mentioned at the beginning of this subsection, we
directly quantify how persistently different-scale flows stretch dumbbells. Since y *<) represents the
contribution of flows at wave number &, to the stretching of dumbbells, we evaluate the persistence
of y®) for various Wi,. For this purpose, we define the autocorrelation function C}(,kL)(t) of y*) as

%) =y E){y %)(0) — y*)

(&P )

(ke) _
Cr) =

Figure 10(a) shows C{<)(r) for Wi, = 10. To characterize the persistence of y ), we introduce the
correlation time 7% of y*) defined as

otk = / Cl(tyde. 20)
0

Larger r}Ek") means that flows at wave number k. persistently stretch dumbbells more. Figure 10(b)
shows 7%/, as a function of k.1 for various Wi,. We find that z{*) /7, exhibits a different behavior

depending on Wi,. We now consider k. dependence of z{*)/z, for Wi, < 1 and Wi, 2 1 by focus-
ing on the competition between the fluctuation timescales of dumbbells and the bandpass-filtered
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FIG. 10. (a) Autocorrelation function C;"f)(t) of y %) for Wi, = 10. Different lines denote different values
of the wave number: orange dotted line, k. = k7 /4; blue dash-dotted line, k*/2; red dashed line, k. Here, k& =
0.2577 (= 64\/§kf /5). The black solid line shows the autocorrelation function C, (¢) of y. (b) Correlation
time 7% of y* normalized by the Kolmogorov time 7, as a function of k.7 for Wi, = 0.1 (orange circle),
0.3 (black square), 1 (blue triangle), 10 (red diamond), and 30 (gray inverted triangle). For clarity, 1:;"“) /t, for
Wi, = 0.3 is replotted in the inset in a linear scale. The horizontal dashed lines indicate 7/, for each case.
The vertical black dotted lines indicate k.n = k}7n. The black filled circles indicate rs(k‘) /t, for comparison.
The results are for turbulence at Re;, = 220 with forcing f.

strain-rate tensor. For Wi, < 1, ‘L']Sk‘) is of the same order as the relaxation time 7 of dumbbells
regardless of k., as demonstrated by the dotted lines in Fig. 10(b). Since t of dumbbells with
Wi, <1 is shorter than ts(k“) for any k. [Fig. 9(a)], flows at different scales can only persistently
stretch dumbbells over a period of O(t) regardless of their scales due to the faster relaxation of
dumbbells than the fluctuations of flows. Thus, the persistence of large-scale vortices is not relevant,
and only the strength of the strain-rate fields is a crucial factor for stretching dumbbells. This
is why the smallest-scale vortices with the largest velocity gradient mainly affect the dynamics
of dumbbells for Wi, < 1 (Fig. 3). Incidentally, a close look shows that t)ﬁkf) /Ty for Wi, =0.3
takes the maximum value at k. 2 k), which corresponds to the smallest scale in turbulence [see
also the inset of Fig. 10(b)]. In contrast, for Wi, 2 1, 1:)5"") increases as k. decreases. The results

demonstrate that since there exists k. such that T > rs(kf) for Wi, 2 1, large-scale flows at the wave
number k. can stretch and align dumbbells more persistently than the smallest-scale flows at k*

because rék") pe rs(k: ). This increase in r}skf) at small k. explains the reason why the contribution from
large-scale flows to the stretching of dumbbells relatively increases for Wi,, > 1 (Fig. 3). However,

rjﬁkf) exhibits a weaker growth than the correlation time rgk‘) of the bandpass-filtered strain-rate

tensor [S*”],, as shown in Fig. 10(b). We attribute this weak growth of t)fkc) to the fluctuation
of er with the timescale of 7,. In the governing equation of R [Eq. (1)], since «;; = O(1/1,),
k - R becomes dominant over R/{2t(1 — Rz/anaX)} when Wi, = t /7, > 1. Thus, for Wi, > 1,
R(¢) fluctuates with the timescale of the temporal fluctuations of k(t), i.e., 7,. Consequently, the

correlation time ‘C}Ek‘) of y*) =eg - [Vu*)], - eg at k. < k* cannot be as long as the correlation

time rs(k") of [$%*)], for Wi, > 1. In other words, while large-scale vortices attempt to stretch
dumbbells persistently, neighboring smallest-scale vortices quickly rotate dumbbells, thus leading
to the decorrelation between the direction of dumbbells and the most extensional direction of the
strain-rate fields at large scales. Thus, in spite of their persistence, larger-scale vortices than the
smallest-scale vortices cannot be effective in stretching dumbbells even when Wi, is significantly
large, although their relative contribution increases for Wi, 2 1. To summarize this subsection, the
correlation time z*) of y**) explains the relaxation-time dependence of the stretching mechanism
of dumbbells by vortices with different sizes.
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FIG. 11. (a) Average cos 91("") of cos Ql(k‘) as a function of k.n and (b) average ¥ of y nondimensionalized
by 7, as a function of the Weissenberg number Wi, for Re, = 30 (blue circle) and 120 (black square) with
forcing £ and Re; = 220 (red diamond) and 310 (orange triangle) with forcing f. The black dotted line in
(a) corresponds to k.n = 0.3. In (a), the open and filled symbols correspond to Wi, = 0.5 and 20, respectively.
The black dashed line in (b) indicates 7,y = 0.127, which corresponds to the value for passive vector elements
in isotropic turbulence [41].

B. Reynolds-number dependence

In Sec. III B, the evaluation of the alignment between dumbbells and the bandpass-filtered strain-
rate tensor has revealed that the scale of flows relevant to the alignment of dumbbells depends on
their relaxation time (Figs. 6 and 7). The results indicate that dumbbells undergo the hierarchy of
coherent vortices in turbulence. Meanwhile, the mean-squared end-to-end length R? of dumbbells
as a function of Wi, collapses on a single curve irrespective of Re; and f (Fig. 2). In this subsection,
we discuss the effect of Re; on the stretching and alignment of dumbbells in terms of the hierarchy
of coherent vortices.

Using the scale decomposition [Eq. (15)] and the eigenvalues of the strain-rate tensor [Eq. (16)],
we can write the contribution y of flows to the stretching of dumbbells as

3
y =Y y% =3y 0% fcos 6%} @1
ke k=1

o

With7 = ¢ /Ty, R= R/Ry, and Emax = Rmax/Ro, we render Eq. (12) dimensionless as

|>az

d
d

’; ~
- ~ 1 R 1 1
= Z Z r,,ai(k")(cos Qi(k"))z R— — ~ (22)
o 2Wi, 1 —R?/R%2,. Wiy R

¢

i

Here, Ry = +/kgT /H, and we ignore the stochastic term for simplicity. We have confirmed that
rnal(k"), which is the dominant contribution to the stretching in Eq. (22), exhibits a common

(ke)
0y

scaling law T, = C(k.n)*’* in the inertial range irrespective of Re,, where C is a universal

dimensionless constant [Fig. 9(b)]. Therefore, for fixed Wi, only cos Gi(k") can be a cause of Re;,
dependence in Eq. (22). We show cos Ol(k") as a function of k.n for Wi, = 0.5 and 20 in Fig. 11(a).
As already shown in Figs. 6 and 7, dumbbells tend to align in the most extensional direction induced
by 24 times larger vortices rather than the smallest-scale vortices in turbulence (i.e., k.n =~ 0.3) for
Wi, = 20. Note that the mean flow is still dominant due to the low-Reynolds-number effect for
Re; = 30, thus leading to a remarkable alignment in the most extensional direction at the forcing

scale ky. Consequently, as expected from Eq. (21), the scale-dependent contribution y %)/ to the
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stretching of dumbbells for Re; = 30 exhibits drastic changes [Fig. 3(a)] compared with higher
Re, [Fig. 3(b)]. To summarize, y*) has Re; dependence through the alignment of dumbbells,
especially for low Re,. In contrast, Fig. 11(b) shows that 7,7, which corresponds to the sum of

each contribution y %), is almost independent of Re; for fixed Wi,, although 7,7 has a slightly
larger value for Re; = 30 than that for higher Re, . This collapse of 7, for different Re; means that
Eq. (22) does not possess a significant Re; dependence and is almost dominated by Wi,,. This is why
the mean-squared end-to-end length R? follows a single function regardless of Re;. In other words,
although Re; can change the scale-dependent contribution y ) to the stretching of dumbbells for
fixed Wi,, the resultant change is not so large to alter the overall contribution ¥, thus leading to
the independence of Re,. However, it is worth emphasizing again that although Wi, dominates the
average stretching of dumbbells, the contribution to the stretching of dumbbells from vortices with
different sizes in turbulence exhibits a nontrivial scale dependence (Fig. 3). The scale-dependent
contribution to the dynamics of polymers will be crucial for understanding turbulence modulation
in terms of the interactions between vortices and polymers. Before closing this subsection, it is worth
mentioning that for Wi, 2> 3, 7,7 takes the value similar to that found for passive vector elements
in isotropic turbulence [41], as indicated by the black dashed line in Fig. 11(b). This tendency is
consistent with the fact that the governing equation of R for dumbbells [Eq. (1)] asymptotically
approaches that for passive vector elements in the limit of large t (i.e., dR/dt = k - R).

V. CONCLUSIONS

We have investigated the stretching and alignment of FENE dumbbell models in turbulence using
the Brownian dynamics simulations. An essential ingredient for this study is scale-decomposition
analysis, which reveals the behavior of dumbbells in terms of the hierarchy of coherent vortices
in turbulence. We have found that the mean-squared end-to-end length R? is determined by the
Weissenberg number Wi, = t/1,, defined as the ratio of the relaxation time 7 of dumbbells to
the Kolmogorov time t,, regardless of the Reynolds number Re; based on the Taylor microscale
and the type of external force f (Fig. 2). One might expect that this universality indicates that
the smallest-scale vortices dominate the stretching of dumbbells. However, we have demonstrated
that larger-scale vortices also affect the dynamics of dumbbells when 7 exceeds t,. For Wi,, < 1,

the contribution y &) [Eq. (15)] of flows at wave number k. to the stretching of dumbbells
takes the maximum value at a wave number k' which corresponds to the smallest scale in turbulence.

In contrast, y &) at smaller k., which corresponds to larger length scales, relatively increases for
Wi, 2 1 (Fig. 3). To explore the origin of this nontrivial scale dependence, we have evaluated
the alignment between dumbbells and the bandpass-filtered strain-rate tensor [S*], for various
Re, and Wi, (Figs. 6 and 7). For Wi, < 1, dumbbells preferentially align in the most extensional
direction induced by the smallest-scale vortices. In contrast, for Wi,, 2 1, dumbbells tend to align in
the most extensional direction induced by 2—4 times larger vortices than the smallest-scale vortices.
This shift of a preferential direction of dumbbells is consistent with the previously reported results
[15,22,31] that in turbulent flows, dumbbells with a long relaxation time exhibit a preferential
alignment with the the eigenvector e, of the raw strain-rate tensor [S]; with the second largest
eigenvalue (Figs. 4 and 5), because e, tends to align with the eigenvector eﬁk") of [S®)], atk, = k:/4
with the largest eigenvalue [Fig. 14(b) in Appendix C].

We have explained the scale-dependent effect of flows on dumbbells depending on their relax-
ation time by focusing on how persistently each-scale flow stretches dumbbells. To characterize
the strain-rate fields at different scales, we have analyzed the temporal fluctuations of [S*,
along the Lagrangian trajectories (Fig. 8). As expected from the Kolmogorov similarity hypothesis,
smaller-scale vortices induce stronger strain-rate fields [Fig. 9(b)] with shorter correlation times
‘L'_ék‘) [Fig. 9(a)]. In terms of these scale-dependent characteristics of flows, we have investigated
the persistence of the stretching process of dumbbells by the strain-rate fields at different scales.

123303-16



POLYMER STRETCHING AND ALIGNMENT UNDER THE ...

The most important conclusion is that the correlation time r}ﬁkf) of y*) = ep - [Vu*)]; - eg reveals
the stretching mechanism of dumbbells by vortices with different sizes [Fig. 10(b)]. For Wi,, < 1,
rlﬂk“) = O(t) irrespective of k. because e fluctuates with the timescale of t faster than [Vu*]; i.e.,

T < rék") for any k.. Thus, the smallest-scale flows most contribute to the stretching of dumbbells
(Fig. 3) because only the strength of the strain-rate fields is relevant to the contribution to the
stretching of dumbbells. In contrast, for Wi, 2 1, ‘L'}Ek”) increases as k. decreases because of the
persistence of large-scale flows. Consequently, the contribution of large-scale flows to the stretching
of dumbbells relatively increases for Wi, 2 1 (Fig. 3). However, ) at k. < k7 is much shorter

than rs(kf). This indicates that larger-scale vortices than the smallest-scale vortices cannot fully utilize
their persistence because er fluctuates with the timescale of 7, due to neighboring smallest-scale
vortices and loses the correlation with the larger-scale strain-rate fields. Thus, the contribution from
large-scale vortices gets saturated when increasing Wi, (Fig. 3). In addition, we have demonstrated
that this scale-dependent effect of vortices on dumbbells is almost independent of Re; and f,
although there exists a slight effect of the mean flow only for low Re; (Fig. 11).

One-way coupled simulations have allowed us to systematically investigate the scale-dependent
contribution of vortices to the stretching and alignment of dumbbells. There will be other scenarios
on the interactions between polymers and vortices in realistic two-way coupled cases. When
polymer solutions are dilute enough to have little effect on turbulence, polymers with a relaxation
time longer than the Kolmogorov time will interact with not only the smallest-scale vortices but
also larger-scale vortices, as demonstrated in this study. However, when their concentration is
large enough to suppress turbulence, the smallest-scale vortices will almost disappear due to the
interactions. As a result, polymers will mainly interact with larger-scale vortices simply because
the original smallest-scale vortices do not exist, which is a qualitatively distinct mechanism from
that demonstrated in this paper. We should also note a qualitative change in turbulent carrier flows
due to polymers. The present paper assumes the Kolmogorov scaling E (k) oc k=>/3 in the inertial
range, where E (k) is the energy spectrum at wave number k. Thus, smaller-scale vortices induce
stronger strain-rate fields, as confirmed in Fig. 9(b). However, since some polymer solutions are
known to exhibit a steeper scaling law [42,43], there will be a case where the scale-dependence
of the velocity gradient is reversed, which will bring about a significantly different picture of the
interactions between polymers and vortices. In general, these qualitatively distinct effects coexist
depending on the parameters of polymers and flows. Therefore, it is a crucial future study to apply
the scale-decomposition analysis proposed in this paper to various systems.
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APPENDIX A: EFFECT OF THE MAXIMUM EXTENSION LENGTH OF DUMBBELLS

In the main text, we have shown the stretching and alignment of dumbbells for R2, /R3 = 3000.

max

Here, we demonstrate that the choice of Ry,.x has little effect on our conclusion. Figure 12 shows
y&) /37 and cos Ol(k") as functions of k.n for various Rp. at Re; = 220 with forcing f. We
confirm that the scale-dependent contribution to the stretching and alignment of dumbbells is almost
independent of R,x. However, we should note that our results are based on one-way coupled
simulations. For two-way coupled simulations, since the stress tensor from dumbbells depends on
Ruax, the resultant carrier velocity field varies with Ry.x, thus leading to Ry,.x dependence of the
stretching and alignment of dumbbells.
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FIG. 12. (a) Scale-dependent contribution y <) to the stretching of dumbbells normalized by the total

contribution ¥ and (b) average cos Gfk") of cos Gfk“) as functions of k.n at Re, = 220 with forcing f O for
R% /R% = 50 (diamond), 3000 (circle), and 100000 (square). Blue and red symbols correspond to Wi, = 0.5
and 20, respectively.

APPENDIX B: EFFECT OF THE BANDWIDTH

In the main text, we have shown the scale-dependent contribution of flows to the stretching
and alignment of dumbbells using the passband [k./ V2, \/Ekc] with the logarithmic bandwidth
A(logy k.) = log,, 2. Here, we confirm that our conclusions are insensitive to the choice of the

bandwidth. Figure 13 shows W/{?A(loglo k.)} and cos 91(’%) as functions of k.n for A(log,y k.) =
log,, 2 and log,, V2 atRe; = 220 with forcing fV. To compensate for the difference in A(log; k),
W/? is divided by A(log k) in Fig. 13(a). We confirm that W/{?A(loglo k.)} for different
A(log,o k.) exhibits excellent agreement. In addition, cos Ql(k") also shows a qualitatively similar

(ke)
1

tendency regardless of A(log;,k.), although quantitative values of cos6,*’ slightly depend on

A(log,, k.) due to the nonlinear decomposition of cos 91(]“') unlike y %), Therefore, our conclusions

about the increased contribution from large-scale flows for Wi, 2> 1 are independent of the choice
of the passband.
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FIG. 13. (a) Scale-dependent contribution y*<) to the stretching of dumbbells normalized by the total

contribution y and the logarithmic bandwidth A(log,, k.) and (b) average cos 91(&" of cos Ql(k") as functions
of k.n at Re; = 220 with forcing £ for A(log,,k.) = log,, 2 (filled) and log,;+/2 (open). Blue and red
symbols correspond to Wi, = 0.5 and 20, respectively.
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FIG. 14. (a) PDF P(cos 0(1“ )y of the cosine of the angle 0<k” € [0, /2] between the eigenvector e; of the
strain-rate tensor and the eigenvector e(k‘ of the bandpass- filtered strain-rate tensor and (b) PDF P(cos 9;{‘5)) of
the cosine of the angle 95({‘2" € [0, /2] between e, and e(lk‘) at Re; = 220 with forcing f® for k. = k*/4 (or-
ange dash-dotted), k* /2 (black solid), k! (red dashed), and 2k (blue dotted), where k¥ = 0.25k, (= 642k 7/5).

APPENDIX C: ALIGNMENT PROPERTIES OF THE BANDPASS-FILTERED
STRAIN-RATE TENSOR
In this Appendix, we describe the alignment properties of the bandpass-filtered strain-rate tensor
S%) Figure 14(a) shows the PDF P(cos 9(/‘ )y of the cosine of the angle Gs(fcf) € [0, /2] between
e; and e(1 <) for k. = kx/4, kX /2, kX, and 2k* where k¥ = 0.2577 (= 64fkf/5). For k. shown in
Fig. 14(a), P(cos «9(]‘ )) has the maximum value at cos Q(T‘f ) ~ 1. The alignment tendency between
e; and e(k“) is reasonable because S is a superposition of S, Notably, for k. k%, P(cos G(k”))

at cos 0( <) ~ 1 increases with k., which is consistent with the fact that smaller-scale flows (i.e.,

flows at larger k.) induce stronger strain-rate fields [Fig. 9(b)]. In contrast, increasing k. funher
to 2k* reduces P(cos G(k ) at cos Gs(kl) >~ 1 because 2k is almost located in the dissipation range.
We also show the PDF P(cos Q(k )) of the cosine of the angle H(k) € [0, m /2] between e, and

eik“) in Fig. 14(b). Unlike P(cos@ )y, P(cos G(k )) exhibits a comphcated dependence on k.. For

1.5 T " . .

FIG. 15. PDF P(cos Gs(k“"'k“'z)) of the cosine of the angle Gs(k”"’k”'z) € [0, /2] between e(lk“") and eik“z) of the
bandpass-filtered strain-rate tensor at Re;, = 220 with forcing f O for ke = kX and k., = k /4 (blue dashed),
k/2 (red solid), and 2k* (black dotted), where k* = 0.25k, (= 64~/2k;/5).
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k. = k¥, which corresponds to the smallest scale in turbulence, P(cos 9§k§)) has the maximum value

at cos 9S(k§) =~ 0, indicating that e, and eﬁk") at k. = k} are orthogonal. However, for k. =k /4,

P(cos 9;"5)) has the maximum value at cos QS(k”) 2 1. This alignment indicates that the smallest-scale
vortices tend to align with the most extensional direction induced by 4 times larger vortices than the
smallest-scale vortices because it is well-known that the vorticity @ preferentially aligns with e,

[44]. This observation is consistent with Ref. [45]. Next, we show the PDF P(cos GS(k""’k“Z)) of the

cosine of the angle Os(k""’k"Z) € [0, /2] between eik"") and eik“) in Fig. 15. Here, to investigate the

relationship between the smallest-scale vortices and other-scale vortices, we fix k. | at k) and change

the value of k. ,. Since P(cos Qs(k”"’k"'Z)) takes the maximum value at cos Hs(k“"’k“'Z) ~~ 0 irrespective
of k., considered, the most extensional direction of the smallest-scale strain-rate fields tends to be

orthogonal to that of other-scale strain-rate fields. However, we should note that the maximum value
of P(cos Qs(k”"’km) is not large partly because P(cos Qs(k“’k“)) is obtained without conditioning the

turbulence intensity.
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