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Abstract
Let G be a subgroup of rank two of the Mdbius groBgL(2,C). The Jgrgensen
numberJ(G) of G is defined by

J(G) = inf{jtr? A— 4| +|tr[A, B] — 2|: (A, B) = G}.

We describ e all subgroups of the Picard grougPSL(2,Z +iZ) with J(G) = 1.

1. Introduction

Let G be a subgroup of rank two of the Mdébius group MOWPSL(2,C). The
Jagrgensen numbel(G) of G is dened by

J(G) = inf{|tr? A— 4| + |tr[A, B] — 2: (A, B) = G}.

A subgroupG of M6b is elementary if the cardinality of its limit set(G) is at
most 2 see [8, p.266]. 16 = (A, B) is a discrete group withA parabolic, thenG is
elementary iff trj;A, B] = 2 (that is, iff J(A, B) = 0).

Jargensen has proved thatGf is a discrete nonelementary rank two subgroup of
Mo6b then J(G) > 1.

It has been conjectured [10, p.273] thatGfis nonelementary rank two subgroup
of Méb which does not contain elliptic elements of infinite @rcand J(G) = 1 thenG
is discrete.

GroupsG with J(G) = 1 have been studied in the literature ([3], [4], [13], [10]
[12]). Following [10] we call a discrete nonelementary ramo subgroupG of Méb
with J(G) =1 a Jgrgensen group

An important subgroup of Méb is the Picard group PiPSL(2,Z +i7Z). We are
interested in the Jgrgensen numbers of rank two subgroupscof

Our motivation for the present paper is the article [12] by $4ato in which he

considers the Whitehead link groupy = <<(1J i) (1£i 2)> C Pic (see [5], [9], [15])

and proves thatl(W) = 2. Here we will give a brief proof of this result.

2000 Mathematics Subject Classification. Primary 30F40pSeary 20E06.
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We now describe a family of rank two subgroups of Pic. Let

Mod = Mod! = PSI(2,Z) ~ Z, * Z3,

Mod = {( iac _(;b ) e PSL(2,C): a,b,c,d EZ} >~ 7o x Lg,

2 pt
g;:vﬂ:<|v|0da,< a(/)s _(jg)ﬁl >> where «,B € {l,i} and ke Z.

For exampleGa* = Mod, Gi' = Mod and one can show that* = G}' = Pic.
The group Pic is generated by Mod and NModnd these two subgroups are con-
(L+i)/V2 0 )

0 (1-i)/v2

Denoting byD. the infinite dihedral group, we will see that (Theorem 11) for
k > 2 we haveg;” ~ {mgg :z %; :; Zg z iil, where the eleme é i) of Mod is
amalgamated to a primitive element of infinite orderZsf or Dy,.

jugate in Mob by a 90 rotation R = (

The symbol % denotes conjugation in Pic, the symbel denotes conjugation
in Mob.
Our main result is the following:

Theorem 1. LetZ ={(«,B,K): o, 8 € {1,i}, k a non negative integér Let G be
a rank two subgroup oPic, with J(G) = 1. Then
1) G is conjugatein Pic, to g{f’ﬁ for some(x, B,K) € Z.
2) G is isomorphic to exactly one of the grougg®, 6%, Ga*, G+', G and G2'.
3) If gof R gff,"ﬂ' where (o, 8, k) and (o, B/, k') are different elements of then
k=k'=1,a=p8 anda’ = §.
4) G ~g¥* (with (a, B,K), (o', B, K) € T) iff k =k and o = a8’

Notice that no Jargensen subgroGpof Pic is the group of a link inS?, because
G D Zyp x Zs.

In Section 1 we give another proof of Sato’s theorem.

In Section 2 we give a different description §f‘5 which shows its rank is two.
With this description we extend our family to a family of ramko subgroupﬂl‘f’ﬂ
with «, B andk € C — {0} and compare it with a family dened by Sato ([10], [12]).
At the end of the section we prove Theorem 1 1).

In Section 3 we prove Theorem 1 4).

In Section 4, using the structure of Pic as an amalgamateduptowe prove The-
orem 1 3) and 2).

In Section 5 we exhibit a table that gives algebraic infororabf the groupsg,‘j’ﬁ,
as their abelianizations, their images under the abebiniz map of Pic, and the num-
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ber of conjugacy classes of elements of order two. Thess taet proved in Sections 3
and 4 and are used in the proof of Theorem 1 3) 2).

Some of the results of this paper were presented at the Té8ekuinar in Akita,
in February 2005, while the first author was visiting Osakgy Clniversity. He would
like to thank this institution for its kind hospitality.

We would like to thank the referee. His suggestions improtres presentation of
the paper.

2. Section 1

Proposition 2. If G is a rank two subgroup oPic then JG) € {0,1,2 U[3,0).
Proof. LetA and B € GL(2,C) andC = AB. Then
tr[A, Bl —2=tP A+tr’ B+tr’C —tr Atr BtrC — 4

in particular if trA =2 one has then t4, B] — 2 = (trC tr B)? and thereforel(A, B) =
ltr C — tr B|2. Hence if A is parabolic andA, B € Pic, we have thatl(A, B) is the
modulus of the square of an element®ft iZ, that is, an integer that is the sum of
two squares. IfA € Pic andA is not parabolic thed (A, B) > |trA—2||trA+2| > 3. [

Proposition 3. Let¢: PSL(2,Z+iZ) — PSL(2,Z5) be the homomorphism induced
by the ring homomorphism: Z +1Z — Z,. If G is a nonelementary e rank two
subgroup ofPic and |¢(G)| < 6 then JG) > 2.

Proof. Suppos& = (A, B). Notice that$(G) is Abelian since it is a proper sub-
group of PSL(2,7Z,) ~ S. Hence(tr[A, B]) = tr[¢(A), ¢(B)] =tr | =2 =0 and so
tr[A, B] € ker¢ = (1 +i). Therefore|tr[A, B] — 2| # 1 and also|tr[A, B] — 2| #0
since G is nonelementary. Hencé(G) > |trf[A, B] — 2| > 1 and, by Proposition 2,
J(G) > 2. U

Corollary 4 (H. Sato). If W is the Whitehead link group then()) = 2.

Proof. If A= (é %) andB = <1£i g) thenW = (A,B) and J(A,B) = 2. Since

#(B) = | then|¢(W)| = 2 and therefore, by Proposition 3(W) = 2. O

3. Section 2

Proposition 5. Let«, B € {1,i} and ke Z. Then
; af _ (1 « 0 —p1
) 6" ={(59) (5 )

i) g = g% and gf FE gl
iii) The rank ofg;” is two and JGg’) = 1.
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Proof. Write A= (0 1) and B = (2 Ef;)
1 0

i) Since BAB™!= (—ﬂza 1) and this matrix together wittA generates Mdtl
it follows that (A, B) = (Mod“, B). As

0 o 0 —Bt\ _[ ap ika?B
-1 0 B kapi B 0 (@B
and( 2,1 0) € Mod*, i) follows.

iy If =g, then (“g _(;(g)ﬁ' ) is the inverse of( O‘g 2(0:3)‘3'1) and soGy* =

G*¢. Else ifa # conjugating Mofl and B~1 with (0 —p ) we obtain Mod and

g 0
(5 ) vemest

iy As G’ is a discrete group](g,‘f’ﬂ) > 1. Since A is parabolic we have
J(A,B) = [tr AB—trB|? = |aB|? = 1 (see the proof of Proposition 2). Hendég;") =
]

We now compare our group@l‘f’ﬁ with groups considered by Sato. Suppose a
pair of elements of Méb generates a nonelementary subgrodptten first element

is parabolic. Then his pair is conjugate to a pak, B,,) where A = (é i) and

2.2
B= (/ff (u 7 1)/") ando # 0 (see [10], [12]). Defing, . = (A, B, ).
Notice that G,, =G o, = Go—p = Gous1 and G, ,, is conjugate in Mob to

Gou+12. This follows from (A,B) =(A,—B) = (A,—B1y= (A, ABA and (A B) ~
(A, (AY2)~1BAY2) where B =B,, and AV2= ( ! 1/12).
For example the Whitehead link grogpy is

(11 1 0
we{(o 1) (15 1)
=G siy2 ~ G2 = Gini—ip2

(cf. [12, Theorem 2]).
We now extend our definition o@,‘f’ﬁ. If a,B,keC— {0} define

B _ 1l « 0 —,371
gk - ’ H .
0 1 B kaBi
Because of the last proposition this definition coincidethwtihe one given in the

introduction if«, 8 € {1,i} andk € Z. Conjugating W|th()‘ 0 ) whereA? = o, we

see thatgk ~ gk”" and conjugating Wltk(o k|/2) we getgk*" ~ Go kij2-
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We have following equalitiegy” = 6o * =G 2" = G2/} (the last equality follows
from (A, B) = (A, BA)) and, conjugating Witk(é kl“' ) we getgk ~ ka
We now describe which of the grouw’ﬁ are subgroups of Pic. First, 'g’,’f'ﬁ

Pic we must haver, 8,k € Z +iZ and |8| = 1. Slncego‘ﬂ =Gy = gk+l we may
assumek € Z and g € {1,i}.

The following theorem describes all the Jgrgensen subgrofifPic, up to conju-
gation in Pic.

Theorem 6. If G is a rank two subgroup ofic with J(G) = 1 then G is con-
jugate inPic to g,‘j’ﬂ wherea, g € {1,i} and k is a nonnegative integer

Proof. LetA and B be generators o6 such that
J(A, B) = |tr? A— 4| + |tr[A, B] — 2| = 1.

If tr A # 42 then|tr? A— 4| > 3 hence|tr? A — 4] =0 and |trf[A, B] — 2| = 1.
A is then parabolic with fixed poind/c wherea andc are relatively prime Gaussian
integers. Letb andd be Gaussian integers such tlett — bc= 1. ConjugatingA with

(i‘ 3) € Pic we obtain a parabolic element which fixes. Hence we can assume
that A = (0 1) with « a nonzero Gaussian integer.

Write B = <ﬂ Z) € Pic. Then, as in the proof of Proposition 2,
=|tr[A, B] — 2| = |tr(AB) — tr B|? = |«

Hencel|x| = |B] =1. Conjugating with(é Xﬂf) we see that the pair4; B) is conju-

gate in Pic to the pai(A, (0 *ﬂ_.l» wherekapi = x +z andk is Gaussian integer.

B kaBi
Thang %5 g and sincegi = g ~* = g=*% = g andg** ** g*f we may assume
thata, B € {1,i} andk is a nonnegative integer. ]
4. Section 3

In this section and the next one we will use free products withalgamation
(see [6]).
Also we will use the 90 rotation R € M6b. Let R= <(1+')/ﬁ _0 ) €
0 Q-i)/V2
Mob (multiplication byi); this element does not belong to Pic. ThBn'PicR = Pic,
R*Mod R = Mod', R71G¢’R = G where (o, o'} = {8, p'} = (L,i}; thus Gg” ~
g,‘j"f". This proves the if part of Theorem 1 4).
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A presentation of Pic can be given as follows (see [1], [14]):

Pic =(x,y,u,v: x3 = y3 = u? = v2 = (uy)® = (yx)? = (xv)? = (vu)? = 1)

_(0 -1 _(1 1 _ (0 _(0i
whereu = (1 0 ) X‘<71 0)' v—(i O) andy—(i 1).
From this one can show Pic ¥ #yo Y WhereV = (Mod,v) and Y = (Mod, y).

We have also Mod #u, x) and Mod = (v, y) and of course Pic #Mod, Mod ).
We have the following presentations:

Vo= (x,u,v: x3=u?=v? = (xv)? = (vu)? = 1)
= (U, V) *y) (v, X) = Z3 %z, D3,

Y=y un =yt =ud = (uy) = (yxP =)
= (U Y) #gy) (Y, X) = D3z, Ag,

Mod = (x,u: x3=u?=1) = Z, % Z3

where D3 is the dihedral group of order six and, is the alternating group in four
elements.
We have thaig;' = Pic because

o =(mod. (5 7))
:<Modi,(é 1)(1 2>>

= (Mod', Mod) = Pic
since (i 2) = v(é i)v This impliesgi* = R1G)' R = Pic.
Notice also thaty™ = Mod = (x,u), Gg' =Mod = (y,v), G5’ =V andgy* git=
Y. One can see thaﬁi’lz_ u,x, @y)), G' = (v,y, (xu*) and, using Proposition 5,
Gt = (v, y, u(xu)¢) and Gr' = (u, x, (vy)<v).
The abelianizations of Pi§/, Y and Mod areZ3, Z3, Z, Zs respectively.

Denote byPic the abelianization of Pic and by ab: Pie Pic the abelianizaction
map. We will writew = ab@). We have thaPic = Pig/(x, y) = (U, v) ~ Z3.

Proposition 7. If « =g and k is odd or ifa # g and k is even theab(G; ") =
Pic. Otherwise

wp | (@ fa=1
ab(gk)"{(i) if o =i
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Proof. We have alg,') = (U, v%), ab(Gy') = (U, o), ab(Gy!) = (v, u¥*Y) and
ab(G\') = (v, U%). From these equalities the proposition follows. O

Corollary 8. GX %Gl (resp GH %6 Gty if k is even(resp k is odd).
The following lemma will be used in the classification of th@wps g’ in Méb.

Lemma 9. i) The trace of any element Q},f‘ﬂ is of the form arkbi or ka+bi
where gb € Z.
iy The trace of any element &, is of the form a+ kbi where ab € Z.

iii) x(1+ki) is the trace of an element (ﬁ,}’l and £(i +K) is the trace of an element
of G&'.

Proof. The natural ring homomorphism frofi+iZ ~ Z[X]/(X? + 1) onto Z; +
i Z ~ Zi[ X]/(X2+1) induces a group homomorphisRSL(2,Z+i Z) > PSU2,Zk+i Z).
As g,i'ﬁ D Mod we have, by Proposition 5,

i =((o 1) (5 W )
=(voa. (5 )

Then w(gl}ﬂ) = <1/;(Mod), (2 _€71)> which is contained in

{( 2 S)GPSL(Z,Zk+iZk)Z a,b,c,deZorab,cd eiZk}

so the trace of any element aﬁ(g&'ﬂ) lies in Zx UiZ. From this i) follows.
i) is proved similarly.
To prove iii) observe that the trace téf_ll 8)(2 *klzl_l> is BL+KBi. U

The following theorem gives the classification of the gro@ﬁ‘s", up to conjuga-
tion in Mob.

Theorem 10. If gﬁ'ﬂ ~ g&;ﬂ’ where, 8’ € {1,i}, k>0and K> 0theng =g
and k=K.
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Proof. Asgl! (= Pic) andgl' (=Y) have nonisomorphic abelianizations the case
k =k =1 follows. If k,k') #(1,1) and k, B) # (K, 8') then, using the lemma, one
sees that

[traces of elements af,”} # {traces of elements of.” )
and thereforegl? "¢ g1#" O
This completes the proof of Theorem 1 4).

5. Section 4

In this section we will think of Pic a¥ *uoq Y. Define an integer valued function
on Pic as follows:

1 ifwwevuy

}‘(w): . Pic .
2n if w~wvyr--cvmyn, N>, veV,yieY (i=1,...,n).

The function is well defined (see for example [7, Theoremsahd 4.6] or [6, Chap-
ter 1V, Theorems 2.6 and 2.8]). Clearly if Fﬂ«Cw’, Aw) = A(w').

Recall thatgi'ﬁ = <Mod, (g _ﬂk,ﬂl' )) Write andt = (é i) andT = (t) and

(B —kBi \_ [ (wy)l it p=1
“\o gt )7 uyoty it p=i

Proposition 11. Consider the group§,}'ﬂ with k > 2. Then
i) If p=1 (resp B =i) then (s, t) ~ Z? (resp (s,t) ~ Dy).
i) There is an isomorphisrﬁi’ﬂ ~ Mod x7 (S, t).
i) A(s®ms®my---s¥my) > 1 where @ #0 (resp ej =1) if g =1 (resp if g =1i),
r>1,myeMod—T (j=1,...,r).

Proof. Writew =s®m;s2m,---s%m,. Let B =1 so thats = (é *fi) and (s,t) ~

72. Using the matrix expressions for the elements one can sagittm € Mod — T,
then ymv ¢ Mod, ymy ! ¢ Mod, vmy ! € Mod, vmv € Mod and y~tvmuvy ¢ Mod.
Using these facts we see that

Aw) = A((vy)*my(vy)s®?mz - - - (vy)¥mr)

r
=2k lej| —#{l: @@y <0} = 2kr —1 > 1.
=1
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Let B =i so thats = (6 Ei ) (s,t) ~ Dy. Then

w=SMSMmp---sm

= u(yw)(yv) 2y mu(yv)(yv)<-2ympu(yv)(yv)<2yms - - - u(yv)(yv)* 2y
P o (yu) = 2y1u(yo) 2you(yn)<2ys - - - v(yv) 2y,

wherey; = ymjuy. As m; € Mod — T, one can verify that; € Y — Mod. Therefore
Aw)=r(2k—-2)> 1.

This proves i) and iii). Assertion ii) follows from iii). ]
Corollary 12. For k > 2, Gi* ~ G ~ G3* ~ Mod; Z, and G ~ Gy
Mod x7 D .

Corollary 13. Ifk>2andw € g,}"“ — Mod then A(w) > 1.

Proof. It follows from the proposition observing tha{w) = 1 if w € Mod,
A(y)™) = 2imlk > 1 andA(u(yv)kty) = 2k — 1 > 1. O

Corollary 14. The abelianization ofgzl'l is Z & Ze and the abelianization of
gg"‘ is Zg.

We will use the number of conjugacy classes of elements aéramlo in g;"ﬂ; we
will denote it by c2(Gy").

Corollary 15. We have g(Gg") = 1, c(Go') = 3, ¢2(617) = 4, &(G1) =
c(G;") =1 and (G,") =

Proof. Recall thatie = Mod =Z,%Zs, G3' =V = Z3%7, D3, G = Pic =V smoa Y,
GH ~ GM =Y = D3 #z, As, G =~ Mod %z Z2 and G3' = Mod #z Dy, Using the fact
that an element of finite order in a free product with amalg#mais conjugate to an
element in a factor and using ab the corollary follows. ]

The following theorem states that if (8, k) # (¢, B/, k') then G’ af Dl

one exception (namelgi' = G}' = Pic).

6 Go P with

o, B Plc

Theorem 16. Letea,B,o/, B’ € {1,i}, k > 0 and K > 0. SupposeG G’ P

with (o, 8,K) # (@', B, K). Then k=k'=1, @ =g anda’ = .



480 F. GONZALEZ-ACURA AND A. RAMIREZ

Proof. AsG*” ~ G2 we have, by Theorem 1 4), thit= k' and of = +ao/p’
and so we may assume that=1 ando’ =i. Hencek < 1.
Supposek > 2. No conjugate, in Pic, ob lies in Mod because ab(Mod) &i).

Therefore, by Corollary 13, no conjugate, in Pic, wflies in glf’f‘. As v e g,‘('f", we

have gL* 56 gi#'.
Supposek = 1, andg =i. Then g’ =1 and abg”) = (@) # () = G so

glf:,ﬁ Eifgz’vﬂ/'

Supposek = 0, andg = 1. Thenpg =1 and alégﬁ'ﬂ) = () # @) = g‘;""" o)
gl‘:,ﬂ ':if:gz’vﬁ’_

Finally supposek =0, andg =i. Thenp = 1. We havegff‘ﬂ =V = (v, u,x) and

g,‘j,"’*’ = (v, y,u). There is an inner automorphisth of Pic such thatp(G;") = g;j,"f"
and we have a commutative diagram

i1 4 1,
gy Gy

where ¢’ and 6 are the restrictions of ab. The#i=1((U)) ~ 6~1((U)) which is im-
possible because, sinc¥ [Mod] =2, #~1((u)) = Mod and6’((u)) D (y,u) ~ Dz and
D3 is not isomorphic to a subgroup of Mod. L]

Theorem 17. Leta,B € {1,i}, k> 0. Then gl‘("ﬂ is isomorphic to one of the
groups Mod, V, Pic, Y, Mod %z Z? and Mod 7 D,,. These six groups are pairwise
nonisomorphic

Proof. The first assertion is a consequenc@{p‘f ~ g,f'ﬂ/, where{g, B’} = {1,i},
and Corollary 12. NowV, Pic and Modk; Dy, have abelianizatiorZ% while Mod, Y
and Modsz Z? have pairwise non isomorphic abelianizations differentrfiZ3. Since

c2(V) = 3, ¢(Pic) = 4 andcy(Mod %7, Do) = 2, the theorem follows. L]
6. Section 5
In what follow ab: Pic— Pic =(u,v) is the abelianization map, wheve= (2 _1),

v = (? 6) D3 is the dihedral group of order six andl, is the alternating group in

four letters.
In what follows D3 is the dihedral group of order siX\4 is the alternating group

in for letters ab: Pic— Pic = (U, v) is the abelianization map, where = (0 _1),

! B
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The following table has the information

#{conjugacy classes of elements of order }fwaa group isomorphic tcg}ff’ﬁ

image under ab of"” abelianization ofg"”

for the groupg;”’.

G’ (@, ) = (1,1) (resp. i) (@, B) = (1,i) (resp. (, 1))

1 Mod 3 75 7, D3
(U) (resp.(v)) | Ze (U, v) 73

4 Pic 2 D3 %7, As
(u,v) | Z3 (u) (resp.(v)) Zy

1 Mod *7, 7?2 2 Mod %7, Do
(Uy (resp.(v)) | Z e Zg (@) (resp.(v)) 73

1 Mod s, 72 2 Mod 7 Dy
vy | ZoZs (U, vy 73

(1]
(2]
(3]
(4]
(5]

(6]
(7]

(8]

9]
(10]

(11]
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