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Abstract

Let S be a smooth open rational surface witfS) = pyg(S) =0 and P,(S) > 0.
We construct a certain minimal model 8f which is called a strongly minimal model
of Sin [15], and determine the strongly minimal model in the cadeere S has
non-contractible boundary at infinity. As an applicatiore wlassify the log affine

surfaces withc = py = 0 and P, > 0 under the minimality condition.

0. Introduction

Throughout the present article, we work over the complex memiield C.

In the theory of logarithmic Kodaira dimension due to litaklae class of (not ne-
cessarily complete) algebraic varieties with logarithidimdaira dimension zero is very
important because such varieties can appear as genera fibditaka fiber spaces. It
is clear that a smooth open (non-complete) algebraic curtle Mgarithmic Kodaira
dimension zero isAl := A! — {0}. Open algebraic surfaces with logarithmic Kodaira
dimension zero have been studied by several authors. omedtiopen algebraic sur-
faces withk = 0 were studied in litaka [7], Sakai [22, Section 2], Miyani$bhb, The-
orem 6.4.1 (p.184)], etc. Tsunoda [23] proved that, for a @immpen algebraic sur-
face S with (S) = 0, P(S) = 1 for somen, 1 < n < 66. litaka [7] and Zhang [24]
considered open rational surfaces with= 0 and iy > 0 and Zhang [24] classified the
litaka surfaces which are almost minimal open rationalae$ withic = 0 and py > 0.
Log Enriques surfaces (normal projective rational sudaaéth only quotient singular
points and with numerically trivial canonical divisors)hase smooth parts are inter-
esting examples of open algebraic surfaces wits fy = 0, were studied by Blache,
Kudryavtsev, Oguiso and Zhang. For more details, see Blf8heKudryavtsev [12]
and [13], Oguiso—Zhang [19], [20] and [21], Zhang [25], [2627], [28] and [29].
In [9] and [10], the author established a classification itheaf smooth open rational
surfaces withk = 0 and with connected boundaries at infinity in any charastieri
and gave a classification of the strongly minimal smooth affurfaces withc = 0,
which gives a generalization of Fujita’s result concernthg smooth affine surfaces
with i = 0 and with finite Picard groups (see [4, Section 8]).

2000 Mathematics Subject Classification. Primary 14J26pSaary 14R05.



1064 H. KoJiMA

The purpose of the present article is to study smooth opéonedtsurfaces with
i = Py =0 andP, > 0. Let She a smooth open rational surface wit{) = py(S) = 0
and P,(S) > 0 and let ¥, B) be a pair of a smooth projective rational surfaxeand
a simple normal crossing divisdd on X such thatS = X — B (we call such a pair
(X, B) an SNC-completion of5). In Sections 1 and 2, following [15, Chapter 2] (see
also [16]), we construct an almost minimal mod#él,(C) and a strongly minimal model
(V, D) of the pair X, B). Here the pairsW,C) and (V, D) are SNC-pairs and there exist
birational morphismsf : X — W andg: W — V such thatf,(B) = C andg.(C) = D.
Further, in Section 1, we give a rough classification of gdesconnected components
of SuppC. In Section 3, we determine the paW,(D) when |D#| # 0. The main result
of the present article is Theorem 3.6 which gives a classificaf the strongly minimal
models. In Section 4, by using the result in Section 3, westflashe strongly minimal
log affine surfaces witlt = py = 0 and P, > 0 (cf. Theorem 4.4).

In a forthcoming paper, we study smooth open rational segagithic = P, = 0.

1. Preliminaries

The terminology is the same as the one in [15]. By-a)curve, we mean a
smooth complete rational curve (on a smooth algebraic eeyfaith self-intersection
number —n. A reduced effective divisoD is called an NC-divisor (resp. an SNC-
divisor) if D has only normal crossings (resp. simple normal crossings).V be a
smooth projective surface, |dd, D, and D, be divisors onV and letS be a smooth
open algebraic surface. We then employ the following noteti For the definitions of
i, Py and Py, see [15, Chapter 2].

Ky: the canonical divisor orv.

o(V): the Picard number of/.

«(S): the logarithmic Kodaira dimension @&.

Py (S (or P.(9): the logarithmic geometric genus &

Pm(S) (m > 2): the logarithmicm-genus ofS.

F, (n > 0): a Hirzebruch surface of degree

My (n > 0): a minimal section off,,.

M, (n > 0): a section of the fixed ruling of, with M, - M, = 0.

#(D): the number of all irreducible components in SUpp

f*(D): the total transform ofD.

f.(D): the direct image oD.

f’(D): the proper transform obD.

D1 ~ Dy: Dy and D, are linearly equivalent.

D; = D,: D; and D, are numerically equivalent.

| D*]: the integral part of aQ-divisor D¥.

Now we recall some basic notions in the theory of peeling. fRore details, see
[15, Chapter 2] and [16, Chapter 1].
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Let (X, B) be a pair of a smooth projective surfageand an SNC-divisoB. We
call such a pair X, B) an SNC-pait A connected curvel consisting of irreducible
components oB (a connected curve iB, for short) is atwig if each irreducible com-
ponent of T is rational, the dual graph of is a linear chain and meetsB — T in
a single point at one of the end componentsTofthe other end ofl is called thetip
of T. A connected curveR (resp.F) in B is arational rod (resp. arational fork) if
R (resp.F) is a connected component & and consists only of rational curves and if
the dual graph oRR (resp.F) is a linear chain (resp. the dual graph of the exceptional
curves of the minimal resolution of a non-cyclic quotiemggilar point). A connected
curve E in B is admissibleif there are no {£1)-curves in Supft and the intersection
matrix of E is negative definite. An admissible rational twig in B is maximal if
T is not extended to an admissible rational twig with moreduaeble components of
B. By a (—2)-rod (resp. a-{2)-fork), we mean a rod (resp. a fork) consisting only of
(—2)-curves.

Let {T,} (resp.{R,}, {F,}) be the set of all maximal admissible rational twigs
(resp. all admissible rational rods, all admissible radloforks), where no irreducible
components off,’s belong toR,’s or F,’s. Then there exists a unique decomposition
of B as a sum of effectiveQ-divisors B = B* + Bk(B) such that the following two
conditions (i) and (ii) are satisfied:

() Supp(BK@®)) = (U, T:) U (U, R, U (U, Fv).

(i) (B*+ Kx)-Z = 0 for every irreducible componer# of Supp(Bk@)).

We call the divisor BKB) the bark of B and say thatB* + Kx is produced by the
peelingof B. Let 7: X — X be the contraction of Supp(BR}) to quotient singular
points and putB := 7,.(B). Then, by the condition (ii) as above, we hawé(B +
Kyg) = B + Kx.

Lemma 1.1. Each connected component of-BB*).q is either a(—2)-rod or a
(—2)-fork.

Proof. See [15, p.94]. O

DEFINITION 1.2. An SNC-pair K, B) is almost minimalif, for every irreducible
curve C on X, either B* + Kx)-C > 0 or (B¥ + Kx) - C < 0 and the intersection
matrix of C 4+ Bk(B) is not negative definite.

Lemma 1.3. Let (X, B) be an SNC-pair. Then there exists a birational morphism
w: X = W onto a smooth projective surface W such that the followanugy €onditions
(1)—(4) are satisfied
(1) C:= u4(B) is an SNC-divisor.
(2) n+(BK(B)) < BK(C) and 4 (B* + Kx) > C* + Ky.
(3) Py(X — B) = P,(W — C) for every integer n> 1. In particular k(X — B) =
k(W —C).
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(4) The pair (W, C) is almost minimal.
Proof. See [15, Theorem 3.11.1 (p.107)]. [l
We call the SNC-pair\(/,C) as in Lemma 1.3 aalmost minimal modebf (X, B).

Lemma 1.4. Let (W, C) be an almost minimal SNC-pair wita(W — C) = 0.
Then (C* + Kw) ~ 0 for some integer n- 0. In particular, C* + Ky = 0.

Proof. See [15, Chapter 2, Section 6]. (See also [8].) ]

Hereafter in the present section, |&/,(C) be an almost minimal SNC-pair with
k(W —-C) =0. Thenk(W) < 0, wherex (W) denotes the Kodaira dimension @&f. We
prove the following two lemmas, which are well-known for exis.

Lemma 1.5. Assume thak (W) = 0. Then the following assertions hold.
(1) W is minimal.
(2) If C #0, then each connected component of C is eithér2a)-rod or a (—2)-fork.

Proof. LetH be an ample divisor oW. Sincex(W) =0 andC* + Ky =0
by Lemma 1.4, we havéd - Kyy = 0. So the assertion (1) follows. Moreover, since
C*.H =0, we haveC* = 0. So the assertion (2) follows from Lemma 1.1. []

Lemma 1.6 (cf. [15, Theorem 6.4.1 (2) (p.184)]).Assume that W is an irrational
ruled surface. Let pW — B be aP!-fibration onto a smooth projective curve B of

genus W) (= 1) and let G, ..., Cs (s > 0) be all the irrational components of C.
Then the following assertions hold true.
(1) s=1or2

(2) For a fiber F of p we have(};_,C)-F =2

(3) Each G (1 <i =< s) is an elliptic curve and becomes a connected component of
C,ie, G- -(C-C)=0.

4) q(wW) =1, i.e, W is an elliptic ruled surface.

B) If C - Zle Ci # 0, then each connected component of—(zis‘=1 Ci is either a
(—2)-rod or a (—2)-fork.

(6) If s=1 (resp. s=2), then C'+ Ky + 0 and 2(C*+Ky) ~ 0 (resp. C'+ Ky ~ 0).

Proof. LetF be a fiber ofp.

(1) If s=0, then every irreducible component Gfis contained in a fiber op.
Theni (W —C) = —oo, a contradiction. Sos > 1. SinceC* + Ky =0 by Lemma 1.4,
we have

F-C*=—-F.Ky=2.
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Note that the coefficient o€; (1 <i < s) in C* is equal to one becausg is an
irrational curve. Hences =1 or 2.

(2) Since each irreducible component ©f— >°_, C; is contained in a fiber of
p, we haveF -C* = F - (37, C). So, F- (>}, Ci) = 2 sinceC* + Ky = 0.

(3) SinceC# + Ky = 0 and the coefficient o€; (1 <i <s) in C* is equal to
one, we have

0=Ci - (C*+ Kw)=Ci - (C*—~C)+Ci - (Ci +Kw)
>GCi- (G + Kw)
>0

for 1 <i <s. So,C; is a smooth elliptic curve an@; - (C¥—C;) =C;-(C—-C;) =0
for1<i <s.

(4) The assertion easily follows from the assertion (3).

(5) The assertion (2) and [15, Theorem 2.5.1 (p. 76)] impat&{W —>";_, C;) >
0. In particular,c(W — >_; Ci) = 0. SinceC* + Ky = 0 and some multiple of
32 . Ci + Kw is linearly equivalent to an effective divisor, we deducatt®? —
Y2 1 Ci = 0. Hence the assertion follows from Lemma 1.1.

(6) See [15, Lemma 6.4.3 (p. 186)]. Here we note that# 1 then HO(W, C* +
Kw) = Ho(W, C; + Kw) = 0 by [7, Proposition 20] (see also [22, (2.7) Theorem)).
HenceC# + Ky £ 0 if s = 1. O]

In Lemmas 1.7 and 1.8, we consider the case whEres a rational surface.

Lemma 1.7. Assume that W is a rational surface. Let | be the smallesttipesi
integer such that 1€ is an integral divisor. Then

1, if I|n,

Po(W =€) = {O, if otherwise

Proof. Sincei(W — C) = 0, P,(W — C) < 1 for any positive integen. By [15,
Lemma 3.10.1 (p. 106)], we have
Pn(W — C) = h%(W, n(C + Kw)) = h°(W, [n(C* + Kw)]).
SinceW is a rational surface an@* + Ky, = 0, we know that
Pr(W—-C)>0<= n(C*+Ky)~0<=1]n. O

Lemma 1.8. With the same notations and assumptions akémma 1.7,assume
further that py(W — C) = 0 and P(W — C) > 0 (= P(W —C) = 1). LetC be
a connected component of C. Assume tBats neither a(—2)-rod nor a (—2)-fork.
Then we have
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n—2(>0)
—_——N—
(i) i) oo ... o
—4 -3 =2 -2 =3
Fig. 1
Type (X) Type (H,) (r > 2)
2 -2
4 Co Cs Cy D (&1 —2 -2 Cy Dr
_ _ _ C:
2 2 2 2 2 Dy NL D) Cs
i i i — D1
(i) (ii)
Fig. 2.

(1) If |[C*] =0, thenC is either a single(—4)-curve or an admissible rational rod
with (—3)-curves as tip components and (m > 0) (—2)-curves as middle components.
In particular, the weighted dual graph of is given as one ofi) and (ii) in Fig. 1

(2) If |C*| # 0, then each component of C is a rational curve and the configamat
of C is given as one ofi) and (ii) in Fig. 2

Proof. Note thaiC* = (C — C)* 4+ C* becauseC is a connected component Gf.
Since W is a rational surface an@iy(W — C) = h%(W, C + Ky) = 0, each irreducible
component ofC is a (smooth) rational curve and the dual graph of each caedec
component ofC is a tree by [14, Lemma 1.2.1.3]. It follows from Lemma 1.7 &the
assumptionP,(W — C) > 0 that Z* is an integral divisor. Hence, the coefficient of
each irreducible component of Su@dj in C* is equal to ¥2 or 1.

Assume that/C*] = 0. ThenC can be contracted to a quotient singular point.
Since C is neither a £2)-rod nor a £2)-fork, C* # 0. So, C* = (1/2)C. It then
follows from [25, Lemma 1.8] thaC is either a single £4)-curve or an admissible
rational rod with £3)-curves as tip components anad (m > 0) (—2)-curves as mid-
dle components.

Assume that| C*| # 0. Then, since€ + Ky)-C = BKk(C)-C, it follows from [4,
Lemma (8.7) and Corollary (8.8)] that is of type (©), type H), type (Y) or type
(X) (for more details, see [4, Corollary (8.8)]). Since the Idgeaph of C is a tree
and ¥ is an integral divisor, we know that is of type H) or (X). Hence, the
configuration ofC is given as one of (i) and (ii) in Fig. 2. O

DEFINITION 1.9. LetC be a connected SNC-divisor on a smooth surface such
that each component o€ is a rational curve. Then we say th@t is of type Ki)
(resp. Kn) (n = 2), (X), (Hy) (r = 2)) if C is a single £4)-curve (resp.C is an
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admissible rational rod with—«3)-curves as tip components and € 2) (—2)-curves
as middle components, @ = 5 and the configuration o€ is given as in Fig. 2-(i),
#(C) =r + 4 and the configuration of is given as in Fig. 2-(ii)).

2. Construction of strongly minimal models

In this section, we construct strongly minimal models of sthoopen rational sur-
faces withi = py = 0 and P, > 0.

Let S be a smooth open rational surface with= iy = 0 andP, > 0 and let ¥, B)
be an SNC-pair such that — B = S. We call the pair X, B) an SNC-completion of
S. Let (W, C) be an almost minimal model ofX( B). Then Lemma 1.8 implies that
each connected component of SUpf)is of type K,) (n > 1), (X) or (H;) (r > 2).
Throughout the present section, we retain this situation.

Lemma 2.1. Assume thafW, C —|C*]) is not almost minimal. Then there exists
a (—1)-curve E such that E((C — |C*#])* + Kw) < 0 and the intersection matrix of
E + BKk(C — |C#]) is negative definite. Moreovethe following assertions hold true.
(1) E-C=1o0r2
(2) Assume that EC =1 and E ¢ SuppC. Let G be the irreducible component of
C meeting E. Then the coefficient of @ C* is equal to one.
(3) If E-C =1 and EC SuppC, then the connected component & C containing
E is of type(H;),r >3 and E=D; (2 <i <r — 1) with the same notations as in
Fig. 2-(ii).
(4) If E-C = 2, then E¢ SuppC and E meets two connected componentsai
C” of C such that Cis of type(X) or (H;), C” is an admissible rational rod and E
meets one of the tip components df. Gurthermore we have

(4-) If E-|C#] > 0 (then E-C' = E-C* = 1), then C' is a (—2)-rod.

(4-ii) If E-|C*] =0, then C’ is of type(K,) and E meets one of the four terminal

components of C

Proof. Since W, C — |C*|) is not almost minimal, there exists an irreducible
curve E such thatE - ((C — |C*])* + Kw) < 0 and the intersection matrix df +
BK(C — |C*|) is negative definite. ThelE? < 0. Here we note that every connected
component ofC — |C*| is a (~2)-rod, a (2)-fork or a divisor of type K,) (see Def-
inition 1.9). ThenE ¢ SuppC — |C*]) and soE - Ky < 0. Hence,E is a (~1)-curve.
By [15, Lemma 3.6.3 (p.96)]E - (C — |C*#]) < 2. We consider the following three
cases separately.

CAse 1: E-(C — |C*]) =0. If E ¢ Supp(C*|), thenE-C = E-C¥ =
—E-Ky =1 and soE meets only one irreducible component, sgy of C. Moreover,
the coefficient ofC; in C* is equal to one. IfE ¢ Supp(C*]), thenE-C = E-C*=1
and E - (C — E) = 2. We can easily see that the connected compo@enf C con-
taining E is of type H;), r >3 andE =D; (2<i <r —1) with the same notations
as in Fig. 2-(ii).
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CASE 2: E-(C—|C*]) = 1. In this case, le€ be the connected component of
C — |C*] meeting E. Suppose tha€ is a divisor of type K,). Then

1_ - 1
1:—E-KW:E~C#:E-LC#J—i-éE-C:E-LC#J—i-E,

which is a contradiction. Henc& is a (—2)-rod andE meets a terminal component
of C, here we note that the intersection matrix Bf+ C is negative definite. IIC C
SuppC?), then

1

E-C=-2,

(IC*) + Kw) - E =~ >

NI =

which is a contradiction. Henc&; is a connected component 6. ThenE - |C*] =
E-C# = —E-Kw=1and soE-C = 2.

CASE 3: E-(C—|C*]) =2. ThenE meets two connected componefitsand C,
of C—|C*| (see [15, Lemma 3.7.1 (p. 97)]). Since the intersection imafr E +Bk(C)
is negative definite ané - (C — |C*])* + Ky) < 0, we may assume th&l; is a (—2)-
rod andC, is a divisor of type K,). Moreover,E meets a terminal component 6.
If C, is a connected component &f, then

1 < 1
1=—-E-Ky=E-C¥= E-LC#J—i—EE-Cz: E- [C¥| +5
which is a contradiction. SoC; C SuppC*). In particular,C; is a (-2)-curve. Since
the intersection matrix oE + (C — |C*|) is negative definite and - (C* + Ky) = 0,
we know thatE - C = E - (C — |C*]) = 2 and E meets a terminal component .
As seen from the arguments as in Cases 1-3, we obtain thdiassdd)—(4). [

Now, let E be a (1)-curve onW such thatE - (C — |C*])* + Kw) < 0 and
the intersection matrix oE + Bk(C — |C#]) is negative definite. Leg: W — W;
be a successive contraction ofX)-curves in Supg + (C — |C#])) starting with the
contraction ofE such that the image dt +(C—|C#|) has no {1)-curves. PuC® :=
g+(C). From Lemma 2.1, we know tha® is an SNC-divisor, CM)* = g,(C*) and
2((CHY* + Kw,) = 9.(2(C* + Kw)) ~ 0. In particular, the pairW, CY) is an almost
minimal SNC-pair withic(W — CW) = pg(W — CW) = 0 and P,(W — CW) > 0. By
repeating this process, we obtain the following lemma.

Lemma 2.2. With the same notations as abowbere exists a birational mor-
phismv: X — V onto a smooth projective rational surface V such that tHeiong
conditions(1)—(4) are satisfied
(1) D :=v.(B) is an SNC-divisor.

(2) v.(Bk(B)) < Bk(D) and v,(B* + Kx) > D* + Ky.
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(3) Py(V — D) = Py(X — B) for any integer n> 1. In particular i(V — D) =
k(X —B)=0.
(4) The pairs(V, D) and (V, D — | D¥]) are almost minimal.

We call the pair ¥, D) (resp. the surfac& — D) as in Lemma 2.2 arstrongly
minimal modelof (X, B) (resp. the surfac& = X — B).

3. Classification

In this section, we classify the strongly minimal open na#ib surfaces ofc =
pg =0 and P, > 0 with non-contractible boundaries at infinity (cf. Theor8m6). First
of all, we give some examples (Examples 3.1-3.5). In thefohg examples, lei,
be a minimal section of the fixed ruling on a Hirzebruch swef@ig of degreen (n > 0)
and letM, be a section of the ruling of, with M, - M, = 0.

ExaMPLE 3.1. LetVy = P! x P! and letC; be an irreducible curve such that
C1 ~ 2Mg + |, wherel is a fiber of the fixed rulingr on Vy. Let P, and P, be the
two ramification points of a double covering|c,: C; — P! and letl; (i =1, 2) be
the fiber of r passing throughP,. Letl; (j = 3, 4) be a fiber ofr meetingC; in
distinct two points, sayP; and Pj. Let f: V — V, be a composite of blowing-ups

over Py, ..., P4 such that the following conditions are satisfied:
(i) Fori =1, 2,ri :=#(f*(li)ed) # 2. Moreover, ifr; > 3, then Supp{*(l;)) con-
sists entirely of a {1)-curve E; and (2)-curvesD;», ..., Diy, and f*(l;) = 2(E; +

Di,2 +---+ Di,ri—Z) + Di,ri—l + Di,r‘-

(i) Fori =3, 4, t*(;) = Di + 2E; + D/, where D; and D] are (-2)-curves andE;
is a (-1)-curve.

Put Dg := f/(C1). Then ©g)? = 4—(ry +r2). Fori =1, 2, we put

li
D(i) L Z Di,k if fi 7é 1,
T ) k=2

0 if ri = 1.

The divisor D® (i =1, 2) can be contracted to two rational double points of type
(resp. one rational double point of typs, one rational double point of typB,,_) if
ri =3 (resp.ri =4, r; >5). Put

D := Do + DY + D@ + D3 + D} + D4 + Dj.

Then it is easy to see th@* = Dy + (1/2) Z‘;’:3(Dj + Dj) and D# + Ky = 0. So,
k(V — D) = py(V — D) = 0 and P,(V — D) = 1. We say that the pair\(, D) is of

type X[4 —(r1 +r2)] + F1 + F2, whereFj =0 (resp.Fy = 2A;, F; = A, F; = Dy, 1)

if ri =1 (resp.ri =3,r, =4,r; >5) fori =1, 2. Note that{, D) is the pair as in
[10, Example 2.1] ifry =1, = 1.
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ExampLE 3.2 (cf. [10, Example 2.2]). LeYy =T, (n> 1) and letly, 11 andl;
be three distinct fibers of the ruling ovy. Put P :=1;, N M, (i =1,2). Letuo: Vi —
Vo be the blowing-up with centerB; and P,. Put Ei := uoi(P) (i = 1, 2). Further-
more, letui: Vo — Vp be the blowing-up with centerg; N ug(l1) and Ex N ug(lz). Put
V :=V, and

D := wj(E1 + Ex + uh(lo + 11+ 12 + My + Mp)).

Thenic(V — D) = py(V — D) = 0 and P,(V — D) = 1. Further, the configuration dd

is given as in Fig. 2-(ii), where = 3, (D1)?> = —n, (D2)?> = 0 and 03)> = n—2. We
note that ifn > 1 then the elementary transformations with center®at= lo N M,

and its infinitely near points will reduce the case- 1 to the casen = 1. We say that
the pair ¥, D) is of type H[-1, 0,—1].

ExamMpPLE 3.3 (cf. [10, Examples 2.3 and 2.4]). L&y =T, (n>0). LetC; =
M, and letC, be a smooth irreducible curve such tt@t ~ M, + (n + 1), wherel
is a fiber of the fixed ruling orF,. Let |y andl, be fibers of the ruling withP, :=
[iNC, ¢ CiNCy (i =1, 2). Letug: Vi — Vo be the blowing-up with centerB; and
P.. PUtE := pug(R) (i =1,2),1] := pug(li) (i =1,2) andC/ := uy(Ci) (i = 1,2). Let
ui1: Vo — Vi be the blowing-up with center®; := E Nl{ (i =1,2). PutV :=V, and

D:=uy(E1+17+Ci+ Ex+ 15+ C)).

Theni(V — D) = pg(V — D) =0 and Po(V — D) = 1. Further, the configuration of
D is given as in Fig. 2-(ii), where = 2, (D1)?> = —n and (D) = n. We say that the
pair (V, D) is of type H[n, —n].

EXAMPLE 3.4. Let W, C) be an SNC-pair of typeH[1, —1] constructed as in
Example 3.3 such that the configuration ©fis given as in Fig. 2-(ii), where = 2,
(D1)? = —1 and 0,)?> = 1. ThenF := 2D; + C; + C, defines aP-fibration ® :=
Pt W — P! and D, becomes a 2-section ab. Let G be the fiber of® containing
Cs. Since p(W) = 6, we can easily see th& = C3+ C4 + 2E’, whereE’ is a (-1)-
curve andE’' - C3 = E'- C4 = 1. Since ®|p,: Dy — P! is a double covering and
P = SuppF N D3 is a ramification point ofP|p,, there exists uniquely a fibed of @
such thatQ := SuppH N D5 is the ramification point ofP|p, other thanP. It is clear
that H is irreducible. Letu: V — W be a composite of blowing-ups ov€) such that
w*(H)=2E +Hy+ -+ Hs2) + Hs 1 + Hs, wheres > 2, E is a (~1)-curve and
Hiy, ..., Hs are &2)-curves. Put

D:=4/(C)+ ) H.
i=1

Then, D¥ = 1/(C*) = /(D1 + D7) + (1/2w/(X, Ci) and D¥ + Ky = 0. So,
k(V — D) = pg(V — D) =0 and P,(V — D) = 1. We say that the pair\{, D) is of
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type H[1—s,—1]+ F, whereF = 2A; (resp.F = A3, F = Ds) if s=2 (resp.s = 3,
s> 4).

ExamMPLE 3.5. LetVo=TF, (h>0) and letly, ..., |, be distinct four fibers of
the fixed ruling onVy. PutP :=1; N M, fori =1, 2 andPj :=1j N M, for j =3, 4.
Let u1: Vi — Vo be the blowing-up with center®y, ..., Ps. PutE := u~%(P) and

Q  =Enu) (i=1...,4). Letuy: Vo — Vi be the blowing-up with centers
Q1,..., Q4 PutVv:=V, and

4 4
D:= “/Z(Z E + ;/1<Mn + My + Zh)).
i=1 i=1
Then D consists of two connected components and each connectegboemt ofD is
of type (X). We can easily see thd* = (u, o 11)'(Cy + My) + (1/2);/2(24=1 E +
wi (35 1i)) and D* + Ky = 0. So,&(V — D) = pg(V — D) = 0 and P»(V — D) = 1.
We say that the pair\{, D) is of type 2X,.

The following theorem is the main result of the present katic

Theorem 3.6. Let (W, C) be an almost minimal SNC-pair such that W is a ra-
tional surface k(W —C) = fiy(W —C) =0, P,(W—C) > 0 and |C*| # 0. Let (V, D)
be a strongly minimal model iV, C). Then the pair(V, D) is one of the pairs enu-
merated inExamples 3.1-3.5

In what follows, we prove Theorem 3.6.
Let (V,D) be the same pair as in Theorem 3.6. By Lemma 1.8, we can desamp
D as a sum of connected components

r S t
D= Z D(I) + Z D(F+J) + Z D(I‘+S+k) (r, s, t> 0)'
i—1 =1 k=1

where D® (1 <i <r) is a divisor of type K) (if ry = 1) or type H;,) (if r; > 2),
D+ (1< j <s)is a (-2)-rod or a (2)-fork, and D" +stK (1 <k <t) is a divisor
of type (Kn,). By the hypothesigC*#| # 0 and the construction of strongly minimal
models (see Section 2), we know thdd*| # 0, i.e.,r > 0. For 1<i <r, let

ri 4
DO =3 pP + 3 ¢
=1

i'=1

be the irreducible decomposition & such that the configuration d® is given as
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in Fig. 2, wherer =r;, D;, = Di(f) andC, = C,(i). Then,

D* Z(Z DY + = Zc(') ZD(r+s+k)

i=1\i'=1 kl

Let u;: V' — V be the blowing-up of all the singular points (the intersaati

points of the irreducible components) & *sth, . DI+S+) Then u) (D +5+0)
(k =1,. t) is a disjoint union ofn, (—4)-curves. Since ¥ + Ky) ~ 0 and
=i 1( ) +(1/2) Z| 1C(I ) + (1/2) Y=y DO+, we have

r 4 t r ri
MQ(Z <Z Cf”) +y° D('+S+k)) ~ —2(2(2 M;(DS))) + KV/>.
i=1\I=1 k=1 i

i=1 \i'=1

Hence, there exists a double covering: V” — V’ with the branch locus
1 (X (X, ) + Yoh_, DU+s+K) hereV” is a smooth projective surface.

Put = ppops. Thenp' (X5_ (-, CV)) (resp. /(DU +5H) (1 <k <t)) is a
disjoint union of 4 (—1)-curves (respng (—2)-curves). Further, for eadh(1 <i <r),
w (i, Di(i)) is a smooth elliptic curve (resp. a loop ofr2( 1) smooth rational
curves) ifr; = 1 (resp.ri > 2). Letv: V/ — V be the contraction of ther4(—1)-curves
M/(C(i))'s (1<i=<r,1=<I<4). PutDy :=v.(u"Y(D)). Then we can easily see that
Dy is an SNC-divisorD¥, = v, (1/(X]_y(37/'_, DY))) and D + Ky ~ 0. In particu-
lar, (V, Dy) is an almost minimal SNC-pair witk(V — Dy) = 0 and fg(V — Dy) = 1.

Lemma 3.7. With the same notations and assumptions as abeechave
Q) r=1or2
(2) Ifr =1, thenV is a rational surface. In particularthe pair (V, Dy) is an litaka
surface(see[24]).
(3) If r =2, thenV is an elliptic ruled surface andir=r, = 1.

Proof. By the hypothesis > 1, Dy contains either a smooth elliptic curve or a
loop of smooth rational curves. We infer from Lemma 1.5 (2tth(V) = —oo.

Assume thatV is a rational surface. Then the paW (Dy) is an litaka surface. It
follows from [24, Lemma 1.5] thaLDf;J is connected. Hence, = 1.

Assume thatV is an irrational ruled surface. Then Lemma 1.6 (4) impliest ¥
is an elliptic ruled surface. Moreover, sincE% + Ky ~0, LD*\%J is a disjoint union
of two elliptic curves by Lemma 1.6 (6). Hence= 2 andr, =r, = 1. ]

Lemma 3.8. The SNC-pair(V, D — | D¥]) is almost minimal and¢(V — (D —
[D*))) = —oc
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Proof. Since Y, D) is a strongly minimal model of W, C), the first assertion
is clear. We prove the second assertion. We can easily see(Eha- | D*|)* =
(1/2) Yh_y DEHSH0 = D 3 (DO)¥. Then

(D — LD#J)#—F Ky = D¥ — Z(D(i))# 1+ Ky =— Z(D(i))#
i=1 i=1

and so D — | D*])* 4+ Ky is not nef. Hence, the second assertion follows from the first
assertion and [15, Theorem 3.15.1 (p. 116)]. O

Lemma 3.9. Letw:V — V be the contraction oBuppD — |D¥|) to quotient
singular points. Thenthere exists a@P-fibration h: V — P! such that every fiber of
h is irreducible. In particular

p(V) = 2+#0D — | D).

Proof. As seen from the proof of Lemma 3.8, we know that<{ | D*|)* + Ky
is not nef. Since D — |D*])* + Ky = 7*(Ky), Ky is not nef, neither. Hence there
exists an extremal rational cunfeon V. Let | be the proper transform df on V.
Since {, D — |D¥]) is almost minimal, we infer from [15, Lemma 3.14.3 (p.113)]
that one of the following two cases takes place:

(@) The intersection matrix df+Bk(D — | D¥]) is negative semi-definite, but not nega-
tive definite. Furthermore,? = 0.

(b) p(V) =1 and—Ky is ample. NamelyV is a rank one log del Pezzo surface (for
the definition, see [11, Definition 1.1]).

Suppose that the case (b) takes place. By [1, Propositionsé¢ @lso [25,
Lemma 1.8]), every singular point of has index< 2. So,V is a rank one log
del Pezzo surface of index 2. On the other hand, singe> 1, V contains at least four
rational double points of typé\;. This contradicts [17, Lemma 3] and [1] (for more
details, see [2], [11, Theorem 1.1], [18]). Hence, the cdgedpes not take place.

By [15, Lemma 3.14.4 (p.114)], for a sufficiently large inteq), the complete
linear systemni| defines aP-fibration h: V — P1. Since the SNC-pair\(, D — | D¥|)
is almost minimal,V is relatively minimal, i.e., there exist no irreducible ees C on
V with (C)? <0 andC - Ky < 0 (cf. [6, p.469], [15, Chapter 2, Section 4]). Hence,
every fiber ofh is irreducible. This proves the first assertion. Sing®/) = 2, the
second assertion is clear. O

Now, let® = hox: V — P*. Then® is aP*-fibration. LetF be a fiber of®. We
infer from Lemma 3.9 thaF is a singular fiber ofd if and only if 7 (F)N SingVv # @.
We prove the following lemma.
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Fig. 3.

A E B By, Bs
O ) 0O ) O
4 -1 -2 -2 -2

Fig. 4.

Lemma 3.10. Let F be a singular fiber ofb. Then F consists only of &1)-
curve and(—2)-curves. Moreoverthe configuration of Ry is given as one of(i) and
(i) in Fig. 3

Proof. By Lemma 3.9, we know that Suppconsists of a{1)-curve and some
connected components @ — |D#|. Let E be the unique {1)-curve contained in
SuppF. Note that each connected componentFafy — E is a (—2)-rod, a 2)-fork
or a divisor of type Kp).

If every connected component &feq— E is a (—2)-rod or a (2)-fork, then we
can easily see that the configuration Btq is given as one of (i) and (ii) in Fig. 3
(cf. [9, Lemma 5.5]).

Suppose thafF,q— E contains divisors of typeK,). Then, sinceF can be con-
tracted to a smooth rational curve with self-intersectiomber zero, we know that the
weighted dual graph oFeq is given as in Fig. 4, wher&q = A+ E + By + B, + Bs.
Both of A and B; + B, + B3 are connected components bf In particular,B; + B, +
B; = D +)) for somej, 1< j <s. Since

(D—-|D*])-E=E-(A+B) =2
and D + Ky = 0, we have

1 1
0=E-(D*+Ky) = E-(ID*| + Kv) + SE-A=E-[D] + 2,

which is a contradiction. O
As a consequence of Lemma 3.10, we obtain the following lemma

Lemma 3.11. t = 0. Namely D contains no divisors of typéKp).
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By Lemma 3.7,r =1 or 2. In the following lemma, we consider the case: 2.

Lemma 3.12. Assume that = 2. Then the pain(V, D) can be constructed as in
Example 3.5 In particular, s = 0.

Proof. We infer from Lemmas 3.7 (1) and 3.11 that

4

4
D* = D + DY + %(Z cV+> Ci(z)).
i=1 i=1

So D—(D{" + D¥?) = D— | D*| is contained in fibers of>. We note that neitheD!"
nor D(f) is a fiber component of. Indeed, if Df) (i =1o0r2)is a fiber component
of @, then the divisoD® is contained in a fiber o, which contradicts Lemma 3.10.
Let F (i =1, 2, 3,4) be the fiber of> containingCi(l). By Lemma 3.10,F; = Cil) +
2E; + B, whereE; is a (~1)-curve, B’ is a (-2)-curve andE; - Cil) =E;-B =1.

Claim 1. B = ngz) for some j1<j <4.

Proof. Suppose thaB’ ¢ SuppD®). Then the coefficient 0B’ in D* is zero and
Ei- (X, ¢+, c?) = E;-cP = 1. SinceD* + Ky = 0, we have

0=E; (D +Ky)
1
= E;- (D&” +D + 3¢+ Kv)
£ .(p® 1 p@_1
= l'(Dl + Dl )_éa
which is a contradiction. Hencé&’ c SuppD*). Since neitherDil) nor Df) is a fiber
component of®, B' # Dgl), Df).
Suppose thaB’ c SuppO®), i.e, B’ = C (2 < j < 4). It then follows from
D* + Ky =0 thatE;- D = E; - (XL, C) = 2. So,F;-D® =0, i.e., Suppp®) is

contained in a fiber ofb. This is a contradiction becauﬁf) is not a fiber component
of ®. Hence,B’ c SuppD®). O

By Claim 1, we may assume that
F =c®+2E +c?,

where E; is a (1)-curve with E; -Ci(l) = E; -Ci(z) =1, fori=1,...,4. Then Dgl)
and D{? are sections ofp.
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Claim 2. F4,...,F4 exhaust all the singular fibers @b. In particular, p(V) = 10.

Proof. Suppose to the contrary thithas a singular fibeG other thanF,..., F,.
Then, by Lemma 3.10, Sugp has a unique £1)-curve E’ and SuppGreq — E’) C
SuppD — (DM + D®@)). Since 1= E'- D* = E’- (D{ + D), we haveE’- D! = 1
for i =1 or 2. However, this is a contradiction because the coefificid E' in G is
equal to two andD'” and D! are sections ofp

Therefore,® has no singular fibers other thaf, ..., F4. It is then clear that
p(V) = 2+ 31, (#(F) - 1) = 10. O

By Claims 1 and 2, we can easily see that the psir @) can be constructed as
in Example 3.5. O

In the subsequent argument, we consider the casel. We putD; := Di(l) 1=
i <r) andCj:=C¥ (1< j <4). Then

ry 1 4
D#ZZDi +§ZCJ'
i=1 j=1

Lemma 3.13. Assume that =1 and s= 0, i.e,, D is connected. Then the pair
(V, D) is of type XN2] (cf. Example 3.1),H[—1, 0,—1] (cf. Example 3.2)or H[n, —n]
(cf. Example 3.3)

Proof. SinceD is connected and the pail/( D) is a strongly minimal model
of (W, C), we haveD - E > 2 for any (1)-curve E. So the pair ¥, D) is strongly
minimal in the sense of [9, Section 2] (see also [10]). Heribe, assertion follows
from [9, Theorem 4.5] (see also [10, Theorem 2.10]). ]

From now on, we assume further thait- 0, i.e., D is not connected. LeF; be
the fiber of ® containingC;. We prove the following lemma.

Lemma 3.14. With the same notation and assumptions as apese have
(1) FL =Cy+2E; + B, where g is a (—1)-curve B’ is a (—2)-curve and B-C; =
E,-B =1
(2) B=Cj forsome j2<j <4
(3) Ifry > 2, then B = Co,.

Proof. (1) If Dy is not a fiber component ob, then the assertion follows from
Lemma 3.10. We assume thBy is a fiber component ob. ThenD; andC, are con-
tained in Suppf;). If Dy is a (1)-curve, thenF; = 2D; + C; + C,, which proves the
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assertion. Suppose thab{)? < —2. By virtue of Lemma 3.10D; is not a fiber com-
ponent of® (see the proof of Lemma 3.12). Sinc¥, (D) is a strongly minimal model
of (W, C), none of Dy, ..., D;_1 are (-1)-curves. It then follows from Lemma 3.10
that F; = 2(E; + Ds + Dg 1 + --- + D1) + C; + C,, where 1<s<r —1 and E;
is a (~1)-curve with E; - Ds = 1. SinceD — |D¥| = D — (Dy + --- + Dy) is con-
tained in fibers of® and D* + Ky = 0, we know thatE; - D = E;- Dg = 1. This is
a contradiction becausé/( D) is a strongly minimal model ofW, C). The assertion
is thus verified.

(2) If either B’ is not a component of Supp() or B’ C Supd}_i*, Di), then
E1-(C1+Cy+C3+Cy) =E;1-Cy =1 becauseC; (j =2,3,4) is contained in a fiber
of @ different from F;. Since D¥ + Ky = 0, we have

0=E; (D + Ky)

ri
1
Ep- (; Di + §C1 + Kv)
I 1
E:- (Z Di) -5
i=1

which is a contradiction. Henceg’ = C; for somej, 2< j <4.

(3) Suppose thaB’" # C,. We may assume thaB’ = C3. Then F, = C; +
2E; + C3 and D; and Dy, are sections ofb. Let F, be the fiber of® containing
C,. Then we can easily see thp = C, + 2E, + C4, whereE; is a (~1)-curve with
E,-C, = E;-C4 = 1. By the assumptios > 0, ® has a singular fibeF other thanF;
and F,. By Lemma 3.10, Supp has a unique-{1)-curve, sayE, and the coefficient
of E in F is equal to two. If Supffeq — E) N Supp@®) # @, then we infer from
Lemma 3.10 that = 2E + F; + F,, whereF; and F, are (-2)-curves,F; is a (-2)-
rod in D and F, is a component oD + «-- + D; = D® — (C; 4+ C, + C3 + Cy).
This is a contradiction becaus&/,(D) is a strongly minimal model of W, C) (see
Lemma 2.1 (4), (4-i)). Hence SupRtq— E) N Supp@W) = @. Then E must meet
both of D; and D;,. However, this is a contradiction becauBg and D, are sections
of ®. Therefore,B’ = C,. O

In the following lemma, we consider the case= 1.

Lemma 3.15. With the same notation as abowessume further thatyr= 1. Then
the pair (V, D) can be constructed as iBxample 3.1

Proof. By Lemma 3.14 (2), we may assume tiat= C; + 2E; + C3. Let F;
be the fiber of® containingC,. Then we can easily see th&s = C, + 2E;, + Cy,
where E; is a (—1)-curve. Note thatD; is a 2-section of®. Let P; and P, be the
two ramification points of a double covering|p,: D; — P,
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Since SupD contains £2)-curves other thag,,...,Cy4, ® has singular fibers other
thanF; andF,. Let F3, ..., Foyj (j > 1) exhaust the singular fibers @f other thanF;
and F,. Lemma 3.10 then implies that each Supp() (1 <i < j) consists only of a
(—1)-curve, sayE,,i, and (2)-curves. Since SUpé.i)red — Eo+i) C SuppD — DW)
foranyi =1,..., ) and D; is a 2-section of®, we know thatE,,; - D; = 1. So,
the point Suppf..i) N D1 (1 <i < j) is a ramification point of®|p,: D; — PL. In
particular,j = 1 or 2.

Let u: V — V' be the successive contraction of thelf-curvesEs, ..., Ex;; and
consecutively (smoothly contractible) curves in the fibess..,Fo. . Then,p(V’) =6,
1 (D* 4+ Ky) = i1, (DD)* + Ky) = p(DW)* 4+ Kyr = 0, 2((u-(DD)* + Ky/) ~ 0
and ,(DW) is connected. So the paiV(, i.(DW)) is of type X[2] in Example 3.1.
Therefore, the pair\(, D) can be constructed as in Example 3.1. ]

Finally, we consider the casg > 2.

Lemma 3.16. With the same notation and assumptions as apassume further
that r; > 2. Then the following assertions hold true
(l) r{=2.
(2) One of O and D, is a (—1)-curve.

Proof. By Lemma 3.14 (3)F; = C; + 2E; + C,. We consider the following two
cases separately.

Case 1. E; = D;. Then D, is a 2-section of®. Suppose that; > 3. Then
D3 + -+ Dy, + C3 + C4 is contained in a (singular) fibeF, of ®. Since each
D; (3 <i <rj) is not w-exceptional, it follows from Lemma 3.10 th@s is a (1)-
curve andF, = 2D3 + C3 + C4. In particular,r; = 3. Then D, N Suppf1) and D, N
Supp(,) exhaust the ramification points of a double coveribfp,: D, — P1. Since
D is not connected, there exists another singular fiber, Bayof ®. It then follows
from Lemma 3.10 thaf; contains a unique—1)-curve Ez and Supp(Es)reqd — E3) C
SuppD — D®), SinceF;- DM = F3. D, = 2 and the coefficient oE3 in F3 is equal
to two, Ez- D2 = 1. So, D, N SuppFs) becomes a ramification point @b|p,. This is
a contradiction. Thereforeg; = 2. In this case, the assertion (2) is clear.

CASE 2. Ej # D;. In this case, = E; - (D" + Ky) = E; - (1/2)(C1 + Cp) +
Ei-(D* — (1/2)(C1 + C2)) + E1 - Ky = E1- (D* — (1/2)(C1 + Cy)). So, Ey- Dy = 0.
We know thatD; is a 2-section of® and D, + - - - + Dy, + C3 + C4 is contained in a
fiber F, of ®. By using the same argument as in Case 1, we knowrthat 2, D, is
a (—1)-curve andF, = 2D, + C3 + C4. Thus, in this case, the assertions (1) and (2)
are verified. ]

From Lemma 3.16 (2), we may assume tliat is a (—1)-curve andF; = 2D; +
C1+C,. ThenD; is a 2-section ofd. Moreover,D, N Suppfy) is a ramification point
of a double coveringd|p,: D, — P. Let F, be the fiber of® containingCz. Then
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we see thatr, = C3 + C4 + 2E,, where E, is a (~1)-curve, by using an argument
similar to the proof of Lemma 3.14 (2).

Since D is not connected, by an argument similar to the proof of Len3ni®, we
obtain the unique singular fibd#; of ® other thanF; and F,. Then D,NSupp@s) is a
ramification point of the double covering|p,: D, — P!. By Lemma 3.10,F; consists
of a unique €1)-curve, sayEs, and 2)-curves. Letu: V — V' be the successive
contraction of the {£1)-curve E3 and consecutively (smoothly contractible) curves in
the fiber F5. Then, u.(D) = u.(D®) is a connected SNC-divisop.(D* + Ky) =
(1+(DW)* + Kyr = 0, 2((e(DM))* 4+ Ky') ~ 0, s£.(D1)? = =1 and p(V') = 6. By
using the same argument as in the proof of [10, Theorem 2wl®]know that the pair
(V', 1 (DW)) is of type H[1,—1] in Example 3.3, here we note that(D,)? = 1 since
M*(Dl)z = -1

Therefore, we obtain the following result.

Lemma 3.17. Assume that =1 and r; > 2. Then the pair(V, D) can be con-
structed as inExample 3.4

The proof of Theorem 3.6 is thus completed.

4. Log affine surfaces withk = py =0 and P,>0

In this section, we study log affine surfaces with= iy = 0 and P, > 0 by using
the results in the previous sections.

A log affine surface is, by definition, a normal affine surfadéhvat most quotient
singular points. LetS be a log affine surface and p& := S— Sing(S). Then we
can consider the logarithmis-genusP,(S°) (resp. the logarithmic Kodaira dimension
©(S%) and call it the logarithmia-genus (resp. the logarithmic Kodaira dimension) of
S. We write pg(S), Pa(S) andic(S) instead of ig(S°), Pn(S°) and i(S°), respectively.

Let X be a normal projective surface such tiis an affine open subset of,

X is smooth alongB = X — S and B is an SNC-divisor onX. Let 7: X — X be the
minimal resolution of singularities oX. Then S:= 7~1(S) is an Zariski open subset
of X. SinceX is smooth alongB, we can identify the divisoB on X with the divisor
7-%B) on X. Put A := 7 %(Sing(S)) and B := B + A. Then the pair X, B) is an
SNC-completion ofs”. Let (W, C) be an almost minimal model ofX( B). Then there
exists a birational morphism: X — W such thatC = u,(B). Let 7(0: W — W be
the contraction of Supp(BKY) to quotient singular points and p@ := 7®(C). Then
we call the surfaceS®) := W — C an almost minimal modebf S. We say thatS is
almost minimal if it can be an almost minimal model of itselfhroughout the present
section, we retain this situation.

Lemma 4.1. With the same notation as abgvassume that (X, Ox) = 0 or
©(S) = —oo. Then either S= SM or S> SY and S— SY is a disjoint union of



1082 H. KoJiMA

topologically contractible curves.
Proof. See [6, Lemma 4 and Corollary 5]. L]

Theorem 4.2. Every log affine surface with logarithmic Kodaira dimensipero
is a rational surface.

Proof. Suppose that the above surf&&das logarithmic Kodaira dimension zero
and is not a rational surface. Sinc®/,(C) is an almost minimal SNC-pair with
k(W —C) = 0, we infer from Lemmas 1.5 and 1.6 that the pal,(C) satisfies one
of the following:

(&) W is a minimal surface with«(W) = 0 and each connected componentQfis a
(—2)-rod or a 2)-fork providedC # 0.

(b) W is an elliptic ruled surface with the ruling: W — E over an elliptic curvekE.
Moreover,C# = |C#|, |C¥| is either a smooth elliptic curve or disjoint union of two
smooth elliptic curves, and BC*| + Ky) ~ 0.

Since S is affine, B is a big divisor. TherC = u.(B) is also big. Moreover, since
| B| = | B¥| is connected, so i$C*|. Here, we note thatC¥| # 0 becauseC is big.
Hence, the pair\{/, C) satisfies the condition (b) andC*| is a smooth elliptic curve.

On the other hand, sinceG*|)? = (—Kw)? < 0 and |C*] is a connected compo-
nent of C (see Lemma 1.6), the divis® cannot be big. This is a contradiction[]

From now on, we assume further thafS) = py(S) = 0 and P,(S) > 0. Then,
there exists a birational morphism: W — V such that ¥, D) (D = v,(C)) is a
strongly minimal model of (V,C). Let 7®: V — V be the contraction of Supp(BRY)
to quotient singular points and pl := 7@(D) and S? := V — D.

Lemma 4.3. The surface 9@ is an affine open subset of S. FurthiérS # S,
then S— S@ is a disjoint union of topologically contractible curves.

Proof. Suppose that the paivV( C) is not strongly minimal, i.e., the SNC-pair
(W,C—|C*|) is not almost minimal. Then Lemma 2.1 implies that therestsxa 1)-
curve E such that eithelE C SuppC or E ¢ SuppC and E - C < 2. Moreover, by
Lemma 2.1, ifE ¢ SuppC then 7®(E) — (C nzM(E)) is a topologically contractible
curve. Thus, we know tha®? can be obtained fronsY) by deleting off topologically
contractible curves. By virtue of [5, Theorem 2], we knowttl®) is an affine open
subset ofS, here we note thas, SV and S® has at most quotient singular points.]

We call the surfaces® a strongly minimal modebf S and say thatS is strongly
minimal if it can be a strongly minimal model of itself.

Since S is affine, we have D#| # 0. It then follows from Theorem 3.6 that the
pair (V, D) is one of the pairs enumerated in Examples 3.1-3.5. We lallstirface
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Table 1.
Type e(S) | SingS | for details, see!
H[-1, 0,—-1] 0 smooth| Example 3.2
H[n, —n] 1 smooth | Example 3.3
H[-1,-1] + 2As 1 2A; Example 3.4
H[-2,-1] + A3 1 Az Example 3.4
H[1-r,-1]+D, (r=4) | 1 D, Example 3.4
X[2] 2 smooth| Example 3.1
X[0] + 2A4 2 2A; Example 3.1
X[-1] + As 2 Az Example 3.1

S? X[4—(r1+r2)] + F1+ F (resp.H[-1,0,—1], H[n,—n] (n > 0), H[1—s,—1]+F,
2Xp) if (V, D) is of type X[4 — (r1 +r2)] + F1 + F» (resp. H[-1, 0,—1], H[n, —n]
(n>0), H[1-s,—1]+F, 2X,). See Example 3.2 (resp. Example 3.4) for the notations
F1 and F, (resp. the notatior). We obtain the following result.

Theorem 4.4. Let S be a log affine surface wil(S) = py(S) = 0 and P,(S) >
0. Assume that S is strongly minimal. Then S is one of the mgf&f—1, 0,—1],
H[n,—n] (n > 0), H[1—s,—1]+ F (s> 2), X[2], X[0] +2A;, X[—1]+ As. Moreover
we haveTable 1,where €S) denotes the topological Euler number of S.

Proof. SinceS is affine, D = (v o u).(B) is big. Moreover, sinceS has only
quotient singular points| D¥| is connected. Hence, the first assertion follows from
Theorem 3.6. The second assertion can be verified easily. []
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