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Abstract
A dynamic model for an automatic berthing and unberthing controller has to estimate harbor maneuvers, which include 
berthing, unberthing, approaching maneuvers to berths, and entering and leaving the port. When the dynamic model is 
estimated by the system identification using feedforward neural networks, a large number of tests or trials are required to 
measure the various motions of harbor maneuvers. However, the amount of data that can be obtained is limited due to the 
high costs and time-consuming nature of full-scale ship trials. Therefore, this paper introduces data augmentation to improve 
the generalization performance of dynamic models identified from a limited dataset. This study used slicing and jittering as 
data augmentation methods and confirmed their effectiveness by numerical experiments using the free-running model tests. 
Results of numerical experiments demonstrated that slicing and jittering are effective data augmentation methods but could 
not improve generalization performance for extrapolation states of the original dataset.

Keywords Jittering · Slicing · Neural network · Maneuvering model

1 Introduction

There is a growing interest in the research and development 
of control algorithms and automatic navigation systems 
for maritime autonomous surface ships (MASS). Dynamic 
models can be used to design and tune control algorithms 
and provide a verification environment for automatic naviga-
tion systems. Therefore, dynamic models that can simulate 
maneuvering motions are beneficial for MASS.

One of the technical challenges in achieving MASS is 
the development of the automatic berthing and unberthing 
controller, which requires an appropriate dynamic model. 
To achieve berthing, the ship’s speed needs to be signifi-
cantly reduced before reaching the berth. In addition, various 
maneuvering motions such as turning tightly, astern, and 
crabbing may be required depending on the port and shape 

of the berth. In essence, a dynamic model for the automatic 
berthing and unberthing controller must be capable of esti-
mating harbor maneuvers, which include various maneu-
vers like berthing and unberthing, approaching maneuvers 
to berths, and entering and leaving the port.

Moreover, when ships are controlled by algorithms like 
optimal control or reinforcement learning, maneuvers that do 
not exist in human operations may occur, and the dynamic 
model has to evaluate such maneuvers properly. Therefore, 
a dynamic model for the automatic berthing and unberthing 
controller is desirable to estimate all possible ship motions 
at low speeds.

Numerous studies have been conducted on the dynamic 
model for the ship maneuvering motion. In particular, many 
studies have focused on the modeling of the hydrodynamic 
force acting on the ship.

For instance, one of the dynamic models for the ship 
maneuvering motion is the Abkowitz model [1]. The 
Abkowitz model represents the hydrodynamic force by 
polynomials. These polynomials are obtained from a Taylor 
expansion about the uniform linear forward motion condi-
tion. The model is simple to derive and can be added with 
nonlinear terms, which enables it to represent a wider range 
of ship maneuvering behaviors.
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Besides, the MMG model, which was proposed by a 
research group of the Japan Towing Tank Conference [2], 
is also one of the dynamic models applicable for simulating 
ship motions. The MMG model is a modular-type math-
ematical model consisting of submodels, which express the 
hydrodynamic force induced by the hull, propeller, rudder, 
and other actuators. Thus, the MMG model only requires 
modification of the relevant submodels even if partial design 
changes occur, such as changes to the rudder.

The standard MMG model [3] and classical Abkow-
itz model [1] are primarily focused on ship maneuvering 
in which the ship’s forward speed is sufficiently large and 
steady. These models are not supposed to predict harbor 
maneuvers. However, several studies have been conducted 
on the modification of the MMG model for low-speed 
maneuvering [4–8]. Miyauchi et al. expanded the Abkow-
itz model for harbor maneuver [9] and then proposed an 
automatic derivation method of a hybrid model combining 
the MMG and Abkowitz models for harbor maneuvering 
motions [10]. Those studies have enabled the MMG and 
Abkowitz models to represent a greater variety of maneu-
vering behaviors.

Parameters included in dynamic models are often esti-
mated by captive model tests [3, 11–13] and empirical 
formulas [8, 14–18]. For example, added mass and added 
moment of inertia can be estimated from Motora’s chart [14], 
and the coefficients of hydrodynamic force on the hull can 
be estimated from Inoue’s formula [16], Kijima’s formula 
[17], and Yoshimura’s formula [8]. The rudder lift gradient 
coefficient can be estimated using Fujii’s formula [15] and 
the wind pressure coefficients using Fujiwara’s regression 
formulae [19]. Although these empirical formulas can esti-
mate most of the coefficients of the standard maneuvering 
model, it is not always possible to estimate the special coeffi-
cients of the low-speed maneuvering model from charts and 
formulas. Captive model tests can provide much information 
to estimate parameters by measuring the forces acting on the 
ship, and planar motion mechanism (PMM) tests [11] and 
the circular motion tests (CMT) [12] are often conducted. 
However, captive model tests require special test facilities, 
and although the number of experiments may be reduced by 
using empirical formulas and past experimental results, the 
experiments require a significant amount of time and effort.

System identification (SI) is often used as an alternative 
method. SI techniques require time series data of kinematic 
variables and control inputs measured during free-running 
model tests or full-scale ship tests and essentially do not 
require force and moment measurements.

SI is often divided into two categories: parametric SI 
and non-parametric SI. Parametric SI is an SI method based 
on a priori information about the system of interest, and in 
many cases, such a priori information is incorporated into 
the dynamic model.

Many studies have been conducted on Parametric SI 
for the ship’s maneuver, and various identification meth-
ods have been proposed [1, 20–25]. Åström and Källström 
[20, 26] applied the maximum likelihood method to deter-
mine the ship steering dynamics from measurements of a 
freighter and a tanker. Abkowitz [1] proposed the identifi-
cation method for the hydrodynamic coefficients and tidal 
current state based on the extended Kalman filter. Yoon and 
Rhee [21] used ridge regression to estimate the hydrody-
namic coefficient of the polynomial model from sea trial 
data smoothed by a modified Bryson-Frazier smoother. 
Sutulo et al. [23] proposed an identification method based 
on the classic genetic algorithm used to minimize the dis-
tance between the observed state history and time series data 
recovered by maneuvering simulation. Miyauch et al. [24] 
applied the covariance matrix adaptation evolution strategy 
to explore the system parameters of the MMG model using 
the free-running model tests.

In non-parametric SI, the input–output relationship of a 
dynamic model is modeled from data without prior infor-
mation about the target system. Well-known methods are 
artificial neural networks (ANNs) [25, 27–31] and kernel 
methods such as support vector regression (SVR) [32, 33] 
and Gaussian processes (GP) [34, 35]. Although no prior 
physical or hydrodynamic knowledge is used, the method 
is applicable regardless of the actuator configuration and 
has the ability to capture the nonlinear characteristics of the 
target system.

ANN is a multi-input, multi-output model that has high 
approximation capabilities [36, 37]. Their effectiveness in 
estimating maneuvering models has been demonstrated in 
prior research. For instance, Moreira et al. [27, 28] proposed 
a maneuvering simulation model using an ANN model, vali-
dated through the use of simulation data from the Mariner 
hull and full-scale data from a catamaran. Rajesh et al. [29] 
utilized ANN to represent the nonlinear terms within the 
3DOF maneuvering model for large tankers. Oskin et al. 
[30] used an ANN model that takes past and current state 
variables as inputs to identify a model of a ship’s course 
movement. Zhang et al. [31] identified the nonlinear hydro-
dynamic model of ship maneuvering motion using an ANN 
with Chebyshev orthogonal basis functions.

SI requires an appropriate dataset in accordance with the 
purpose of the dynamic model. A dataset that covers the 
operational range of a harbor maneuver should be used to 
identify a dynamic model for the automatic berthing and 
unberthing controller.

Most SI studies for a ship maneuvering model use the 
data measured during zigzag and turning maneuvers of the 
full-scale trials or free-running model tests. However, zigzag 
and turning tests are not suitable for estimating the dynamic 
model for harbor maneuvers since they cannot measure har-
bor maneuvers, such as astern and crabbing motions.
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Several previous studies [10, 24, 25] used the dataset 
measured in random maneuvers. Here, random maneuvers 
are maneuvers in which control inputs are manually selected 
to measure the various values of state variables and control 
inputs that can occur.

Identifying a dynamic model for harbor maneuvers 
requires conducting a large number of tests or trials to meas-
ure various motions. However, conducting numerous full-
scale ship trials is impractical due to the high cost involved. 
Therefore, a method for identifying a dynamic model with 
a limited amount of data is required. One of the options 
to achieve the high generalization performance of dynamic 
models is to apply data augmentation, which generates syn-
thetic data.

Many studies have been conducted on data augmenta-
tion methods that can be applied to time series data [38, 
39]. However, to the best of our knowledge, no studies have 
been conducted on applying data augmentation methods to 
dynamic model identification of ship maneuvering motions.

Furthermore, a problem of data augmentation is that not 
all data augmentation techniques necessarily improve the 
generalization performance of the ship’s dynamic model.

In fact, many generation methods of synthetic data dis-
tort the meaning of the original data. For example, window 
wrapping [40–42], which is one of the time wrapping meth-
ods, generates synthetic data by compressing or stretching 
time series data. This should not be applied to this problem 
since the time derivative of the state variable predicted by 
the dynamic model may be changed significantly. These data 
augmentation methods may cause the deterioration of the 
generalization performance by generating data whose char-
acteristics are different from that of the original data.

This study aims to improve the generalization perfor-
mance of the dynamic model for harbor maneuvers by 
introducing data augmentation. For this purpose, this study 
demonstrates effective data augmentation methods and their 
effectiveness. In this paper, slicing [40, 43] and jittering [41, 
44, 45] are introduced as the data augmentation methods. 
These data augmentation methods are applied to the identi-
fication problem of the dynamic model using ANN. Numeri-
cal experiments are conducted to demonstrate the effective-
ness of the data augmentation methods, utilizing the dataset 
measured in free-running model tests. The free-running 
model test included measurements of random maneuvers 
and manual berthing maneuvers with an imaginary berth.

The contents of this paper overlap the previous literature 
[46], but presents the results more extensively, with some 
revisions.

The remainder of this paper is organized as follows: 
Sect. 2 defines the identification methods of the dynamic 
model; Sect.  3 describes data augmentation methods; 
Sect. 4 shows numerical experiments to show the effective-
ness of the data augmentation methods; Sect. 5 discuss the 

numerical experiments and future works; finally, Sect. 6 
concludes this paper.

2  Identification methods

In this section, we describe the identification method of the 
dynamic model using time series data obtained from full-
scale ship trials or free-running model tests. In this study, 
the metric of the prediction error of the dynamic model was 
defined, and the identification method was formulated as a 
minimization problem of the prediction error. The param-
eters of the dynamic model are identified by finding the opti-
mal parameter minimizing the prediction error metric. This 
method is partly based on the previous study [25]. First, 
The coordinate systems and state variables were defined in 
Sect. 2.1. Next, the used mathematical model are described 
in Sect. 2.2. Then, Sect. 2.3 describe the identification 
method.

2.1  Coordinate systems

The earth-fixed coordinate system O − x0y0 and a ship-fixed 
coordinate system O − xy are defined as Fig. 1. Note that the 
origin of the coordinate system O − xy is fixed at the mid-
ship. Then, the subject ship of this study is the model ship 
equipped with a single-propeller, VecTwin rudder, and a 
bow thruster, and is shown in Fig. 2. The port and starboard 
side rudder angle is defined as �p and �s , respectively. The 
propeller revolution number is np . These actuator states are 
defined as u ≡ (

�p, �s, np
)�

∈ ℝ
3 . Note that this study used 

a bow thruster revolution number of zero.
The ship’s position is represented by x0, y0 , and the head-

ing angle from the x0 axis is � . The surge, sway (at mid-
ship), and yaw angle velocity are denoted as u, vm , and 

r
n

p

x0

y0

-vm
u

T

UT

UT

UA

A

s

Fig. 1  Coordinate systems
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r, respectively. These ship state variables are defined as 
x ≡ (

x0, u, y0, vm,� , r
)�

∈ ℝ
6 . For the convenience of 

explanation, the ship position and heading angle are defined 
as � ≡ (

x0, y0,�
)�

∈ ℝ
3 and the surge, sway, and yaw angle 

velocity are defined as � ≡ (
u, vm, r

)�
∈ ℝ

3 . The true wind 
speed and wind direction are defined as UT and �T , respec-
tively. The apparent wind speed and direction are UA and 
�A , respectively. The apparent wind states are defined as 
� = (UA, �A)

� ∈ ℝ
2 . This study assumes that the wind speed 

and direction are uniform in space and depend on the physi-
cal time.

2.2  Neural network‑based dynamic model

The effect of waves is not considered in this study and cur-
rents are ignored for simplicity since this study focuses on 
harbor maneuvers. Therefore, the dynamics of ship motions 
are assumed to be expressed by the nonlinear ordinary differ-
ential equation as follows:

Here, �̇ donates the time derivative of �.
The nonlinear function F is modeled by the NN model.
NN is a mathematical model inspired by the human brain. 

This model is known as the model that has high approximation 
capabilities [36, 37]. In this study, an NN model consisting 
only of fully connected layers, called feedforward NN (FNN), 
is used. Let input and output variables denotes s and y , respec-
tively, FNN with L hidden layers are defined as follows:

(1)�̇(t) = F(�(t), u(t),�(t)) .

where zl denote variables of l-th hidden layer, and gl , Wl , 
and bl denote the activation function, weight matrix, and 
bias vector for the transformation to the l-th hidden layer, 
respectively. The dimensions of parameters and the activa-
tion functions for each layer are listed in Table 1.

Scale differences in NN inputs are likely to make the 
optimization problem challenging. Therefore, the NN 
inputs were standardized using the mean and standard 
deviation of the training data. The standardized variables 
of �, u,� are defined as �̄, ū, �̄ , respectively. The j-th com-
ponents of �̄, ū, �̄ are represented as follows:

where �(train)

�,j
 , �(train)

u,j
 , and �(train)

�,j
 denotes the j-th components 

of the mean of � , u , and � , respectively, and �(train)

�,j
 , �(train)

u,j
 , 

�
(train)

�,j
 denotes the j-th components of the standard deviation 

of � , u , and � . Then, the NN inputs are defined as 
s =

(
�̄�, ū�, �̄�

)�
∈ ℝ

8

Furthermore, the NN outputs are also assumed to be 
standardized variables. Thus, the j-th components of �̇ are 
calculated as follows:

where yj denotes the j-th components of y , and �(train)

acc,j
 and 

�
(train)

acc,j
 denotes the mean and standard deviation of the j-th 

components of �̇ . These statistical values are computed 
based on the training dataset. Note that �̇ was not measured. 

(2)

⎧
⎪⎪⎨⎪⎪⎩

z1 = g1
�
W1s + b1

�
⋮

zL = gL
�
WLzL−1 + bL

�
y = gL+1

�
WL+1zL + bL+1

�
,

(3)

�̄�j =
(
𝜈j − 𝜇

(train)

𝜈,j

)
∕
(
𝜎
(train)

𝜈,j

)
,

ūj =
(
uj − 𝜇

(train)

u,j

)
∕
(
𝜎
(train)

u,j

)
,

�̄�j =
(
𝜔j − 𝜇

(train)

𝜔,j

)
∕
(
𝜎
(train)

𝜔,j

)
,

(4)�̇�j = 𝜎
(train)

acc,j
⋅ yj + 𝜇

(train)

acc,j
,

Fig. 2  Subject model ship at the experimental pond

Table 1  The network architecture of the dynamic model

L = 4 Weight W
l

Bias b
l

Activation function g
l

l = 1 ℝ
256×8

ℝ
256 Hyperbolic tangent

l = 2, 3, 4 ℝ
256×256

ℝ
256 Hyperbolic tangent

l = 5 ℝ
3×256

ℝ
3 None
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Instead, �̇ was calculated using numerical differentiation to 
derive these statistical values.

In summary, the dynamic model is represented by the 
composite function of Eqs. 2–4.

Besides, the time derivative of the ship position and head-
ing angle �̇ are expressed as follows:

where �̇ donates the time derivative of �.
For convenience, the dynamic model and Eq. 5 are collec-

tively denoted as follows:

where � denotes the parameters of the dynamic model, 
including all weight matrices and bias vectors.

2.3  Optimization problem

The identification method used in this study was formulated 
as a minimization problem of the prediction error metric of 
the dynamic model. The prediction error was calculated by 
comparing the measured state variables and the state variable 
simulated by the dynamic model. The method was described 
in the remainder of this subsection.

Let us assume that the time series of ship state variables x 
and actuator state variables u , apparent wind state variables 
� were given, and N denote the number of time series. This 
dataset is defined as follows:

where t0,n and t1,n denotes the start and end time of the time 
series data, and the subscript n indicates that it is the n-th 
time series data.

The ship state variables can be simulated with the use of a 
dynamic model and the given dataset. The simulated ship state 
variables xsim

n
 is expressed as follows:

The prediction error of the dynamic model is defined by 
comparing these simulated ship state variables xsim

n
 with that 

of the dataset xn . The evaluation function of the prediction 
error is defined as follows:

(5)�̇ =

⎡
⎢⎢⎣

cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0

0 0 1

⎤
⎥⎥⎦
� ,

(6)ẋ(t) = f (x(t), u(t),�(t);�) ,

(7)D ≡ {(
xn(t), un(t),�n(t) ∣ t ∈ [t0,n, t1,n]

)}
n=1,2,…,N

.

(8)

xsim
n

(t;�) = xn(t0,n)

+ ∫
t

t0,n

f
(
xsim
n

(�;�),un(�),�n(�);�
)
d�

for n = 1, 2,… ,N .

where, d
(
xsim, x

)
 is a function that returns the error between 

xsim and x as a scalar value, and defined as follows:

Here, w ∈ ℝ
6 is a weight vector. This weight vector was 

introduced to compensate for the scale differences of state 
variables.

Although the model parameters can be identified by mini-
mizing the prediction error defined in Eq. 9, a regularization 
term was added to the optimization target to avoid overfit-
ting. Thus, the model parameters identified in the dataset are 
represented as follows:

where � is the regularization parameter.
Although the time series data of Eq. 7 are defined as con-

tinuous time values, the actual measured time series data 
are given as discrete time values. Thus, the dataset obtained 
from the full-scale ship trials or free-running model tests is 
expressed as follows:

Here, the ti represents the physical time of the i-th time step, 
and In denotes the number of time steps in the n-th time 
series data.

It is hard to calculate Eqs. 9 and 8 analytically. Therefore, 
this study calculated the time integration of Eq. 9 by trap-
ezoidal approximation as follows:

where, dn,i = d
(
xsim
n

(ti;�), xn(ti)
)
 , Δti = ti+1 − ti.

The simulated ship state variables xsim
n

 were obtained by 
using the Euler method, as follows:

Equations 13 and 14 can be easily calculated numerically.
The parameters � are optimized by a gradient descent-

based optimization method, Adam [47]. Gradients with 
respect to the parameters were computed using the back-
propagation method, and PyTorch, an open-source Python 

(9)L(�;D) =
1

N

N∑
n=1

{
∫

t1,n

t0,n

d
(
xsim
n

(t;�), xn(t)
)
dt

}
,

(10)d
(
xsim, x

)
=
‖‖‖w ⋅

(
xsim − x

)‖‖‖
2

.

(11)�opt = argmin
�
L(�;D) + �‖�‖2� ,

(12)D ≡ {(
xn
(
ti
)
, un

(
ti
)
,�n

(
ti
))

i=0,1,…,In−1

}
n=1,2,…,N

.

(13)L(�;D) =
1

N

N∑
n=1

{
In−2∑
i=0

dn,i+1 + dn,i

2
Δti

}
,

(14)

xsim
n

(
ti;�

)
= xn

(
t0
)

+

i−1∑
k=0

Δtk ⋅ f
(
xsim
n

(
tk;�

)
, un

(
tk
)
,�n

(
tk
)
;�
)

for n = 1, 2,… ,N .
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library for machine learning, was used for the implementa-
tion. In optimizing the NN model, the training dataset was 
randomly split into three subsets, and we computed the gra-
dients and updated parameters for each subset. The number 
of cycles that pass through a training dataset is called an 
epoch.

3  Data augmentation methods

This section describes the data augmentation methods 
applied to the identification problem described in Sect. 2.

Data augmentation generates synthetic data by trans-
forming the original dataset. In this study, we focus on 
magnitude and time domain transformation-based data 
augmentation methods introduced in the previous study 
[39]. These methods are performed by transforming values 
or the time axis of time series data and include jittering, 
rotation, scaling, magnitude warping, slicing, permutation, 
and time warping. However, not all of these methods can 
be applied to the identification problem of Sect. 2. For 
example, the window warping method distorts the meaning 
of the data because the time derivative of the state vari-
ables (the acceleration) is changed significantly.

Among these methods, slicing [40, 43] and jittering [41, 
44, 45] are expected to be applicable. Slicing generates 
synthetic data by extracting slices from the original time 
series. Slicing does not alter the meaning of the original 
data, as it does not affect the time derivative. On the other 
hand, jittering generates synthetic data by adding noise 
to the time series data. Jittering can generate data that 
resembles a different realization of sensor data when noise, 
whose magnitude is close to the observation accuracy, is 
used. Jittering also does not significantly distort the mean-
ing of the original data if the appropriate noise is used. 
Therefore, this study employs slicing and jittering.

In this paper, the dataset without data augmentation is 
denoted as the reference dataset. The reference dataset is 
defined in Sect. 3.1, and the augmented dataset by Jittering 
and/or slicing is described in Sect. 3.3 to 3.4.

3.1  Definition of the reference dataset

The reference dataset without data augmentation is 
described here. The measured time series data do not nec-
essarily have constant time steps. In other words, In in 
Eq. 12 is not necessarily constant for n. In this case, the 
computation of Eq. 14 requires a lot of time when the time 
step In is large. Therefore, the time-series data are divided 
by a certain number of time steps, and the divided time-
series dataset is defined as a reference dataset.

The n-th time series data are divided by a constant num-
ber of time steps I (< In) . The k-th time series data divided 
from the n-th time series data are expressed as follows:

Hence, the reference dataset can be obtained by dividing N 
time series data, and is represented as follows:

Here, Kn denotes the number of divisions and is determined 
as follows:

where ⌊⋅⌋ denotes the floor function.

3.2  Data augmentation by slicing

Slicing generates synthetic data by extracting the data with 
a certain time step from the original time-series data. The 
extracted data are selected randomly [40] or by sliding 
the start time step [43]. This study used the latter method.

Slicing allows for the generation of a greater number of 
time series patterns by extracting multiple time-series data 
segments with overlap from a time series. The difference 
between slicing and the method described in Sect. 3.1 is 
illustrated in Fig. 3.

In the identification method described in Sect. 2, the 
estimation accuracy of the simulated ship state is depend-
ent on the accuracy of the initial ship state xn

(
t0
)
 . There-

fore, the application of slicing is expected to reduce the 
impact of observation errors contained in specific initial 
values.

In this paper, the time step of the extracted time series 
data is equivalent to I, and the start time step is defined 
as � . Then, the extracted time series data are expressed 
as follows:

(15)D
(ref)

n,k
≡ (

x
n

(
t
kI+i

)
, u

n

(
t
kI+i

)
,�

n

(
t
kI+i

))
i=0,…,I−1

.

(16)D
(ref) ≡

{{
D

(ref)

n,k

}
k=0,1,…,K

n
−1

}

n=1,2,…,N

,

(17)Kn =

⌊
In

I

⌋
,

(18)D
(sli)
n,�

≡ (
x
n

(
t�+i

)
, u

n

(
t�+i

)
,�

n

(
t�+i

))
i=0,…,I−1

.

B
as
e

S
li
ci
n
g

I

S

Fig. 3  Illustration of the reference and slicing dataset
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Here, 0 ≤ � ≤ In − I must be satisfied. In this study, we 
extract data by sliding � at a step interval S. Thus, the data-
set augmented by slicing is defined as follows:

3.3  Data augmentation by jittering

Jittering generates synthetic data by adding noise to the time 
series data. In NNs, it is well known that adding noise to 
model inputs prevents overfitting and improves generaliza-
tion performance [44]. In addition, jittering could be applied 
to sensor data [41, 45], since this method assumes that time-
series data contain noise.

Normal noise independent in time and space is added 
to the ship state variables, and not added to the actua-
tor and wind state variables. The m-th normal noise vec-
tor added to the ship state variables xn

(
ti
)
 is defined as 

�n,m
(
ti
)
∼ N

(
0,�x

)
 , where �x denotes the covariance matrix 

of the normal noise. The time series data to which noise is 
added is represented as follows:

Thus, the dataset augmented by a factor of M by jittering is 
represented as follows:

Jittering can increase the amount of data in proportion to the 
number of noises it generates. However, unnecessarily large 
noise deteriorates estimation accuracy. Therefore, the covari-
ance matrix �x of added noise was determined according to 
the observation accuracy of the measurement equipment.

3.4  Data augmentation by slicing and jittering

The data augmentation method that uses slicing and jitter-
ing simultaneously is not so difficult to accomplish. The 
synthetic data can be generated by adding noise to the time 
series data of Eq. 18. The generated time series data are 
expressed as follows:

(19)D
(sli) ≡

{{
D

(sli)
n,�

}
�=0,S,…,

⌊
In−I

S

⌋
S

}

n=1,2,…,N

.

(20)
D

(jit)

n,k,m
≡ (

x
n

(
t
kI+i

)
+ �

n,m

(
t
kI+i

)
,

u
n

(
t
kI+i

)
,�

n

(
t
kI+i

))
i=0,…,I−1

.

(21)D
(jit) ≡

{{
D

(jit)

n,k,m

}
k=0,1,…,K

n
−1

}

n=1,2,…,N,m=1,2,…,M

.

(22)
D

(sli×jit)
n,�,m

≡ (
x
n

(
t�+i

)
+ �

n,m

(
t�+i

)
, u

n

(
t�+i

)
,

�
n

(
t�+i

))
i=0,…,I−1

.

Thus, the dataset augmented by slicing and Jittering is 
defined as follows:

4  Numerical experiments

One of the purposes of this paper is to demonstrate the 
effectiveness of the data augmentation methods described 
in Sect. 3. Numerical experiments were conducted using 
datasets obtained from free-running model tests. In this 
section, the numerical experiments are described and the 
results are presented. Section 4.1 describes the prepared 
dataset, Sect. 4.2 describes the optimization method and 
result, and Sect. 4.3 shows the prediction results of the 
identified dynamic model.

4.1  Dataset

The free-running model tests were conducted at Inukai 
Pond, which is an experimental pond at Osaka Univer-
sity, and the time series data of the ship state variables 
x , actuator state variables u , and relative wind state vari-
ables � were measured. The upper and lower limits of 
the actuator state variables are presented in Table 2. The 
configuration of the observation equipment of the model 
ship was the same as in the previous study [10]. The x0 and 
y0 were calculated by transforming the measured position 
by Global Navigation Satellite System (GNSS) to the mid-
ship position. The heading angle � and yaw angle velocity 
r were measured by Fiber Optical Gyro (FOG). u and vm 
were calculated from the speed over ground, the course 
over ground, and the heading angle measured by GNSS 
and FOG, respectively. The apparent wind speed UA and 
direction �A were measured by an ultrasonic anemometer. 
Although the measurement frequency was 10 Hz, the data 
used for the identification were downsampled to 1 Hz.

In free-running model tests, random maneuvers and 
manual berthing maneuvers with an imaginary berth were 

(23)

D
(sli×jit) ≡

{{
D

(sli×jit)
n,�,m

}
�=0,S,…,

⌊
In−I

S

⌋
S

}

n=1,2,…,N,m=1,2,…,M

.

Table 2  Limit of control inputs Variable Maximum 
and mini-
mum

nP (rps) [0, 12.5]
�s (deg.) [−35, 105]

�p (deg.) [−105, 35]
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conducted. This test has been previously employed in a 
previous study [24, 25]. In random maneuvers, control 
inputs are selected randomly by the human operator to 
collect datasets including various ship and actuator states. 
In this study, the operator handled the model ship with 
the aim of measuring widely distributed data, including 
motions with large drift angles in low-speed conditions, 
such as those encountered in harbor maneuvers. In addi-
tion, data on berthing maneuvers were measured for the 
test. The obtained trajectory data and their measurement 
times are shown in Table 3.

Trajectories No. 1 to No. 4 were used as training data, 
trajectory No. 5 as validation data, trajectory No. 6 as 
test data of random maneuvers, and trajectories No. 7 and 
8 as test data of berthing maneuvers. We prepared eight 
different training datasets to show the effectiveness of the 
data augmentation methods. The prepared datasets and 
their augmentation methods are listed in Table 4. D(ref) is 
a reference dataset without data augmentation. D(sli2) and 
D

(jit2) are datasets that have been augmented to twice the 
amount of data by each data augmentation method, and 

Table 3  Trajectory data collected by free-running model tests

The sampling frequency is 1 Hz

Trajectory no. Duration Maneuver

No. 1 500.5 (s) Random
No. 2 1801.8 (s) Random
No. 3 500.5 (s) Random
No. 4 1801.8 (s) Random
No. 5 1201.2 (s) Random
No. 6 1201.2 (s) Random
No. 7 100.0 (s) Berthing
No. 8 100.0 (s) Berthing

Table 4  Prepared dataset

Eight different training datasets are prepared

Dataset name Trajectory no. Augmentation methods

D
(ref) No. 1 and 2 Sect. 3.1 ( I = 100)

D
(sli2) No. 1 and 2 Sect. 3.2 ( I = 100, S = 50)

D
(sli10) No. 1 and 2 Sect. 3.2 ( I = 100, S = 10)

D
(jit2) No. 1 and 2 Sect. 3.3 ( I = 100,M = 2)

D
(jit10) No. 1 and 2 Sect. 3.3 ( I = 100,M = 10)

D
(sli2×jit2) No. 1 and 2 Sect. 3.4 ( I = 100, S = 50,M = 2)

D
(sli10×jit10) No. 1 and 2 Sect. 3.4 ( I = 100, S = 10,M = 10)

D
(d-ref) No. 1, 2, 3 and 4 Sect. 3.1 ( I = 100)

D
(validation) No. 5 Sect. 3.1 ( I = 100)

D
(test-R) No. 6 Sect. 3.1 ( I = 100)

D
(test-B) No. 7 and 8 Sect. 3.1 ( I = 100)
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Fig. 4  Histograms of ship state variables. Note that the vertical axes, 
which show the frequency, are scaled logarithmically
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Fig. 5  Scatter plots of �p , �s . The color bar shows the propeller revo-
lution number n 
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D
(sli10) and D(jit10) are datasets that have been augmented 

to 10 times the amount of data. D(sli2×jit2) and D(sli10×jit10) 
are augmented to 4 and 100 times the amount of data by 
both slicing and jittering, respectively. D(d-ref) has twice as 
much data without data augmentation.

For comparisons between datasets, histograms of the 
ship state variables are presented in Fig. 4, scatter plots is 
presented in Fig. 5, and the 2D histogram of apparent wind 
speed and direction are presented in Fig. 6.

These histograms show that both D(ref) +D
(validation) and 

D
(d-ref) +D

(validation) are able to cover all the data in D(test-B) , 
but not all the data in D(test-R).

For instance, D(ref) +D
(validation) and D(d-ref) +D

(validation) 
does not include sway velocities of above 0.15 m/s exist-
ing in D(test-R) . Moreover, D(test-R) includes the wind state 
variables of around UA = 5.0 (m∕s), �A = 300 (deg.) , while 
D

(ref) does not.
In free-running model tests, it is possible to obtain the 

dataset that completely covers the test dataset. However, in 
full-scale trials, it is difficult to do so because of the high 
costs and its time-consuming nature. In particular, wind 
disturbances cannot be controlled and large wind speeds 
rarely occur. In practical use, all possible state variables 
cannot be included in the training data, and there is a large 
possibility of encountering state variables that are not 
included in the training data. Therefore, this study shows 
the generalization performance for extrapolated state vari-
ables not included in the training data.

To demonstrate that the distribution of measured data 
covers not only the prepared berthing dataset but also 
a wide range of typical maneuvering behaviors in port 
operations, a comparison is presented between measured 
data and the navigation data measured on the full-scale 
ship during port entry and departure. Miyauchi et al. [48] 
have conducted a study on the statistical analysis of port 
navigation and maneuvering of the subject ship used in 
this study. They recorded data on maneuvering motions 
of the full-scale ship, and based on this data, presented 
statistical characteristics of maneuvering motions when 
entering and leaving port. Consequently, the statistical 
characteristics of the measured data were compared with 
the analysis results of Miyauchi et al. Here, since the scale 
of measured data differed from that of the full-scale ship 
data, comparisons were made using the similarity rule or 
non-dimensional values.

Let us focus on the ground speed and drift angle near the 
moored position. In the literature [48], it is shown that a drift 
angle is often large when the Euclidean distance from the 
moored position LD is less than 2.0Lpp . The histogram of 
speed over ground U =

√
u2 + v2

m
 in that condition is shown 

in Figure 5 of [48], and the same figure are shown in Fig. 7a. 
Here, � denotes the drift angle. From Fig. 7a, we see that a 

large drift angle is taken when U is less than 1.5 knots in the 
berthing and unberthing maneuver.

The same histogram using prepared datasets is shown in 
Figs. 7b and 7. This figure shows that random maneuver-
ing tests measured low-speed maneuvering data and that 
when U was less than 1.5 knots, maneuvering motions 
with large drift angles were measured.

a Berthing and unberthing data in LD ≤ 2Lpp. This figure duplicates
Figure 5 in the literature [48].
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We also focus on the relationship between � and r. In the 
literature [48], r is non-dimensionalized by Kose’s method 
[4] and its non-dimensional value is defined as 
r∗ = r

√
Lpp∕g . The scatter plot of r∗ and � is shown in Fig-

ure 6 of [48], and the same figure is shown in Fig. 8a. From 
Fig. 8a, it can be seen that when the ship’s speed is suffi-
ciently large, there is a strong positive correlation data meas-
ured between r and � for a small range of drift angles. This 
feature is also seen in the zigzag and turning data [1]. On the 

other hand, a wide range of drift angles are measured in low-
speed conditions, such as less than 1 knot. In particular, in 
the berthing data, the dimensionless yaw velocity r∗ is dis-
tributed in the range of −0.02 to 0.02, and a positive correla-
tion with a gradual slope is found between r and �.

Furthermore, the scatter plot of r∗ and � using prepared 
datasets is shown in Fig. 8b, c. Figure 8b, c show random 
maneuvering test data also had a strong positive correla-
tion between r and � when the ship’s speed is sufficiently 
large. In low-speed conditions, maneuvering motion data 
are measured for a wide range of drift angles. In particular, 
r∗ of D(d-ref) , which has a large amount of data, is widely 
distributed at any drift angle.

Therefore, the random maneuvering test measured not 
only moderate-speed maneuvering motions with a strong 
correlation between r and � but also low-speed maneuvering 
motions with a wide range of drift angles. The distribution 
of the measured data covered most of the distribution of 
full-scale data of port maneuvering motions.

4.2  Optimization results

In this subsection, the optimization results are presented.
The hyperparameters used in training are presented in 

Table 5. Note that the 1, 3, and 5 components of w are set to 
zero, to ignore the errors of the position and heading angle. 
The covariance matrix Σx is determined so that noise is 
added only to the velocity and angular velocity.

The optimization was conducted 10 times for each dataset 
presented in Table 4 by changing the random number. The 
optimal parameter was computed for each training dataset 
and each random number. The exponential moving average 
values of the evaluation function using the validation dataset 
at each epoch are presented in Fig. 9. Note that the exponen-
tial moving average values were calculated as follows:

where � = 0.1 , Li means the evaluation function values of 
the i-th epoch, and L̂i means the exponential moving aver-
age ones. The training was terminated when the number of 
epochs exceeded 10, 000 and the value of the evaluation 
function values for the validation dataset satisfied the fol-
lowing inequality:

(24)L̂i =

{
𝛼Li + (1 − 𝛼)L̂i−1 (i ≠ 0)

L0 (i = 0)
,

a  Berthing and unberthing data. This figure duplicates Figure 6 in the

literature [48].
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Table 5  Hyperparameters in training

Learning rate 1.0 × 10
−4

� of Eq. 11 1.0 × 10−2

w of Eq. 10 (0, 100, 0, 100, 0, 10)�

Σx Diag(0.0, 0.012, 0.0,
0.0, 0.012, 0.0, 0.12)  
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Here, �init denotes the initial parameter and �min denotes 
the parameter with the smallest values during training. In 
Eq. 25, the used dataset D(validation) is omitted for simplicity.

Figure 9 shows that the training was terminated by satis-
fying Eq. 25 in all cases. These results indicate that overfit-
ting to the training dataset occurred.

Therefore, in this study, the optimal parameters are the 
parameters with the smallest values of the evaluation func-
tion for the validation dataset to avoid overfitting and are 
denoted as �opt.

4.3  Prediction results

The prediction results of dynamic models with optimal 
parameters �opt are presented here.

The prediction error of dynamic models on the test data 
was computed, and the evaluation function L(�opt;D

(test-R)) 
was calculated. The obtained values of the evaluation func-
tion and its average value for random numbers are shown in 
Fig. 10. To show the details of the prediction result, the time 
series of control inputs and relative wind speed and direction 
in the test dataset are presented in Figs. 11, and 12 show the 

(25)L(�) > 0.1 ×
(
L
(
�init

)
−L

(
�min

))
+L

(
�min

)
.

time series of the ship state variables x , the predicted ship 
state variables xsim , and the temporary errors d(xsim, x).

In maneuvering simulation, the number of time steps is 
I = 100 . In other words, the predicted ship state variables 
xsim were initialized with the measured one x every 100 time 
steps (100 s).

First, we focus on the dataset augmented by slicing. 
Figure 10 shows that the mean values of the evaluation 
function for D(sli2) and D(sli10) are smaller than that for D(ref) . 
This indicates that slicing improves the generalization per-
formance regarding D(test) . However, since there is no sig-
nificant difference between D(sli10) and D(sli2) , increasing the 
amount of data augmented by slicing does not necessarily 
improve generalization performance.
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Next, we compare the results of D(ref) and the dataset 
augmented by jittering, D(jit2) or D(jit10) . Although the 
mean values of the evaluation function for D(jit2) are only 
slightly smaller than those of D(ref) , that for D(jit10) are even 
smaller. Thus, Jittering is also an augmentation method 
that improves the generalization performance regarding 
D

(test).
Then, Fig. 10 shows that the mean values of the evalu-

ation function for the dataset augmented by simultaneous 
slicing and jittering, D(sli2×jit2) and D(sli10×jit10) are smaller 
than that for D(ref) . These results indicate that slicing and 
jittering can be used in combination.

However, the evaluation function values of D(d-ref) are 
smaller than that of any augmented dataset. Even though 
D

(sli10) and D(jit10) have more data than D(d-ref) , the predic-
tion error trained by D(sli10) and D(jit10) is not smaller than 
that by D(d-ref).

One reason for this is the difference in prediction errors 
occurring from 850 to 900 s. Figure 14a shows that D(d-ref) 
reduce that prediction error, while Fig.  14b–d shows 
that the augmented datasets cannot. Figure  11 shows 
that the relatively strong apparent wind, which is around 
UA = 5.0 (m∕s), �A = 300 (deg.) , occurred from 850 to 
900 s.
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Figure  6 shows that there is a large difference 
between D(ref) and D(d-ref) in the amount of data around 
�A = 300 (deg.),UA = 5.0 (m∕s) . Note that slicing and jit-
tering cannot synthesize data that are not close to any data 
in the original dataset. Therefore, the data augmentation 
methods could not reduce the prediction errors occurring 
from 850 to 900 s. In addition, the prediction errors occur-
ring from 1100 to 1200 s are likely caused by the same 
reason. As a result, the evaluation function values of D(d-ref) 
becomes the smallest in any other training dataset.

Trajectories of � are presented in Fig. 13. Here, Fig. 13 
shows the maneuvering simulation results from 700 to 
1000 s. In Fig. 13a, surge velocity is relatively large, and 
trajectories tend to deviate due to accumulated errors in 
yaw velocity. In particular, the deviation of D(ref) is large, 
while that of D(d-ref) and D(sli10×jit10) is relatively small. In 
Fig. 13b, the surge velocity shows a significant decrease, and 
the relatively strong apparent wind occurred from 850 s. The 
trajectory of D(d-ref) shows relatively good agreement with 
the experimental data, while the trajectories of D(ref) and 
D

(sli10×jit10) deviate in the opposite side from the experimen-
tal data after 850 s. Figure 13c starts with the motion maneu-
vering in the sway direction with surge velocity near zero. In 
this case, D(d-ref) shows the best agreement with experimental 
results, and the trajectory of D(sli10×jit10) is closer to experi-
mental results than that of D(ref) . Therefore, it is evident that 
the trajectory of D(d-ref) demonstrates relatively good agree-
ment with the experimental results. Furthermore, there are 
cases where D(sli10×jit10) exhibits an even better alignment 
compared to D(ref).

Finally, to demonstrate the performance of the trained 
model for berthing maneuver, the prediction results of 
D

(test-B) are presented in Fig. 14. Here, the optimal parameter 

with the smallest value of L(�opt;D
(test-R)) was used. In Tra-

jectory No. 7, models trained with any of the training data-
sets predict the surge velocity u and sway velocity vm with 
high accuracy. However, the yaw angle velocity r deviates 
from the measured data around t = 30 (s) , causing the tra-
jectory to deviate after this point. For Trajectory No. 8, the 
model trained by D(ref) predicts the sway velocity vm and yaw 
angle velocity r accurately, but the surge velocity u gradually 
deviates from the measured data, resulting in a significant 
divergence of the trajectory from the measured data. Con-
versely, models trained by D(d-ref) and D(sli10×jit10) continue to 
predict the surge velocity u with high accuracy, resulting in 
trajectories that closely match the measured data.

5  Discussion

In Sect. 4.3, the results of numerical experiments to identify 
a dynamic model for the automatic berthing and unberthing 
controller were presented. In this study, the dynamic model 
was represented using an NN-based model, and time-series 
data measured in the random maneuvers were used as data-
sets. In numerical experiments, slicing or jittering improved 
the generalization performance of the dynamic model. The 
simultaneous use of slicing and jittering also improved the 
same. Therefore, they were effective data augmentation 
methods when the amount of measured data was limited.

On the other hand, slicing and jittering cannot synthe-
size data that is not close to any data in the original dataset 
and could not improve the generalization performance of 
the dynamic model within the extrapolation region of the 
original dataset.
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For example, strong winds that did not appear in the train-
ing data may cause a great deterioration of the generalization 
performance, and this deterioration cannot be avoided by 
slicing or jittering. Therefore, when random maneuvering 
tests or trials are used, it is desirable to measure the data that 
are widely distributed and have few extrapolation regions.

The dynamic model with optimal parameters was able to 
estimate the prepared berthing maneuvers with high accu-
racy. One of the reasons for this is that the distribution of 
the training data for random maneuvers covers the distribu-
tion of the berthing maneuvers, as demonstrated in Fig. 4 
and Fig. 6. Therefore, it can be seen that data collection by 
random maneuvering is one of the effective methods in iden-
tification of a dynamic model for harbor maneuvers.

While random maneuvering tests can collect widely dis-
tributed maneuvering data, this test lacks reproducibility due 
to the manual nature of random maneuvers. Thus, it is neces-
sary for future research to focus on data collection methods 
and explore the incorporation of conventional tests, such as 
zig-zag, spiral, and turning tests.

It is impractical to observe the desired data with limited 
measurement time due to uncontrollable wind disturbances. 
To improve the generalization performance of the extrapo-
lated state, we may need to incorporate physical or hydrody-
namic knowledge in addition to the measured data.

These remaining issues are our future works.
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6  Conclusion

In this study, data augmentation was introduced to the iden-
tification problem to improve the generalization performance 
of the dynamic model for a berthing and unberthing control-
ler. Slicing and jittering were used as data augmentation 
methods, and the method for applying these techniques to 
identification problems of the dynamic model using ANN 
was demonstrated. The parameters of the dynamic model 
were identified by minimizing the error between the meas-
ured state variables and the state variables simulated by the 
dynamic model. To validate the effectiveness of the data 
augmentation methods, numerical experiments were con-
ducted. In numerical experiments, the dynamic model was 
represented by an NN-based model, and time-series data 
measured in free-running model tests of the random maneu-
vers and manual berthing maneuvers with an imaginary 
berth were used as datasets. The findings of the numerical 
experiments are summarized as follows:

– Slicing and jittering improved the generalization per-
formance of the dynamic model when the amount of 
measured data was limited.

– Slicing and jittering did not improve the generaliza-
tion performance of the dynamic model within the 
extrapolation region of the original dataset because 
they cannot synthesize data that is not close to any of 
the measured data.

Therefore, we confirmed that slicing and jittering were 
effective data augmentation methods in those numerical 
experiments.

On the other hand, it was found necessary to col-
lect data that are widely dispersed to reduce extrapola-
tion regions when random maneuvering tests are used to 
identify a dynamic model for the automatic berthing and 
unberthing controller.
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