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Abstract
In this paper, we study extremal subsets in Alexandrov spaces with dimension n,
curvature ≥ κ , and diameter ≤ D. We show that the following three quantities are
uniformly bounded above in terms of n, κ , and D: (1) the number of extremal subsets
in an Alexandrov space; (2) the Betti numbers of an extremal subset; (3) the volume
of an extremal subset. The proof is an application of essential coverings introduced
by Yamaguchi.

Keywords Alexandrov spaces · Extremal subsets · Betti numbers · Volume ·
Collapse · Essential coverings

Mathematics Subject Classification 53C20 · 53C23

1 Introduction

1.1 Main Results

Alexandrov spaces are metric spaces with a lower sectional curvature bound in the
sense of Toponogov’s comparison theorem in Riemannian geometry. Alexandrov
spaces naturally arise as Gromov–Hausdorff limits of Riemannian manifolds or quo-
tient spaces of Riemannian manifolds by isometric group actions. Extremal subsets
are singular sets in Alexandrov spaces defined in terms of critical points of distance
functions, introduced by Perelman–Petrunin [19]. Typical examples are the boundary
of an Alexandrov space and the projection of the fixed point set to the quotient space of
a Riemannianmanifoldmentioned above. See Sect. 2 for the precise definitions, exam-
ples, and properties. Although extremal subsets equipped with the induced intrinsic
metrics do not generally have lower curvature bounds, they enjoy several important
properties that hold for Alexandrov spaces (for instance, see [7, 11, 15, 19–21]).
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LetA(n, κ, D) denote the set of isometry classes of Alexandrov spaces with dimen-
sion n, curvature ≥ κ , and diameter ≤ D. It is well-known that

⋃
k≤n A(k, κ, D)

is compact with respect to the Gromov–Hausdorff distance. From this fact, one
would expect various quantities on Alexandrov spaces in A(n, κ, D) to be uniformly
bounded. The main results of this paper are the following uniform boundedness on
extremal subsets.

Theorem 1.1 For given n, κ , and D, there exists a constant C = C(n, κ, D) such that
the following hold for any M ∈ A(n, κ, D):

(1) The number of extremal subsets in M is not greater than C.
(2) The total Betti number of any extremal subset E of M is not greater than C

(independent of the coefficient field).
(3) The m-dimensional Hausdorff measure of any extremal subset E of M is not

greater than C, where m = dim E.

Here the Hausdorff dimension of an extremal subset is equal to the topological
dimension,which is an integer ([7, 1.1(1)], [1, 4.4(2)]).Note that an extremal subset has
two metrics, i.e., the induced intrinsic metric and the restriction of the original metric
of the ambient Alexandrov space. However, the Hausdorff measure is independent of
which metric is chosen ([7, 3.17]).

1.2 Related Results

We first mention related results in the literature. As for Theorem 1.1(1), it is already
known that every compact Alexandrov space has only finitely many extremal subsets
([19, 3.6]). Our proof can be viewed as a refinement of the original proof of this fact.
Note that the same statement as Theorem 1.1(1) is cited in [1, 4.5] as an unpublished
result of Petrunin. Theorem 1.1(2) is an analog of Gromov’s Betti number theorem [8]
for Riemannian manifolds. Liu–Shen [14] generalized Gromov’s theorem to Alexan-
drov spaces, and later Yamaguchi [24] gave an alternative proof using his essential
coverings (discussed in the next section). Our proof is a slight modification of Yam-
aguchi’s one. Regarding Theorem 1.1(3), there is a recent stronger result of Li–Naber
[13] on the volumes of singular sets of Alexandrov spaces. More precisely, [13, 1.4]
together with [7, 3.5] implies Theorem 1.1(3). However, their proof is quite different
from ours, and also our technique provides further information on the induced intrinsic
metrics of extremal subsets (see Corollary 1.3 below).

In some special cases, the optimal constants of Theorem 1.1 and the rigidity in the
equality cases are known:

• Perelman ([18, 4.3]) The maximal number of extremal points in a compact n-
dimensional Alexandrov space of nonnegative curvature is 2n . The classification
of the equality case was given by Lebedeva [12].

• Wörner ([23, 1.8]) The maximal number of boundary strata of a compact n-
dimensional Alexandrov space of nonnegative curvature is 2n, and the equality is
attained only by a Euclidean cuboid (see [23] for the definition of boundary strata,
where this result is attributed to Perelman).

123



Uniform Boundedness on Extremal Subsets Page 3 of 28    46 

• Petrunin ([21, 3.3.5]) The maximal volume of the boundary of an n-dimensional
Alexandrov space with curvature ≥ 1 is equal to the volume of the standard unit
sphere of dimension n−1. The equality casewas classified byGrove–Petersen [10]
and the general curvature bound case was studied by Deng–Kapovitch [6]. Note
that it is unknown whether the boundary of an Alexandrov space equipped with
the induced intrinsic metric is an Alexandrov space with the same lower curvature
bound.

1.3 Main Tools

We next discuss the proof of Theorem 1.1. Our main tools are essential coverings
and isotopy covering systems introduced by Yamaguchi [24], which are related to
the collapsing of Alexandrov spaces. We defer the precise definitions to Sect. 3 and
here we give an example illustrating these concepts. Consider a thin rectangle M =
[0, 1] × [0, ε], where ε � 1. This is an Alexandrov space of nonnegative curvature,
and each edge and each vertex are extremal subsets. For any p ∈ M , the distance
function from p has critical points in its closed ε-neighborhood (except p; see Sect.
2 for the definition of critical point). Therefore, if one tries to cover M by metric
balls on which distance functions from the centers have no critical points, the minimal
number of such balls grows with the order ε−1 as ε → 0, which cannot be uniformly
bounded. For example, metric balls of radius 4ε/5 centered at ε-discrete points on the
long edges forms such a covering (see Fig. 1).

However, we can cover M by a much smaller number of metric balls with similar
properties, as follows (see Fig. 2). Let p1, p2 be the midpoints of the short edges and
p11, p12, p21, p22 the four vertices such that pi j are adjacent to pi , as shown in the
figure. First, we cover M by two metric balls Bi of radius 2/3 centered at pi . Then the
distance function from pi has no critical points in Bi \ B̂i , where B̂i is a concentric
ball of radius 2ε/3 (the dashed arcs in the figure). Second, we cover these B̂i by four
metric balls Bi j of radius 5ε/6 centered at pi j . Then the distance function from pi j
has no critical points in Bi j (except pi j ). In summary:

(1) M is covered by Bi ;
(2) The critical points of the distance function from pi are covered by Bi j ;

Fig. 1 Essential covering with
depth 1

Fig. 2 Essential covering with
depth 2
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(3) Bi j is free of critical points of the distance function from pi j .

Such a multi-step covering is called an isotopy covering system and the last four balls
Bi j are called an essential covering of M . In general, one can extend this construction
to more than two steps (i.e., if Bi j still contains critical points, then cover them by
Bi jk). The number of steps needed to obtain balls with no critical points is called
depth. Yamaguchi [24] proved that for any M ∈ A(n, κ, D), the minimal number of
metric balls forming an essential covering of M with depth ≤ n is uniformly bounded
above by C(n, κ, D) (Theorem 3.7).

Once such a covering is obtained, the proof of Theorem 1.1 reduces to how to
control each quantity (the number of extremal subsets, the Betti number of an extremal
subset, and the volume of an extremal subset) on this covering. The general outline is
as follows. Let χ denote the quantity under consideration. First we give a bound on
χ(Bi j ), using the fact that the essential covering Bi j is critical point free. This yields
a bound on χ(B̂i ), as B̂i is covered by Bi j . Next we give a bound on χ(Bi ) in terms
of χ(B̂i ), using the fact that the annulus Bi \ B̂i is critical point free. Finally, since M
is covered by Bi , we obtain a bound on χ(M).

To carry out the above argument, we use yet another tools. For Theorem
1.1(1), we use the original technique of Perelman–Petrunin [19, 3.6]. For Theo-
rem 1.1(2), we use the fibration theorem and the stability theorem of Perelman [16,
17], Perelman–Petrunin [19], and Kapovitch [11]. For Theorem 1.1(3), we use the
gradient-exponential map of Perelman–Petrunin [15].

1.4 Remarks and Corollaries

To obtain the conclusion of Theorem1.1, it is necessary to fix the dimension of ambient
Alexandrov spaces, and it is not sufficient to fix the dimension of extremal subsets. For
example, consider the following n-dimensional Alexandrov space of curvature ≥ 1:

Mn =
{
(x1, . . . , xn+1) ∈ R

n+1 | x21 + · · · + x2n+1 = 1, x1, . . . , xn ≥ 0
}

.

For each 1 ≤ i ≤ n, theminimal geodesic γi between (0, . . . , 0, 1) and (0, . . . , 0,−1)
passing through (0, . . . , 1

i
, . . . , 0, 0) is a one-dimensional extremal subset of Mn .

Therefore the number of one-dimensional extremal subsets in Mn is not uniformly
bounded when n → ∞. Similarly, En = ⋃n

i=1 γi is a one-dimensional extremal
subset of Mn , but neither the Betti number nor the volume of En is uniformly bounded
when n → ∞. The reason this happens, even though the dimension of extremal subsets
is fixed, is because the dimension of Mn is not fixed.

There are two corollaries of the main theorem. For nonnegatively curved spaces,
Theorem 1.1 (1) and (2) hold without the upper diameter bound D.

Corollary 1.2 For given n, there exists a constant C(n) such that the following hold
for any Alexandrov space M of nonnegative curvature:

(1) The number of extremal subsets in M is not greater than C(n).
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(2) The total Betti number of any extremal subset E of M is not greater than C(n)

(independent of the coefficient field).

In the same way as Theorem 1.1(3), we get a uniform bound (depending on ε)
on the number of ε-discrete points in an extremal subset of an Alexandrov space in
A(n, κ, D) (Theorem 6.6). This holds for the induced intrinsic metric of an extremal
subset. Therefore we obtain the following precompactness theorem. Let E(n, κ, D)

denote the set of isometry classes of connected extremal subsets of Alexandrov spaces
in A(n, κ, D), equipped with the induced intrinsic metrics.

Corollary 1.3 E(n, κ, D) is precompact with respect to the Gromov–Hausdorff dis-
tance.

In other words, any sequence of extremal subsets in E(n, κ, D) has a convergent
subsequence. A natural question is: what is the limit space? It is known that the limit is
also an extremal subset with the induced intrinsic metric, provided that the sequence
of the ambient Alexandrov spaces does not collapse. More precisely, if Alexandrov
spaces Mi converge to M without collapse and extremal subsets Ei ⊂ Mi converge to
E ⊂ M as subsets, then E is extremal ([21, 4.1.3]) and the induced intrinsic metrics
of Ei converge to that of E ([20, 1.2]). On the other hand, it is unknown what the limit
space is when the ambient spaces collapse.

Finally, we remark that Yamaguchi’s paper [24] is still unpublished, but at least
this is not due to any mistake. In fact we review his arguments in detail and provide
self-contained proofs. This paper can be read without consulting [24].

Organization In Sect. 2, we review the basics of Alexandrov spaces and extremal
subsets. We also recall several notions related to the gradient-exponential map used
in Sect. 6. In Sect. 3, we define essential coverings and isotopy covering systems and
review the main results of [24]. In Sect. 4, we prove the uniform boundedness of
the numbers of extremal subsets in Alexandrov spaces (Theorem 1.1(1) and Corollary
1.2(1)). In Sect. 5, we prove the uniform boundedness of the Betti numbers of extremal
subsets (Theorem 1.1(2) and Corollary 1.2(2)). In Sect. 6, we prove the uniform
boundedness of the volumes of extremal subsets (Theorem 1.1(3) and Corollary 1.3).

2 Preliminaries

The distance between p and q is denoted by |pq| or d(p, q). We denote by B(p, r)
and B̄(p, r) the open and closed metric balls of radius r centered at p, respectively.
For 0 < r1 < r2, A(p; r1, r2) denotes the closed metric annulus B̄(p, r2) \ B(p, r1).
For a metric space (X , d) and λ > 0, λX denotes the rescaled space (X , λd).

2.1 Alexandrov Spaces

Here we review the basics of Alexandrov spaces. We refer to [3, 4], and [2] for details.
A geodesic space is ametric space such that every two points can be joined by amin-

imal geodesic. We assume that every minimal geodesic is parametrized by arclength.

123



   46 Page 6 of 28 T. Fujioka

For κ ∈ R, the κ-plane is the complete, simply-connected surface of constant curva-
ture κ . For three points p, q, and r in a geodesic space, we consider a geodesic triangle
on the κ-plane with side lengths |pq|, |pr |, and |qr |. We denote by ∠̃qpr the angle
opposite to |qr | and call it the comparison angle at p.

A complete geodesic space M is called an Alexandrov space with curvature ≥ κ if
every point has a neighborhoodU satisfying the following: any twominimal geodesics
γ and σ in U starting at the same point p, the comparison angle ∠̃γ (t)pσ(s) is
nonincreasing in both t and s. In this paper, we only deal with finite-dimensional
Alexandrov spaces in the sense of Hausdorff dimension. The Hausdorff dimension of
an Alexandrov space is equal to the topological dimension. From now, M denotes an
n-dimensional Alexandrov space.

For any two minimal geodesics γ and σ starting at p ∈ M , one can define their
angle ∠(γ, σ ) := limt,s→0 ∠̃γ (t)pσ(s). The angle ∠ is a pseudo-distance on the
space �p consisting of all minimal geodesics starting at p. The completion of the
metric space induced from (�p,∠) is called the space of directions at p and denoted
by 	p. 	p is a compact (n − 1)-dimensional Alexandrov space with curvature ≥ 1.
The Euclidean cone K (	p) over 	p is called the tangent cone at p and denoted
by Tp. (Tp, o) is isometric to the pointed Gromov–Hausdorff limit limλ→∞(λM, p),
where o denotes the vertex of the cone. Tp is an n-dimensional Alexandrov space of
nonnegative curvature.

For p, q ∈ M , we denote by q ′
p ∈ 	p one of the directions of minimal geodesics

from p to q. Similarly, for a closed subset A ⊂ M , we denote by A′
p ⊂ 	p the set of

all directions of minimal geodesics from p to A.
For notational simplicity, here we assume that the lower curvature bound is −1.

Let A(n) denote the set of isometry classes of n-dimensional Alexandrov spaces
with curvature ≥ −1, and A(n, D) its restriction to all elements with diameter ≤
D. Similarly, let Ap(n) denote the set of isometry classes of n-dimensional pointed
Alexandrov spaces with curvature ≥ −1. The following property is the starting point
of this paper.

Theorem 2.1 ([3, §8]) A(n, D) (resp. Ap(n)) is precompact with respect to the
Gromov–Hausdorff topology (resp. the pointed Gromov–Hausdorff topology), i.e.,
any sequence has a convergent subsequence. The limit is an Alexandrov space with
dimension ≤ n and curvature ≥ −1.

2.2 Extremal Subsets

Here we review the basics of extremal subsets. We refer to [19], [21, §4], and [7] for
details.

Let M be an Alexandrov space. We denote by distq the distance function d(q, · )
from q ∈ M . A point p ∈ M \ {q} is called a critical point of distq if

min
pq

∠(q ′
p, ξ) ≤ π/2
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for any ξ ∈ 	p, where pq runs over all minimal geodesics from p to q. By the
first variation formula, this is equivalent to dp distq(ξ) ≤ 0 (see Sect. 2.3 for the
differential).

Definition 2.2 A closed subset E of an Alexandrov space M is said to be extremal if
the following condition is satisfied:

(∗) If distq |E has a local minimum at p ∈ E , where q ∈ M \ E , then p is a critical
point of distq .

Note that ∅ and M are regarded as extremal subsets of M .
Moreover, if M has curvature ≥ 1, the following additional condition is imposed:

if E is empty or a singleton {p}, then we require diam M ≤ π/2 or M ⊂ B̄(p, π/2),
respectively. This definition is used only for the space of directions and is stated
explicitly when used.

Example 2.3 Let M be an Alexandrov space.

(1) A singleton {p} ⊂ M is extremal (in the sense of the standard definition (∗)) if
and only if diam	p ≤ π/2. It is called an extremal point.

(2) ([19, 1.2]) Any Alexandrov space admits a canonical stratification: there exists
a sequence of closed subsets uniquely determined by the topological structure of
M ,

M = Mn ⊃ Mn−1 ⊃ · · · ⊃ M0 ⊃ M−1 = ∅,

where n = dim M , such that the k-dimensional stratum M (k) = Mk \Mk−1 is a k-
dimensional topological manifold if nonempty. Roughly speaking, M (k) consists
of points where the conical neighborhood topologically splits offRk but notRk+1

(see [17] for the precise definition). Then the closure of each stratum is an extremal
subset. In particular, the boundary of an Alexandrov space (the closure of M (n−1))
is an extremal subset.

(3) ([19, 4.2]) If a compact group G acts on M isometrically, the quotient space M/G
is also an Alexandrov space with the same lower curvature bound. For a closed
subgroup H ofG, the projection of the fixed point set of H to M/G is an extremal
subset.

For an extremal subset E ⊂ M and p ∈ E , the space of directions 	pE of E at p
is defined as the subset of 	p consisting of all limit directions limi→∞(pi )′p, where
pi ∈ E \ {p} converges to p. 	pE is an extremal subset of 	p (regarded as a space of
curvature≥ 1; see Definition 2.2). The subcone K (	pE) of Tp = K (	p) is called the
tangent cone of E at p and denoted by TpE (if	pE = ∅, we set K (∅) = {o}). TpE is

isometric to the limit limλ→∞(λE, p) under the convergence (λM, p)
GH−−→ (Tp, o).

TpE is an extremal subset of Tp.
The union, intersection, and closure of the difference of two extremal subsets are

also extremal subsets. For example, if E and F are extremal subsets of M , then E \ F
is an extremal subset of M . Moreover, it holds that 	p(E \ F) = 	pE \ 	pF and
Tp(E \ F) = TpE \ TpF for any p ∈ E \ F .
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The Hausdorff dimension of an extremal subset is equal to the topological dimen-
sion. As in the case of an Alexandrov space, any extremal subset admits a canonical
stratification uniquely determined by its topological structure. The closure of each
stratum is also an extremal subset (compare Example 2.3(2)).

2.3 Semiconcave Functions, Gradient Curves, and Radial Curves

Here we recall several notions related to the gradient-exponential map, which will
be used in Sect. 6. Since these will not be used in the other sections, the reader is
recommended to skip this section until they read Sect. 6. We refer to [21, §1–3], [15,
§3], and [2, Ch.16] for details.

Semiconcave functions. Let M be an Alexandrov space and � an open subset of M .
Suppose M has no boundary. For μ ∈ R, a (locally Lipschitz) function f : � → R

is said to be μ-concave if for any minimal geodesic γ (t) parametrized by arclength,
f ◦ γ (t) − (μ/2)t2 is concave. When M has nonempty boundary, f is said to be
μ-concave if its tautological extension to the double of M is μ-concave in the above
sense. A function f is said to be semiconcave if for any p ∈ �, there exists μp ∈ R

such that f is μp-concave in some neighborhood of p. For example, the distance
function distq from q ∈ M is semiconcave on M \ {q}.

For a semiconcave function f : � → R and p ∈ �, its differential dp f : Tp → R

at p is defined by dp f := limλ→∞ λ( f − f (p)), where λ( f − f (p)) is defined on

λM and the limit is taken under the convergence (λM, p)
GH−−→ (Tp, o). We then define

the gradient ∇p f ∈ Tp of f at p by

∇p f :=
{
dp f (ξmax)ξmax if max dp f |	p > 0,

o if max dp f |	p ≤ 0.

where ξmax ∈ 	p is a unique maximum point of dp f |	p . A point p ∈ � is called a
critical point of f if ∇p f = o. For the distance function distq , this coincides with the
definition of critical point in Sect. 2.2.

Gradient curves. For a semiconcave function f : � → R, a curve α(t) in� satisfying

α+(t) = ∇α(t) f

is called a gradient curve of f . Here α+(t) denotes the right tangent vector of α

defined as the limit limλ→∞ α(t + λ−1) under the convergence (λM, p)
GH−−→ (Tp, o)

(the above definition assumes that it exists). If f is a μ-concave function defined on
M , then for any p ∈ M there exists a unique gradient curve αp : [0,∞) → M of f
with αp(0) = p. We define the gradient flow �t

f : M → M of f by

�t
f (p) := αp(t)

for p ∈ M and t ≥ 0. (For a general semiconcave function, its gradient flow is not
necessarily defined for all p ∈ M and t ≥ 0.)
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Radial curves. In what follows, we assume that the lower curvature bound is −1. For
p ∈ M and ξ ∈ 	p, we consider a curve βξ : [0,∞) → M satisfying the following
differential equation:

β+
ξ (s) = tanh |pβξ (s)|

tanh s
∇βξ (s) dist p,

βξ (0) = p, β+
ξ (0) = ξ.

(2.1)

We call it the radial curve starting at p in the direction ξ . For any initial data (p, ξ),
there exists a unique radial curve. If there is aminimal geodesic starting in the direction
ξ , then it coincides with the radial curve βξ .

In fact, radial curves starting at p are reparametrizations of gradient curves of
a semiconcave function f = cosh ◦ dist p −1. Let α(t) be the gradient curve of f
starting at x ∈ M \{p} and β(s) the radial curve starting at p in the direction x ′

p. Then
α(t) = β(s) for t ≥ 0 and s ≥ |px |, where the relation between the two parameters
is given by

dt

ds
= 1

tanh s cosh |pβ(s)| . (2.2)

Note that β(s) is well-defined for s ≥ |px |, independent of the choice of x ′
p.

We next explain two comparison properties of radial curves. To do this, we define
two comparison angles for 1-Lipschitz curves. For a 1-Lipschitz curve c and a point
p, we consider a geodesic triangle on the κ-plane with side lengths |pc(t1)|, |t2 − t1|,
and |pc(t2)|. We denote by ∠̃pc(t1)�c(t2) the angle opposite to |pc(t2)|. Similarly,
for 1-Lipschitz curves c1 and c2 with c1(0) = c2(0) = p, we consider a geodesic
triangle on the κ-plane with side lengths |t1|, |t2|, and |c1(t1)c2(t2)|. We denote by
∠̃c1(t1)� p�c2(t2) the angle opposite to |c1(t1)c2(t2)|. In case such a triangle does
not exist, we define the comparison angle to be 0.

Proposition 2.4 ([15, 3.3, 3.3.3]) Let M be an Alexandrov space with curvature ≥ −1
and p ∈ M.

(1) For a radial curve βξ starting at p in the direction ξ ∈ 	p and q ∈ M, the
comparison angle ∠̃qp�βξ(s) is nonincreasing in s. In particular,

∠̃qp�βξ(s) ≤ min
pq

∠(q ′
p, ξ),

where the minimum is taken over all minimal geodesics from p to q.
(2) For two radial curves β1 and β2 starting at p such that β1|[0,a1] and β2|[0,a2] are

minimal geodesics, we have

∠̃β1(s1)� p�β2(s2) ≤ ∠̃β1(a1)pβ2(a2)

whenever s1 ≥ a1 and s2 ≥ a2.

Now we define the gradient-exponential map gexpp : Tp → M at p ∈ M by

gexpp(sξ) := βξ (s),
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where ξ ∈ 	p and s ≥ 0. Clearly gexpp is an extension of the usual exponential
map expp defined by minimal geodesics. By Proposition 2.4(2) above, gexpp is a
1-Lipschitz map from (Tp, h) to M , where h denotes the metric on Tp defined by the
hyperbolic law of cosines instead of the Euclidean one (i.e., the elliptic cone over 	p

in the sense of [3, 4.3.2]).
Finally, we discuss the relationship between extremal subsets and gradient/radial

curves. Let E be an extremal subset of M . For any semiconcave function f on M ,
the gradient curve of f starting at a point of E remains in E , that is, �t

f (E) ⊂ E
(conversely, a subset with this property is extremal). In particular, for radial curves,
we have the following: if p ∈ E , then gexpp(TpE) ⊂ E .

Remark 2.5 When the lower curvature bound is−1, there is another definition of radial
curve. Namely, we can replace the differential equation (2.1) by a simpler (and slower)
one

β+
ξ (s) = sinh |pβξ (s)|

sinh s
∇βξ (s) dist p .

Then Proposition 2.4 also holds for this curve. See [2, p. 246] or the printed version
of [21, §3.2] (not the arXiv version). However, we need the faster one (2.1) for our
application.

3 Essential Coverings and Isotopy Covering Systems

In this section, we review the main results of Yamaguchi [24].
From now on, the lower curvature bound is assumed to be −1 (the general case is

obtained by rescaling). Recall that Ap(n) denotes the set of pointed n-dimensional
Alexandrov spaces with curvature ≥ −1. For a point p and 0 < r1 < r2, A(p; r1, r2)
denotes the closed metric annulus B̄(p, r2) \ B(p, r1). For a metric space (X , d) and
λ > 0, λX denotes the rescaled space (X , λd).

The following rescaling theorem plays a key role throughout the paper.

Theorem 3.1 ([24, 3.2]) Suppose (Mi , pi ) ∈ Ap(n) converges to an Alexandrov space
(X , p) with dimension ≥ 1. Then for sufficiently small r > 0, there exists p̂i ∈ Mi

converging to p such that either (1) or (2) holds:

(1) There is a subsequence { j} ⊂ {i} such that dist p̂ j has no critical points on

B̄( p̂ j , r) \ { p̂ j }.
(2) There exists a sequence δi → 0 such that

(i) for any λ > 1 and sufficiently large i , dist p̂i has no critical points on
A( p̂i ; λδi , r);

(ii) for any limit (Y , y0) of a subsequence of (
1
δi
Mi , p̂i ), we have

dim Y ≥ dim X + 1.

In particular, if dim X = n, then (1) holds for all sufficiently large i .
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Remark 3.2 As can be seen from the proof, the choice of r depends only on the limit
space X (and the dimension n) and is independent of the sequence Mi . Indeed, it
suffices to choose r small enough that the rescaled space r−1X is sufficiently close to
the tangent cone Tp. The value δi is the maximum distance between p̂i and critical
points of dist p̂i in B̄( p̂i , r) \ { p̂i }.
Example 3.3 Let S1ε denote the circle of length ε � 1.

(1) Consider a collapsing sequence (K (S1ε ), o)
GH−−→ (R+, 0) as ε → 0, where K (·)

denotes the Euclidean cone. If p = 0 ∈ R+, then we can choose p̂i = o ∈ K (S1ε )

so that Theorem 3.1(1) holds.

(2) Consider a collapsing sequence R × S1ε
GH−−→ R as ε → 0. If p = 0 ∈ R, then we

can choose δε = ε/2 so that Theorem 3.1(2) holds ( p̂i is an arbitrary sequence
converging to p).

Here we omit the proof of Theorem 3.1 because later we will prove a stronger
quantitative version, Theorem 6.4 (or see the original proof in [24, 3.2]).

Now we give the definitions of essential covering and isotopy covering system.
Although our definitions are slightly stronger than the original ones in [24], we use
the same terminology as in [24]. See Remark 3.5 for more details.

Let M be an Alexandrov space. For an open metric ball B ⊂ M centered at p, we
call a concentric openmetric ball B̂ ⊂ B an isotopic subball of B if dist p has no critical
points on the annulus B̄ \ B̂. Consider a family of open metric balls B = {Bα1···αk },
where

1 ≤ α1 ≤ N1, 1 ≤ α2 ≤ N2(α1), . . . , 1 ≤ αk ≤ Nk(α1 · · ·αk−1)

and 1 ≤ k ≤ l for some l depending on α1, α2, . . . . We call N1 the first degree of B
and Nk(α1 · · · αk−1) the k-th degree of B with respect to α1 · · · αk−1. Let A be the set
of all multi-indices α1 · · · αk such that Bα1···αk ∈ B, and Â the set of all maximal multi-
indices in A. Here α1 · · · αl is maximal if there are no αl+1 with α1 · · · αlαl+1 ∈ A.
For each α = α1 · · · αk ∈ A, we set |α| := k.

Definition 3.4 Let X be a subset of M . We call B an isotopy covering system of X if
it satisfies the following conditions:

(1) {Bα1}N1
α1=1 covers X ;

(2) {Bα1···αk }Nk(α1···αk−1)

αk=1 covers an isotopic subball B̂α1···αk−1 of Bα1···αk−1 ;

(3) for each α ∈ Â, dist pα has no critical points on B̄α \ {pα}, where pα is the center
of Bα;

(4) there is a uniform bound d such that |α| ≤ d for all α ∈ A.

We callU = {Bα}
α∈ Â an essential covering of X . In addition,we call d0 = max

α∈ Â |α|
the depth of both B and U .
Remark 3.5 The above definition is stronger than Yamaguchi’s original definition.
Roughly speaking, Yamaguchi’s definition only requires that Bα is homeomorphic to
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B̂α for α ∈ A\ Â and is homeomorphic to some Euclidean cone for α ∈ Â (see [24, §4]
for more details). It follows from Perelman’s stability theorem and fibration theorem
that our definition above implies these properties (see Theorem 5.1). In simple terms,
Yamaguchi’s essential covering is topological, whereas ours is geometrical. For the
rectangle example in Sect. 1.3, the topological essential covering can be chosen to be
M itself, but the geometrical essential covering must be the four balls centered at the
vertices, as the vertices are extremal points.

For a positive integer d, we denote by τd(X) the minimal number of metric balls
forming an essential covering of X with depth ≤ d. For an open metric ball B in M
having a proper isotopic subball, we set

τ ∗
d (B) := min

B̂
τd(B̂),

where B̂ runs over all isotopic subballs of B. In addition, if dist p has no critical points
on B̄ \ {p}, where p is the center of B, we set τ ∗

0 (B) := 1; otherwise τ ∗
0 (B) := ∞.

Then the following holds: if X is covered by openmetric balls {Bα1}N1
α1=1 having proper

isotopic subballs, we have

τd(X) ≤
N1∑

α1=1

τ ∗
d−1(Bα1)

for any d ≥ 1.

Example 3.6 For 0 < ε � 1, consider a thin n-dimensional cuboid

I nε = [0, 1] × [0, ε] × [0, ε2] × · · · × [0, εn−1].

Note that the faces of each dimension are extremal subsets. As in Sect. 1.3, we see that
metric balls of radii slightly less than εn−1 centered at the vertices form an essential
covering of I nε with depth n. Therefore τn(I nε ) ≤ 2n for any ε (actually the equality
holds since the vertices are extremal points). On the other hand, limε→0 τn−1(I nε ) =
∞.

The following theorem is the main result of [24]. Recall that A(n) denotes the set
of (non-pointed) n-dimensional Alexandrov spaces with curvature ≥ −1.

Theorem 3.7 ([24, 4.4]) For given n and D, there exists a constant C(n, D) satisfying
the following: for any M ∈ A(n) and p ∈ M, we have

τn(B(p, D)) ≤ C(n, D).

Remark 3.8 More precisely, [24, 4.4] states that there exists an isotopy covering system
of B(p, D) whose first degree is bounded above by C(n, D) and whose other higher
degrees are bounded above by some constant C(n) independent of D. However, the
above simple version is enough for our applications.
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Let us review the proof, assuming Theorem 3.1.

Proof For 1 ≤ k ≤ n, we prove the following two statements by reverse induction on
k.

(Pk) Suppose (Mi , pi ) ∈ Ap(n) converges to a k-dimensional Alexandrov space
(X , p). Then we have

lim inf
i→∞ τn−k+1(B(pi , D)) < ∞.

(Qk) Suppose (Mi , pi ) ∈ Ap(n) converges to a k-dimensional Alexandrov space
(X , p). Then for sufficiently small r > 0, there exists a sequence p̂i ∈ Mi

converging to p such that

lim inf
i→∞ τ ∗

n−k(B( p̂i , r)) < ∞.

Here r and p̂i in (Qk) are the ones of Theorem 3.1. In particular, r depends only
on the limit space X (see Remark 3.2). Note that (Pk) is a global claim while (Qk)
is a local claim. The proof is carried out in the following alternating order: (Qn) ⇒
(Pn) ⇒ · · · ⇒ (Q1) ⇒ (P1).

(Qn) clearly follows from Theorem 3.1(1). Let us prove (Qk) ⇒ (Pk). Suppose
that (Pk) does not hold. Then there exists (Mi , pi ) ∈ Ap(n) converging to (X , p)with
dim X = k such that

lim
i→∞ τn−k+1(B(pi , D)) = ∞.

By compactness, we can cover B̄(p, D) by finitely many balls {B(xα, rα/2)}Nα=1,
where rα is the one of (Qk). Then there exist a subsequence { j} and a constant C such
that τ ∗

n−k(B(x̂ j
α, rα)) ≤ C for every α and some x̂ j

α → xα . Since {B(x̂ j
α, rα)}Nα=1 is a

covering of B(p j , D) for sufficiently large j , we have

τn−k+1(B(p j , D)) ≤ NC .

This contradicts the assumption.
Next we prove (Pn), . . . , (Pk+1) ⇒ (Qk). Suppose (Mi , pi ) ∈ Ap(n) converges

to (X , p) with dim X = k. By Theorem 3.1, for sufficiently small r > 0, there exists
p̂i → p such that either (1) or (2) holds. When (1) holds, the claim is trivial. When (2)
holds, there exists δi → 0 satisfying both (i) and (ii). Passing to a subsequence { j},
we may assume that ( 1

δ j
M j , p̂ j ) converges to (Y , y0). Then we have l := dim Y ≥

dim X + 1 = k + 1. Applying (Pl ) to 1
δ j
B( p̂ j , 2δ j ) and passing to a subsequence

again, we have

τn−l+1

(
1

δ j
B( p̂ j , 2δ j )

)

≤ C
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for someconstantC . Since B( p̂ j , 2δ j ) is an isotopic subball of B( p̂ j , r) for sufficiently
large j , we obtain

τ ∗
n−k(B( p̂ j , r)) ≤ τn−k(B( p̂ j , 2δ j )) ≤ C .

This completes the inductive proof of (Pk) and (Qk).
Now Theorem 3.7 follows from (P1), …, (Pn) by contradiction. Note that the case

dim X = 0 follows from the case dim X ≥ 1 by rescaling Mi so that the new diameter
is 1. ��

4 Numbers of Extremal Subsets in Alexandrov Spaces

In this section, we prove Theorem 1.1(1) and Corollary 1.2(1).
For a subset X of an Alexandrov space M , we define ν(X) as follows:

ν(X) := #
(
{E : an extremal subset of M} /∼

)
,

where E ∼ E ′ ⇐⇒ X ∩ E = X ∩ E ′,

i.e., the number of extremal subsets in M counted by ignoring the differences outside
X . If X is covered by {Xα}Nα=1, we have

ν(X) ≤
N∏

α=1

ν(Xα).

The following lemma was essentially used in [19] to show the finiteness of the
number of extremal subsets in a compact Alexandrov space. This controls the behavior
of ν on the balls of isotopy covering systems.

Lemma 4.1 (cf. [19, 3.6]) Let M be an Alexandrov space and p ∈ M.

(1) If dist p has no critical points on B̄(p, r) \ {p}, then

ν(B(p, r)) ≤ ν(	p) + 1.

Here ν(	p) denotes the number of extremal subsets in 	p regarded as a space of
curvature ≥ 1 (see Definition 2.2).

(2) If dist p has no critical points on A(p; r1, r2), then

ν(B(p, r1)) = ν(B(p, r2)).

Proof First we show (2). Suppose ν(B(p, r1)) < ν(B(p, r2)) and choose extremal
subsets E, F ⊂ M such that

B(p, r1) ∩ E = B(p, r1) ∩ F and B(p, r2) ∩ E �= B(p, r2) ∩ F .
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We may assume that B(p, r2) ∩ (E \ F) �= ∅. Then G = E \ F is an extremal subset
(see Sect. 2.2), which satisfies B(p, r1)∩G = ∅ and B(p, r2)∩G �= ∅. In particular,
a point q ∈ G closest to p lies in A(p; r1, r2). SinceG is extremal, q must be a critical
point of dist p. This contradicts the assumption of (2).

Next we show (1). It follows from (2) and the assumption of (1) that every extremal
subset intersecting B(p, r) must contain p. Let E, F ⊂ M be extremal subsets
intersecting B(p, r) such that 	pE = 	pF . Then

	p(E \ F) = 	pE \ 	pF = ∅ and 	p(F \ E) = ∅

(see Sect. 2.2). Therefore, E and F coincide in a sufficiently small neighborhood of
p. Again by (2), we see that B(p, r) ∩ E = B(p, r) ∩ F . Thus we conclude that
ν(B(p, r)) ≤ ν(	p) + 1. Note that the +1 on the right-hand side comes from the
empty set of M (or equivalently, extremal subsets not intersecting B(p, r)). ��
Remark 4.2 The equality in Lemma 4.1(1) does not hold generally. For example,
consider a solid square and round the corners except for one vertex p, as shown in the
following figure. The resulting spaceM is anAlexandrov space and its proper extremal
subsets are the boundary and p. However,	p, which is isometric to [0, π/2], contains
three proper extremal subsets: the two boundary directions and their union. Therefore,
ν(M) = 4 and ν(	p) + 1 = 6 (note that we are counting the empty set and the whole
space as extremal subsets; see also the additional condition in Definition 2.2).

p

Theorem 3.7 and Lemma 4.1 imply the uniform boundedness of the numbers of
extremal subsets.

Theorem 4.3 For given n and D, there exists a constant C(n, D) satisfying the
following: for any M ∈ A(n) and p ∈ M, we have

ν(B(p, D)) ≤ C(n, D).

Proof We use induction on n. By Theorem 3.7, there exists an isotopy covering system
B = {Bα1···αk } of B(p, D) with depth ≤ n whose degrees Nk are bounded above by
C(n, D). Let U = {Bα}

α∈ Â be the essential covering associated with B.
For α = α1 · · ·αl ∈ Â and 1 ≤ k ≤ l, we prove by reverse induction on k that

ν(Bα1···αk ) ≤ C(n, D).

In the case k = l, this follows from Lemma 4.1(1) and the hypothesis of the induction
on n. Consider the case k ≤ l − 1. Recall that {Bα1···αk+1}Nk+1(α1···αk )

αk+1=1 is a covering
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of an isotopic subball B̂α1···αk of Bα1···αk . The hypothesis of the reverse induction
gives ν(Bα1···αk+1) ≤ C(n, D) for every 1 ≤ αk+1 ≤ Nk+1(α1 · · ·αk). Therefore, by
Lemma 4.1(2), we have

ν(Bα1···αk ) = ν(B̂α1···αk ) ≤
Nk+1(α1···αk )∏

αk+1=1

ν(Bα1···αk+1) ≤ C(n, D)C(n,D).

This completes the induction step of the reverse induction.
Finally, since {Bα1}N1

α1=1 is a covering of B(p, D), we conclude ν(B(p, D)) ≤
C(n, D). ��

Corollary 1.2(1) immediately follows from the following lemma.

Lemma 4.4 Let M be a noncompact Alexandrov space of nonnegative curvature and
p ∈ M. Then for sufficiently large R > 0, dist p has no critical points on M \ B(p, R).

Proof For a nonnegatively curved space, we have limλ→0(λM, p) = (K (M(∞)), o),
where the right-hand side denotes the Euclidean cone over the ideal boundary of M
(see [22, 1.1]). Since disto has no critical points on K (M(∞)) \ {o}, so does dist p on
M \ B(p, λ−1) for sufficiently small λ. ��
Proof of Corollary 1.2(1) Let M be an n-dimensional (noncompact) Alexandrov space
of nonnegative curvature and p ∈ M . By rescaling, wemay assume that the constant of
Theorem 4.3 is independent of D. Namely, there exists C(n) such that ν(B(p, D)) ≤
C(n) for any D > 0. Furthermore, Lemmas 4.4 and 4.1(2) imply that the number of
extremal subsets does not increase outside a sufficiently large ball B(p, R). Thus we
have ν(M) ≤ C(n). ��
Remark 4.5 As mentioned in Sect. 1.2, Perelman [18, 4.3] showed that the number of
extremal points in a compact n-dimensional Alexandrov space of nonnegative curva-
ture is at most 2n . On the other hand, Yamaguchi [24, 4.8] conjectured that τn ≤ 2n

for such spaces (for his topological essential covering; see Remark 3.5). Note that if
an extremal point exists, then it must be the center of a metric ball of our geometrical
essential covering. Therefore, if Yamaguchi’s conjecture is true for our geometrical
essential covering, then this implies Perelman’s result.

5 Betti Numbers of Extremal Subsets

In this section, we prove Theorem 1.1(2) and Corollary 1.2(2).
We need the fibration theorem and the stability theorem of Perelman [16, 17],

especially their generalizations to extremal subsets by Perelman–Petrunin [19] and
Kapovitch [11]. The following is a special case of these two theorems (see the above
references for the general statements).

Theorem 5.1 ([19, §2], [11, §9]) Let M be an Alexandrov space, E ⊂ M an extremal
subset, and p ∈ M.
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(1) If dist p has no critical points on B̄(p, r)\{p}, then B(p, r)∩ E is homeomorphic
to TpE. Note that if B(p, r) ∩ E �= ∅, then p ∈ E (see Lemma 4.1).

(2) If dist p has no critical points on A(p; r1, r2), then A(p; r1, r2)∩ E is homeomor-
phic to ∂B(p, r1) ∩ E × [0, 1].

The following lemma was used in the original work of Gromov [8] on the Betti
numbers of Riemannian manifolds.

Lemma 5.2 ([8, Appendix], [5, 5.4]) Let Bi
α , 1 ≤ α ≤ N, 0 ≤ i ≤ n + 1, be

open subsets of a topological space X such that B̄i
α ⊂ Bi+1

α . Set Ai = ⋃N
α=1 B

i
α .

In what follows we only consider homology groups of dimension ≤ n. For each μ =
(α1, . . . , αm), let f iμ : H∗(Bi

α1
∩· · ·∩Bi

αm
) → H∗(Bi+1

α1
∩· · ·∩Bi+1

αm
) be the inclusion

homomorphism. Then the rank of the inclusion homomorphism H∗(A0) → H∗(An+1)

is bounded above by the sum

∑

0≤i≤n,μ

rank f iμ.

Note that if Bi
α1

∩ · · · ∩ Bi
αm

= ∅, then we define rank f iμ := 0.

Using the above theorem and lemma, we can show the uniform boundedness of
the Betti numbers of extremal subsets. The proof is exactly the same as in the case of
Alexandrov spaces in [24, §5]. Let β(;F) denote the total Betti number

∑∞
i=0 bi ( ;F)

with respect to a coefficient field F .

Theorem 5.3 For given n and D, there exists a constant C(n, D) satisfying the fol-
lowing: for any M ∈ A(n) and extremal subset E ⊂ M with diameter ≤ D, we
have

β(E;F) ≤ C(n, D),

where F is an arbitrary field.

Note that bi (E;F) = 0 for all i > m = dim E (this follows from the general
dimension theory). In what follows, we omit F and only consider homology groups
of dimension ≤ m.

Proof For an open metric ball B of radius r , let λB denote the concentric open metric
ball of radius λr . By Theorem 3.7, there exists an isotopy covering system B =
{Bα1···αk } of E with depth ≤ n whose degrees Nk are bounded above by C(n, D). Set
λi := 10i and Bi

α1···αk := λi Bα1···αk for 0 ≤ i ≤ m + 1. In view of Theorem 3.1(2)(i)
and the proof of Theorem 3.7, we may assume that

• Bm+1
α1···αk ⊂ Bα1···αk−1 for 1 ≤ αk ≤ Nk(α1 · · · αk−1);

• Bi
α1···αk is an isotopic subball of Bi+1

α1···αk for 0 ≤ i ≤ m.

Let U = {Bα}
α∈ Â be the essential covering associated with B.
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For a subset X of M , let X |E denote X ∩ E . For α = α1 · · ·αl ∈ Â and 1 ≤ k ≤ l,
we prove by reverse induction on k that

β(Bα1···αk |E ) ≤ C(n, D).

The case k = l is clear from Theorem 5.1(1). Consider the case k ≤ l − 1. Recall
that {Bα1···αk+1}Nk+1(α1···αk )

αk+1=1 is a covering of an isotopic subball B̂α1···αk of Bα1···αk . Fix
(α1, . . . , αk) and set

B := Bα1···αk , B̂ := B̂α1···αk , Bα := Bα1···αkα, Bi
α := λi Bα

for 1 ≤ α ≤ Nk+1(α1 · · ·αk) and 0 ≤ i ≤ m + 1. Set Ai := ⋃Nk+1
α=1 Bi

α . From the
inclusions B̂|E ⊂ A0|E ⊂ Am+1|E ⊂ B|E and Theorem 5.1(2), we have

β(B̂|E ) = β(B|E ) ≤ rank
[
H∗(A0|E ) → H∗(Am+1|E )

]
.

We estimate the right-hand side of the above inequality. Let μ = (γ1, . . . , γt ) be such
that Bi

γ1
∩ · · · ∩ Bi

γt
�= ∅. Suppose Bγs has minimal radius among {Bγ j }tj=1. Then the

following inclusions hold:

Bi
γ1

∩ · · · ∩ Bi
γt

⊂ Bi
γs

⊂ 1

2
Bi+1

γs
⊂ Bi+1

γ1
∩ · · · ∩ Bi+1

γt
.

Let f iμ : H∗((Bi
γ1

∩ · · · ∩ Bi
γt

)|E ) → H∗((Bi+1
γ1

∩ · · · ∩ Bi+1
γt

)|E ) be the inclusion
homomorphism. Then we have

rank f iμ ≤ rank

[

H∗(Bi
γs

|E ) → H∗(
1

2
Bi+1

γs
|E )

]

= β(Bγs |E ) ≤ C(n, D),

where Theorem 5.1(2) and the induction hypothesis are used. By Lemma 5.2, we
obtain

rank
[
H∗(A0|E ) → H∗(Am+1|E )

]
≤ (m + 1)2C(n,D)C(n, D).

This completes the induction step of the reverse induction.
Finally, since E = ⋃N1

α1=1 Bα1 |E = ⋃N1
α1=1 B

m+1
α1

|E , applying Lemma 5.2 again,
we conclude β(E) ≤ C(n, D). ��

Corollary 1.2(2) immediately follows from Lemma 4.4.

Proof of Corollary 1.2(2) Let M be an n-dimensional Alexandrov space of nonnegative
curvature, E ⊂ M a (noncompact) extremal subset, and p ∈ M . Then we can show
that

rank [H∗(B(p, D) ∩ E) → H∗(E)] ≤ C(n)
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for any D > 0. Indeed, take an isotopy covering system for B(p, D) ∩ E instead
of E , and repeat the above argument. Only the last part of the proof is different: we
estimate the rank of the inclusion homomorphism H∗(B(p, D) ∩ E) → H∗(E) from
the inclusions B(p, D) ∩ E ⊂ ⋃N1

α1=1 Bα1 |E ⊂ ⋃N1
α1=1 B

m+1
α1

|E ⊂ E . By rescaling,
the constant C(n) can be chosen independently from D.

Furthermore, Lemma 4.4 and the fibration theorem imply that the inclusion
B(p, R) ∩ E ↪→ E is a homotopy equivalence for sufficiently large R > 0. Thus
we have β(E) ≤ C(n). ��

6 Volumes of Extremal Subsets

In this section, we prove Theorem 1.1(3) and Corollary 1.3.
Our main tool here is the gradient-exponential map of Perelman–Petrunin [15]. The

reader is advised to first review Sect.2.3.
First, we study local surjectivity of the restriction of the gradient-exponential map

to an extremal subset. Note that gexpp |TpE : TpE → E is not surjective in general.
The local surjectivity of the gradient flow in an Alexandrov space was stated in [21,
§2.2]. We need its generalization to extremal subsets.

Lemma 6.1 (cf. [21, §2.2 property (3)]) Let f : M → R be a semiconcave function
on an Alexandrov space M and �t

f : M → M its gradient flow (we assume that �t
f

is defined for all x ∈ M and t ≥ 0). Let E be an extremal subset of M. Then for any
y ∈ E, there exist x ∈ E and t > 0 such that �t

f (x) = y.

Proof We prove it by induction on dim E . The case dim E = 0 is clear since every
gradient flow fixes extremal points. Suppose that the claim holds for extremal subsets
of dimension ≤ m − 1 and let dim E = m. Let E (k) be the k-dimensional stratum of
the canonical stratification of E (see Sect. 2.2). Then the closure E (k) is an extremal
subset of dimension ≤ m − 1. By the induction hypothesis, the claim holds for all
y ∈ E \ E (m). Suppose that the claim does not hold for some y ∈ E (m). Then �t

f

maps E into E \ {y} for all t > 0. Since �t
f is homotopic to �0

f = idM , the following
commutative diagram holds:

H∗(E, E \ {y}) id

(�t
f )∗

H∗(E, E \ {y})

H∗(E \ {y}, E \ {y})
ι∗�

.

On the other hand, since dim E = m, the top stratum E (m) is an m-dimensional
topological manifold that is open in E . Therefore, for y ∈ E (m), the local homology
group Hm(E, E \ {y}) is nontrivial. This contradicts the diagram. ��

Using the above lemma, we give a sufficient condition for the gradient-exponential
map restricted to an extremal subset to be locally surjective. Note that we use the
gradient-exponential map for the lower curvature bound −1 (see Sect. 2.3).
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Recall that for p, q ∈ M , q ′
p ∈ 	p denotes one of the directions of minimal

geodesics from p to q. Similarly, for a closed subset A ⊂ M , A′
p ⊂ 	p denotes the

set of all directions of minimal geodesics from p to A.

Proposition 6.2 Let M be an Alexandrov space with curvature ≥ −1, E an extremal
subset of M, and p ∈ M.

(1) Suppose dist p has no critical points on B̄(p, r) \ {p}. Then there exists R > 0
such that

gexpp(B(o, R) ∩ TpE) ⊃ B(p, r) ∩ E .

Note that if B(p, r) ∩ E �= ∅, then p ∈ E (see Lemma 4.1).
(2) Suppose dist p has no critical points on A(p; r1, r2). Then there exists R > 0 such

that

gexpp(A(o; r1, R) ∩ K ((∂B(p, r1) ∩ E)′p)) ⊃ A(p; r1, r2) ∩ E,

where K ((∂B(p, r1) ∩ E)′p) is a subcone of Tp = K (	p).

Furthermore, if we define a map G(r1,R)
p : B(p, r1) → B(p, R) by

G(r1,R)
p (x) := gexpp

(
R

r1
|px |x ′

p

)

for the above R, then we have

G(r1,R)
p (B(p, r1) ∩ E) ⊃ B(p, r2) ∩ E .

Note that this definition does not depend on the choice of x ′
p (see Sect. 2.3).

Proof First we show (1). Let us denote by | · | the norm on the tangent cone. By the
lower semicontinuity of |∇ dist p |, there exists a constant c > 0 such that |∇ dist p | > c
on B̄(p, r) \ {p} (note that |∇ dist p | is close to 1 near p). Consider the semiconcave
function f = cosh ◦ dist p −1, which satisfies the assumption of Lemma 6.1 (i.e.,
the gradient flow of f is defined for all points and time). Let z ∈ B(p, r) ∩ E . It
follows from Lemma 6.1 by contradiction that there is a sequence yi ∈ E converging
to p such that �

ti
f (yi ) = z for some ti . By reparametrization, gexpp(si (yi )

′
p) = z

for some si . We show that si is uniformly bounded above by some R > 0. Then, by
compactness, we get gexpp(s0ξ0) = z for some s0 ≤ R and ξ0 ∈ 	pE , as desired.
Set βi (s) = gexpp(s(yi )

′
p). From the differential equation (2.1), we have

|pβi (s)|′ = tanh |pβi (s)|
tanh s

· |∇βi (s) dist p |2.

Together with the assumption |∇ dist p | > c, this implies

|pβi (s)|′
tanh |pβi (s)| ≥ c2

tanh s
.
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Integrating this inequality over the interval [σ, si ] for some fixed σ > 0, we obtain

log sinh si ≤ c−2 (log sinh r − log sinh |pβi (σ )|) + log sinh σ. (6.1)

Since |p gexpp(σ · )| is a positive continuous function on 	p, we conclude that si is
uniformly bounded above.

Next we show (2). The first statement follows from Lemma 6.1 in the same way as
(1). Let us show the second. Let z ∈ B(p, r2) ∩ E . If z ∈ A(p; r1, r2) ∩ E , then by
the first statement, we have

�
t0
f (y0) = gexpp(s0(y0)

′
p) = z

for some y0 ∈ ∂B(p, r1) ∩ E , t0 ≥ 0, and r1 ≤ s0 ≤ R. Even if z ∈ B(p, r1) ∩ E ,
the same equation holds for y0 = z, t0 = 0, and s0 = |pz|. It follows from Lemma
6.1 by contradiction that for any T > 0, there exists x0 ∈ E such that �T

f (x0) = y0.
Suppose T is sufficiently large (to be determined later) and consider the gradient curve
α(t) = �t

f (x0). Then Gp(α(t)) still lies on the curve α (for notational simplicity we

write Gp instead of G(r1,R)
p ). We show that Gp(α(t)) is before z on α when t = 0

and after z when t = T . Then the claim follows from the intermediate value theorem.
Note that Gp(α(0)) = Gp(x0) and Gp(α(T )) = Gp(y0). By the reparametrization
(2.2), we can express Gp(x0) = �

τ0
f (x0), where

τ0 =
∫ R

r1
|px0|

|px0|
ds

tanh s cosh |p gexpp(s(x0)′p)|

≤
∫ R

r1
|px0|

|px0|
ds

tanh s

≤ log
sinh R

sinh r1
.

Thus, if T is sufficiently large, Gp(x0) is before z = �
T+t0
f (x0). On the other hand,

since R ≥ s0, Gp(y0) = gexp(R(y0)′p) is after z = gexpp(s0(y0)
′
p). This completes

the proof. ��
Next we provide a uniform estimate on the radius R of Proposition 6.2 in terms

of other geometric quantities. The following technique was used in [15, 3.3] to prove
the convergence of the parameters of radial curves. This controls the speeds of radial
curves.

Lemma 6.3 Let M be an Alexandrov space with curvature ≥ −1 and p ∈ M.

(1) Assume that there exists c > 0 such that |∇ dist p | > c on B̄(p, r) \ {p}. Assume
further that there exist ρ > 0 and θ < π/2 such that (∂B(p, ρ))′p is θ -dense in
	p. Then there exists R = R(r , c, ρ, θ) > 0 (depending only on r, c, ρ, and θ )
such that

gexp−1
p (B(p, r)) ⊂ B(o, R).
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(2) Assume that there exists c > 0 such that |∇ dist p | > c on A(p; r1, r2). Assume
further that there exist ρ > 0 and θ < π/2 such that for any y ∈ ∂B(p, r1)
there is x ∈ ∂B(p, ρ) with ∠̃xpy < θ . Then there exists R = R(r2, c, ρ, θ) > 0
(independent of r1) such that

gexp−1
p (B(p, r2)) ∩ K ((∂B(p, r1))

′
p) ⊂ B(o, R).

Proof (1) follows from (2) by taking r2 = r and r1 → 0. Let us show (2). Consider
the radial curve β(s) = gexpp(sy

′
p) for y ∈ ∂B(p, r1). We must show that if β(s) ∈

B(p, r2) then s < R(r2, c, ρ, θ). Fix sufficiently small σ > 0 depending only on ρ

and θ (to be determined later). We first consider the case r1 < σ . Since | dist p | > c
on A(p; r1, r2), the same inequality as (6.1) holds:

log sinh s ≤ c−2 (log sinh r2 − log sinh |pβ(σ)|) + log sinh σ. (6.2)

Therefore, it is enough to show that |pβ(σ)| has a uniform positive lower bound
depending only on ρ, θ , and σ . By assumption, there exists x ∈ ∂B(p, ρ) such that
∠̃xpy < θ . Proposition 2.4(1) implies ∠̃xp�β(σ) < θ . Therefore we have

|pβ(σ)| ≥ ρ − |xβ(σ)|
= cos ∠̃xp�β(σ) · σ + oρ(σ )

≥ cos θ · σ + oρ(σ )

≥ const(ρ, θ, σ ) > 0.

Here oρ(σ ) is a function depending only on ρ such that oρ(σ )/σ → 0 as σ → 0.
Since θ < π/2, we can choose σ = σ(ρ, θ) so that the last inequality holds.

In the case r1 ≥ σ , the same inequality as (6.2) with σ replaced by r1 holds. Since
|pβ(r1)| = r1 ≥ σ , the right-hand side is uniformly bounded above in terms of r2, c,
ρ, and θ . This completes the proof. ��

In view of Lemma 6.3, we modify Theorem 3.1 as follows.

Theorem 6.4 Suppose (Mi , pi ) ∈ Ap(n) converges to an Alexandrov space (X , p)
with dimension ≥ 1. Then for sufficiently small r > 0 and c > 0, there exists p̂i ∈ Mi

converging to p such that either (1) or (2) holds:

(1) There is a subsequence { j} ⊂ {i} such that |∇ dist p̂ j | > c on B̄( p̂ j , r)\ { p̂ j } and
(∂B( p̂ j , r))′p̂ j

is (π/2 − c)-dense in 	 p̂ j .

(2) There exists a sequence δi → 0 such that

(i) for any λ > 1 and sufficiently large i , |∇ dist p̂i | > c on A( p̂i ; λδi , r) and

for any y ∈ ∂B( p̂i , λδi ), there is x ∈ ∂B( p̂i , r) with ∠̃x p̂i y < π/2 − c;
(ii) for any limit (Y , y0) of a subsequence of (

1
δi
Mi , p̂i ), we have

dim Y ≥ dim X + 1.
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In particular, if dim X = n, then (1) holds for all sufficiently large i .

Note that (1) (resp. (2)(i)) states that the assumption of Lemma 6.3(1) (resp. (2)) is
satisfied with constants independent of j (resp. i).

Proof The proof is along the same lines as [24, 3.2]. Fix 0 < ε � θ ≤ π/100 (to be
determined later). Choose 0 < r < 1/100 small enough that

• ∠xpy − ∠̃xpy < ε for every x, y ∈ ∂B(p, 2r);
• (∂B(p, 2r))′p is ε-dense in 	p.

Note that the latter implies that |∇ dist p | > 1/10 on B̄(p, r) \ {p}. Let {xα}α be a

maximal θr -discrete set in ∂B(p, 2r). Furthermore, for each α, let {xαβ}Nα

β=1 be amax-
imal εr -discrete set in B(xα, θr) ∩ ∂B(p, 2r). Then the Bishop–Gromov inequality
implies that

Nα ≥ const(X) ·
(

θ

ε

)dim X−1

. (6.3)

Define functions fα and f on X by

fα(x) := 1

Nα

Nα∑

β=1

d(xαβ, x), f (x) := min
α

fα(x).

It is easy to see that f has a strict maximum at p on B̄(p, r), provided θ is small
enough (see [24, 3.3]).

Fix a μi -Hausdorff approximation ϕi : B(p, 1/μi ) → B(pi , 1/μi ) with ϕi (p) =
pi , where μi → 0 as i → ∞. Set xiαβ := ϕi (xαβ) and define functions f iα and f i on
Mi by

f iα(x) := 1

Nα

Nα∑

β=1

d(xiαβ, x), f i (x) := min
α

f iα(x).

Note that f iα and f i converge to fα and f , respectively. Let p̂i be a maximum point
of f i on B̄(pi , r). Then p̂i converges to p, the unique maximum point of f . Set

c := sin(ε/2N ), where N = max
α

Nα.

Suppose that (1) does not hold for these r and c. Then for any sufficiently large i , there
exists y ∈ B̄( p̂i , r) \ { p̂i } such that

(a) |∇y dist p̂i | ≤ c or;

(b) ∠̃x p̂i y ≥ π/2 − c for all x ∈ ∂B( p̂i , r).

Let q̂i ∈ B̄( p̂i , r) \ { p̂i } be a farthest point from p̂i satisfying either (a) or (b), and let
δi be the distance between p̂i and q̂i . Then (2)(i) is obvious. Moreover, δi → 0 since
|∇ dist p | > 1/10 on B̄(p, r) \ {p} and (∂B(p, 2r))′p is ε-dense in 	p.
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Let us show (2)(ii). Suppose that ( 1
δi
Mi , p̂i ) converges to an Alexandrov space

(Y , y0) of nonnegative curvature. Passing to a subsequence, we may assume that
q̂i converges to z0 ∈ Y . We may further assume that minimal geodesics p̂i q̂i and
p̂i x iαβ converge to a minimal geodesic y0z0 and a ray γαβ from y0, respectively. Let

vi , v
i
αβ ∈ 	 p̂i denote the directions of p̂i q̂i and p̂i x iαβ , and let v, vαβ ∈ 	y0 be the

directions of y0z0 and γαβ , respectively. Note that

∠(vαβ, vαβ ′) ≥ ∠̃xαβ pxαβ ′ ≥ ε/4

for every 1 ≤ β �= β ′ ≤ Nα .
First we show that

∠(v, vαβ) ≥ π

2
− ε

2N
(6.4)

for every α and β. If (a) holds for infinitely many q̂i , then by the lower semicontinuity
of |∇|, we have |∇z0 disty0 | ≤ sin(ε/2N ). This implies that ∠̃y0z0xαβ(∞) ≤ π/2 +
ε/2N , where xαβ(∞) denotes the element of the ideal boundary of Y defined by the
ray γαβ . Thus we obtain

∠(v, vαβ) ≥ ∠̃z0y0xαβ(∞) ≥ π

2
− ε

2N
.

On the other hand, if (b) holds for infinitely many q̂i , then by the monotonicity of
angles, we have

∠(v, vαβ) ≥ lim sup
i→∞

∠̃q̂i p̂i x
i
αβ(r) ≥ π

2
− c ≥ π

2
− ε

2N
,

where xiαβ(r) denotes the point on the minimal geodesic p̂i x iαβ at distance r from p̂i .
Therefore in either case we obtain (6.4).

Next we fix α such that ( f i )′p̂i (vi ) = ( f iα)′p̂i (vi ) for infinitely many i . Since f i has
a local maximum at p̂i , the first variation formula implies that

0 ≥ ( f i )′p̂i (vi ) = 1

Nα

Nα∑

β=1

− cos∠(vi , v
i
αβ)

(choose viαβ so that the first variation formula holds for vi ). Passing to the limit and
using the lower semicontinuity of angles, we have

0 ≥ 1

Nα

Nα∑

β=1

− cos∠(v, vαβ). (6.5)

Now, combining (6.4) and (6.5), we obtain

∣
∣
∣∠(v, vαβ) − π

2

∣
∣
∣ ≤ ε.
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Hence {vαβ}Nα

β=1 is an ε/4-discrete set of A(v;π/2 − ε, π/2 + ε). Since there exists

a noncontracting map from 	y0 to the unit sphere Sdim Y−1 preserving the distance
from v, we have

Nα ≤ const(n) · ε−(dim Y−2). (6.6)

Finally, combining (6.3) and (6.6) and taking ε sufficiently small, we conclude that
dim Y ≥ dim X + 1. ��

We are now ready to prove the uniform boundedness of the volumes of extremal
subsets. Unlike the previous two sections, we prove it by contradiction using Theorem
6.4, without taking an essential covering. However, the following proof has the same
structure as the proof of the existence of an essential covering, Theorem 3.7, which
was by contradiction using Theorem 3.1.

Let volm denote the m-dimensional Hausdorff measure. As noted in Sect. 1.1, the
Hausdorff measure of an extremal subset does not depend on whether the metric is
intrinsic or extrinsic ([7, 3.17]).

Theorem 6.5 For given n and D, there exists a constant C(n, D) satisfying the fol-
lowing: Let M ∈ A(n), p ∈ M, and E ⊂ M an m-dimensional extremal subset. Then
we have

volm(B(p, D) ∩ E) ≤ C(n, D).

Proof We use induction on n. Suppose that the conclusion does not hold. Choose
a sequence of Alexandrov spaces (Mi , pi ) ∈ Ap(n) and m-dimensional extremal
subsets Ei ⊂ Mi such that volm(B(pi , D) ∩ Ei ) → ∞ as i → ∞. We may assume
that (Mi , pi ) converges to an Alexandrov space (X , p). Set k = dim X . We prove by
reverse induction on k that there exists a constant C such that

volm(B(pi , D) ∩ Ei ) ≤ C

for some subsequence. This is a contradiction. In what follows, C denotes various
positive constants independent of (sub)sequences.

First suppose k = n. Take a finite covering {B(xα, rα/2)}Nα=1 of B̄(p, D), where
rα is the one of Theorem 6.4. Then there exists x̂ iα → xα for each α such that Theorem
6.4(1) holds for sufficiently large i . Therefore, by Proposition 6.2(1) and Lemma
6.3(1), there exists Rα independent of i such that

gexpx̂ iα (B(o, Rα) ∩ Tx̂iα Ei ) ⊃ B(x̂ iα, rα) ∩ Ei .

Since gexpx̂ iα is a 1-Lipschitz map from the elliptic cone (Tx̂iα , h) over 	x̂ iα
(see Sect.

2.3), we have

volm(B(x̂ iα, rα) ∩ Ei ) ≤
∫ Rα

0
sinhm−1 r · volm−1(	x̂ iα

Ei ) dr ≤ C,
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where the second inequality follows from the hypothesis of the induction on n. Since
{B(x̂ iα, rα)}Nα=1 is a covering of B(pi , D) for sufficiently large i , we obtain

volm(B(pi , D) ∩ Ei ) ≤
N∑

α=1

volm(B(x̂ iα, rα) ∩ Ei ) ≤ C .

Next suppose 1 ≤ k ≤ n − 1. Cover B̄(p, D) by {B(xα, rα/2)}Nα=1 as above. Then
there exists x̂ iα → xα for each α such that either (1) or (2) of Theorem 6.4 holds. If
(1) holds, then we have volm(B(x̂ iα, rα) ∩ Ei ) ≤ C for some subsequence as above.
Suppose that (2) holds for some α. We fix this α and omit it below. Then there exists
δi → 0 such that both (i) and (ii) holds. Passing to a subsequence, we may assume that

( 1
δi
Mi , x̂ i )

GH−−→ (Y , y0). Then we have dim Y ≥ dim X + 1. Applying the hypothesis

of the reverse induction to 1
δi
B(x̂ i , 2δi ) and 1

δi
Ei , we have

volm(B(x̂ i , 2δi ) ∩ Ei ) ≤ Cδmi

for some subsequence. Furthermore, by Proposition 6.2(2) and Lemma 6.3(2), there
exists R independent of i such that

G(2δi ,R)

x̂ i
(B(x̂ i , 2δi ) ∩ Ei ) ⊃ B(x̂ i , r) ∩ Ei .

Proposition 2.4(2) states that G(2δi ,R)

x̂ i
is sinh R

sinh 2δi
-Lipschitz. Together with the above

inequality, this implies

volm(B(x̂ i , r) ∩ Ei ) ≤
(

sinh R

sinh 2δi

)m

· Cδmi ≤ C .

Since {B(x̂ iα, rα)}Nα=1 is a covering of B(pi , D) for sufficiently large i , we obtain
volm(B(pi , D) ∩ Ei ) ≤ C .

Finally, the case k = 0 follows from the case k ≥ 1 by rescaling Mi so that the new
diameter is 1. This completes the proof. ��

For a metric space (X , d) and ε > 0, we denote by Nε(X , d) the maximal number
of ε-discrete points in X . Here we allow the distance between two points to be infinite
(since we consider not necessarily connected extremal subsets below).

Theorem 6.6 For given n and D, there exists a constant C(n, D) satisfying the fol-
lowing: Let M ∈ A(n), p ∈ M, and E ⊂ M an m-dimensional extremal subset. Then
for any ε > 0, we have

Nε(B(p, D) ∩ E, dE ) ≤ C(n, D)

εm
,

where dE denotes the induced intrinsic metric of E.
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The proof is similar to that of Theorem 6.5. We can repeat the same argument by
considering εmNε( ·, dE ) instead of volm( · ). Corollary 1.3 now follows fromTheorem
6.6 and Gromov’s precompactness theorem [9, 5.2].
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