
Title
piRNA processing within non-membrane structures
is governed by constituent proteins and their
functional motifs

Author(s) Suyama, Ritsuko; Kai, Toshie

Citation FEBS Journal. 2024

Version Type VoR

URL https://hdl.handle.net/11094/100194

rights
This article is licensed under a Creative
Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



STATE-OF-THE-ART REVIEW

piRNA processing within non-membrane structures is
governed by constituent proteins and their functional
motifs
Ritsuko Suyama and Toshie Kai

Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan

Keywords

Drosophila germline; liquid–liquid phase

separation; non-membrane nuage; piRNAs;

Tudor domain-containing proteins

Correspondence

R. Suyama and T. Kai, Laboratory of

Germline Biology, Graduate School of

Frontier Biosciences, Osaka University, 1-3

Yamadaoka, Suita, Osaka 565-0871, Japan

Tel: +81 6 6879 7974; +81 6 6879 7971

E-mail: suyama.ritsuko.fbs@osaka-u.ac.jp;

kai.toshie.fbs@osaka-u.ac.jp

(Received 15 May 2024, revised 23 August

2024, accepted 5 December 2024)

doi:10.1111/febs.17360

Discovered two decades ago, PIWI-interacting RNAs (piRNAs) are crucial

for silencing transposable elements (TEs) in animal gonads, thereby pro-

tecting the germline genome from harmful transposition, and ensuring spe-

cies continuity. Silencing of TEs is achieved through transcriptional and

post-transcriptional suppression by piRNAs and the PIWI clade of Argo-

naute proteins within non-membrane structured organelle. These structures

are composed of proteins involved in piRNA processing, including PIWIs

and other proteins by distinct functional motifs such as the Tudor domain,

LOTUS, and intrinsic disordered regions (IDRs). This review highlights

recent advances in understanding the roles of these conserved proteins and

structural motifs in piRNA biogenesis. We explore the molecular mecha-

nisms of piRNA biogenesis, with a primary focus on Drosophila as a model

organism, identifying common themes and species-specific variations. Addi-

tionally, we extend the discussion to the roles of these components in non-

gonadal tissues.

Introduction

The silencing of transposable elements (TEs) via

piRNA pathway is predominantly observed in meta-

zoans, specifically in animal gonads, which are essen-

tial for sexual reproduction. This RNA silencing

mechanism serves as a critical defense against deleteri-

ous genetic traits, including repetitive sequences and

TEs, by producing piRNAs—short non-coding RNAs

that maintain the genome integrity of the germline

[1,2]. In addition to piRNAs, siRNA and miRNA

pathways are other significant RNA interference

mechanisms that function in gene silencing across vari-

ous tissues. Unlike siRNAs and miRNAs, piRNAs are

generated in a Dicer-independent manner, range from

24 to 29 nucleotides (nt) in length, and were first dis-

covered in Drosophila testes. Here, piRNAs play a crit-

ical role in suppressing Stellate (Ste), which originates

from the repetitive loci. These piRNAs, along with

other repeat-associated small interfering RNAs (rasiR-

NAs), were subsequently discovered in Drosophila ova-

ries and embryos [3,4]. Later, they were also identified
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in mice and found to associate with PIWI family pro-

teins, a subclade of the Argonaute proteins that are

expressed exclusively in gonads [1,5], leading to their

classification as PIWI-interacting RNAs (piRNAs).

The prevalence of TEs within an organism’s genome

is loosely correlated with its genome size, although it

varies significantly across eukaryotes. TEs constitute

over half of the human genome, while they account

for around 20% of the Drosophila melanogaster

genome, which itself represents about 10% of the size

of the human genome [6–8]. TEs are categorized into

two main classes, distinguished by their transposition

mechanisms. Class I TEs, or retrotransposons, include

long interspersed nuclear elements (LINEs), non-long-

terminal repeats (non-LTRs), and short interspersed

nuclear elements (SINEs). They move through a

reverse-transcribed RNA intermediate, following a

“copy-and-paste” mechanism. In contrast, Class II

TEs, or DNA transposons, move directly between

genomic locations using a “cut-and-paste” mechanism,

excising and reinserting themselves without replication

[9]. Their mobilization across the host genome poses a

major threat to genome integrity, potentially leading

to instability through their invasion.

Despite their harmful effects, TEs have co-evolved

with their hosts and play pivotal roles in enhancing

genetic diversity, either by cis-regulating DNA or pro-

ducing proteins that are co-opted for physiological or

developmental functions [10–12]. For example, Dro-

sophila harbors three non-LTR retrotransposons,

TAHRE, HeT-A, and TART, at the ends of chromo-

somes, thereby forming protective telomere arrays [13].

The processes of protecting against transposon inva-

sion and maintaining the integrity of the host genome

have also evolved under selective pressure. In this con-

text, piRNAs have emerged as key guardians of

genome integrity across metazoans, along with their

associated partner proteins [14]. piRNAs and PIWI

proteins are widely conserved in metazoans, from

basal species to higher mammalians, such as sponges,

mice, rats, and humans, playing a crucial role in safe-

guarding the gonadal genome from transposon activity

(Fig. 1) [5,15–18].
In this review article, we focus on the detailed

molecular mechanisms orchestrating the piRNA bio-

genesis and the organization of their processing sites in

model organisms, predominantly Drosophila, with a

few examples from other animals. We also explore

advances in understanding of the molecular machinery

involved in piRNA biogenesis in non-membrane

organelles, such as nuage and Yb bodies. In addition,

we discuss the fundamental roles of conserved proteins

and motifs, such as Tudor, LOTUS, or intrinsically

disordered regions (IDRs) for the TE silencing by piR-

NAs. Finally, we examine the implications of these

mechanisms in somatic cells, particularly their associa-

tion with cancers, developmental defects and other

diseases.

Pathway of piRNA biogenesis

Transcription of piRNA precursors as a source of

piRNAs

piRNA biogenesis begins with the transcription of

piRNA precursors, primarily from genomic regions

known as piRNA clusters. These clusters, which con-

sist of remnants of multiple copies of both sense and

antisense TEs, are located in the pericentromeric

and telomeric regions [19–21]. In Drosophila ovaries,

piRNA clusters are actively transcribed not only in the

germline but also in somatic follicle cells, where piR-

NAs play a crucial role in suppressing endogenous ret-

roviral elements to prevent their invasion into the

germline genomes [2,22,23]. piRNA clusters can be

classified into two groups based on their transcrip-

tional mechanisms: dual-strand clusters such as 38C

and 42AB, which refer to the cytogenetic position in

the Drosophila genome and are active in germline cells.

These clusters are transcribed bidirectionally, while the

20A cluster and the flamenco gene are transcribed

uni-directionally in germline and somatic cells, respec-

tively [24,25].

Since dual-strand clusters in Drosophila germline

cells are marked by histone H3K9 trimethylation,

which is typically associated with transcriptional

repression [26], they lack conventional transcriptional

features such as active promoter marks (H3K4me3)

and produce transcripts devoid of a 50 cap and a poly-

adenylated (poly(A)) tail [27,28]. Therefore, a nonca-

nonical transcriptional system is required for their

activation. The H3K9me3-binding protein Rhino

(Rhi), a variant of Heterochromatin protein 1d

(HP1d), recruits Cutoff (Cuff) and Deadlock to

form the Rhino–Deadlock–Cutoff (RDC) complex,

which controls transcription of dual-strand clusters

[26,28,29]. Moonshiner, a germline paralog of the tran-

scription initiation factor II A subunit 1, is recruited

to the RDC complex by Deadlock and engages the

TATA box-binding protein-associated factor TRF2 to

initiate Pol II-mediated transcription on piRNA clus-

ters [30]. Cuff, together with Rhino and the

transcription/export (TREX) complex—consisting of

UAP56, DEAD-box helicase, and the THO complex—
blocks the binding of the cleavage/polyadenylation

specificity factor (CPSF) to poly(A) sites, thereby
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inhibiting cleavage and polyadenylation and suppres-

sing splicing of piRNA precursors [26,29,31–33]. The

transcripts are transported by the export protein,

CRM1, together with Nxf3, Nxf1, Bootlegger, and

UAP56 [34,35] for further processing in the cytoplasm

[26,30,34–38]. Once captured by the DEAD-box RNA

helicase Vasa (Vas) in the nuage, the cluster transcripts

are processed into mature piRNAs, either by con-

served endonuclease Zucchini (Zuc)/mitoPLD or

through the alternative ping-pong mechanism, produc-

ing distinct 50 and 30 ends (Fig. 2A) [2,25,39].

In contrast, in the somatic follicle cells, uni-strand

piRNA clusters lacking the H3K9 trimethylation mark

are transcribed in an RDC-independent manner. These

are capped at the 50-end, polyadenylated, and sub-

jected to splicing [20,37,40]. The export complex of

Nxf1–Nxt1 with the exon junction complex, along with

Nup54 and Nup58, two nucleoporins that function

exclusively in this pathway, facilitate the nuclear

export of transcripts [41–46]. After being transported

to the cytoplasm, the precursor transcripts are then

processed into mature piRNAs via the Zuc-dependent

piRNA biogenesis pathway in the Yb bodies (Fig. 2B)

[2,25,47].

piRNA processing in the cytoplasm

In both germline cells and somatic cells, the processing

of piRNA precursors necessitates specific non-

membrane perinuclear structures that house the requi-

site proteins, mature piRNAs, and precursor piRNAs.

These structures include the nuage in germline cells

[48,49] and the Yb bodies in somatic cell [50,51]. They

serve as robust molecular platforms that facilitate

piRNA biogenesis and the silencing of TEs in the

cytoplasm through distinct strategies.

Recent studies have shown that piRNA biogenesis is

remarkably conserved across metazoans, from sponges
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Spiecies Common Name Ping-Pong PIWI FamilyPhasing Zuc/MitoPLD PARN PNLDC1 Nibbler/Mut-7

Homo sapiens Human 4

Callithrix
jacchus Marmoset 4

Mus musculus House mouse 4 NO
Rattus
norvegicus Rat – 3– NO

Xenopus laevis Frog 4 –

Danio rerio Zebrafish 2 NO

Ciona
intestinalis Ascidian – 2– NO

Strongylocentr
otus purpuratus Sea urchin 2 NO NO

Drosophila
melanogaster Fruit fly 3 NO NO

Aedes aegypti Mosquito 7 NO

Bombyx mori Silkworm 2

Heliconius
melpomene

Postman
butterfly 2

Plutella
xylostella

Diamondback
moth 2 NO

Tribolium
castaneum

Red flour
beetle 2

Apis mellifera Honey bee 2

Oncopeltus
fasciatus Milkweed Bug 2 NO

Strigamia
maritima Centipede 4 NO

Parasteatoda
tepidariorum House spider 2 NO

Centruroides
sculpturatus

Arizona bark
scorpion 2 NO

Caenorhabditis
elegans Nematoda NO 1– NO NO

Hypsibius
dujardini Tardigrade 1 – – – –

Nudibranchia Sea slug – 2– – – – –

Schmidtea
mediterranea

Planarian
flatworm 7 – – – –

Nematostella
vectensis

Starlet sea
anemone 2

Hydra vulgaris Swiftwater
hydra 2 NO

Amphimedon
queenslandica Sponge 2 NO

––––7Planarirr an
flff atwtt ormrr

Schmidtett a
medidd tett rrarr nea

––––1TaTT rdrr idd grarr deddHyH pyy sibius
duju ardrr idd ni

2Statt rlrr et sea
anemone

NeNN matott stett lla
vectett nsisii

HyH drdd arr vulgarirr sii Swiftwtt atett r
hydrdd arr 2 NO

Amphimedon
queenslandidd ca Sponge 2 NO

––––2––Sea slugNudidd brarr nchia

NONO2Sea urcrr hinStrtt ongrr ygg locentrtt
otutt s purpurr rarr tutt s

Fig. 1. Conservation of ping-pong and phasing pathways along with proteins involved in these pathways across metazoans. The

presence or absence of the ping-pong and phasing pathways, along with associated proteins Zucchini/MitoPLD, PARN, PNLDC1, and

Nibbler/Mut-7, are shown. ‘Ticks’, ‘NO’ and ‘–’ denote the presence of the protein, the absence of the protein, and unavailability of the data,

respectively. The numbers in the PIWI column indicate the number of PIWI proteins in each species. Evolutionary relationships among

animal phyla are presented in a phylogenetic tree; however, the branch lengths do not represent evolutionary distances. Taxonomic groups

mentioned in the text are highlighted in red.
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Uni-strand piRNA clusters ovarian somatic cellsDual-strand piRNA clusters in germ cells
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Ping-pong
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Fig. 2. Transcription and processing machinery for piRNA Precursors in Drosophila melanogaster. (A) piRNA biogenesis in germline

cells. Rhino recognizes H3K9me3 modifications on dual-strand piRNA clusters and forms the RDC complex with Deadlock and Cutoff. This

complex facilitates promoter-independent transcription and contributes to the nuclear export of piRNA precursor transcripts via Bootlegger,

which recruits the Nxf3–Nxt1 complex. Nxf3 together with exportin Crm1, then transports the piRNA precursors to the perinuclear nuage on

the cytoplasmic side. Within nuage, Aub and Ago3 sequentially cleave TE mRNAs and cluster transcripts, respectively, in turns in the ping-

pong cycle. Nibbler trims the 50 ends of pre-piRNAs, while Hen1 20-O-methylates their 30 ends, resulting in mature piRNAs. piRNA

precursors can also be processed through phasing. Aub-bound piRNA precursors are transported to the mitochondrial outer membrane by

Armi, where they are cleaved by Zuc. Some of these phased piRNAs participate in the ping-pong cycle. Other piRNA precursors, bound by

Piwi and cleaved by Zuc, generate Piwi-piRNAs that are subsequently transported into the nucleus. (B) piRNA biogenesis in somatic cells.

piRNA precursor transcripts derived from uni-strand piRNA clusters, such as flamenco, undergo canonical splicing, 50 capping and

polyadenylation. These processed transcripts are then exported through a complex involving the exon junction complex and Nxf1–Nxt1

complex, which interacts with nucleoporins Nup54 and Nup58 to reach the Yb bodies. Yb binds to these piRNA precursor transcripts and

recruits Armi to the Yb bodies, where Piwi binds to the 50 end of piRNA precursor transcripts after cleavage by a nuclease. Once piRNA

precursor transcripts are translocated to the mitochondrial outer membrane, Piwi and Zucchini cleave them to produce Piwi-bound phased

piRNAs. These mature piRNAs are imported into the nucleus in complex with Piwi. Figures in A and B are adapted from Ref. [2] with some

modification, with permission. (C) Conservation of processing machinery and the related proteins among Drosophila species. Both ping-

pong-mediated piRNA biogenesis in germline cells and Yb-dependent piRNA biogenesis in somatic cells are generally conserved among

Drosophila species. However, evolutionary changes have led to the loss of components critical for piRNA biogenesis. For instance, Yb has

been independently lost in Drosophila eugracilis and the obscura group. In addition, D. eugracilis has lost Ago3, adopting a ping-pong-

independent mechanism for piRNA production, whereas the obscura group retains Ago3 and the ping-pong cycle. Figure in C is adapted

from Ref. [100] which is copyrighted under a CC-BY-4.0 license, with some modification.
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and cnidarians to higher mammalians, including

humans (Fig. 1). A unified model of piRNA biogenesis

has been proposed encapsulating two interrelated

mechanisms: ping-pong amplification, which occur in

the perinuclear granule and phasing, which takes place

at the mitochondrial outer membrane (Fig. 2)

[2,25,52]. While there remains some controversy

regarding the presence of the phasing process in silk-

worm BmN4 cells [52,53], these multifaceted piRNA

biogenesis pathways are believed to have co-evolved in

the last common ancestor of metazoans, spanning an

evolutionary timeline of approximately 800 million

years [54].

Ping-pong amplification cycle of piRNAs in

germline cells

Following transcription, in Drosophila germline cells,

piRNA precursors are transported to the nuage, where

they are processed into mature piRNAs in a

feed-forward amplification mechanism known as the ‘

ping-pong cycle’ (Fig. 2A) [2,25]. This cycle involves

the alternating cleavage of precursor antisense strands

transcribed from piRNA clusters and sense strand TEs

within the nuage [20,49]. This sophisticated mechanism

also produces sense-strand piRNAs, which facilitates

the post-transcriptional TE repression by amplifying

piRNAs [20,49].

In this cycle, Aubergine (Aub) (MIWI in mice) and

Argonaute 3 (Ago3) (MILI in mice), two PIWI family

proteins in D. melanogaster, cooperate with other

nuage components to cleave TEs and piRNA precur-

sor transcripts in a complementary manner. Aub initi-

ates ping-pong biogenesis by loading maternal or

phasing-derived antisense piRNAs, recognizing and

cleaving complementary sense TE transcripts and/or

piRNA precursors at a site between the 10th and

11th nucleotides from the 50 end of the annealed

piRNA, thereby generating new 50 ends (Fig. 2A)

[2,19,20,25,55]. During the ping-pong cycle, Krimper

(Krimp) mediates the loading of 30 fragments of sense

strand piRNA precursors into Ago3, following their

cleavage by Aub, thereby facilitating the production of

mature sense piRNAs [56,57]. In addition, Qin/Kumo

promotes the heterotypic dimerization between Aub

and Ago3, ensuring TE silencing [58,59]. After cleav-

age by either Aub or Ago3, the 30 ends of resulting

RNAs are further trimmed by the exoribonuclease

Nibbler [60–62] and methylated at the 20-O position by

Hen1 (HENMT1 in mice), a modification that protects

piRNAs from degradation [63,64]. The resulting

mature piRNAs then participate in subsequent rounds

of the ping-pong cycle, targeting piRNA precursors

with complementary sequences, thus perpetuating a

self-sustaining feed-forward loop. This recognition-

cleavage loop generates complementary 10-nt

sequences at the 50 ends of Aub-bound piRNAs, which

characteristically begin with a uracil (U) at the 1st

position of the 50 end. In contrast, Ago3-bound piR-

NAs typically have an adenine at the 10th position,

reflecting Aub’s preference for adenine at the 1st posi-

tion of the target (t1A preference) [65]. Together, these

features—along with their sequence complementarity—
constitute the defining ‘ping-pong signature’ [19,20,29].

Phasing process of generating mature piRNAs

Different species exhibit variations in the number of

PIWI family proteins; most have multiple PIWIs that

engage in the alternate cleavage of TE sense or anti-

sense piRNA precursors, where their preferences

toward either strand affect the alternation (Fig. 1).

Although piRNA processing in the germline is well

conserved, the trimming by Nibbler in Drosophila is

evolutionarily atypical. In contrast, other species uti-

lize the poly(A)-specific 30-to-50 exoribonucleases, such
as PNLDC1 in mice, Trimmer in silkworms, and

PARN-1 in Caenorhabditis elegans are involved in this

process (Fig. 1). All nucleases involved in these pro-

cesses, including Zuc, PNLDC1, Nibbler/Mut-7 are

well conserved from sponges to mammals, albeit not

in all, indicating their ancient evolutionary origins

(Fig. 1) [62]. Worms lack Zuc and utilize PARN for

trimming small RNAs bound to Piwi [66] and

Nibbler/Mut-7 is involved in 22G siRNA biogenesis

[67], whereas PARN or PNDLC1 are absent in flies

(Fig. 1) [62].

The majority of Piwi-bound piRNAs in germline

cells possess a U at the first position, yet lack the

ping-pong signature, suggesting integration of

the phasing process into the ping-pong cycle [60,61,68].

The production of piRNAs in the phasing pathway

involves the interaction between nuage components

and mitochondria-associated factors [52]. Aub, bound

to piRNA precursors, interacts with the RNA helicase

Armitage (Armi; MOV10L1 in mice) in the nuage.

Armi then transfers the Aub-bound transcripts to the

outer mitochondrial membrane where Zuc (mitochon-

drial phospholipase, or PLD6 in mice) cleaves the

transcript, generating the 30 end of piRNAs (Fig. 2A)

[2,25,60,61,68]. The remaining 50 fragments of piRNA

precursors are subsequently bound and cleaved by

Piwi (MIWI2 in mice), which are then loaded onto

Piwi for nuclear import, facilitating iterative piRNA

generation [60,61,69]. This Zuc-mediated processing,

known as phasing, strongly biases the initial nucleotide

5The FEBS Journal (2024) ª 2024 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of
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of piRNAs toward uracil (1U), which aligns with the

preference for 50 end of Piwi-bound mature piRNAs.

This specific nucleotide preference enhances the stabil-

ity of piRNA binding to the MID domain of PIWI

[70,71]. In Drosophila, phasing not only generates new

piRNA sequences but also integrates these phased

piRNAs into the ping-pong cycle for further amplifica-

tion of piRNAs. Depletion of Zuc and Nibbler can

induce compensatory mechanisms, including the for-

mation of new ping-pong pairs to maintain the piRNA

production, yet no transposon-derived suppressors of

the piRNA pathway are observed [62].

The processing of piRNA 30 end is mediated by either

Zuc functions or Nibbler/PNLDC1, which determines

whether piRNA precursors are loaded onto Piwi or to

Aub/Ago3. In Drosophila, Nibbler is enriched in the peri-

nuclear nuage and facilitates the ping-pong pathway,

whereas Zuc localizes to the mitochondria and functions

in the phasing pathway for piRNA processing. Each

pathway engages the resulting piRNAs in post-

transcriptional or transcriptional silencing, respectively

[62]. Perturbation of Nibbler significantly affects piRNA

maturation, highlighting its role in balancing the two

pathways of piRNA 30 ends, similar to PNLDC1 in mice

[62,68,72–74]. Zuc compensates for the absence of Nibbler

by enhancing the phasing process and using piRNA pre-

cursors to reduce biogenesis through the ping-pong path-

way. This reveals a competitive relationship between the

two piRNA 30 end formation processes [62].

In the Drosophila testes, piRNA biogenesis displays

stage-specific variations during spermatogenesis: piR-

NAs targeting TEs exhibit a more prevalent ping-pong

signature in spermatogonia compared to spermato-

cytes, whereas piRNAs targeting repeats such as

Suppressor of Stellate (Su(Ste)) and AT-chX are

predominantly generated in spermatocytes rather than

spermatogonia [75]. These distinct pathways represent

a developmentally programmed intergenerational

mechanism. The generation of Su(Ste) piRNA is trig-

gered by maternally deposited 1360/Hoppel piRNA

through phasing in the spermatogonia, which in turn

suppresses the Ste expression in spermatocytes [76].

Collectively, piRNA-induced silencing complexes

(piRISC), containing Piwi (or MIWI2 in mice) and

piRNAs produced through the ping-pong and phasing

pathways by processing of cluster transcripts, enable

both post-transcriptional and transcriptional TE

silencing. Nevertheless, the significance of a large num-

ber of piRNAs from clusters in TE silencing in Dro-

sophila has recently been questioned, as simultaneous

deletion of three major piRNA clusters (42AB, 38C

and 20A) did not cause TE transposition or female ste-

rility [77]. This suggests that piRNAs essential for TE

silencing may originate from TE insertions scattered

throughout euchromatic regions, which are potentially

converted into piRNA-generating loci through yet uni-

dentified mechanisms [26,78].

piRNA pathways in somatic cells

In Drosophila somatic cells, Aub and Ago3 that are

involved in the germline-specific ping-pong cycle,

are not expressed. Instead, piRNA biogenesis relies

exclusively on Piwi, Zuc, and several co-factors that

localize to the mitochondrial surface adjacent to a

perinuclear cytoplasmic structure known as Yb bodies

[40]. Composed of various proteins, including Sisters

of Yb (SoYb), Vreteno (Vret), Shutdown (Shu) and

Armi, Yb bodies serve as the piRNA processing sites

[50,51,79–82].
The piRNA precursors are transported to the cyto-

plasm, where they are recognized by the DEAD-box heli-

case, Yb, through its binding to piRNA precursors, such

as traffic jam (tj) RNA and flamenco cluster tran-

scripts [47,69,83]. Once recognized and processed by Yb

in the Yb bodies, the Piwi-bound piRNA precursors

binds to Armi and are transported from the Yb bodies to

mitochondria, where Zuc initiates the phasing step

(Fig. 2B) [2,25,70]. Daedalus (Daed), which interacts with

Gasz anchors the piRNA precursors to the mitochon-

drial outer membrane for processing. Upon binding to

piRNAs, Piwi undergoes a conformational change that

exposes its nuclear localization signals, facilitating the

transport of the piRNA (methylated by Hen1)-Piwi com-

plex into the nucleus through the canonical importin-

mediated transport pathway (Fig. 2B) [2,25,64,84].

piRNA biogenesis in mice

Three PIWI family proteins in mice, MILI, MIWI2,

and MIWI, are expressed in a developmental stage-

dependent manner in the testes, and their absence

causes male infertility [85–87]. The 26–31 nt of

testicular piRNAs are classified into two populations:

pre-pachytene and pachytene piRNAs. Pre-pachytene

piRNAs, produced in embryonic and perinatal germ

cells, are associated with MILI and MIWI2, while

pachytene piRNAs, generated in spermatocytes and

round spermatids, are bound to MILI and MIWI

[85,88]. Here, we focuses on the well-studied biogenesis

of pre-pachytene piRNAs, which involves phasing pro-

cessing and ping-pong amplification. For other mecha-

nisms of piRNA biogenesis in mice, we direct readers

to further specialized literature.

Pre-pachytene piRNAs are generated from tran-

scripts with a cap structure and a poly (A) tail,
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originating from the unistrand clusters and TE RNAs

through both phasing and ping-pong processing path-

ways [89,90]. In the phasing pathway, the piRNA clus-

ter transcript is consecutively cleaved by

MitoPLD/PLD6 (Zuc in Drosophila), supported

by MOV10L1 (Armi in Drosophila), producing a 50U
RNA fragment [60,61,91]. The 50U RNA fragment is

then incorporated into MILI, which is subsequently

recruited to the mitochondria by TDRKH [73]. The

30–50 exonuclease PNLDC1 (Trimmer in silkworm and

Nibbler in Drosophila) then trims the 30 ends [92–94],
and HENMT (Hen1 in Drosophila) adds 20O-methyl to

the 30 end of piRNAs, maturing them [95], for loading

into MILI. This complex can then engage in the ping-

pong cycle, cleaving complementary antisense tran-

scripts and generating secondary piRNAs bound to

either MILI or MIWI2. MIWI2-bound piRNAs trans-

locate to the nucleus and suppresses transcription

through CpG methylation at TE loci, such as LINE or

IAP [96]. The absence of MILI reduces MIWI-2

bound piRNA and its nuclear localization [88,97],

highlighting that MILI play an essential role in the

ping-pong cycle and that most piRNAs originate from

ping-pong pathways.

Conservation of TE silencing among arthropods

Transcriptional and post-transcriptional silencing of

TEs is highly conserved across nearly all animals des-

cended from the last common ancestor of arthropods.

Notably, the genus Drosophila, an arthropod, has

evolved a unique somatic piRNA biogenesis that

operates independently of the ping-pong cycle,

highlighting the evolutionary adaptability of the

piRNA pathway [98–100]. In Drosophila somatic

gonadal cells, gypsy retrotransposons, which are

capable of invading adjacent germline cells, are sup-

pressed by piRNAs processed through phasing, a

mechanism that is highly conserved within the genus

[23,40,51,83,98,101–103]. However, the Yb gene is not

conserved in more distant Drosophila species such as

Drosophila obscura and Drosophila eugracilis

(Fig. 2C) [99,100]. Nevertheless, somatic gonadal cells

of the both species contain perinuclear Yb body-like

structures with intense localization of Armi and pro-

duce TE antisense piRNAs similar to germline cells.

This suggests that an alternative protein to Yb may

recruit Armi for efficient transcript processing

(Fig. 2C) [99,100].

Moreover, in the germline of D. eugracilis, Aub

exclusively loads piRNAs generated through phasing,

and no ping-pong signature is observed (Fig. 2C)

[99,100]. This indicates that TE antisense piRNAs are

generated through phasing on the mitochondrial sur-

face by Zuc without the involvement of slicing by

endonucleases in the ping-pong pathway [99]. Never-

theless D. eugracilis still possesses components of the

ping-pong pathway such as Spindle-E (Spn-E), Vas,

and Qin [40,68,104], implying a similar, but distinct

piRNA processing other than the ping-pong cycle.

These observations highlight that species within the

obscura group and D. eugracilis may have evolved a

novel mechanism for phasing piRNA biogenesis. This

raises questions about the functional diversity of the

piRNA pathway and presents biological challenges in

understanding how these species distinguish between

self and non-self RNA during evolution.

Proteins in non-membrane nuage
structures for piRNA processing and
others

In eukaryotes, unlike organelles surrounded by a lipid

bilayer such as the nucleus, endoplasmic reticulum, or

Golgi apparatus, ribonucleoprotein (RNP) complexes

form compartments in either the nucleus or cytoplasm

and function as non-membrane organelles. Within

these biomolecular condensates, RNAs and proteins

respond rapidly to stimuli such as stress or

environmental changes due to thermodynamic forces,

including changes in density [105,106]. Among these

non-membrane structures, P-granules in nematodes are

a notable example of RNP complexes found in animal

germline cells. Pioneering studies have highlighted their

dynamic behavior, including fusion, division, and com-

ponent exchange, demonstrating their organization as

phase-separated, RNP-containing non-membrane

organelles [24,107–110].
Unlike P-granules, not all components of the non-

membrane nuage are regulated by phase separation.

However, certain elements exhibit this property, which

contributes significantly to RNP granule formation.

For example, Vas, an essential component in piRNA

biogenesis that recruits piRNA precursors to nuage

together with UAP56 [39,111], also functions to form

germ granules by being enriched at the posterior pole

of Drosophila oocytes [112,113]. In silkworm germline

culture cells, BmN4, the RNA-binding activity of Vas

is crucial for droplet formation, and its ATP activity is

required to accelerate the functional assembly of

Siwi–Ago3–RNA complexes [104,114]. In the following

subsection, we focus on the nuage components, partic-

ularly discussing the unique domains that are com-

monly found among them: Tudor domain, LOTUS

domain and the IDR domain, which are most relevant

for biomolecular condensates.
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Tudor domain containing proteins for piRNA

processing and constitution of other cytoplasmic

bodies

Tudor domain-containing proteins (TDRDs) are char-

acterized by the presence of Tudor domain(s), com-

prising approximately 60 amino acids and forming

antiparallel beta-barrel structure [115,116]. These pro-

teins are involved in a variety of cellular processes by

interacting with a diverse array of molecules, including

proteins, DNA, and RNA. Their functions extends to

gene silencing, DNA damage response, and regulation

of protein synthesis [80]. TDRDs containing multiple

Tudor domains facilitate multivalent interactions with

other proteins and are abundantly localized in specific

non-membrane structures such as nuage and Yb bod-

ies, indicating a crucial role in RNP granule formation

[117].

Tudor (Tud), the founding member of the TDRD

family, was originally identified as an RNA-binding

protein involved in RNA metabolism in Drosophila. It

contains 11 Tudor domains and interacts with methyl-

ated Aub in germ granules, serving as a scaffold for

their assembly [118–120]. In Drosophila, many

TDRDs, Krimp, Qin/Kumo (mouse Tdrd4), Tejas

(Tej) (mouse Tdrd5), Tud (mouse Tdrd6), Tapas (Tap)

(mouse Tdrd7), Vret, and the ATP-binding helicase

Spn-E (mouse Tdrd9), are localized at nuage in a hier-

archical manner and are engaged in ping-pong amplifi-

cation [48,58,79,120–122], suggesting that disruption of

upstream steps during the piRNA biogenesis impairs

nuage formation, the processing site for piRNAs.

Our recent studies have shown that Tej, a TDRD

localized to the nuage, functions as a hub for proper

nuage formation by recruiting two RNA helicases, Vas

and Spn-E, through distinct domains, along with

piRNA precursors [111]. Indeed, Tej has been sug-

gested to function upstream of the ping-pong pathway,

as evidenced by the delocalization of other compo-

nents upon loss of Tej (Fig. 2A) [2,111,121]. In addi-

tion, Spn-E interacts with several nuage-piRNA

components, such as Qin/Kumo, Aub and Ago3 [123],

and Krimp’s interaction with Ago3 enhances hetero-

typic ping-pong amplification [57]. These findings

underscore that nuage formation is regulated through

interactions between scaffolding proteins such as

TDRDs and other transiently interacting proteins.

These interactions facilitate the formation of highly

organized aggregates akin to phase separation [124].

Interactions between nuage components through

post-translational modifications also play a crucial role

in the ping-pong cycle, a further processing step of

piRNA precursors. TDRDs interact with PIWI family

proteins through symmetrically dimethylated or

unmethylated arginine residues, playing critical roles

for piRNA biogenesis [19,20,80,125–131]. The Tudor

domain on Krimp specifically binds to unmethylated

arginine residues on piRNA-unloaded Ago3, while rec-

ognizing methylated arginine residues on piRNA-

loaded Aub.

This dual binding facilitates the efficient transfer of

piRNA intermediates between Aub and Ago3, which is

crucial for maintaining the antisense bias of Aub-bound

piRNAs [56,57,68,132]. Qin/Kumo, on the other hand,

prevents homotypic Aub–Aub interactions by correctly

loading cleaved piRNA products to Aub, thereby pro-

moting efficient heterotypic Aub–Ago3 ping-pong inter-

actions in Drosophila [68]. In addition, silkworm Spn-E

suppresses homotypic Siwi-Siwi ping-pong interactions

independently of its ATPase activity, while it is required

for the heterotypic Siwi–BmAgo3 interaction [133]. Sim-

ilarly, its mouse orthologue, RNF17, suppresses homo-

typic ping-pong in meiotic cells and prevents

promiscuous piRNA production [68].

TDRD proteins function in the formation of non-

membrane structures not only in germline cells but

also in somatic cells, specifically in the formation of

Yb bodies. Yb, the core component of the Yb bodies,

is crucial for Zuc-dependent piRNA biogenesis and is

located near the mitochondria. It harbors a helicase-

like domain, similar to DEAD/DEAH-box RNA heli-

cases, and a Tudor domain [51,134]. Other Yb body

proteins containing Tudor domains, such as BoYb,

SoYb and Vret, are also present in Yb bodies and/or

nuage [80], but the specific roles of the these Tudor

domain proteins in RNP granules remain poorly

understood.

TDRDs are indispensable not only for non-

membrane bodies involved in piRNA processing but

also for other cytoplasmic structures such as Cajal

bodies, stress bodies and P-bodies. For example,

piRNA components are co-localized with P-bodies,

which are sites of mRNA turnover and silencing,

forming the structure called Pi-bodies or piP-bodies

[135–137]. Collin, a critical component of Cajal bodies,

plays essential roles in the assembly and modification

of small nuclear ribonucleoproteins (snRNPs) for the

maturation of spliceosomal components [138]. Stress

granules containing TDRD3 regulate mRNA stability

and translation during stress responses [139].

LOTUS domain proteins function for piRNA

processing

In addition to TDRDs, proteins containing the highly

conserved LOTUS domain (also known as OST-
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HTH), which consists of approximately 80–100 amino

acid residues, also contribute to the formation of non-

membrane structures. While LOTUS domain family

proteins are found in metazoans from bacteria to

eucaryotes, their function is predominantly in the

germline cells [140–143]. The LOTUS domain has been

further categorized into extended LOTUS (eLOTUS)

and minimal LOTUS (mLOTUS) domains based on

structural and functional variations. The eLOTUS

domain recruits Vas and stimulates its ATP activity,

acting as a DEAD-box RNA helicase regulators,

whereas the mLOTUS domain does not [144,145].

In Drosophila and mice, LOTUS domain proteins

such as Oskar (no mouse homolog), Tej/TDRD5,

Tap/TDRD7, and Meiosis arrest female 1 (MARF1)

(mouse Limkain B1) play essential roles in various

processes during gametogenesis, including germ gran-

ule formation, meiosis, and TE repression via the

piRNA pathway. At the posterior pole of the Drosoph-

ila oocyte, Oskar specifically through the eLOTUS

domain, interacts with Vas, assembling other proteins

and over 200 maternal mRNAs in germ granules,

which contributes to embryonic and axial formation

[144]. dMarf1, the Drosophila homolog of MARF1, is

important for oocyte maturation, though the specific

role of its LOTUS domain in structure formation

remains unclear [146,147]. Tej and Tap, the Drosophila

homologs of Tdrd5 and Tdrd7 respectively, contain

not only Tudor domains but also a LOTUS domain

(Fig. 3), which contribute both individually and syner-

gistically to piRNA biogenesis [121,122]. Various

LOTUS domains from different species have been

shown to strongly interact with the C-terminal RecA-

like domain of Vas to activate its ATP hydrolysis. This

suggests that activation of Vas is a conserved function

of the eLOTUS domain [144]. The eLOTUS domain

of Tej interacts with Vas to promote the processing of

piRNA precursors (Fig. 2A) [2,111]. In contrast, the

mLOTUS domain lacks a C-terminal extension and

does not interact with Vas or related DEAD-box pro-

teins [144,146]. Furthermore, the LOTUS domain of

Tej and Osk recognizes the guanine-rich RNA forming

G-quadruplex (G4) structures, while LOTUS domain

of Tap does not bind to them, though the biological

significance of these differences in G4 RNA binding

remains unclear [148].

Recent studies in C. elegans have also highlighted

the role of LOTUS or Tudor domain proteins in the

assembly of non-membrane P-granules and perinuclear

P-granules which are akin to germ granules and nuage

in Drosophila [149–151]. The LOTUS domain proteins

MIP-1 and MIP-2 have been identified as interacting

with MEG-3, which is exclusively localized in

P-granules. These proteins facilitate the condensation

of P-granules and serve as a hub to recruit the Vas

homolog GLH-1 though the LOTUS domain in the

germline lineage, tethering P-granule to the nuclear

periphery. This interaction potentially initiates the for-

mation of extensive networks that scaffold and nucle-

ate core processes within germ granules [149]. The

LOTUS and Tudor domain-containing protein LOTR-

1 interacts with the ZNFX-1 helicase in a sub-granule

known as the Z-granule, which is essential for small

RNA generation and piRNA-mediated transposon

silencing [151]. Thus, analysis of these domains pro-

vides valuable insight into the molecular functions and

hierarchical structural organization of granule

components.

Function of IDR for RNA processing in

non-membrane structure and LLPS

IDR domains constitute approximately one-third of

the eukaryotic proteome and play crucial roles in vari-

ous cellular functions [152]. Unlike folded domains,

IDRs exist as conformationally flexible structures.

They exhibit structural biases based on their amino

acid sequences, influenced by factors such as polarity,

hydrophobicity, electrostatic or cation-p interactions

between side chains. These interactions generate attrac-

tive or repulsive forces between distal regions of IDRs

[153–156]. While folded domains benefit from a net-

work of non-covalent interactions within the molecule

that determine molecular topology, all residues within

IDRs are exposed, at least transiently, due to their dis-

ordered nature. As a result, the entire sequence can

respond directly and rapidly to changes in the subcel-

lular environment, potentially playing important roles

in downstream biological functions [157,158]. Thus,

IDR-containing proteins involved in non-membrane

structures facilitate rapid adaptation to changes in the

subcellular environment with conformational flexibility

[153–156]. They are also abundant in various RNA-

containing granules such as P-granules, germ granules,

and nuage in the germline lineage, in addition to neu-

rodegenerative diseases [159–162]. Notably, IDR-

containing proteins such as Osk, Vas, Aub, and Ago3

participate in critical roles within these granules. For

example, Osk regulates the interaction of Vas in germ

granules through the liquid-like or hydrogel-like prop-

erties of its IDR [163]. In addition, mammalian

DDX3X, having a long IDR at its N terminus similar

to that of Vas, contributes to the formation of gran-

ules in the germline by facilitating phase separation

associated with RNA binding [106,164,165]. Indeed,

other RNA-dependent DEAD-box ATPases are also
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known to regulate RNA-containing phase-separated

organelles [106,165].

In piRNA biogenesis pathways, piRNA-mediated

post-transcriptional and transcriptional silencing of

TEs leads to the formation of piRNA-containing ribo-

nucleoprotein (RNP) granules. Within these RNP

granule, RNA and RNA-binding proteins can segre-

gate from their surroundings by phase separation at a

certain concentration threshold. Inhibition of piRNA

cluster transcription results in the dissociation of

nuage, suggesting that the processing of piRNA pre-

cursors itself induces the formation of the RNP con-

densate [28]. Consistently, catalytic mutants of Siwi

(Piwi homolog in silkworm) disrupt the proper distri-

bution of nuage structure [137]. IDRs within PIWIs

are thought to facilitate the phase separation necessary

for RNP granule formation [70,166,167]. Tej, a Dro-

sophila homolog of Tdrd5 that serves as a core compo-

nent in the proper nuage formation, recruits Vas and

Spn-E and contributes to the dynamics of Vas through

IDR in the ovaries [111] (Fig. 4A–D). Thus, IDRs of

nuage components emphasize their significance across

species in contributing to RNP granule formation and

protecting the germline genomes.

Liquid–liquid phase separation (LLPS) also contrib-

utes to the formation of Yb bodies, which are RNP
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XP037969050, B. mori: A0A8R2C856, Aedes aegypti: XP0016544, PD D. melanogaster: FBpp0290425, PB D. melanogaster: FBpp0085592,

Da. rerio: NP998270.1 [A6NAF9], X. laevis: NP001084569.2 [Q6NU04], C. jacchus: XP002743155.1 [F7HUL2], H. sapiens: NP001289813.1

[Q8NHU6], M. musculus: NP001277404.1 [Q8K1H1], R. norvegicus: NP620226 [Q9R1R4]. (C–E) Homology alignment and a phylogenetic

tree of the Tudor domains of TDRD5 and TDRD7 across metazoans generated by CLUSTALW along with ITOL. Note that TDRD5 homologs

typically contain only one Tudor domain, whereas TDRD7 homologs generally harbor three Tudor domains. This structural variance accounts

for the observed gaps and differences in domain conservation among the species analyzed. (F) Names of various species used for

homology alignment in TDRD5 and TDRD7.
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granules where phased piRNA processing occurs in

Drosophila somatic gonadal cells. Yb, a core compo-

nent of Yb bodies, contains a Tudor domain and an

IDR (Fig. 4E,F), and the formation of Yb bodies is

sensitive to 1,6-hexanediol, indicating a role of LLPS

in their assembly [168]. Importantly, the production of

selective phased piRNAs from piRNA precursor tran-

scripts depends on the interaction of Armi with Yb

and its subsequent localization to Yb bodies [102,168],

indicating that the accumulation of these molecules in

these condensates is crucial for proper piRNA

processing.

In D. melanogaster, Piwi, the founding member of

PIWI family proteins, is predominantly localized in

the nucleus, where it functions to suppress the tran-

scription of TEs by forming piRISC [169,170]. Piwi’s

cofactors, Maelstrom (Mael) and Panoramix (Panx)

that have also IDRs, play a central role in TE tran-

scriptional silencing, as well as promoting Rhino-

dependent cluster transcription and the generation of

piRNA precursors, thereby supporting piRNA produc-

tion [44,45,169,171–176]. This transcriptional TE

silencing also depends on the formation of nuclear

RNP granules composed of Panx-Cut up/LC8-Nxf2-

Nxt1 complexes, interacting with DNA and RNA

along with facilitating granule formation (Fig. 4G,H)

[177,178]. Future studies on the morphology or

dynamics of functional granules will further illuminate

the importance of RNP condensates in piRNA

biogenesis.

piRNA functions beyond the gonads

piRNA and diseases

Dysregulation of PIWI and piRNA functions has been

implicated not only in infertility but also in various

diseases, including cancer and neurodegenerative disor-

ders [179]. Recent studies have revealed the role of

piRNAs in cancer cell malignancy via RNA modifica-

tion. For example, piRNAs and/or PIWI proteins are

involved in the epigenetic control of gene expression

[180], such as the upregulation of METTL14 mRNA

via m6A DNA methylation by the specific piRNA-

14633 in cervical cancer cell malignancy [181] or the

modulation of ZEB1 via m6A RNA modification of

obesity-associated protein genes by piRNA-17560

[182]. In addition, TDRDs are more closely linked to

the structural aspects of the non-membrane SMN

(survival motor neuron) protein, causing severe neuro-

degenerative disorders involving RNA metabolism

[117].

Other studies highlight the involvement of piRNAs

and the piRNA–PIWI complex in neural cells and

brain [183–185]. In the central nervous system of Aply-

sia, specific piRNAs, piR-F modulates the expression

of CREB-2 affecting gene expression either through

epigenetic silencing or enhancement [186]. In Drosoph-

ila, the loss of PIWI family proteins leads to the upre-

gulation of TEs in ab neurons [187]. Furthermore,

several TEs are upregulated in a Drosophila model of

tauopathy expressing pathogenic Tau, where overex-

pression of Piwi suppresses dysregulated TEs in the

brain [188]. The piRNA pathway also functions in

neural crest specification in chicks by modulating the

expression of a transposon-derived gene ERNI, which

in turn regulates Sox2 expression [189]. Additionally,

somatic piRNAs and Piwi expression have been

observed in the Drosophila fat body [190]. In Piwi

mutants, enhanced DNA damage and reduced lipid

stores in the fat body indicate a sensitivity to starva-

tion and reduced lifespan, suggesting that the piRNA

pathway is essential for metabolism and overall health

in flies.

However, the majority of non-gonadal piRNAs

identified in mammals are often fragments of non-

coding RNAs, such as rRNAs, tRNAs, YRNAs,

snRNAs, snoRNAs and intermediates of miRNAs,

which are frequently misclassified as piRNAs in vari-

ous databases [191]. These findings suggest potential

contamination unrelated to piRNAs generated by

PIWI’s function. Furthermore, the functional piRNA

pathway may not directly induce carcinogenesis. This

is supported by the lack of expression of DDX4/Vas

and the absence of functional piRNA silencing com-

plexes in non-germline cancers [192,193]. In addition,

the loss of PIWIL1 does not affect TE expression in a

colon cancer cell line [192]. Human PIWIL1 also

enhances metastasis in pancreatic ductal adenocarci-

noma and promotes gastric cancer by piRNA-

independent mechanisms [194]. More detailed studies

of piRNA pathways and the piRNA-PIWI complex

are needed to clarify whether piRNA expression is

merely correlated with, or actively contributes to, car-

cinogenesis and other diseases.

piRNA functions in other tissues

Beyond germline cells, only a few cases involve piR-

NAs production via the ping-pong cycle in non-

membrane organelles. For example, in Drosophila

somatic gonadal cells, piRNA processing through

ping-pong amplification can be artificially induced by

perturbing lethal(3)malignant brain tumor (L(3)mbt), a
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protein containing three malignant brain tumor

(MBT) domains involved in chromatin regulation and

transcriptional repression [195,196]. Loss of L(3)mbt

in the somatic gonadal OSC cells leads to the ectopic

expression of germline genes involved in piRNA pro-

cessing, resulting in the generation of piRNAs that

exhibit a ping-pong signature [195–198]. Coinciden-

tally, proteins associated with ping-pong amplification

are found to be enriched in the granular structures

resembling nuage in germline cells.

Interestingly, piRNAs exhibiting ping-pong signa-

tures have been detected in stem cells of basal meta-

zoans [199], particularly in multipotent interstitial stem

cells in Hydra [200,201] and pluripotent neoblasts in

planarians [202,203]. These stem cells, which contain

piRNAs and PIWI family proteins enriched in nuage-

like non-membrane structures, can differentiate into

germline cells. This germline competence may trigger

TE activation, leading to the activation of the piRNA

pathway for their repression. In Hydra, not only germ-

line competent interstitial stem cells but also perpetu-

ally dividing epithelial cells contain piRNAs with a

ping-pong signature and harbor nuage-like struc-

tures [201,204]. These observations suggest a strong

link between the activation of transposons and the

defensive response of the organism, possibly mediated

by the formation of non-membrane organelles and the

generation of piRNAs through the ping-pong amplifi-

cation cycle.

Conclusions

piRNA biogenesis plays a pivotal role in the transcrip-

tional and post-transcriptional silencing of TEs in ani-

mal gonads for safeguarding the integrity of germline

genomes. While these mechanisms are broadly con-

served across metazoans, evolutionary adaptations

have led to the loss or acquisition of specific compo-

nents. This has resulted in the emergence of alternative

proteins or complexes that compensate for or replace

the original piRNA production and/or TE silencing

function. However, many factors and unique molecu-

lar processes, such as protein modifications or tran-

sient interactions, remain poorly understood. With the

evolution of these components, TEs also adapt in

response to various environmental and developmental

cues, including viral infection and stress. This high-

lights the necessity of exploring TE variation not only

across deviated animal species but also in response to

diverse environmental pressures.

Two fundamental TE silencing pathways operate

within specialized non-membrane structures: the ping-

pong amplification cycle in nuage within germline cells

and phasing processing in Yb bodies within somatic

cells. These non-membrane structures in the cytoplasm

house individual proteins such as PIWI family proteins

or Yb and Armi, ensuring the effective maturation of

piRNAs through mechanisms that forms RNP gran-

ules plausibly controlled by LLPS.

In addition to PIWI family proteins, other key com-

ponents of piRNA processing—including those with

specific domains such as Tudor, LOTUS, and IDRs—
are also essential for the formation and function of

these non-membrane structures. Recent biochemical

and structural studies have revealed that TDRDs con-

tribute to the assembly and functionality of piRNA

processing granules with PIWI family proteins, other

RNA-binding modules and DNA/RNA, regulating the

dynamics of the granules mediated by specific domains

or IDRs. Similarly, proteins with LOTUS domains

can enhance the stability and specificity of interactions

with other nuage components, thereby facilitating the

assembly of the silencing machinery to combat TEs.

Further studies of their cellular and molecular mecha-

nisms will provide insights into the dynamics of these

granules and the populations of RNAs, including

piRNA precursors, that assemble via LLPS or other

mechanisms. These studies will also elucidate how

Fig. 4. Function of proteins containing IDR in the piRNA pathways. (A) FRAP analysis demonstrating that IDR of Tej facilitates Vas

mobility in Drosophila ovaries. The fluorescence intensity of Vas-mCherry, co-expressed with either full-length Tej (Tej-FL) (green) or Tej

lacking IDR (Tej-DIDR) (magenta), is plotted over time after bleaching. (B) Sequential images of Drosophila nuage show the recovery of the

Vas-mCherry fluorescence intensity in the presence of Tej-FL or Tej-DIDR before and after photobleaching (marked by dotted white circles).

Scale bar indicates 5 lm. (C, E, G) Schematic diagrams illustrate the domain structures of Tej, Yb, and Panx proteins (upper, each panel).

IUPRED profiles for these proteins are displayed below (lower, each panel), with the y-axis representing IUPRED scores. Scores above 0.5

are highlighted in orange. The x-axis represents the amino acid positions. (D) A schematic model illustrating the function of Tej in ping-pong

piRNA processing. Tej recruits Spn-E to the cytoplasmic perinuclear nuage via its eSRS motif. In addition, Tej recruits Vas through the

LOTUS domain and modulates Vas dynamics through its IDR. (F) A schematic model illustrating the interactions between Yb, Armi, SoYb

and Vret within the Yb bodies. Yb forms a homodimer and exhibits sensitivity to 1,6-hexanediol. (H) A schematic model of the SFiNX

complex involved in TE silencing, composed of Panx, Ctp, Nxf2, and Nxt1. This complex forms a DNA- or RNA-dependent granule structure.

Figures in A–D are adapted from Ref. [111], which is copyrighted under a CC-BY-4.0 license.
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these processes respond to developmental stages and

biological cues, thereby advancing our understanding

of piRNA-mediated genome defense.
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