
Title Neck-pinching of ℂP¹-structures in the PSL₂ℂ-
character variety

Author(s) Baba, Shinpei

Citation Journal of Topology. 2025, 18(1), p. e70010

Version Type VoR

URL https://hdl.handle.net/11094/100195

rights
This article is licensed under a Creative
Commons Attribution-NonCommercial 4.0
International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Received: 31 December 2019 Revised: 2 September 2024 Accepted: 16 November 2024

DOI: 10.1112/topo.70010

Journal of TopologyRESEARCH ARTICLE

Neck-pinching of ℂ𝐏𝟏-structures in the
𝐏𝐒𝐋𝟐ℂ-character variety

Shinpei Baba

Osaka University, Toyonaka, Japan

Correspondence
Shinpei Baba, Osaka University,
Toyonaka 5600043, Japan.
Email: sb.sci@osaka-u.ac.jp

Funding information
German Research Foundation,
Grant/Award Number: BA 5805/1-1;
National Science Foundation,
Grant/Award Numbers: DMS 1107452,
1107263, 1107367; JSPS, Grant/Award
Numbers: 18H05833, 24K06737

Abstract
We characterize a certain neck-pinching degeneration
of (marked) ℂP1-structures on a closed oriented sur-
face 𝑆 of genus at least two. In a more general setting,
we take a path of ℂP1-structures 𝐶𝑡 (𝑡 ⩾ 0) on 𝑆 that
leaves every compact subset in its deformation space,
such that the holonomy of 𝐶𝑡 converges in the PSL2ℂ-
character variety as 𝑡 → ∞. Then, it is well known that
the complex structure 𝑋𝑡 of 𝐶𝑡 also leaves every com-
pact subset in the Teichmüller space of 𝑆. In this paper,
under an additional assumption that𝑋𝑡 is pinched along
a loop𝑚 on 𝑆, we describe the limit of 𝐶𝑡 from different
perspectives: namely, in terms of the developing maps,
holomorphic quadratic differentials, and pleated sur-
faces. The holonomy representations of ℂP1-structures
on 𝑆 are known to be nonelementary (i.e., strongly irre-
ducible and unbounded). We also give a rather exotic
example of such a path 𝐶𝑡 whose limit holonomy is the
trivial representation.
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1 INTRODUCTION

Let 𝑆 be a (connected) closed oriented surface of genus at least two, throughout this paper. For a
(marked) ℂP1-structure 𝐶 on 𝑆, the holonomy of 𝐶 is a homomorphism 𝜋1(𝑆) → PSL2ℂ uniquely
determined up to conjugation by PSL2ℂ; see §2.2. This correspondence yields the holonomy
map

Hol∶ 𝖯 → 𝜒,

where 𝖯 (≅ ℝ12g−12) is the deformation space of all ℂP1-structures on 𝑆 and 𝜒 is the PSL2ℂ-
character variety of 𝑆. Note that there are many ℂP1-structures whose holonomy is not
discrete.
Hejhal [21] proved that Hol is a local homeomorphism (moreover, it is a local biholomorphic

map [10, 23]). However, it is not a coveringmap onto its image ([21]). Thus, it is a natural question
to ask how the path-lifting property fails.

Problem 1.1 (Kapovich [25, Problem 1], see also [15, Problem 12.5.1]). Let 𝐶𝑡 (𝑡 > 0) be a path of
ℂP1-structures on 𝑆 such that

(1) 𝐶𝑡 leaves every compact subset in 𝖯 at 𝑡 → ∞, and
(2) the holonomy 𝜂𝑡 ∈ 𝜒 of 𝐶𝑡 converges to 𝜂∞ ∈ 𝜒 as 𝑡 → ∞.

What is the asymptotic behavior of 𝐶𝑡?

In this paper, we give various limiting behaviors to answer Question 1.1 in the “neck-
pinching” case.
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 3 of 69

1.1 Pinching loops on Riemann surfaces

For each 𝑡 ⩾ 0, let 𝑋𝑡 denote the complex structure on 𝑆 induced by 𝐶𝑡. Then, by the work of
Kapovich ([25], see also [9, 15]), the conditions (1) and (2) imply that 𝑋𝑡 must also leave every
compact subset in the Teichmüller space 𝖳 (see Corollary 2.3).
We focus on the following basic type of degeneration of 𝑋𝑡. Given a path 𝑋𝑡 ∈ 𝖳 , 𝑋𝑡 is pinched

along a loop𝑚 if

∙ length𝑋𝑡
𝑚 → 0, and

∙ if an essential loop 𝓁 in 𝑆 ⧵ 𝑚 is not homotopic to𝑚, then length𝑋𝑡
𝓁 is bounded between two

positive numbers for all 𝑡 ⩾ 0.

Here “length𝑋𝑡
” is either the extremal length of 𝑋𝑡 or the hyperbolic length of the uniformization

of𝑋𝑡. (In the augmented Teichmüller space, this definition of pinching is equivalent to saying that
𝑋𝑡 accumulates to a compact subset of the boundary stratum corresponding to𝑚 being pinched.)
Amultiloop is a union of disjoint finitely many essential simple closed curves. Then, similarly,

we say that 𝑋𝑡 is pinched along a multiloop𝑀 on 𝑆, if,

∙ for each loop𝑚 of𝑀, length𝑋𝑡
𝑚 → 0 as 𝑡 → ∞, and

∙ for each loop 𝓁 in 𝑆 ⧵ 𝑀 not homotopic to a loop of 𝑀, length𝑋𝑡
𝓁 is bounded between two

positive numbers for all 𝑡 ⩾ 0.

The quasi-Fuchsian representation 𝜋1(𝑆) → PSL2ℂ is a discrete faithful representation whose
limit set is a Jordan curve in ℂP1, the quasi-Fuchsian Space 𝖰𝖥 is an open subset of the character
variety 𝜒. There is no path 𝐶𝑡 in Problem 1.1, whose limit holonomy 𝜂∞ is in 𝖰𝖥. On the other
hand, a dense subset of the boundary of𝖰𝖥 consists of holonomy representations ofℂP1-structures
pinched along loops ([30]), and it has been quite important to study such degeneration for the
study of Kleinian groups.

1.2 Asymptotic behaviors

One of our main results is that tr 𝜂∞(𝑚) must be ±2. In other words, the holonomy along 𝑚 at
𝑡 = ∞ corresponds to either (i) a parabolic element (which is not the identity) or (ii) the identity
of PSL2ℂ. We will describe, in both Cases (i) and (ii), the asymptotic behavior of 𝐶𝑡 from three
different perspectives of ℂP1-structures:

(A) A holomorphic quadratic differential on a marked Riemann surface homeomorphic to 𝑆

(Schwarzian parameters).
(B) A hyperbolic structure on 𝑆 and a measured lamination, which induces an equivariant

pleated surface ℍ2 → ℍ3 (Thurston parameters).
(C) A developing map 𝑓∶ 𝑆 → ℂP1 and a holonomy representation 𝜌∶ 𝜋1(𝑆) → PSL2ℂ.

(Developing pair)

The residue of a meromorphic quadratic differential 𝑞 at a pole is the integral of ±
√
𝑞 around

the pole, which is well defined up to sign (see [20]). Given a pole of order 2, letting 𝑟 be its residue,
𝑞 is expressed as 𝑟2∕𝑧−2𝑑𝑧2 for an appropriate parametrization in a neighborhood of the pole (see
[35, Theorem 6.3]).
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4 of 69 BABA

Let 𝑋 be a nodal Riemann surface, and let 𝑋̊ be the smooth part of 𝑋. Then, the normalization
𝑋 of 𝑋 is the smooth Riemann surface together with a continuous map 𝜉 ∶ 𝑋 → 𝑋 such that 𝜉
is a biholomorphic in 𝜉−1(𝑋̊) and for each node 𝑝 of 𝑋, 𝜉−1(𝑝) consists of exactly two points. A
regular quadratic differential on 𝑋 is a meromorphic quadratic differential 𝑞̄ on 𝑋 such that

∙ every pole of 𝑞̄ has an order at most two and it maps to a node of 𝑋, and
∙ if 𝑧1, 𝑧2 on 𝑍 map to the same node on 𝑋, then the residue around 𝑧1 is equal to that of 𝑧2

(see [6], [28]).
For Perspective (A), the path 𝐶𝑡 corresponds to a path of pairs (𝑋𝑡, 𝑞𝑡), 𝑡 ⩾ 0 in Schwarzian

coordinates, where 𝑋𝑡 is a marked Riemann surface homeomorphic to 𝑆 and 𝑞𝑡 is a holomorphic
quadratic differential 𝑞𝑡 on 𝑋𝑡 for all 𝑡 ⩾ 0.

Theorem A.

∙ Suppose that 𝑋𝑡 is pinched along a loop𝑚. Then, exactly one of the following holds.
(i) 𝑋𝑡 converges to a nodal Riemann surface𝑋∞ with a single node, and 𝑞𝑡 converges to a regular

quadratic differential on 𝑋∞ such that the node is at worst a pole of order 1 (Theorem 10.12).
(ii) For every diverging sequence 0 ⩽ 𝑡1 < 𝑡2 < … , up to a subsequence, 𝑋𝑡𝑖

converges to a nodal
Riemann surface 𝑋∞ with a single node and 𝑞𝑡𝑖 converges to a regular quadratic differen-
tial 𝑞∞ on 𝑋∞ such that the residue of each pole is a nonzero integral multiple of

√
2𝜋

(Theorem 13.20).
∙ Suppose that 𝑋𝑡 is pinched along a multiloop 𝑀 consisting of 𝑛 loops. Then, for every diverging
𝑡1 < 𝑡2 < … , there is a subsequence such that 𝑋𝑡𝑖

converges a nodal Riemann surface 𝑋∞ with 𝑛

nodes and 𝑞𝑡 converges to a meromorphic quadratic differential 𝑞∞ on𝑋∞ such that each node of
𝑋∞ is, at most, a pole of order 2 (Corollary 7.6).

The convergence of the holomorphic quadratic differential in Theorem A is normal conver-
gence, and, in particular, the ℂP1-structure 𝐶𝑡 converges to the ℂP1-structure corresponding to
(𝑋∞, 𝑞∞)minus the node, uniformly on every compact subset.
The space of homomorphisms𝜋1(𝑆) → PSL2ℂ is called the representation variety, and the char-

acter variety 𝜒 is the GIT-quotient of the representation variety (see §3). In order to obtain an
equivariant object as a limit of 𝐶𝑡, we pick a (continuous) lift 𝜌𝑡 ∶ 𝜋1(𝑆) → PSL2ℂ of 𝜂𝑡 ∈ 𝜒, such
that 𝜌𝑡 converges, as 𝑡 → ∞, to a homomorphism 𝜌∞∶ 𝜋1(𝑆) → PSL2ℂ that maps to 𝜂∞. In fact,
we prove the existence of such a lift in Proposition 3.2, since it is not obvious when 𝜂∞ is an
elementary representation.
Note that for every discrete faithful representations 𝜋1(𝑆) → PSL2ℂ, there is a unique equivari-

ant continuous map 𝜕∞𝜋1(𝑆) ≅ 𝕊1 → ℂP1 called the Cannon–Thurston map ([32]). This map is
closely related to the question which we consider, by identifying the ideal boundary of 𝑆 with 𝕊1.
Let 𝑁 be a regular neighborhood of the loop 𝑚 in 𝑆. For 𝑡 ⩾ 0, let 𝐶𝑡 ≅ (𝜏𝑡, 𝐿𝑡) be Thurston

parameters, where 𝜏𝑡 is a path of marked hyperbolic structures on 𝑆 and 𝐿𝑡 is a path of measured
laminations on 𝑆 (§2.2.2). Fixing a marking 𝜄𝑡 ∶ 𝑆 → 𝜏 in its isotopy class, (𝜏𝑡, 𝐿𝑡) yields to a 𝜌𝑡-
equivariant pleated surface 𝛽𝑡 ∶ 𝑆 ≅ ℍ2 → ℍ3, which changes continuously in 𝑡 ⩾ 0. Then, in fact,
𝛽𝑡 converges to a continuous equivariant map.

Theorem B. Suppose that 𝑋𝑡 is pinched along a loop 𝑚. Then, by taking an appropriate path of
markings 𝜄𝑡 ∶ 𝑆 → 𝜏𝑡 (𝑡 ⩾ 0), exactly one of the following holds:
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 5 of 69

(i) 𝜌∞(𝑚) ∈ PSL2ℂ is a parabolic element, and 𝛽𝑡 ∶ 𝑆 → ℍ3 converges to a 𝜌∞-equivariant con-
tinuous map 𝛽∞∶ 𝑆 → ℍ3 ∪ ℂP1 uniformly on compact subsets, such that 𝛽−1∞ (ℂP1) is a
𝜋1(𝑆)-invariant multicurve on 𝑆 that is 𝜋1(𝑆)-equivariantly homotopic to 𝜙−1(𝑚), where
𝜙∶ 𝑆 → 𝑆 is the universal covering map (Theorem 10.5).

(ii) 𝜌∞(𝑚) is the identity in PSL2ℂ, and, for every sequence 0 ⩽ 𝑡1 < 𝑡2 < … diverging to∞, up to a
subsequence, 𝛽𝑡𝑖 ∶ 𝑆 → ℍ3 converges to a 𝜌∞-equivariant continuous map 𝛽∞∶ 𝑆 → ℍ3 ∪ ℂP1

such that 𝛽−1∞ (ℂP1) descends either to the loop 𝑚 or to a subsurface isotopic to one or two
components of 𝑆 ⧵ 𝑁 (§13.0.1).

Let 𝑓𝑡 ∶ 𝑆 → ℂP1 be the developing map of 𝐶𝑡 that is a 𝜌𝑡-equivariant local homeomorphism.
As 𝐶𝑡 changes continuously in 𝑡, we may assume that 𝑓𝑡 also changes continuously in 𝑡 ⩾ 0. Such
a family (𝑓𝑡) is unique up to a path of isotopies 𝑆 → 𝑆 in 𝑡 ⩾ 0 homotopic to the identity.
Pick a regular neighborhood 𝑁 of𝑚. Pick a component 𝑁̃ of 𝜙−1(𝑁). By abuse of notation, we

regard the loop 𝑚 also as the element of 𝜋1(𝑆) that preserves 𝑁̃. We show that the developing
map 𝑓𝑡 converges in the complement of 𝜙−1(𝑁), and the asymptotic behavior on 𝜕𝜙−1(𝑁) is well
controlled by the holonomy 𝜌𝑡(𝑚). Hyperbolic structures are, in particular, ℂP1-structures. If a
hyperbolic surface has a cusp, it has a neighborhood obtained by quotienting a horodisk in ℍ2 by
the cyclic group generated by a parabolic holonomy around the puncture.

Theorem C. Suppose that 𝑋𝑡 is pinched along a loop 𝑚. Then, by an appropriate isotopy of 𝑆 in
𝑡 ⩾ 0 homotopic to the identity, exactly one of (i) and (ii) holds.

(i)
∙ 𝜌∞(𝑚) is parabolic.
∙ The cusps of 𝐶∞ have horodisk quotient neighborhoods.
∙ 𝑓𝑡 ∶ 𝑆 → ℂP1 converges to a 𝜌∞-equivariant continuous map 𝑓∞∶ 𝑆 → ℂP1 uniformly on
compact subsets, andmoreover, there is amultiloop𝑀 that is a union of finitelymany parallel
copies of𝑚 such that𝑓∞ is a local homeomorphism exactly on 𝑆 ⧵ 𝜙−1(𝑀), and𝑓∞ takes each
component 𝑚̃ of 𝜙−1(𝑀) to its corresponding parabolic fixed point (Theorem 10.9).

(ii) 𝜌∞(𝑚) = 𝐼, and for every diverging sequence 𝑡1 < 𝑡2 < … , up to a subsequence,
∙ the restriction of 𝑓𝑡𝑖 to 𝑆 ⧵ 𝜙−1(𝑁) converges to a 𝜌∞-equivariant continuous map 𝑓∞∶ 𝑆 ⧵

𝜙−1(𝑁) → ℂP1, and
∙ Axis(𝜌𝑡𝑖 (𝑚)) converges to a geodesic in ℍ3 or a point in ℂP1 so that 𝑓∞ takes the boundary
components of 𝑁̃ onto the ideal points (inℂP1) of lim𝑖→∞ Axis(𝜌𝑡𝑖 (𝑚)) (Theorem 13.1), where
Axis(𝜌𝑡𝑖 (𝑚)) is the convex hull of the fixed point on ℂP1 (Definition 3.6).

Remark 1.2. If a general ℂP1-structure has a cusp with parabolic peripheral holonomy, there is its
cusp neighborhood isomorphic to either a horodisk quotient or a grafting of a horodisk quotient.
(See Proposition 5.2.)
A (2𝜋-)grafting is a cut-and-paste operation of aℂP1-structure, and it yields a newℂP1-structure

with the same holonomy, by inserting an appropriate cylinder along an (admissible) loop ([16],
see also [5, 26]). Let 𝑛 be the number of parallel copies of 𝑚 constituting𝑀 in (i). Then, there is
another diverging path 𝐶′

𝑡 of ℂP
1-structure on 𝑆 with holonomy 𝜌𝑡 and a path of admissible loops

𝑚′
𝑡 on 𝐶′

𝑡 for 𝑡 ≫ 0 such that 𝐶𝑡 is obtained by 2𝜋(𝑛 − 1)-grafting of 𝐶′
𝑡 .

In fact, Cases (i) and (ii) in Theorem A, Theorem B, and Theorem C correspond. In particular,
the Type (i) degeneration occurs on the boundary of the quasi-Fuchsian space, by pinching a loop
on a Bers slice.
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6 of 69 BABA

On the other hand, Type (ii) degeneration is new indeed. In particular, 𝜂𝑡 must be a nondiscrete
representation for all sufficiently large 𝑡 > 0, possibly except at 𝑡 = ∞ (Theorem 13.21). Notice that
if the peripheral loop of a cusp of a ℂP1-structure has trivial holonomy, then the ℂP1-structure
can be deformed without changing its holonomy (of the entire surface), by moving the cusp (cf.
Theorem 5.6). Then, since 𝜌∞(𝑚) = 𝐼, therefore it is necessary to take a subsequence. In §14, we
give examples of Type (ii) degenerations.
Next, we explain a certain uniform bound of 𝐶𝑡, which yields the convergence of 𝐶𝑡 away from

the pinched loop𝑚. This uniform bound holds for a more general path 𝐶𝑡 with a multiloop being
pinched. The integration of

√
𝑞𝑡 along paths on 𝑋𝑡 yields a singular Euclidean structure 𝐸𝑡 on 𝑋𝑡

such that a zero of order 𝑑 of 𝑞𝑡 is the singular point of cone angle (𝑑∕2 + 1)𝜋 of 𝐸𝑡 (see, e.g., [13,
35]). Recall that the upper injectivity radius of 𝐸𝑡 is the supremum of the injectivity radii over all
points in 𝐸𝑡 (as 𝐸𝑡 is compact, it is indeed maximum).

Theorem D (Theorem 6.1). Suppose that 𝑋𝑡 is pinched along a multiloop. Then, the upper
injectivity radius of 𝐸𝑡 for all 𝑡 ⩾ 0 is bounded from above.

It is a classical theorem that the holonomy map Hol is a local homeomorphism for the closed
surface 𝑆. In the limit of 𝐶𝑡, we have a ℂP1-structure with cusps, such that cusp points are at
most poles of order 2 in the Schwarzian coordinates. The holonomy theorem is proved for such
ℂP1-surfaces cusps by Luo ([29]) if punctures have nontrivial peripheral holonomy. In this paper,
we prove a more general holonomy theorem (Theorem 5.6) for the developing pairs of ℂP1-
structures allowing trivial holonomy around punctures. We apply this holonomy theorem for the
convergence on 𝐶𝑡 in every thick part as 𝑡 → ∞. This holonomy theorem is given by appropri-
ately enlarging the character variety, and this enlargement is a certain ramification of the framed
representation space introduced by Fock and Goncharov ([14]). (For recent developments on
ℂP1-structure corresponding to higher order poles, see [1, 19].)
Gallo, Kapovich, and Marden algebraically characterized the image of Hol; in particular, it is

almost onto one of the two components of the character variety 𝜒 ([15]). To be more precise,
𝜌∶ 𝜋1(𝑆) → PSL2ℂ ∈ ImHol if and only if Im𝜌 is nonelementary and 𝜌 lifts to a homomor-
phism from 𝜋1(𝑆) into SL(2, ℂ). As an example of Type (ii) degeneration, we construct a path
𝐶𝑡 whose holonomy limits to an elementary representation, or even to the trivial representation
in the representation variety (§14).
If the holonomy of a ℂP1-structure around a puncture is trivial, as stated above, the ℂP1-

structure can be deformed around the puncture without changing the holonomy of the entire
surface. A nonelementary subgroup of PSL2ℂ has a nontrivial stabilizer, a similar difficulty occurs
when the limit holonomy of a component of 𝑆 ⧵ 𝑚 is elementary. As a result of such flexibility, we
have rather exotic degenerations described in Case (ii) of Theorem B and Theorem C.
One may certainly hope that some of the results extend to a more general setting of Problem

1.1. In particular, Theorem D may hold in general.

Conjecture E. In the setting of Problem 1.1 (without the neck-pinching assumption), let𝐸𝑡 be the sin-
gular Euclidean structure on𝑋𝑡 given by the Schwarzian parameters of𝐶𝑡 . Then, the upper injectivity
radius of 𝐸𝑡 is bounded from above uniformly in 𝑡 ⩾ 0.

Recall that 𝜌𝑡 (𝑡 ⩾ 0) is a topological path in the character variety 𝜒 that converges to 𝜌∞ as
𝑡 → ∞without any regularity assumption. It is plausible that Cases (A) in TheoremA, TheoremB,
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 7 of 69

and Theorem C do not occur if 𝜌𝑡 has a one-side derivative at 𝑡 = ∞ (in the ambient affine space
of 𝜒).

Conjecture F. Suppose that𝑋𝑡 is pinched along a loop𝑚. If the path 𝜌𝑡 is tangential at 𝑡 = ∞, then
𝜂∞(𝑚) ∈ PSL2ℂ is a parabolic element (not equal to the identity 𝐼).

1.3 Outline of this paper

In §2, we recallℂP1-structures, the Schwarzian parameters, Thurston parameters, and the Epstein
surfaces for ℂP1-structures. In §3, we prove a lifting property of paths in the character variety to
paths in the representation variety. In §4, we give some estimates of the Epstein surfaces, based
on Dumas’ work [9]. In §5, we prove a holonomy theorem for the space of developing pairs of
ℂP1-structures on surfaces with punctures, where punctures are at most poles of order 2. In §6,
we show that there is an upper bound for the upper injectivity radius of 𝐸𝑡 for all 𝑡 ⩾ 0.
In §7, we show that 𝐶𝑡 converges on every thick part as 𝑡 → ∞, so that 𝐶𝑡 converges to a ℂP1-

structure on a surface with two punctures homeomorphic to 𝑆 ⧵ 𝑚. In §8, we state our main
theorems and prove some properties of developing maps of a surface with punctures. The limit
holonomy around 𝑚 can only be parabolic or the identity. This will be shown, in §11 and §12. In
§10, we determine the asymptotic behavior of 𝐶𝑡 when 𝜌∞(𝑚) is parabolic. In §13, we give the
asymptotic behavior of 𝐶𝑡 when 𝜌∞(𝑚) = 𝐼.
In §14, we give new examples realizing (ii) in Theorem A, Theorem B, and Theorem C.

2 PRELIMINARIES

2.1 Hyperbolic geometry

Let 𝜏 be a hyperbolic structure on 𝑆. Let 𝐿 be a geodesic measured lamination on 𝜏. Given a
geodesic loop 𝑚 on 𝜏, for a point 𝑥 in the intersection of 𝑚 and 𝐿, let ∠𝑥(𝐿,𝑚) ∈ [0, 𝜋) denote
the intersection angle of of the leaf 𝐿 and 𝑚 intersecting at 𝑥. Then, the angle ∠𝜏(𝑚, 𝐿) ∈ [0, 1)

between 𝐿 and𝑚 be themaximumof∠𝑥(𝐿,𝑚) over all intersection points 𝑥 ∈ 𝐿 ∩ 𝑚 if 𝐿 ∩ 𝑚 ≠ ∅,
and ∠𝜏(𝑚, 𝐿) = 0 if 𝐿 ∩ 𝑚 = ∅.
Let 𝜙∶ ℍ2 → 𝜏 denote the universal covering map. Then, the 𝜙-inverse image 𝐿̃ of 𝐿 is a 𝜋1(𝑆)-

invariant measured lamination on ℍ2. The pair (𝜏, 𝐿) induces a bending map 𝛽∶ ℍ2 → ℍ3 that is
equivariant via an associated homomorphism 𝜌∶ 𝜋1(𝑆) → PSL2ℂ. This mapping 𝛽 is defined by
bending the universal cover ℍ2 of 𝜏 along 𝐿, where the bending angle is given by the transversal
measure of 𝐿̃ ([12]). Then, the pair (𝜏, 𝐿) determines 𝛽∶ ℍ2 → ℍ3 uniquely up to PSL2ℂ; thus, the
pair (𝛽, 𝜌) is identified with (𝛼 ◦ 𝛽, 𝛼𝜌𝛼−1) for 𝛼 ∈ PSL2ℂ.
It follows from [3, Corollary 4.3] (see also [4, Theorem 5.1]) that, if a geodesic loop on 𝜏 intersects

the lamination in a small angle, then the holonomy along the loop must be hyperbolic.

Theorem2.1. There is a universal constant 𝛿 > 0 such that if∠𝜏(𝐿,𝑚) < 𝛿, then 𝜌(𝑚) is hyperbolic.

Proof. Let 𝑚̃ be a lift of𝑚 to the bi-infinite geodesic in the universal cover 𝜏̃ = ℍ2. Then, the restric-
tion of 𝛽 to 𝑚̃ is a (1 + 𝜖)-bilipschitz embedding (Corollary 4.3 in [3]). Since 𝛽 is 𝜌-equivariant,
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8 of 69 BABA

𝜌(𝑚) is a hyperbolic element whose axis connects the ideal point of the bilipschitz embedding
𝛽(𝑚̃). □

2.2 ℂ𝐏𝟏-structures

(General references of ℂP1-structures are found in [8, 26].)
A ℂP1-structure 𝐶, or a complex projective structure, on 𝑆 is a (ℂP1, PSL2ℂ)-structure, that is, an

atlas of charts embedding into ℂP1 with transition maps given by PSL2ℂ.
Let 𝑆 be the universal cover of 𝑆. Then, equivalently, a ℂP1-structure is a pair (𝑓, 𝜌) of a

local homeomorphism 𝑓∶ 𝑆 → ℂP1 and a homomorphism 𝜋1(𝑆) → PSL2ℂ such that 𝑓 is 𝜌-
equivariant. The map 𝑓 is called the developing map and 𝜌 is called the holonomy representation
of 𝐶.
The pair is defined up to PSL2ℂ, that is, (𝑓, 𝜌) ∼ (𝛼𝑓, 𝛼𝜌𝛼−1) for all 𝛼 ∈ PSL2ℂ. Thus, the

holonomy is in the character variety 𝜒 = Hom(𝜋1(𝑆), PSL2ℂ) ⫽ PSL2ℂ.

2.2.1 Schwarzian parametrization

Each ℂP1-structure corresponds to a holomorphic quadratic differential 𝑞 on a marked Riemann
surface 𝑋. Thus, the deformation space 𝖯 of ℂP1-structures is an (affine) vector bundle over the
Teichmüller space 𝖳, such that a fiber over a Riemann surface 𝑋 is the vector space 𝑄(𝑋) of
holomorphic quadratic differentials on𝑋 (in fact, it is the cotangent bundle). In this paper, consid-
ering the projection map Π∶ 𝖯 → 𝖳 given by the uniformization, we regard the space of marked
hyperbolic structures on 𝑆 as our real analytic zero section.
Although Hol∶ 𝖯 → 𝜒 is a highly nonproper map ([21]), for each 𝑋 ∈ 𝖳, the restriction of Hol

to the space𝑄(𝑋) is a proper embedding onto a complex analytic subvariety of𝜒 (see [15, Theorem
11.4.1] and its proof). Moreover,

Theorem 2.2 [25, 36]. For every compact subset 𝐾 of 𝖳, the restriction of Hol to Π−1(𝐾) is a
proper map.

Corollary 2.3. Suppose that 𝐶𝑡 ∈ 𝖯 leaves every compact subset in 𝖯 and its holonomy 𝜌𝑡 converges
in 𝜒. Then, the complex structure 𝑋𝑡 of 𝐶𝑡 also leaves every compact subset in 𝖳 as 𝑡 → ∞.

2.2.2 Thurston’s parametrization of ℂP1-structures

([24, 27], see also [5].)
Thurston gave a homeomorphism

𝖯 ≅ 𝖳 × 𝖬𝖫,

where 𝖳 is the space of marked hyperbolic structures on 𝑆 and 𝖬𝖫 is the space of measured
laminations on 𝑆.
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 9 of 69

A pair (𝜏, 𝐿) ∈ 𝖳 × 𝖬𝖫 yields a pleated surface ℍ2 → ℍ3 equivariant under the holonomy
𝜋1(𝑆) → PSL2ℂ of its corresponding ℂP1-structure on 𝑆. Given a ℂP1-structure 𝐶 on 𝑆, its associ-
ated collapsingmap 𝜅∶ 𝐶 → 𝜏 is amarking preserving continuousmap that relates the developing
map and the bending map of 𝐶. First, there is a measured lamination  on 𝐶 consisting of circu-
lar leaves, such that topologically,  is obtained by replacing each periodic leaf 𝓁 of 𝐿 by cylinder
foliated circumferences so that the weight of 𝓁 is equal to the total transversal measure of the
foliated cylinder. The collapsing map 𝜅, conversely, collapses such foliated cylinders of  to their
corresponding periodic leaves of 𝐿, and 𝜅 takes the strata of  to the strata of 𝐿.
Moreover, 𝜅 relates the developingmap 𝑓∶ 𝑆 → ℂP1 and the pleated surface 𝛽∶ ℍ2 → ℍ3 in an

equivariant manner: For each 𝑧 ∈ 𝑆, let 𝐵𝑧 be the maximal ball in 𝐶̃ whose core contains 𝑧. Let
Ψ𝑧 ∶ 𝐵𝑧 → Conv𝜕∞𝐵𝑧 ⊂ ℍ3 denote the orthogonal projection, whereConv𝜕∞𝐵𝑧 is the hyperbolic
plane (support plane) bounded by the boundary circle. Then, in fact, the commutativity

𝛽 ◦ 𝜅̃(𝑧) = Ψ𝑧𝑓(𝑧),

holds equivariantly, where 𝜅̃ ∶ 𝐶̃ ≅ ℍ2 → 𝜏̃ be the lift of 𝜅 to amap between universal covers. Note
that there is a canonical normal direction of the support plane Conv𝜕𝐵𝑧 at Ψ𝑧𝑓(𝑧) toward 𝑓(𝑧).

2.3 Epstein maps

Let 𝐶 = (𝑋, 𝑞) be a ℂP1-structure on 𝑆 in the Schwarzian coordinates, where 𝑋 is the complex
structure of 𝑋, and 𝑞 is a holomorphic quadratic differential on 𝑋. Then, the integration of

√
𝑞

along paths yields a singular Euclidean metric 𝐸 on 𝑋 in the same conformal class (see, e.g.,
[13]). In the complex plane, the lines parallel to the real axis give a foliation of ℂ, and it has
a transversal measure induced by the vertical length (horizontal measured foliation). Similarly,
the lines parallel to the imaginary axis give a foliation of ℂ, and it has a transversal measure
induced by the horizontal length (vertical measured foliation). Then, by pulling back the verti-
cal and the horizontal foliations of ℂ, we obtain a vertical singular measured foliation 𝑉 and a
horizontal singular measured foliation𝐻 on 𝐸, where the singular points are the zeros of the dif-
ferential 𝑞.Moreover,𝐻 and𝑉 are orthogonal, and the vertical and the horizontal foliation ofℂ are
orthogonal.
Given a point 𝑥 ∈ ℍ3, we can normalize the unit disk model of ℍ3 so that 𝑥 is the center of the

disk; then the ideal boundary of ℍ3 has the spherical metric uniquely determined by 𝑥 ∈ ℍ3.

Theorem 2.4 (Epstein [11]). Given a ℂP1-structure 𝐶 = (𝑓, 𝜌) on 𝑆, there is a unique continuous
𝜌-equivariant map Ep∶ 𝑋̃ → ℍ3, such that, for every point 𝑧 ∈ 𝑋̃, the Euclidean metric of 𝐸̃ at 𝑧
agrees with the spherical metric at 𝑓(𝑧) ∈ ℂP1 when ℂP1 is identified with 𝕊2 so that Ep(𝑧) ∈ ℍ3 is
at the center of the disk model of ℍ3.
Moreover Ep∶ 𝑋̃ → ℍ3 is smooth away from the singular points of 𝐸̃ (see Equation (3.1) in [9]).

Let 𝑈ℍ3 denote the unit tangent bundle of ℍ3. Then, Ep lifts to a (Lagrangian) immersion
Ep∗ ∶ 𝑇𝐸̃ → 𝑈(ℍ3) ([9, Lemma 3.2]) that is a unit normal vector of the surface Ep∶ 𝑋̃ → ℍ3 in
the complement of the singular points of 𝐸. For 𝑧 ∈ 𝑋̃, let 𝑑(𝑧) denote the Euclidean distance
from 𝑧 to the set 𝑍 of the zeros of the differential 𝑞.
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10 of 69 BABA

Lemma 2.5 (Lemma 2.6 and Lemma 3.4 in [9]). Let ℎ′(𝑧) and 𝑣′(𝑧) be the horizontal and vertical
unit tangent vectors at 𝑧 ∈ 𝑋̃ ⧵ 𝑍̃. If 6

𝑑(𝑧)2
< 3

4
, then

(1) ‖Ep∗ ℎ′(𝑧)‖ < 6

𝑑(𝑧)2
,

(2)
√
2 < ‖Ep∗ 𝑣′‖ <

√
2 + 6

𝑑(𝑧)2
,

(3) ℎ′(𝑧), 𝑣′(𝑧) are the principal directions of Ep at 𝑧, and
(4) |𝑘𝑣| < 6

𝑑(𝑧)2
, where 𝑘𝑣 is the curvature of Ep in the 𝑣-direction.

3 A LIFTING PROPERTY OF PATHS IN THE CHARACTER VARIETY

Definition 3.1. A representation 𝜌∶ 𝜋1(𝑆) → PSL2ℂ is elementary if Im𝜌 fixes a point in ℍ3 ∪

ℂP1 or preserves two points on ℂP1. Equivalently, 𝜌 is elementary if Im𝜌 is strongly irreducible
and Im𝜌 is unbounded in PSL2ℂ. Otherwise 𝜌 is called nonelementary.

Let  denote the PSL2ℂ-representation variety of 𝑆, the space of representations 𝜋1(𝑆) →

PSL2ℂ. By fixing a generating set 𝛾1, … , 𝛾𝑛, the topology of  is the restriction of the product
topology on PSL2ℂ

𝑛, which is independent on the choice of 𝛾1, … , 𝛾𝑛. The Lie group PSL2ℂ acts
on by conjugation, and its GIT-quotient

Ψ∶  → 𝜒 = {𝜋1(𝑆) → PSL2ℂ} ⫽ PSL2ℂ

is called the PSL2ℂ-character variety of 𝑆.
Each fiber of this GIT-quotient is an extended orbit equivalence class: Namely, for

𝜌1, 𝜌2 ∶ 𝜋1(𝑆) → PSL2ℂ, 𝜌1 ∼ 𝜌2 if and only if the closure of the PSL2ℂ-orbit of 𝜌1 intersects that
of 𝜌2 in. In fact, equivalently, 𝜌1 ∼ 𝜌2 if and only if tr2 𝜌1(𝛾) = tr2 𝜌2(𝛾) for all 𝛾 ∈ 𝜋1(𝑆) [22]. In
particular, for a nonelementary representation 𝜋1(𝑆) → PSL2ℂ, its PSL2ℂ-orbit is a closed subset
of PSL2ℂ and form a single equivalence class ([33]). For 𝜌 ∈ , let [𝜌] denote it equivalent class
Ψ(𝜌) in 𝜒.

Proposition 3.2. Suppose that𝐶𝑡 (𝑡 ⩾ 0) is a one-parameter family ofℂP1-structures on 𝑆, such that
its holonomy 𝜂𝑡 ∈ 𝜒 converges to 𝜂∞ ∈ 𝜒. Then, 𝜂𝑡 lifts a path 𝜌𝑡 ∈  that converges to 𝜌∞ ∈  as
𝑡 → ∞, so that [𝜌∞] = 𝜂∞.

Remark 3.3. The limit 𝜂∞ can be an elementary representation (§14), and thus this proposition is
nontrivial. In addition, there is 𝜂 ∈ with [𝜂] = 𝜌∞ such that there is no lift 𝜂𝑡 of 𝜌𝑡 ending at 𝜂.

Proof of Proposition 3.2. Fix a generating set 𝛾1, … , 𝛾𝑛 of 𝜋1(𝑆). We divide the proof into three
cases.

(1) 𝜂∞ is nonelementary.
(2) 𝜂∞ is elementary and there is 𝛾 ∈ PSL2ℂ such that 𝜂∞(𝛾) is hyperbolic, that is, tr2(𝛾) ∈ ℂ ⧵

[0, 4].
(3) 𝜂∞ is elementary and there is no hyperbolic element in its image, that is, tr2 𝜂∞(𝛾) ∈ [0, 4] for

all 𝛾 ∈ 𝜋1(𝑆).
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 11 of 69

Case 1.

Lemma 3.4. Suppose that 𝜂∞ is nonelementary. For every lift 𝜌∞ ∈  of 𝜂∞ ∈ 𝜒, there is a lift
𝜌𝑡 ∈  of the path 𝜂𝑡 ∈ 𝜒 such that 𝜌𝑡 → 𝜌∞ as 𝑡 → ∞.

Proof. Over nonelementary representations, Ψ is a fiber bundle with fibers PSL2ℂ. This implies
the lemma. □

Case 2. Suppose that 𝜂∞ is elementary and there is 𝛾 ∈ 𝜋1(𝑆) such that 𝜂∞(𝛾) is hyperbolic.
Then, if 𝜌 ∈ Ψ−1(𝜂∞), letting 𝓁 be the axis of the hyperbolic element 𝜌(𝛾), we have either:

(i) Im𝜌 preserves 𝓁 and contains an elliptic element that reverses the orientation of 𝓁, or
(ii) Im𝜌 pointwise fixes the endpoints of 𝓁 on ℂP1.

Case (i). Suppose that 𝜌 ∈ Ψ−1(𝜂∞) contains an elliptic elementwhich exchanges the endpoints
of 𝓁.

Claim 3.5. There are generators 𝛾1, 𝛾2, … , 𝛾𝑛 of 𝜋1(𝑆), such that, for each 𝑖 = 1, … , 𝑛,

(1) 𝜌(𝛾𝑖) is a hyperbolic element for 𝑖 = 1, … , 𝑛 − 1, and
(2) 𝜌(𝛾𝑛) is an elliptic element of order 2 about a geodesic orthogonal to 𝓁.

Proof. By the hypothesis, one can pick generators 𝛾1, 𝛾2, … , 𝛾𝑛 of 𝜋1(𝑆), such that 𝜌(𝛾1) is a (non-
trivial) hyperbolic element. Then, we can, in addition, assume that 𝜌(𝛾2), … , 𝜌(𝛾𝑛) are not 𝐼, by
composing 𝛾𝑖 (𝑖 ⩾ 2) with 𝛾1 if necessary. If 𝜌(𝛾𝑖) is an elliptic element preserving the orientation
of 𝓁, then 𝜌(𝛾1𝛾𝑖) is hyperbolic—thus without loss of generality, we can assume that if 𝜌(𝛾𝑖) is an
elliptic element, it must reverse the orientation of 𝓁. Suppose that 𝜌(𝛾𝑖) and 𝜌(𝛾𝑗) are both ellip-
tic elements reversing the orientation of 𝓁; then 𝜌(𝛾𝑖𝛾𝑗) preserves the orientation of 𝓁. Thus, by
replacing 𝛾𝑗 with 𝛾𝑖𝛾𝑗 , we can reduce the number of the generators that map to elliptic elements
reversing the orientation of 𝓁. We can repeat such replacements of generators, and we obtain a
desired generating set. □

Let 𝛾1, 𝛾2, … , 𝛾𝑛 be the generating set of 𝜋1(𝑆) obtained by Claim 3.5. We show that there is
indeed a lift 𝜌𝑡 in of 𝜂𝑡 converging to 𝜌 as 𝑡 → ∞.
One can easily find a lift 𝜌𝑡 (𝑡 ⩾ 0) so that 𝜌𝑡(𝛾1) converges to 𝜌(𝛾1). Then, Axis(𝜌𝑡(𝛾1)) must

converge to 𝓁. For all 1 ⩽ 𝑖 ⩽ 𝑛 − 1, Axis(𝜌𝑡(𝛾𝑖)) and Axis(𝜌𝑡(𝛾𝑛)) are asymptotically orthogonal,
as 𝜂∞ is an equivalence class of some elementary representation. In particular, we can in addition
assume that 𝜌𝑡(𝛾𝑛) converges to 𝜌(𝛾𝑛), so that Axis(𝜌𝑡(𝛾𝑛)) converges to a geodesic𝑚 orthogonal
to 𝓁. Then, for 1 < 𝑖 < 𝑛, Axis(𝜌𝑡(𝛾𝑖)) converges 𝓁, since it is asymptotically orthogonal to𝑚 and
𝜂∞ is elementary. Thus, 𝜌𝑡 converges to 𝜌 as 𝑡 → ∞.
Case (ii). Next, suppose that 𝜌 ∈ Ψ−1(𝜂∞) preserves the endpoints of 𝓁. Then, similarly to Claim

3.5, we can find a generating set 𝛾1, … , 𝛾𝑛 such that 𝜂∞(𝛾1), … , 𝜂∞(𝛾𝑛) are all hyperbolic elements
(i.e., tr2 𝜂∞(𝛾𝑖) ∈ ℂ ⧵ [0, 4]).
Pick any lift 𝜌𝑡 of 𝜂𝑡 for 𝑡 ⩾ 0 (which may not converge as 𝑡 → ∞).
Fix a PSL2ℂ-invariant metric on the projectivized unit tangent bundle PT1ℍ3 ofℍ3. Then, given

two geodesics𝓁1,𝓁2 inℍ3, we canmeasure their distance by embedding𝓁1 and𝓁2 into the bundle.
Thus, similarly, for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛, the distance betweenAxis(𝜌𝑡(𝛾𝑖)) andAxis(𝜌𝑡(𝛾𝑗)) goes to zero
as 𝑡 → ∞, since otherwise 𝜂∞ is an equivalent class of some nonelementary representations due to
the limit of 𝜌𝑡(𝛾𝑖) and 𝜌𝑡(𝛾𝑗). Thus, we can continuously conjugate 𝜌𝑡 by elements of PSL2ℂ so that
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12 of 69 BABA

all axes of 𝜌𝑡(𝛾1), … , 𝜌𝑡(𝛾𝑛) converge to geodesics sharing an endpoint. Therefore, 𝜌𝑡 converges as
𝑡 → ∞ by this normalization.
Case 3. Suppose that Im𝜂∞ contains no hyperbolic elements. Given an elliptic element and a

parabolic element in PSL2ℂ sharing a fixed point onℂP1, then their product is an elliptic element.
Therefore, we can pick generators 𝛾1, … , 𝛾𝑛 of 𝜋1(𝑆), such that 𝜂∞(𝛾𝑖) are either all elliptic or all
parabolic: In fact, given a generating set 𝛾1, … , 𝛾𝑛, if the 𝜂∞-image of at least one 𝛾𝑖 is elliptic,
then by replacing 𝛾𝑗 with parabolic 𝜂∞(𝛾𝑗) with 𝛾𝑖𝛾𝑗 , we obtain a generating set with elements
whose 𝜂∞-images are all elliptic. Pick any lift 𝜌𝑡 ∈  of the path 𝜂𝑡 ∈ 𝜒 for 𝑡 ⩾ 0, which may not
converge as 𝑡 → ∞.

Definition 3.6. For 𝛾 ∈ PSL2ℂ, the axis of 𝛾 is the convex hull of the fixed point set in ℍ3 ∪ ℂP1

of 𝛾, and we denote it by Axis(𝛾) ⊂ ℍ3 ∪ ℂP1.

In particular, if 𝛾 is hyperbolic or elliptic, Axis(𝛾) is a geodesic in ℍ3 plus its endpoints in ℂP1,
and if 𝛾 is parabolic, Axis(𝛾) is a single point on ℂP1. Clearly, an ideal point of Axis(𝛾) is a fixed
point of 𝛾 on ℂP1.
Suppose that 𝛾, 𝜔 ∈ PSL2ℂ be hyperbolic or elliptic elements with axes 𝓁𝛾,𝓁𝜔. As above, we

measure the distance between 𝓁𝛾,𝓁𝜔 by embedding them into the projective unit tangent bundle
of ℍ3.

Lemma 3.7.

(1) Suppose that 𝜂∞(𝛾𝑖) and 𝜂∞(𝛾𝑗) are both elliptic for distinct 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛. Then, the distance
between Axis(𝜌𝑡(𝛾𝑖)) and Axis(𝜌𝑡(𝛾𝑗)) in PT1(ℍ3) limits to zero as 𝑡 → ∞.

(2) Suppose that 𝜂∞(𝛾𝑖), 𝜂∞(𝛾𝑗), 𝜂∞(𝛾𝑘) are all elliptic for distinct 1 ⩽ 𝑖, 𝑗, 𝑘 ⩽ 𝑛. Then, there is a
lift 𝜌𝑡 ∈  of 𝜂𝑡 for 𝑡 ⩾ 0, such that Axis(𝜌𝑡(𝛾𝑖)), Axis(𝜌𝑡(𝛾𝑗)), and Axis(𝜌𝑡(𝛾𝑘)) converge to
geodesics sharing a common endpoint on ℂP1.

Proof.

(1) If there is a diverging sequence 0 < 𝑡1 < 𝑡2 < … such that the distance between Axis(𝜌𝑡(𝛾𝑖))

and Axis(𝜌𝑡(𝛾𝑗)) in PT1(ℍ3) is bounded from below by a positive number, then 𝜂∞ is
nonelementary. This is a contradiction.

(2) By (1), if the assertion of (2) fails, there is a lift 𝜌𝑡 such that Axis(𝜌𝑡(𝛾𝑖)), Axis(𝜌𝑡(𝛾𝑗)),
and Axis(𝜌𝑡(𝛾𝑘)) converge to the distinct edges of an ideal triangle in ℍ3. Then, 𝜂∞ is
nonelementary against the hypothesis. □

Corollary 3.8. Suppose that there is a generating set {𝛾1, … , 𝛾𝑛} of 𝜋1(𝑆), such that
𝜂∞(𝛾1), … , 𝜂∞(𝛾𝑛)are all elliptic. Then, there is a lift𝜌𝑡 ∈  of 𝜂𝑡 such that𝜌𝑡(𝛾1), … , 𝜌𝑡(𝛾𝑛) converge
to elliptic elements whose axes share an endpoint on ℂP1.

Last, we suppose that 𝜂∞(𝛾1), … , 𝜂∞(𝛾𝑛) are all parabolic, and we show that there is a lift of 𝜌𝑡
of 𝜂𝑡 to such that 𝜌𝑡 converges to the trivial representation.
Pick a base point 𝑂 ∈ ℍ3. For each 𝑡 ⩾ 0, let 𝛿𝑡,𝑖 = 𝑑ℍ3(𝑂, 𝜌𝑡(𝛾𝑖)𝑂). Let 𝑖𝑡 ∈ {1, … , 𝑛} be such

that

𝛿𝑡,𝑖𝑡 = max
1⩽𝑖⩽𝑛

𝛿𝑡,𝑖 .
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 13 of 69

Lemma 3.9. Let 𝑡1 < 𝑡2 < … be a sequence diverging to ∞, such that, at 𝑡𝑡𝑘 , the indices 𝑖𝑡𝑘 ∈
{1, … , 𝑛} (𝑘 = 1, 2, … ) defined above are a fixed constant ℎ. Suppose that there is a sequence 𝜔𝑡𝑘

∈

PSL2ℂ such that the conjugation 𝜔𝑡𝑘
𝜌𝑡𝑘 (𝛾ℎ) 𝜔

−1
𝑡𝑘

=∶ 𝜔𝑡𝑘
⋅ 𝜌𝑡𝑘 (𝛾ℎ) converges in PSL2ℂ, as 𝑘 → ∞,

to a parabolic element
(
1 𝑢
0 1

)
in PSL2ℂ with 𝑢 ≠ 0. Then, for every 𝑗 = 1,… , 𝑛, the conjugation

𝜔𝑡𝑘
⋅ 𝜌𝑡𝑘 (𝛾𝑗) accumulates to a bounded subset of

(
1 ℂ
0 1

)
that has a diameter less than |𝑢| in ℂ.

Proof. First, we show that, unless 𝜔𝑡𝑘
⋅𝜌𝑡𝑘 (𝛾𝑗) → 𝐼, the limit of the fixed point set of 𝜔𝑡𝑘

⋅ 𝜌𝑡𝑘 (𝛾𝑗) ⊂
ℂP1 must converge to {∞}. Suppose, to the contrary, that this assertion fails. Then, up to a subse-
quence, the limit set of the fixed point set of 𝜔𝑡𝑘

⋅ 𝜌𝑡𝑘 (𝛾𝑗) ⊂ ℂP1 converges to a point on ℂP1 not
equal to∞. For sufficiently large positive integers, 𝑝, 𝜔𝑡𝑘

⋅𝜌𝑡𝑘 (𝛾ℎ𝛾
𝑝
𝑖
) are hyperbolic elements and

their translation lengths diverge to ∞ as 𝑝 → ∞ ([15, Lemma 2.1.1 (iii)]). This contradicts that
Im𝜂∞ consists of only parabolic elements.
For each 𝑘 = 1, 2, … , set

𝜔𝑡𝑘
⋅ 𝜌𝑡𝑘 (𝛾𝑗) =

(
𝑎𝑗,𝑘 𝑏𝑗,𝑘
𝑐𝑗,𝑘 𝑑𝑗,𝑘

)
. (1)

Thus, 𝑐𝑗,𝑘 → 0 and 𝑎𝑗,𝑘, 𝑑𝑗,𝑘 → 1 as 𝑘 → ∞. Then, the definition of ℎ implies that 𝑏𝑡𝑘,ℎ −
max1⩽𝑖⩽𝑛 𝑏𝑡𝑘,𝑖 → 0. Hence, we have the upper bound on the image in ℂ. □

By a straight computation, we obtain the following.

Corollary 3.10. For every 𝑗 = 1,… , 𝑛, let 𝑠𝑗,𝑘 > 0 be a sequence in 𝑘, such that 𝑠𝑗,𝑘 → 0 and√|𝑐𝑗,𝑘|
𝑠𝑗,𝑘

→ 0. Then, using the notation from (1), we have

(
𝑠𝑗,𝑘 0

0 𝑠−1
𝑗,𝑘

)(
𝑎𝑗,𝑘 𝑏𝑗,𝑘
𝑐𝑗,𝑘 𝑑𝑗,𝑘

)(
𝑠𝑗,𝑘 0

0 𝑠−1
𝑗,𝑘

)
→

(
1 0

0 1

)
(2)

as 𝑘 → ∞.

Moreover, Corollary 3.10 implies that the sequencemax𝑗=1,…,𝑛 𝑠𝑗,𝑘 in 𝑘 yields the convergence
(2) for all 𝑗 = 1,… , 𝑛. Therefore, we have the following.

Proposition 3.11. There is a continuous path 𝜔𝑡 ∈ PSL2ℂ such that 𝜔𝑡 ⋅ 𝜌𝑡(𝛾𝑖) accumulates to a
bounded subset of parabolic elements in

(
1 ℂ
0 1

)
for each 𝑖. Therefore, there is a continuous path 𝜔𝑡 ∈

PSL2ℂ such that 𝜔𝑡 ⋅ 𝜌𝑡 converges to the trivial representation in.

We have completed the proof for all cases. 3.2

3.1 Approximation of moduli

Let 𝐸 be a singular Euclidean surface induced by a holomorphic quadratic differential on a Rie-
mann surface 𝑋. A regular annulus 𝐴𝐸 is a cylinder embedded in 𝐸 such that there is a closed
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14 of 69 BABA

geodesic loop 𝓁 on 𝐸 and the annulus 𝐴𝐸 is foliated by loops equidistant from 𝓁. Minsky gave a
useful approximation of the modulus of cylinders.

Theorem3.12 ([31], Theorem4.6; see also [34], Theorem6.2).Let𝐸 be a singular Euclidean surface
induced by a holomorphic quadratic differential on a Riemann surface 𝑋. There are constant 0 <
𝑐 < 1 depending on the topology of the surface, such that, for every essential annulus𝐴 embedded in
𝑋, there is a regular annulus 𝐴𝐸 in 𝐸 homotopy equivalent to 𝐴 satisfyingMod(𝐸𝐴) > 𝑐Mod(𝐴).

4 HOLONOMY ESTIMATES AWAY FROM ZEROS

In this section, based on Dumas’ work on Epstein surfaces [9], we give some further analy-
sis of the Epstein surfaces in the horizontal direction. We use Dumas’ notations as below. Let
g1 = 𝑒𝛼1 |𝑑𝑧|, g2 = 𝑒𝛼2 |𝑑𝑧| be two conformal metrics on a Riemann surface; then the Schwarzian
derivative of g2 relative to g1 is the quadratic differential

𝐵(g1, g2) = [(𝛼1)𝑧𝑧 − 𝛼2
2
𝑧 − (𝛼1)𝑧𝑧 + (𝛼1)

2
𝑧]𝑑𝑧

2.

Let 𝐶 = (𝑋, 𝑞) be a ℂP1-structure on 𝑆. Then, we set the following notations associated with 𝐶:

∙ Let 𝜏 be the hyperbolic metric on 𝑆 uniformizing 𝑋.
∙ Let |√𝑞| denote the singular Euclidean metric on 𝑋 obtain by integrating

√
𝑞 along paths.

∙ Let gℂP1 be the spherical metric on ℂP1 given by some conformal identification ℂP1 ≅ 𝕊2.
∙ Let 𝑓∶ 𝑋̃ → ℂP1 be the developing map of 𝐶, and 𝑓∗(gℂP1) be the pull back of the conformal
metric gℂP1 by 𝑓 to the universal cover 𝑋̃.

Then, set

𝜔 = 2𝐵(𝜏, 𝑓∗(gℂP1)),

𝜔̂ = 2𝐵(|√𝑞|, 𝑓∗(gℂP1)),

𝜈 = 2𝐵(𝜎,
√
𝑞),

which are holomorphic quadratic differentials on 𝑋̃.

4.1 Curvature of Epstein surfaces in the horizontal direction

Let 𝑘ℎ and 𝑘𝑣 be the principle curvatures of Ep∶ 𝑋̃ → ℍ3 in the horizontal and the vertical
directions, respectively. First, by [9, Equation 3.7],

𝑘𝑣 =
|𝜔̂| − |𝜔||𝜔̂| + |𝜔| .

As the Gaussian curvature 𝜅ℎ𝜅𝑣 = 1 ([9, p448]), we have

𝑘ℎ =
|𝜔̂| + |𝜔||𝜔̂| − |𝜔| .
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 15 of 69

In addition, recalling that ℎ′ denotes a unit tangent vector in the horizontal direction at a
nonsingular point, we have

‖Ep∗ ℎ′‖2 = (|𝜔̂| − |𝜔|)2
2|𝜔𝜔̂|

(Equation 3.6 in [9, p448]). Therefore,

(𝑘ℎ‖Ep∗(ℎ′)‖)2 = (|𝜔̂| + |𝜔||𝜔̂| − |𝜔|
)2

⋅
(|𝜔̂| − |𝜔|)2

2|𝜔𝜔̂|
= 1 +

(|𝜔̂|2 + |𝜔|2)
2|𝜔𝜔̂|

= 1 +
1

2

(|𝜔̂||𝜔| + |𝜔||𝜔̂|
)
.

Since 𝜔̂ = 𝜔 − 𝜈 ([9, p447]), we have

|||| 𝜔̂𝜔 |||| = ||||1 − 𝜈

𝜔

|||| ([9, p449]).
By [9, Lemma 2.6], we have

|||| 𝜈(𝑧)𝜔(𝑧)

|||| ⩽ 6

𝑑(𝑧)2
.

Thus, recalling that 𝑑(𝑧) is the distance from the singular points, we have

|𝜔̂(𝑧)||𝜔(𝑧)| = 1 + 𝑂(𝑑(𝑧)−2), and

(𝑘ℎ(𝑧)‖Ep∗(ℎ′(𝑧))‖)2 = 2 + 𝑂(𝑑(𝑧)−2).

Therefore, we have the following.

Lemma 4.1. For all nonzero 𝑧 ∈ 𝑋̃ of the differential 𝑞,

𝑘ℎ(𝑧)‖Ep∗(ℎ′(𝑧))‖ =
√
2 + 𝑂(𝑑(𝑧)−2).

4.2 Holonomy estimates of long flat cylinders

Let 𝐸 be a singular Euclidean surface. A flat cylinder in 𝐸 is a cylinder foliated by closed geodesics.
A cylinder 𝐴 in 𝐸 is expanding if there is a geodesic loop 𝓁 or a puncture 𝑝 on 𝐸, such that 𝐴 is
foliated by a one-parameter family of circles equidistant from 𝓁 or 𝑝, respectively, whose length
strictly increases as the distance to 𝓁 or 𝑝 increases.
LetEp∶ 𝑋̃ → ℍ3 be theEpstein surface of a projective structure𝐶 = (𝑋, 𝑞) on 𝑆. Let𝛼∶ [0, 1] →

𝐶̃ ≅ 𝑋̃ be an arc such that 𝛼(0) and 𝛼(1) are in 𝑋̃ ⧵ 𝑍̃ and 𝛼 differentiable at both endpoints. Then,
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16 of 69 BABA

the curve Ep ◦𝛼∶ [0, 1] → ℍ3 is differentiable at both endpoints. Let 𝜁(𝛼) ∈ PSL2ℂ be such that
𝜁(𝛼) takes the unit tangent vector 𝛼′(0) to 𝛼′(1) on Ep and the unit normal Ep∗ 𝛼(0) to the unit
normal Ep∗ 𝛼(1). We call 𝜁(𝛼) ∈ PSL2ℂ the holonomy (of Ep) along 𝛼.

Definition 4.2. For 𝛼 ∈ PSL2ℂ, the rotation angle in [0, 𝜋] is the (unsigned) rotation angle of the
tangent plane of ℂP1 at a fixed point of 𝛼.

In the case that 𝛼 has two fixed points on ℂP1, then the “signed” rotation angle of 𝛼 that takes
a value in [−𝜋, 𝜋]∕(𝜋 ∼ −𝜋) at a fixed point is −1 times the “signed” rotation angle at the other
fixed point, where the sign is determined by the orientation fromℂP1; thus, the unsigned rotation
angle is well defined in Definition 4.2.
Let (𝐸, 𝑉) be the singular Euclidean surface given by 𝐶 = (𝑋, 𝑞).

Definition 4.3. Let 𝛼∶ [0, 1] → ℍ3 be a 𝐶1-smooth arc on the Epstein surface 𝐸̃ → ℍ3. Let 𝑣(𝑡)
and ℎ(𝑡) denote the (unit) vector fields along 𝛼 tangent to the vertical and horizontal foliations of
𝐸, respectively.
Let𝓁 be a geodesic inℍ3. Let be the foliation ofℍ3 by the totally geodesic hyperbolic planes𝐻

orthogonal to𝓁. Note that these hyperbolic planes are isometrically identified by parallel transport
along 𝓁, and thus, their ideal boundary circles are also identified diffeomorphically.
Suppose that 𝑣(𝑡) is transversal to the foliation. Let 𝐻𝑡 be the leaf of containing 𝛼(𝑡). The

translation length of 𝛼 along 𝓁 is the distance between 𝐻0 and 𝐻1 (i.e., the length of the segment
of 𝓁 between𝐻0 and𝐻1).
As 𝑣(𝑡) is transversal to, then, by the orthogonal projection ℍ3 → 𝐻𝑡, the horizontal tangent

vector ℎ(𝑡) projects to a nonzero vector at the tangent space 𝑇𝛼(𝑡)𝐻𝑡. This nonzero tangent vec-
tor determines a geodesic ray in ℍ3 by being its initial tangent direction. Let 𝜃(𝑡) ∈ 𝜕∞𝐻𝑡 be the
endpoint of the geodesic ray in 𝐻𝑡 given by the tangent vector. As all ideal boundaries 𝜕∞𝐻𝑡 are
identified, 𝜃(𝑡) ∈ 𝕊1 lifts to 𝜃̃(𝑡) ∈ ℝ. The rotation angle of 𝛼 about 𝓁 is the total increase of 𝜃̃(𝑡),
which takes a value in ℝ.

Proposition 4.4. Let 𝐶𝑖 = (𝑓𝑖, 𝜌𝑖) be a sequence of ℂP1-structures on 𝑆, and let (𝐸𝑖, 𝑉𝑖) be the pair
of a singular Euclidean structure 𝐸𝑖 and a vertical foliation 𝑉𝑖 on 𝐸𝑖 induced by the Schwarzian
parameters of 𝐶𝑖 . Suppose that there are a loop 𝑚 on 𝑆, a geodesic representative 𝑚𝑖 of 𝑚 on 𝐸𝑖 for
each 𝑖, and a flat cylinder 𝐴𝑖 in 𝐸𝑖 contains𝑚𝑖 , such that

∙ 𝑚𝑖 is in the middle of 𝐴𝑖 , so that 𝐴𝑖 ⧵ 𝑚𝑖 is a union of two isometric flat cylinders,
∙ Mod(𝐴𝑖) → ∞ as 𝑖 → ∞, and
∙ the height 𝑎𝑖 of 𝐴𝑖 diverges to∞ as 𝑖 → ∞.

Let 𝑚̄𝑖 be a segment on the universal cover 𝐸̃𝑖 obtained by lifting the simple closed curve 𝑚𝑖 . Then,
by parametrizing 𝑚̄𝑖 by arc length 𝑠 ∈ [0, length(𝑚𝑖)], for every 𝜖 > 0, if 𝑖 > 0 is sufficiently large,
then

(1) the translation length of Ep𝑖 𝑚̄𝑖(𝑠) along 𝓁𝑖 is (1 + 𝜖)-bi-Lipschitz to
√
2 (Re ∫𝑚𝑖

√
𝑞𝑡),

(2) the total rotation angle of Ep𝑖 𝑚̄𝑖 about 𝓁𝑖 is (1 + 𝜖, 𝜖)-bi-Lipschitz to
√
2 (Im ∫𝑚𝑖

√
𝑞𝑡),

where Ep𝑖 ∶ 𝐸̃𝑖 → ℍ3 denotes the Epstein surface of 𝐶𝑖 .

Proof. Isotope 𝑚𝑖 in 𝐴𝑖 , fixing a point on 𝑚𝑖 , so that 𝑚𝑖 is a union of a vertical segment 𝑢𝑖 and a
horizontal segment 𝑤𝑖 (Figure 1). Then,𝑚𝑖 remains close to the middle of 𝐴𝑖 .
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F IGURE 1 Isotope𝑚𝑖 to a union of a vertical and horizontal segment.

We first analyze the vertical segment Ep𝑖 |𝑢𝑖 . In the principal direction, the normal vector is
preserved by parallel transports. Thus, the parallel transport along the curveΣ𝑖|𝑢𝑖 yields the holon-
omy 𝜁𝑖(𝑢𝑖(𝑠)) ∈ PSL2ℂ. By the hypotheses, the distance from the loop𝑢𝑖 ∪ 𝑤𝑖 and the set𝑍𝑖 of zeros
of the differential 𝑞𝑖 diverges to∞. Therefore, by Lemma 2.5 (4), the curvature along Ep𝑖 |𝑢𝑖 limits
to zero, and it asymptotically has a constant speed

√
2 by Lemma 2.5 (2), so that its length is

√
2

times the Euclidean length of 𝑢𝑖 , which yields (1).
To analyze the total rotation angle in the vertical direction, we next consider the total curvature.

In a more general setting, the following holds.

Lemma 4.5. For every 𝜖 > 0, if 𝑅 > 0 is sufficiently large, then, if a vertical segment 𝑢 on a ℂP1-
surface 𝐶 has Euclidean length less than 𝑅∕𝜖, then total curvature of the curve Ep |𝑢 is less than 𝜖,
where Ep∶ 𝐶̃ → ℍ3 is the Epstein surface of 𝐶.

Proof. The curvature of the curve Ep |𝑢 at every point on 𝑢 is bounded from 6

𝑅2
by Lemma 2.5 (4).

Since, by the hypothesis, the length of 𝑢 is bounded from above by 𝑅

𝜖
, the total curvature along 𝑢

is bounded from above by

𝑅

𝜖
⋅
6

𝑅2
=

6

𝜖𝑅
.

Therefore, if 𝑅 > 6

𝜖2
, then the total curvature along 𝑢 is bounded from above by 𝜖. □

In our current setting, as 𝑎𝑖 → ∞ andMod(𝐴𝑖) → ∞, one can easily show that, for every 𝜖, the
vertical segment 𝑢𝑖 satisfies the conditions of Lemma 4.5 when 𝑖 is sufficiently large. Thus, the
following corollary holds.

Corollary 4.6. The total (principal) curvature of the vertical segmentEp𝑖 |𝑢𝑖 limits to zero as 𝑖 → ∞.

We next show that the rotational holonomy along 𝑢𝑖 asymptotically vanishes as 𝑖 → ∞.

Lemma 4.7. For every 𝜖 > 0, if 𝑅 > 0 is sufficiently large, then, if a vertical segment 𝑣 on a ℂP1-
surface 𝐶 has length less than 𝑅∕𝜖 and a distance at least 𝑅 from the singular set w.r.t. the singular
Euclidean structure of 𝐶, then, letting Ep be its Epstein surface, the derivative of rotation of its
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F IGURE 2 Infinitesimal change of the rotation angle 𝑛′(𝑡).

Ep-image is bounded from above by 𝜖. Moreover, the total rotation of its Ep-image bounded from
above by 𝜖 with respect to the geodesic 𝓁 connecting the endpoints of Ep.

Proof. Fix 𝜖 > 0. Let 𝑣 be a vertical segment on 𝐶 of length less than 𝑅∕𝜖. Let 𝛼∶ [0,𝓁] → ℍ3

be the curve Ep ◦ 𝑣, where 𝓁 is the Euclidean length of 𝑣. Let 𝑠(𝑡) be the geodesic segment in
ℍ3 connecting 𝛼(0) and 𝛼(𝑡) for each 𝑡 ∈ [0,𝓁]. For 𝑢 ∈ [0,𝓁], let Ep(𝑢) be the surface which
𝑠(𝑡) sweeps out over 𝑡 ∈ [0, 𝑢], so that Ep(𝑢) is bounded by 𝛼([0, 𝑢]) and the geodesic segment
𝑠(𝑢) connecting its endpoints. Then, the intrinsic metric of Ep(𝑢) is a hyperbolic surface. Then,
if 𝑅 > 0 is sufficiently large, then Ep(𝑢) isometrically embeds into a hyperbolic plane ℍ2 so that
its image is bounded by a geodesic segment isometric to 𝑠(𝑢) and a curve isometric to 𝛼(𝑢). The
curvature of the second segment is bounded from above the curvature of 𝛼|[0, 𝑢] at every point.
Therefore, if 𝑅 > 0 is sufficiently large, then the area of Ep is less than 𝜖 by the Gauss–Bonnet

theorem to Ep, since the total curvature 𝛼 is small. Let 𝑛(𝑡) denote the unit normal vector Ep∗
at 𝑢(𝑡). Let 𝑛′(𝑡) be the parallel transport of 𝑛(𝑡) along the geodesic segment 𝑠(𝑡), so that 𝑛′(𝑡)
be a tangent vector at 𝛼(0). By the Gauss–Bonnet theorem, the norm of the derivative 𝑑𝑛′(𝑡)∕𝑑𝑡
is bounded from above by the curvature of 𝛼 and the derivative of the area of Ep(𝑡) (Figure 2).
Thus, the total rotation of 𝑛′(𝑡) from 𝑡 = 0 to 𝑡 = 𝓁 is bounded from above by the sum of the total
curvature of 𝛼 and the total area of Ep. Therefore, by the combination of the small upper bounds
above if 𝑅 > 0 is sufficiently large, the total rotation is bounded by 𝜖. □

Next we analyze the holonomy along the horizontal segment 𝑤𝑖 . By Lemma 2.5 (1),

lengthℍ3 Ep𝑖 𝑤𝑖 <
6 length𝐸𝑖 𝑚𝑖

(𝑎𝑖∕3)
2

→ 0,

as 𝑖 → ∞.

Proposition 4.8. Let 𝑣𝑖(𝑡) denote the tangent vector of Ep𝑖 at Ep𝑖 𝑤𝑖(𝑡) in the direction of 𝑉𝑖 . For
every 𝜖 > 0, if 𝑖 is large enough, then along𝑤𝑖 , Ep∗ 𝑤𝑖(𝑡) is contained in an 𝜖-ball in the unit tangent
bundle T1ℍ3.

Proof. Let 𝐸̃𝑖 be the universal cover of 𝐸𝑖 . Pick a lift 𝑢̃𝑖 of the vertical segment 𝑢𝑖 in 𝐸𝑖 to 𝐸̃𝑖 . Let 𝑅𝑖
be a Euclidean rectangle, in 𝐸̃𝑖 , bounded by vertical and horizontal edges, such that 𝑤𝑖 divides 𝑅𝑖
into two isometric rectangles of half height (Figure 3, left). We may in addition assume that the
height of 𝑅𝑖 divided by the width of 𝑅𝑖 goes to zero as 𝑖 → ∞.
The vertical foliation 𝑉𝑖 and the horizontal foliation𝐻𝑖 of 𝐸𝑖 induce a vertical and a horizontal

foliation of 𝑅𝑖 . By Lemma 2.5 (2), for every 𝜖 > 0, if 𝑖 is large enough, the restrictions of Ep𝑖 to
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F IGURE 3 The Epstein-map image of a horizontal segment far away from the zero set.

vertical leaves in 𝑅𝑖 are (
√
2 − 𝜖,

√
2 + 𝜖)-bi-Lipschitz. By Lemma 2.5 (1), the Ep𝑖-images of the

horizontal leaves in 𝑅𝑖 have diameters less than 𝜖. Therefore, for sufficiently large 𝑖, the images of
vertical leaves of 𝑅𝑖 are pairwise 𝜖-close in the Hausdorff metric (Figure 3, right). As 𝑣𝑖 is tangent
to the image of such a vertical leaf, we have the lemma. □

We have already shown a good approximation of the holonomy along the vertical segment 𝑢𝑖 .
For every 𝜖 > 0, if 𝑖 is sufficiently large, then the translation length along 𝑢𝑖 is (1 + 𝜖)-bilipschitz
to

√
2 times the Euclidean length of 𝑢𝑖 and the rotation is less than 𝜖 (Lemma 4.7). On the other

hand, by Proposition 4.8 and Lemma 4.1, if 𝑖 is sufficiently large, then the total rotation along the
horizontal segment 𝑤𝑖 is (1 + 𝜖, 𝜖)-bi-Lipschitz to

√
2 times the Euclidean length of 𝑤𝑖 and the

translation is less than 𝜖. Thus, we obtained, (1) and (2). 4.4

4.3 The exponential map and Epstein surfaces

Recall that, given a ℂP1-structure 𝐶 = (𝑋, 𝑞) on 𝑆, for 𝑥 ∈ 𝐶, 𝑑(𝑥) is the Euclidean distance from
the singular set of the singular Euclidean structure 𝐸 induced by the holomorphic quadratic dif-
ferential 𝑞. Note that, if 𝑥 ∈ 𝐶 is not a singular point of 𝐸, then there is a neighborhood𝑈 of 𝑥 in
𝐸 so that 𝑈 is isometrically embedded in the Euclidean plane ℂ ≅ 𝔼2 so that vertical leaves of 𝐸
in 𝑈 map into horizontal lines of ℂ, and horizontal leaves map into vertical lines.
Consider the exp∶ ℂ → ℂ ⧵ {0}. Its domain ℂ is isometrically identified with the Euclidean

plane 𝔼2, and the codomain ℂ ⧵ {0} admits a push-forward Euclidean metric. Note that this
induced Euclidean metric on ℂ ⧵ {0} is invariant under the dilations ℂ → ℂ ∶ 𝑧 ↦ 𝑘𝑧 for all
𝑘 ∈ ℂ ⧵ {0}. Therefore, given, any two distinct points 𝑝, 𝑞 in ℂP1, by a conformal mapping from
ℂP1 ⧵ {𝑝, 𝑞} to ℂ ⧵ {0}, the complement ℂP1 ⧵ {𝑝, 𝑞} has the push-forward Euclidean metric. By
abuse of notation, we denote this composition by exp∶ ℂ → ⧵{𝑝, 𝑞} and call it the normalized
exponential map.
Let (𝑝, 𝑞) be the geodesic in ℍ3 connecting 𝑝 to 𝑞. Recalling that ℂP1 is the ideal boundary

of ℍ3, let Ψ∶ ℂP1 ⧵ {𝑝, 𝑞} → (𝑝, 𝑞) be the orthogonal projection along a geodesic rays in ℍ3. Let
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20 of 69 BABA

Ψ∗∶ ℂP1 ⧵ {𝑝, 𝑞} → 𝑇1ℍ3 be the map taking 𝑧 ∈ ℂP1 ⧵ {𝑝, 𝑞} to the unit tangent vector at Ψ(𝑧) ∈
ℍ3 that is tangent to the geodesic ray from Ψ(𝑧) to 𝑧 ∈ 𝜕ℍ3.
For 𝑟 > 0, let 𝑄𝑟(𝑧) be a 𝑟-neighborhood of a point 𝑧 of the singular Euclidean surface 𝐸 in the

𝐿∞-metric (w.r.t. the vertical and the horizontal directions). If 𝑄𝑟(𝑧) contains no singular point,
then it is a square with horizontal and vertical edges of length 2𝑟.

Proposition 4.9. For every 𝜖 > 0, there is 𝑅 > 0 such that, if 𝑧 ∈ 𝐶̃ satisfies 𝑑(𝑧) > 𝑅, then we
have a normalized exponential map exp∶ ℂ → ℂP1 ⧵ {𝑝, 𝑞} and can isometrically embed the 1

𝜖
-

neighborhood 𝑄1∕𝜖(𝑧) of 𝑧 in ℂ exchanging the horizontal and the vertical directions, such that, in
the 𝐶0-metric,

(1) the restriction of the Epstein surface Σ to 𝑄1∕𝜖(𝑧) is 𝜖-close to 𝑤 ↦ Ψ∗ exp(
𝑤√
2
),

(2) the restriction of Σ∗ to 𝑄1∕𝜖(𝑧) of 𝑧 is 𝜖-close to 𝑤 ↦ Ψ∗ exp(
𝑤√
2
), and

(3) the restriction of the developing map 𝑓 to 𝑄1∕𝜖(𝑧) is 𝜖-close to the normalized exponential map.

Proof. We prove the desired approximations by showing them along all leaves of the restriction
of the vertical foliation 𝑉 and the horizontal foliation 𝐻 to the square 𝑄1∕𝜖(𝑧).
For every 𝜖′ > 0, by Lemma 2.5 and Lemma 4.7, if 𝑅 > 0 is sufficiently large, then

(i) the restriction of Σ to each leaf of the vertical foliation 𝑉 in 𝑄 1
𝜖′
(𝑧) is a smoothly (

√
2 −

𝜖′,
√
2 + 𝜖′)-bilipschitz embedding,

(ii) the restriction of Σ to each leaf of the horizontal foliation𝐻 in𝑄 1
𝜖′
(𝑧) has derivative less than

𝜖′, and
(iii) the derivative of the rotation of Σ∗ along a vertical leaf in 𝑄 1

𝜖′
(𝑧) is bounded from above by

𝜖′, and the total rotation along the leaf is also bounded from above by 𝜖′.

Pick a vertical leaf 𝑣0 in 𝑄1
𝜖
(𝑧), and let 𝓁 be the geodesic in ℍ3 passing through the endpoints

of the (
√
2 − 𝜖′,

√
2 + 𝜖′)-bilipschitz curve Σ|𝑣0. We normalize the exponential map with respect

to the endpoints of this geodesic. Then, (i) and (ii) imply (1) with this normalization.
We next show (3). We first analyze 𝑓 on each vertical leaf. By (i) and (iii), the restriction of the

developingmap 𝑓 to 𝑣0 is 𝜖′-close to the normalized exponential map, by isometrically embedding
𝑒 onto ℂ ≅ 𝔼2 in the scaled Euclidean metric

√
2𝐸 (i.e., the metric on 𝑣0 is scaled by

√
2).

The Σ-images of horizontal segments are very short curves in ℍ3. Therefore, for every 𝜖′ > 0, if
𝑅 > 0 is sufficiently large, then for each vertical leaf 𝑣 of 𝑄1

𝜖
(𝑧), the restriction of 𝑓 to 𝑣 is 𝜖′-close

to the restriction of the normalized exponential map to a vertical segment in ℂ by isometrically
embedding 𝑣 w.r.t.

√
2𝐸.

Next, we analyze 𝑓 on horizontal leaves. Let ℎ be a horizontal leaf in𝑄1
𝜖
(𝑧). Consider the vector

field along ℎ consisting of the unit vectors in the vertical direction. Then, for every 𝜖′ > 0, if 𝑅 > 0

is sufficiently large, then, as in the proof of Proposition 4.8, the image of the tangent vectors is
𝜖′-close to each other in the 𝐶0-topology. By the curvature estimate along the horizontal direction
in Lemma 4.1, for every 𝜖′ > 0 if 𝑅 > 0 is large enough, the amount of the total rotation of 𝑓
along every horizontal segment in 𝑄1

𝜖
(𝑧) is close to the horizontal length times

√
2. Therefore,

a restriction of 𝑓 to every horizontal segment ℎ is 𝜖′-close to the restriction of exp when ℎ is
isometrically embedded onto a horizontal segment after scaling the length of ℎ by

√
2. Therefore,
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 21 of 69

a restriction of Σ∗ to every horizontal segment ℎ is 𝜖′-close to the restriction of Ψ∗ exp when ℎ is
isometrically embedded onto a horizontal segment w.r.t. the

√
2𝐸-metric.

We proved that the restrictions of 𝑓 to horizontal and vertical leaves in 𝑄1
𝜖
(𝑧) are 𝜖′-close to

the normalized exponential map when 𝑄1
𝜖
(𝑧) is isometrically embedded in ℂ. This immediately

implies (3).
Finally, (1) and (3) immediately imply (2), since 𝑓(𝑧) and Ψ(𝑧) determines Ψ∗(𝑧). 4.9

5 HOLONOMYMAPS FOR SURFACESWITH PUNCTURES

5.1 Classification of cusps of ℂ𝐏𝟏-structures

Definition 5.1. Let 𝐹 be a surface with punctures. A ℂP1-structure on 𝐹 is a pair (𝑋, 𝑞) of a
Riemann surface structure 𝑋 on 𝐹 and a holomorphic quadratic differential 𝑞, such that at each
puncture of 𝑋, 𝑞 is at most a pole of order 2.

This class is a natural class to consider, especially in our setting due to the upper injectivity
radius bound (see Theorem 6.1).

Proposition 5.2. Let 𝐹 be a closed surface with at least one puncture 𝑐 such that the Euler charac-
teristic of 𝐹 is negative. Let 𝐶 = (𝑓, 𝜌) denote a ℂP1-structure on 𝐹 expressed by a developing pair.
Denote by 𝓁𝑐 the peripheral loop around 𝑐. Let𝐶 ≅ (𝜏, 𝐿) denote Thurston parameters, and (𝐸, 𝑉) be
the singular Euclidean structure 𝐸 with the vertical foliation 𝑉 given by the Schwarzian parameters
of 𝐶.

(1) Suppose that a cusp neighborhood of 𝑐 in 𝐸 is an expanding cylinder of infinite modulus
shrinking towards 𝑐. Then,
∙ 𝜌(𝓁𝑐) is parabolic,
∙ 𝑐 has a horodisk quotient neighborhood, and
∙ in Thurston parameters (𝜏, 𝐿), 𝑐 also has a horodisk quotient neighborhood where the
lamination 𝐿 is the empty lamination.

(2) Suppose that a cusp neighborhood of 𝑐 in𝐸 is a (half-infinite) flat cylinder𝐹 of infinite modulus.
Then, exactly one of the following holds.
(a) The circumferences of 𝐹 are not orthogonal to 𝑉, 𝜌(𝓁𝑐) is hyperbolic, and

√
2 ∫𝓁𝑐

√
𝑞 is its

complex translation length.
In Thurston parameters, the cusp 𝑐 corresponds to boundary component 𝑏 of 𝜏 whose

length is the real part of the translation length (in ℂ∕2𝜋𝑖ℤ).
(b) The circumferences of 𝐹 are orthogonal to 𝑉.

∙ If
√
2𝑉(𝓁𝑐) is not a 2𝜋-multiple, then 𝜌(𝓁𝑐) is an elliptic element of angle

√
2 ∫𝓁𝑐

√
𝑞 (∈

ℝ). In Thurston parameters, 𝑐 is a cusp of 𝜏 and the total weight of leaves of 𝐿 around 𝑐
(counted with multiplicity) is, modulo 2𝜋, equal to the rotation angle of 𝜌(𝓁𝑐).

∙ If
√
2𝑉(𝓁𝑐) is a 2𝜋-multiple, then 𝜌(𝓁𝑐) is either the identity 𝐼 or a parabolic element. In

Thurston parameters, 𝑐 is a cusp of 𝜏 and the total weight of 𝐿 around 𝑐 is the 2𝜋-multiple.

In (2b), by “counted with multiplicity,” we mean that, if a single leaf of 𝐿 has both endpoints at
𝑐, the weight of the leaf is counted twice.
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22 of 69 BABA

Proof.

(1) We first describe an intuition, and then make it precise. As the Euclidean distance to the
cusp is finite in 𝐸, in the hyperbolic metric on 𝑋, the quadratic differential 𝑞 vanishes
asymptotically toward the cusp 𝑐. A Riemann surface with the zero differential (in our
parametrization) corresponds to a hyperbolic structure.
To make it precise, for 𝑡 > 0, let 𝐷𝑡 be the punctured disk of radius 𝑡 centered at 𝑐. Note

that the 𝑐 may be the zero of the quadratic differential 𝑞 induced by 𝐶. Thus, if 𝑡 > 0 is
small enough, 𝐷𝑡 is a union of the Euclidean semidisks of radius 𝑡 foliated by geodesics
parallel to the diameter segment. Consider the restriction of 𝑞 to 𝐷𝑡. Then, by conformally
identifying a once-punctured unit disk with 𝐷𝑡, the holomorphic quadratic differential on
𝐷𝑡, the differential goes to zero uniformly on every compact subset as 𝑡 → ∞.
The solution of the Schwarzian equation depends continuously in the differential. As a

punctured disk with the zero differential corresponds to a hyperbolic structure ℎwith a cusp
at the puncture, and the holonomy around the cusp is parabolic. Therefore, the developing
map of 𝐷𝑡 converges to the developing map of the hyperbolic cusp-neighborhood structure
ℎ, which is a quotient of horodisk by the infinite cyclic group generated by a parabolic ele-
ment. By the equivariance property of the developing maps, the holonomy of 𝐷𝑡 around the
cusp must converge to a parabolic element, and as the holonomy of 𝐷𝑡 around the cusp is
independent of 𝑡 > 0, the holonomy is genuinely parabolic. Moreover, if one deforms a lit-
tle bit the hyperbolic structure ℎ on the punctured disk to any other ℂP1-structure on the
punctured disk keeping the holonomy around the cusp parabolic, it still contains a horodisk
quotient as a cusp neighborhood. Therefore, 𝑐 has a horodisk quotient neighborhood in 𝐶.
In Thurston parameters, 𝑐 is a cusp of 𝜏, and 𝐿 is the empty lamination in a sufficiently

small neighborhood of 𝑐.
(2) By Proposition 4.9, the developing map of the half-infinite flat cylinder becomes closer and

closer to the exponential map exp∶ ℂ → ℂ∗ as a point in the domain approaches the cusp,
where, in the domain ℂ, the vertical direction corresponds to the real direction and the hor-
izontal direction corresponds to the imaginal direction (to be precise, the exp is composed
with the calling to the domain ℂ by

√
2). Thus, the assertions about the holonomy along

𝓁𝑐 hold.
It remains only to show the description in Thurston parameters.

(2a) By Proposition 4.4, outside of a large compact set of 𝐹, all circumferences of 𝐹 are admis-
sible loops. Therefore, an appropriate neighborhood of 𝑐 corresponds to an infinite grafting
cylinder. By [4, Proposition 8.3], the hyperbolic surface 𝜏 has a (possibly open) boundary
component corresponding to 𝑐, and its boundary length is indeed the translation length of
the hyperbolic element 𝜌(𝓁𝑐).

(2b) The developingmap in an appropriate cusp neighborhood is the exponential map exp∶ ℂ →

ℂ∗ so that the deck transformation corresponds to the translation in the imaginary direction
in the domain.
Therefore, 𝑐 is a cusp of 𝜏 and the total weight of leaves of 𝐿 near 𝑐 must be the length of

the circumference times
√
2 (Proposition 4.4 (2)). 5.2

5.2 𝐏𝐒𝐋𝟐ℂ and fixed points on ℂ𝐏𝟏

In order to construct an appropriate holonomy map for a surface with punctures, we will make
PSL2ℂ slightly bigger as a topological space, by carefully pairing its elements with their fixed
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 23 of 69

points on ℂP1. Let (ℂP1)2∕ℤ2 denote the set of unordered pairs of points on ℂP1. Let2PSL2ℂ be
the set of all pairs (𝛾, Λ) ∈ PSL2ℂ × ((ℂP1)2∕ℤ2) such that

∙ if 𝛾 is a hyperbolic elementwith zero rotation (i.e., tr 𝛾 ∈ ℝ ⧵ [−2, 2]when 𝛾 is lifted to SL(2, ℂ)),
then Λ is a pair of (not necessarily distinct) fixed points of 𝛾, and

∙ otherwise, Λ is the pair (𝑎, 𝑎) of identical fixed points 𝑎 ∈ ℂP1 of 𝛾.

We call the pair Λ a framing. In particular, if 𝛾 = 𝐼, then Λ can be (𝑎, 𝑎) for any 𝑎 ∈ ℂP1. The
second case also includes the case where 𝛾 is a hyperbolic element with nonzero torsion. (By
abuse of notation, if Λ is a pair (𝑎, 𝑎) of identical points on ℂP1, for simplicity, we may regard Λ
as a single point 𝑎.)
Fock and Goncharov introduced a framing of a representation, which equivariantly assigns a

single fixed point to each peripheral element ([14]). What is new here is that we are assigning a
pair of fixed points in the first case.
Next, we define a (non-Hausdorff) topology on 2PSL2ℂ by the following open base of

neighborhoods at each (𝛾, Λ) ∈ 2PSL2ℂ.

∙ If 𝛾 is hyperbolic, then, for every (small) connected neighborhood 𝑈 of 𝛾 in PSL2ℂ consisting
of hyperbolic elements, the set of all pairs (𝛾′, Λ′) ∈ 2PSL2ℂ such that
◦ if tr 𝛾 is real and ♯Λ = 2, then for 𝛾′ ∈ 𝑈 with tr 𝛾′ real, ♯Λ′ = 2, and
◦ otherwise 𝛾′ ∈ 𝑈 and, Λ′ is a pairs of identical points identified with Λ by identifying the
fixed points of 𝛾 with those of 𝛾′ by a path connecting 𝛾 to 𝛾′ in 𝑈.

∙ If 𝛾 is not hyperbolic, then the topology near (𝛾, Λ) is given by the product topology of PSL2ℂ ×

(ℂP1)2∕ℤ2 equipped with the Hausdorff topology on (ℂP1)2∕ℤ2.

Remark 5.3. Let 𝐶 = (𝑓, 𝜌) be a ℂP1-structure on a surface with punctures. Let 𝛼 ∈ 𝜋1(𝑆) be such
that its free homotopy class is the peripheral loop around a cusp 𝑐 of 𝐶. Then, 𝛾 corresponds to a
unique element in (ℂP1)2∕ℤ2 as follows: As the universal cover 𝐶̃ of 𝐶 is conformally identified
with ℍ2 by the uniformization, let 𝑐 be the point on the ideal boundary of 𝜕ℍ2 fixed by 𝛼 ∈ 𝜋1(𝑆).
Let (𝜏, 𝐿) ∈ 𝖳 × 𝖬𝖫 be the Thurston parametrization of 𝐶, and let  be the circular measured
lamination on 𝐶 that descends to 𝐿. For each leaf 𝓁 of ̃ ending at 𝑐, the corresponding endpoint
of the circular arc 𝑓(𝓁) on ℂP1 is a fixed point of 𝜌(𝛼). If  is nonempty in a small neighborhood
of the cusp, let Λ be the set of such half leaves of ̃ ending at 𝑐. Then, 𝛼 corresponds to a unique
element (𝜌(𝛼), Λ) in2PSL2ℂ. If  is empty near the cusp, an appropriate cusp neighborhood of 𝑐 is
a horodisk quotient, and 𝛼 corresponds to (𝜌(𝛼), Λ), where Λ is the parabolic fixed point of 𝜌(𝛼).

5.3 Cusp neighborhoods in Thurston parameters

The following lemma determines the isomorphism classes of cusp neighborhoods of ℂP1-
structures in Thurston coordinates.

Lemma 5.4. Let𝐶 = (𝑓, 𝜌) be aℂP1-structure on a surface𝐹 with cusps. Let𝐶 ≅ (𝜏, 𝐿) be Thurston
parameters of 𝐶. Then, for each cusp 𝑐 of 𝐶, its small neighborhood (i.e., its germ) in 𝐶 is determined
by

∙ the holonomy ℎ ∈ PSL2ℂ around 𝑐,
∙ the transversal measure of a peripheral loop around 𝑐 given 𝐿, and
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24 of 69 BABA

F IGURE 4 Cusp neighborhoods in Thurston parameters.

F IGURE 5 The opposite spiral directions give the holonomy the opposite rotational directions.

∙ if ℎ is hyperbolic, the direction in which the leaves of 𝐿 spirals toward the boundary component.

(See Figure 4.)

Proof. Let (𝐸, 𝑉) be the pair of a singular Euclidean structure 𝐸 on 𝐹, and 𝑉 be a vertical foliation
on 𝐸 induced by 𝐶.
Hyperbolic Case. First, suppose that ℎ ∈ PSL2ℂ is hyperbolic. Then, by Proposition 5.2, its cusp

neighborhood, in (𝐸, 𝑉), corresponds to a half-infinite cylinder 𝐴, and the complex translation
length is

√
2 ∫𝓁𝑐

√
𝑞, where 𝓁𝑐 is a peripheral loop of 𝑐.

The developing map 𝑓 of a small neighborhood of 𝑐 is a restriction of the exponential map
ℂ → ℂ∗. Thus, the complex translation length determines the deck transformation on the domain
ℂ by ℤ ≅ ⟨𝓁𝑐⟩, which determines the ℂP1-structure of a small cusp neighborhood.
The cusp 𝑐 corresponds to the geodesic boundary circle 𝑏 of 𝜏 whose length is equal to the

translation length of ℎ. By the properties of bending maps, one can show that the total weight of
𝐿 along 𝓁𝑐 times

√
2 is the rotational angle of ℎ and the direction of rotation in which leaves of 𝐿

spiral toward 𝑏 determines the orientation of the angle (Figure 5).
Parabolic Case. Suppose that ℎ is parabolic.
If a neighborhood of a cusp 𝑐 in 𝐸 is an expanding cylinder shrinking towards 𝑐, then a

neighborhood of 𝑐 in (𝜏, 𝐿) is a hyperbolic cusp with the empty lamination (Proposition 5.2 (1)).
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 25 of 69

Next, suppose that the cusp neighborhood of 𝑐 in (𝐸, 𝑉) is a half-infinite flat cylinder 𝐴 in 𝐸.
Then, the circumferences of 𝐴 are orthogonal to 𝑉, and

√
2𝑉(𝓁𝑐) is a positive 2𝜋-multiple.

Let Ep∶ 𝑋̃ → ℍ3 be the Epstein map associated with 𝐶 = (𝑋, 𝑞). Let 𝑉̃ be the pullback of 𝑉 to
the universal cover of 𝐸, and let 𝑐 be the lift of 𝑐 to the ideal boundary of 𝑋̃ ≅ ℍ2. Let 𝛾 ∈ 𝜋1(𝐹) be
the element that fixes 𝑐 such that its free homotopy class is 𝓁𝑐. Then, for every leaf 𝓁 of 𝑉̃ ending
at 𝑐, its image Ep(𝓁) is indeed a quasi-geodesic limiting to the parabolic fixed point of 𝜌(𝛾) on
ℂP1, and its curvature of Ep(𝓁) converges to zero as it approaches the fixed point by Lemma 2.5.
Therefore, 𝑐 corresponds to a cusp of 𝜏. By Proposition 4.4, the total weight of the leaves must be√
2𝑉(𝓁𝑐).
Elliptic case. The proof when ℎ is elliptic is similar to the parabolic case. 5.4

Let 𝐷 be the unit closed disk in ℂ centered at the origin 𝑂. Let 𝐷∗ = 𝐷 ⧵ {𝑂}, and let 𝓁 be the
peripheral loop around the origin. Let (𝐷∗) denote the space of all developing pairs (𝑓, ℎ) for
the ℂP1-structures on 𝐷 ⧵ {𝑂} (not up to PSL2ℂ) so that 𝑂 is a cusp and the boundary circle is
smooth, where 𝑓∶ 𝐷̃∗ → ℂP1 is the developing map and ℎ ∈ PSL2ℂ is the holonomy along 𝓁.
Recall from Remark 5.3 that each cusp corresponds to a unique element (𝛾, Λ) in2PSL2ℂ. Let 𝐷̌∗

be a subsurface of 𝐷∗ obtained by removing a regular neighborhood of the boundary circle of 𝐷∗.
By the following proposition, the deformation of the ℂP1-structures of the cusp neighborhoods

is locally modeled on2PSL2ℂ.

Proposition 5.5. Let 𝐹 be a closed surface minus finitely many points, and let 𝐶 be a ℂP1-structure
on𝐹, and pick its developing pair (𝑓, 𝜌). Then, each cusp 𝑐 of𝐶 has a disk neighborhoodΣ = (𝑓, 𝛾) ∈

(𝐷∗) of 𝑐 in 𝐶 with the following properties:

(1) Let (𝛾, Λ) ∈ 2PSL2ℂ be the element corresponding to the peripheral loop around 𝑐. Then, for every
𝜖 > 0 and every compact subset𝐾 of the universal cover Σ̃, there is a subset𝑈 = 𝑈(𝐾, 𝜖) of (𝛾, Λ)
in2PSL2ℂ, such that, for every (𝛾′, Λ′) ∈ 𝑈,
(a) if ♯Λ = 1, then there is Σ′ = Σ′(𝛾′, Λ′) ∈ (𝐷∗) with holonomy 𝛾′ and the framing Λ, such

that its developing map 𝑓′ of Σ(𝛾′, Λ′) is 𝜖-close, in 𝐶1-topology, to the developing map 𝑓 of
Σ in 𝐾,

(b) if ♯Λ = 2, then there is a neighborhood𝑊 of 𝛾 in PSL2ℂ, such that, for every 𝛾′ ∈ 𝑊, there is
Σ′ = Σ′(𝛾′, Λ′) ∈ (𝐷∗)with holonomy 𝛾′ and a unique framingΛ, such that its developing
map 𝑓′ of Σ(𝛾′, Λ′) is 𝜖-close, in 𝐶1-topology, to the developing map 𝑓 of Σ in 𝐾.

(2) Moreover, Σ′ is uniquely determined on 𝐷̌∗ by an isotopy of 𝐷∗ (uniqueness near the cusp).

Proof of Proposition 5.5. We divide the proof by the isometry type of 𝛾. In each case, we con-
struct a deformation of Σ in a small neighborhood in 2PSL2ℂ by specifying the deformation of a
fundamental membrane.
Elliptic Case. First, suppose that 𝛾 = 𝐼 or 𝛾 is an elliptic element. Then, the puncture 𝑂

corresponds to a unique point 𝑓(𝑂) onℂP1 by continuously extending 𝑓. Then, pick a cusp neigh-
borhood Σ biholomorphic to a punctured disk, such that the development of the boundary circle
is a round circle 𝛼 on ℂP1 and there is a unique Lie subgroup of PSL2ℂ isomorphic to 𝑆𝑂(2) that
preserves 𝛼 and 𝑓(𝑂). We identify ℂP1 with ℂ ∪ {∞} so that the puncture 𝑓(𝑂) is at the origin and
𝛼 is the unit circle of ℂ centered at the origin 𝑓(𝑂).
Pick a “fan-shaped fundamental domain” in 𝐷̃∗ bounded by three circular arcs 𝑒1, 𝑒2, 𝑒3 such

that
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F IGURE 6 Perturbing a fundamental membrane of a cusp with elliptic holonomy.

∙ 𝑓|𝑒1 and𝑓|𝑒2 are radii of𝛼 connecting𝑓(𝑂) to points on𝛼, so that 𝛾𝑓(𝑒1) = 𝑓(𝑒2) are orthogonal
to 𝛼, and

∙ 𝑓|𝑒3 immerses into 𝛼, and it connects the endpoints of 𝑒1 and 𝑒2
(Figure 6, left). Let 𝑞 be the endpoint of the arc 𝑓(𝑒1) on 𝑟.
If the neighborhood 𝑈 of (𝛾, 𝑓(𝑂)) is sufficiently small, then given (𝛾′, Λ′) ∈ 𝑈, one can easily

construct a ℂP1-structure Σ′ = (𝑓′, 𝛾′) close to Σ on 𝐷∗ realizing (𝛾′, Λ′). Indeed, we pick 𝑧 ∈ Λ′,
we can construct a fundamental membrane bounded by 𝑒′

1
, 𝑒′

2
, 𝑒′

3
such that,

(1) 𝑓′(𝑒′
1
) is a straight line on ℂ connecting 𝑧 and 𝑓𝑞,

(2) 𝑓′(𝑒′
2
) is 𝛾′(𝑓′(𝑒′

1
)) (which is a circular arc connecting 𝑧 and 𝛾(𝑞)),

(3) 𝑓′(𝑒′
3
) is an arc connecting 𝑞 to 𝛾(𝑞) so that 𝑓(𝑒′

3
) is a segment of a trajectory under a one-

dimensional Lie subgroup of the affine transformations of ℂ preserving 𝑧, and
(4) 𝑓′(𝑒𝑖) is close to 𝑓(𝑒𝑖) in the Hausdorff topology on ℂP1.

(See Figure 6, right). (The choice of 𝑧 may not be unique if 𝑟 is identity and tr 𝑟′ ∈ ℝ ⧵ [−2, 2],
i.e., hyperbolic without screw motion.)
On the other hand, one can easily see that, for every small deformation Σ′ of Σ, there is a

“fan-shaped” fundamental membrane satisfying all conditions (1)–(4) such that the fundamental
membranes coincide on 𝐷̌∗. Therefore, we have the uniqueness property of Σ′ near the cusp.
Generic hyperbolic case. Let (𝜏, 𝐿) be the Thurston parametrization of 𝐶, and let  be the

Thurston lamination on 𝐶. Let 𝓁 be the peripheral loop around 𝑂. Suppose that 𝛾 is hyperbolic
and 𝐿(𝓁) ≠ 0, so thatΛ is a single point. Then, 𝜏 has a geodesic boundary loop 𝑏 corresponding to
the cusp 𝑐 and, as 𝐿(𝓁) > 0, leaves of 𝐿 spiral towards 𝑏. Let 𝑏̃ be a lift of 𝑏 to the universal cover 𝜏̃
of 𝜏, so that 𝑏̃ is a boundary geodesic of 𝜏̃. Then, those spiraling leaves lift to geodesics in 𝜏̃ having
a common endpoint at an endpoint of 𝑏̃; by the bending map 𝛽∶ 𝜏̃ → ℍ3, the endpoint maps to
the point Λ. Accordingly, the leaves of  near the cusp 𝑂 develop onto circular arcs ending at Λ.
Normalize ℂP1 = ℂ ∪ {∞} by an element of PSL2ℂ, so that 0 = Λ and the other fixed point of

𝛾 is at∞. Let (𝐸, 𝑉) be the foliated singular Euclidean structure given by 𝐶. Then, there is a half-
infinite flat cylinder𝐴 in𝐸 that corresponds to a cusp neighborhood of 𝑐 ; then each circumference
has a positive transversalmeasure given by the horizontal foliation. Therefore, one can take a cusp
neighborhood Σ bounded by a loop𝑚 such that𝑚 develops onto a spiral on ℂP1, that is, a curve
invariant under a one-parameter subgroup in PSL2ℂ that contains 𝛾.
Take, similarly, a “fan-shaped” fundamental domain 𝐹 in the universal cover Σ̃ that is bounded

by three smooth segments 𝑒1, 𝑒2, 𝑒3 such that
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f(e3)

0

F IGURE 7 Perturbing a fundamental membrane of a cusp with a hyperbolic holonomy.

∙ 𝑒1 and 𝑒2 are half-leaves of ̃ such that 𝛾𝑒1 = 𝑒2 and the circular arcs 𝑓(𝑒1) and 𝑓(𝑒2) end at
0 ∈ ℂ, and

∙ 𝑓(𝑒3) is in a segment of the spiral that connects the other endpoints of 𝑓(𝑒1) and 𝑓(𝑒2) (Figure 7,
left).

Then, 𝛾(𝑓(𝑒1)) = 𝑓(𝑒2) by the equivariant property.
Take a sufficiently small neighborhood𝑈 of (𝛾, Λ) such that the subset𝑊 ⊂ PSL2ℂ of holonomy

elements of pairs in 𝑈 consists of only hyperbolic elements closed to 𝛾; then, for all (𝛾′, Λ′) ∈ 𝑈,
the fixed point Λ′ of the hyperbolic element 𝛾′ uniquely corresponds to the fixed point of 𝛾 in Λ

by every short path connecting 𝛾′ to 𝛾 in𝑊. Then, similarly to the elliptic case, one can easily find
a ℂP1-structure on 𝐷∗ close to Σ that realizes (𝛾′, Λ′), by constructing a fundamental membrane
close to 𝐹 (Figure 7).
On the other hand, for every small deformation Σ′′ of Σ realizes (𝛾′, Λ′), one can easily find a

fundamental membrane of Σ′′ so that it coincides on 𝐷̌∗ with that of Σ′ constructed above.
Special hyperbolic case (♯Λ = 2). Suppose that 𝛾 is hyperbolic and 𝐿(𝓁) = 0 (in particular, tr 𝛾 ∈

ℝ). Then, the boundary component 𝑏 of 𝜏 is a leaf of 𝐿 with weight infinity ([4, Proposition 8.3]).
Let 𝜅∶ 𝐶 → 𝜏 be the collapsing map. Then, 𝜅−1(𝑏) =∶ 𝐹 is a half-infinite cylinder. The devel-

oping map of 𝐹 is the restriction of exp∶ ℂ → ℂ∗ to a half-space bounded by a horizontal line in
ℂ. Then, we identify the universal cover 𝐹̃ of 𝐹 with the half-space, so that 𝛾 acts as a horizontal
translation 𝑡𝛾. Take a fundamental domain 𝑄 in 𝐹̃ such that 𝑄 is a vertical half-infinite strip in ℂ

bounded by two vertical rays and one horizontal segment (Figure 8).
If𝑊 is a small neighborhood of 𝛾 in PSL2ℂ consisting of hyperbolic elements, for every 𝛾′ ∈ 𝑊,

there is a translation 𝑡𝛾′ of ℂ (close to the horizontal translation 𝑡𝛾), such that 𝑡𝛾′ descends to 𝛾′ by
the exponential map up to PSL2ℂ. Therefore, there is a small deformation of Σ realizing (𝛾′, Λ′),
and (1) holds.
On the other hand, arbitrary deformations of the cusp neighborhood𝐹 contain such a deforma-

tion of such a half-infinite strip fundamental domain on 𝐷. Moreover, if 𝑈 is sufficiently small,
then if there are two 𝜖-small deformations of 𝐹 with the same framed holonomy (𝛾′, Λ′), up so
isotopy, the structures on 𝐷∗ coincide by the 𝜖-closeness to 𝐹. Thus, the uniqueness holds (2).
Parabolic case. Suppose that 𝛾 is parabolic. Then, in Thurston parameters, the puncture corre-

sponds to a cusp of the hyperbolic surface 𝜏, and the total weight of 𝐿 along the peripheral loop
𝓁 is a nonnegative 2𝜋-multiple. Then, similarly to the case that 𝛾 = 𝐼, we can show the claim by
finding a cusp neighborhood and a fundamental domain in its universal cover that is bounded by
circular arcs. 5.5
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28 of 69 BABA

F IGURE 8 Deformation of a hyperbolic cusp neighborhood.

5.3.1 Holonomy maps of ℂP1-structures with cusps

Let 𝐹 be a closed surface minus finitely many points 𝑝1, … , 𝑝𝑛. Recall that (𝐹) denotes the space
of all developing pairs (𝑓, 𝜌) for ℂP1-structures on 𝐹. Let (𝑓, 𝜌) ∈ (𝐹). Then, (𝑓, 𝜌) gives a ℂP1-
structure on 𝐹, and we let𝑋 be its induced complex structure on 𝐹. Identify the universal cover 𝑋̃
of𝑋withℍ2; then for each 𝑖 = 1, …𝑛, pick a lift 𝑝̃𝑖 of𝑝𝑖 to a point on the ideal boundary of 𝑋̃. Then,
by Remark 5.3, for every (𝑓, 𝜌) ∈ (𝐹) and a puncture 𝑝𝑖 , we have a corresponding element in
(𝛾𝑖, Λ𝑖) ∈ 2PSL2ℂ. Thus, by the definition of the topology of2PSL2ℂ, we have a continuousmapping
from hol∶ (𝐹) → (2PSL2ℂ)

𝑛 ×(𝐹) taking (𝑓, 𝜌) ∈ (𝐹) to ((𝛾𝑖, Λ𝑖)
𝑛
𝑖=1

, 𝜌). In fact, hol yields a
holonomy theorem in our setting.

Theorem 5.6. Every (𝑓, 𝜌) ∈ (𝐹) has a neighborhood𝑊 such that

hol |𝑊
is a local homeomorphism onto its image. Moreover, for any (𝑓, 𝜌) ∈ (𝐹), if there is a path 𝜌𝑡 (𝑡 >
0) converging to 𝜌 in(𝐹) as 𝑡 → ∞, then there is a lift of 𝜌𝑡 to a path in (𝐹) for 𝑡 ≫ 0 converging
to (𝑓, 𝜌).

Remark 5.7. The image of hol(𝑊) is contained in

{ ((𝛾𝑖, Λ𝑖)
𝑛
𝑖=1, 𝜌) ∣ 𝜌 ∈ 𝑊, 𝜌(𝛼𝑖) = 𝛾𝑖 (𝑖 = 1, 2, … , 𝑛) }.

Furthermore, its subset cut by the condition on the framing given by Proposition 5.5 (1) determines
the local image hol(𝑊).

Proof. Let (𝑓, 𝜌) ∈ (𝐹), and let 𝐶 be the ℂP1-structure on 𝐹 given by the developing pair (𝑓, 𝜌).
Applying Proposition 5.5 to a small 𝜖 > 0, we obtain, for each 𝑖 = 1, … , 𝑛, a (small) cusp neigh-
borhood 𝐶𝑖 of the puncture 𝑝𝑖 of 𝐶, and a neighborhood 𝑈𝑖 of (𝛾𝑖, Λ𝑖) in 2PSL2ℂ modeling the
deformation of 𝐶𝑖 . Let𝑁𝑖 be the underlying topological cusp neighborhood of the punctured sur-
face 𝐹 supporting 𝐶𝑖 . Without loss of generality, we can assume 𝐶1, … , 𝐶𝑛 are disjoint in 𝐶. Let
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 29 of 69

𝐶′
𝑖
be an open cusp neighborhood of 𝑝𝑖 smaller than 𝐶𝑖 and 𝑈𝑖 be a subset of2PSL2ℂ containing

hol((𝑓, 𝜌)) given by Proposition 5.5(2), such that the small deformation of𝐶𝑖 on𝐶′
𝑖
is parametrized

the framed holonomy in 𝑈𝑖 .
Let 𝑁′′

𝑖
be an (even smaller) cusp neighborhood of 𝑝𝑖 whose closure is contained in the inte-

rior of 𝑁′
𝑖
. Let 𝐹̌ be 𝐹 ⧵ ⊔𝑖𝑁

′′
𝑖
, and let 𝐶̌ be the restriction of 𝐶 to 𝐹̌. For every (𝛾′

𝑖
, Λ′

𝑖
) ∈ 𝑈𝑖 , let

𝐶𝑖(𝛾
′
𝑖
, Λ′

𝑖
) denote the unique ℂP1-structure on 𝑁′

𝑖
with the framed holonomy (𝛾′

𝑖
, Λ′

𝑖
) ∈ 𝑈𝑖 such

that 𝐶𝑖(𝛾
′
𝑖
, Λ′

𝑖
) is sufficiently close to 𝐶𝑖 .

We shall regard (𝑓, 𝜌) as a smooth section Σ of a ℂP1-bundle 𝐵 over 𝐹 such that Σ is transversal
to the horizontal foliation 𝐻𝜌 associated with 𝜌 (see, e.g., [18]). Let Σ̌ be the restriction of Σ to
the bundle over the subsurface 𝐹̌. Then, there is a neighborhood 𝑈 of 𝜌 in the representation
variety(𝐹) such that, for each 𝜉 ∈ 𝑈, letting𝐻𝜉 be the horizontal foliation of 𝐵 associated with
𝜉, Σ̌ is still transversal to𝐻𝜉 by the openness of transversality; then Σ̌ yields a projective structure
𝐶̌𝜉 on 𝐹̌ with holonomy 𝜉. In this way, we obtain a unique ℂP1-structure on 𝐹̌ close to (𝑓, 𝜌) on
𝐹̌. This new structure is unique in a compact subset of 𝐹̌ whose interior contains the closure of
𝐹 ⧵ ⊔𝑛

𝑖=1
𝑁′
𝑖
.

For each 𝑖, pick anyΛ𝑖 inFix 𝜉𝑖(𝛾𝑖) ∈ ℂP1 so that (𝜉𝑖(𝛾𝑖), Λ𝑖) ∈ 𝑈𝑖 . Then,𝐶𝑖(𝜉𝑖(𝛾𝑖), Λ𝑖) is its asso-
ciated deformation. Then, we can glue 𝐶̌𝜉 and 𝐶𝑖(𝜉𝑖(𝛾𝑖), Λ𝑖) in the overlapping region, and obtain
a desired developing pair for a ℂP1-structure on 𝐹. Consider the subset𝑊 inΠ𝑛

𝑖=1
𝑈𝑖 ×(𝐹) con-

sisting (𝛾𝑖, Λ𝑖)
𝑛
𝑖=1

, 𝜌) satisfying 𝜌(𝛼𝑖) = 𝛾𝑖 (𝑖 = 1, 2, … , 𝑛); clearly,𝑊 contains hol(𝑓, 𝜌). In this way,
given a sufficiently small neighborhood of hol((𝑓, 𝜌)) in this subset𝑊, for every element in this
neighborhood, we construct a developing pair realizing it. This new ℂP1-structure on 𝐹 is unique
by the uniqueness of the thick part 𝐶̌𝜉 on 𝐹 ⧵ ⊔𝑁′

𝑖
and the uniqueness of the cusp neighborhoods

𝐶𝑖(𝜉𝑖(𝛾𝑖), Λ𝑖) on 𝑁′
𝑖
.

Notice that𝑊 projects to a neighborhood of 𝜌 in . The path lifting along a path in  easily
follows from the construction as 𝑈 is a neighborhood of 𝜌 in(𝐹). 5.6

6 BOUND ON THE UPPER INJECTIVITY RADIUS

Recall that 𝐶𝑡 = (𝑓𝑡, 𝜌𝑡) is a path of ℂP1 structures on 𝑆 such that 𝐶𝑡 diverges to∞ and the equiv-
alence class [𝜌𝑡] =∶ 𝜂𝑡 converges in the character variety as 𝑡 → ∞. Recall also that 𝐶𝑡 = (𝑋𝑡, 𝑞𝑡)

is the expression in the Schwarzian parameters.

Let 𝐸𝑡 be the singular Euclidean structure on 𝑋𝑡 given by |𝑞 1
2
𝑡 |. Let 𝑅(𝐸𝑡) ⩾ 0 denote that the

upper injectivity radius of 𝐸𝑡. In this section, we show the following.

Theorem 6.1. Suppose that 𝑋𝑡 is pinched along a multiloop𝑀. Then, the upper injectivity radius
𝑅(𝐸𝑡) of 𝐸𝑡 is bounded from above for all 𝑡 ⩾ 0.

Immediately, we have the following.

Corollary 6.2. There is an upper bound for the area of the expanding cylinders in 𝐸𝑡 for all 𝑡 ⩾ 0.

The rest of this section is a proof of Theorem 6.1. We suppose, to the contrary, that
lim sup𝑅(𝐸𝑡) = ∞ and show that 𝜌𝑡 cannot converge. Let 𝑀𝑡 be a geodesic representative of 𝑀
on 𝐸𝑡 (in the Euclidean metric) such that, for every 𝜖 > 0 if 𝑡 > 0 is sufficiently large, then𝑀𝑡 is
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30 of 69 BABA

contained in the 𝜖-thin part of 𝑋𝑡. We will find a conformally thick part that is, in the Euclidean
metric, bigger than its adjacent thick parts.

Lemma 6.3. Suppose that there is a diverging sequence (0 <) 𝑡1 < 𝑡2 < … such that 𝐸𝑡𝑖
contains a

flat cylinder 𝐴𝑡𝑖
homotopy equivalent to a fixed loop𝑚 of𝑀 such that

(1) Mod𝐴𝑡𝑖
→ ∞ as 𝑖 → ∞, and

(2) the circumference of 𝐴𝑡𝑖
limits to∞ (equivalently Area𝐴𝑡𝑖

→ ∞) as 𝑖 → ∞.

Then, leaves of the vertical foliation 𝑉𝑡𝑖
must be asymptotically orthogonal to the circumferences

of 𝐴𝑡𝑖
.

Proof. Suppose, to the contrary, that𝑉𝑡𝑖
is not asymptotically orthogonal to circumferences. Then,

up to a subsequence,wemay assume that there is a limiting angle 𝜃∞ ∈ [0, 𝜋∕2) between the angle
between 𝑉𝑡𝑖

and the circumferences of 𝐴𝑡𝑖
. Let 𝑚𝑡𝑖

be a geodesic representative of 𝑚 which sits
in the middle of 𝐴𝑡𝑖

. Since 𝜃∞ ≠ 𝜋∕2, Hypotheses (1) and (2) imply that the transversal measure
of the horizontal foliation 𝐻𝑡𝑖

along 𝑚𝑡𝑖
diverges to infinity as 𝑖 → ∞. By Proposition 4.9, the

translation length of 𝜌𝑡𝑖 (𝑚𝑡𝑖
) is asymptotically

√
2 times the transversal measure. Therefore, the

translation length of 𝜌𝑡𝑖 (𝑚𝑡𝑖
) must diverge to infinity, which contradicts the convergence of [𝜌𝑡]

as 𝑡 → ∞. □

Proposition 6.4. Suppose that there are a component 𝐹 of 𝑆 ⧵ 𝑀 and a diverging sequence
(0 <) 𝑡1 < 𝑡2 < … such that, letting 𝐹𝑡𝑖

be the component of 𝐸𝑡𝑖
⧵ 𝑀𝑡𝑖

homotopic to 𝐹 on 𝑆,

∙ Area𝐸𝑡𝑖
𝐹𝑡𝑖

→ ∞ as 𝑖 → ∞, and
∙ for each boundary component 𝓁 of 𝐹, there is an expanding cylinder 𝐵𝓁,𝑡𝑖

in 𝐹𝑡𝑖
bounded by the

boundary component 𝓁𝑖 of 𝐹𝑡𝑖
homotopic to 𝓁 on 𝑆 such that

◦ 𝐵𝓁,𝑡𝑖
shrinks toward 𝓁𝑖 , that is, 𝓁𝑖 is the shorter boundary component of 𝐵𝓁,𝑡𝑖

, and
◦ Mod𝐵𝓁,𝑡𝑖

→ ∞ as 𝑖 → ∞.

Then, [𝜌𝑡𝑖 ]|𝜋1𝐹 diverges to∞ in 𝜒 as 𝑖 → ∞.

Proof. Let 𝑘𝑖 > 0 be such that 𝑘𝑖 Area(𝐹𝑡𝑖
) = 1 for each 𝑖 = 1, 2, … . Then, as Area𝐹𝑡𝑖

→ ∞, thus
𝑘𝑡𝑖 → 0 as 𝑖 → ∞. All ends of 𝐹𝑡𝑖

have conformally long expanding cylinders shrinking towards
adjacent components. Take a base point in the thick part of 𝐹𝑡𝑖

. Let 𝐹̂ denote the compact sur-
face with finitely many punctures, obtained by pinching the boundary loops of 𝐹 to puncture
points. Then, the space of all holomorphic quadratic differentials on Riemann surfaces structures
on 𝐹̂ with Euclidean area one is a sphere of finite dimension. Then, by compactness, up to a
subsequence

∙ 𝑘𝑖𝐸𝑡𝑖
converges, in the Gromov–Hausdorff topology, to a compact singular Euclidean surface

minus finitely many points, 𝐸∞, which is homeomorphic to 𝐹, and
∙ the restriction of 𝑘𝑖𝑉𝑡𝑖

to 𝑘𝑖𝐸𝑡𝑖
converges to a measured foliation 𝑉∞ on 𝐸∞.

Take a piecewise geodesic loop 𝓁 on 𝐸∞ such that

(1) 𝓁 does not cross any singular point of 𝐸∞,
(2) each segment of 𝓁 is either vertical or horizontal, and 𝓁 contains at least one vertical segment,

and
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 31 of 69

F IGURE 9 Staircase closed loops 𝓁 consisting of long vertical segments and short horizontal segments.

(3) 𝓁 is a geodesic in the 𝐿∞-metric, so that at adjacent singular points, 𝓁 bends in the different
direction by an angle 𝜋∕2.

In fact, if𝑉∞ contains a periodic leaf, then take it as 𝓁, which obviously satisfies the conditions.
Otherwise, 𝑉∞ contains a minimal irrational subfoliation, using the density of each leaf in the
subfoliation, a standard closing lemma gives a desired loop𝓁 as in Figure 9 (see [7, I.4.2.15]). By the
convergence 𝑘𝑖𝐸𝑖 → 𝐸∞, for 𝑖 large enough, we pick a piecewise geodesic loop 𝓁𝑖 on 𝐸𝑖 satisfying
the properties (1)–(3) such that 𝓁𝑖 has the same number of horizontal and vertical segments as
𝓁 has, and 𝑘𝑖𝓁𝑖 on 𝑘𝑖𝐸𝑖 converges to 𝓁 on 𝐸∞ smoothly on each segment as 𝑖 → ∞. Then, the
distance from 𝓁𝑖 to the singular set of 𝐸𝑖 goes to∞ as 𝑘𝑖 → 0. Therefore, by Proposition 4.9, 𝜌𝑡𝑖 (𝓁)
is a hyperbolic element of translation length close to

√
2 times the total length of the vertical

segment of 𝓁𝑖 . Then, as 𝑘𝑖 → 0, the total vertical length of 𝓁𝑖 on 𝐸𝑖 goes to infinity, and therefore,
tr 𝜌𝑖(𝓁)must diverge to infinity. □

Let𝑚1,… ,𝑚𝑝 be the loops of the multiloop𝑀.

Proposition 6.5. For every (large) 𝑇 > 0, there are 𝑡 > 𝑇 and 𝑘 ∈ {1, … , 𝑝} such that

1

2
<

length𝐸𝑡 (𝑚𝑘)

max𝑖=1,…,𝑝 length𝐸𝑡 (𝑚𝑖)
⩽ 2,

andMod𝐸𝑡 (𝑚𝑘) is
1

3
-dominated by an expanding cylinder 𝐵𝑘,𝑡 homotopic to𝑚𝑘 , that is,

Mod𝐵𝑘,𝑡

Mod𝐸𝑡 𝑚𝑘
>

1

3
.

Proof. For 𝑢 > 𝑇, let 𝑚𝑘𝑢
be the loop realizing max𝑖=1,…,𝑞 length𝐸𝑢(𝑚𝑖). We may assume that

max𝑖=1,…,𝑝 length𝐸𝑡 (𝑚𝑖) → ∞ as 𝑡 → ∞: in fact, otherwise, since lim sup𝑅(𝐸𝑡) = ∞, Proposi-
tion 6.4 implies that [𝜌𝑡] diverges in 𝜒.
We first show that if a long flat cylinder persists, then its circumference must stay almost the

same. Namely,
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32 of 69 BABA

Claim 6.6. For every 𝜖 > 0, there is 𝐾 > 0 such that, if there are 𝑤 > 𝑢 > 𝐾 and a flat cylinder in
𝐸𝑡 of height at least 𝐾 homotopic to𝑚, then, for every 𝑡 ∈ [𝑢, 𝑤], then

1 − 𝜖 <
length𝐸𝑡 𝑚

length𝐸𝑢 𝑚
< 1 + 𝜖

for all 𝑡 ∈ [𝑢, 𝑤].

Proof. ByLemma 6.3, for every 𝜖 > 0, if𝐾 > 0 is sufficiently large, then the vertical foliation𝑉𝑡 is 𝜖-
almost orthogonal to circumferences of the flat cylinder homotopic to𝑚. Then, by Proposition 4.4,
for every 𝜖 > 0, if 𝐾 > 0 is sufficiently large, then the total rotation angle along 𝑚 is (1 + 𝜖)-bi-
Lipschitz to

√
2 length𝐸𝑡 𝑚 for 𝑡 ∈ [𝑢, 𝑤]. As the holonomy of 𝜌𝑡(𝑚) converges as 𝑡 → ∞, for every

𝜖 > 0, if 𝐾 is sufficiently large, then the total rotation along 𝑚 must be 𝜖-almost constant for all
𝑡 ∈ [𝑢, 𝑤]. Thus, if 𝐾 is sufficiently large, then the ratio of length𝐸𝑡 𝑚 and length𝐸𝑢 𝑚 is 𝜖-close
to 1. □

By Claim 6.6, for every 𝜖 > 0, if 𝐾 > 0 is sufficiently large, then, if a flat cylinder 1

4
-dominates

Mod𝑚𝑘𝑢
for all 𝑡 ∈ [𝑢, 𝑤] for some 𝑢 > 𝐾; then 1 − 𝜖 <

length𝐸𝑡 𝑚𝑘𝑢

length𝐸𝑢 𝑚𝑘𝑢

< 1 + 𝜖 for all 𝑡 ∈ [𝑢, 𝑤]. Sup-
pose, in addition, that there is a loop𝑚ℎ of𝑀 not𝑚𝑘𝑢

, such that𝑚ℎ on 𝐸𝑡 becomes exactly twice
as long as𝑚𝑘𝑢

on 𝐸𝑢 for the first time at 𝑡 = 𝑤 < 𝑣 after 𝑡 = 𝑢. Then, by applying Claim 6.6 to𝑚ℎ,
we can show that there is 𝑡 ∈ [𝑢, 𝑤) such thatMod𝐸𝑡 𝑚ℎ is 1∕3-dominated by an expanding cylin-
der: Indeed, otherwise,max𝑖=1,…,𝑝 length𝐸𝑡 (𝑚𝑖)must bounded from above by 3

2
length𝐸𝑡 (𝑚𝑘𝑢

) for
all 𝑡 ∈ [𝑢, 𝑤]. 6.5

Corollary 6.7. There are a component 𝐹 of 𝑆 ⧵ 𝑀 and a diverging sequence 0 < 𝑡1 < 𝑡2 < … such
that the corresponding component 𝐹𝑡𝑖

of 𝐸𝑡𝑖
⧵ 𝑀𝑡𝑖

satisfies the assumptions of Proposition 6.4.

Proof. By Proposition 6.5, there is a loop𝑚 of𝑀 and a diverging sequence 𝑡1 < 𝑡2 < … such that

∙ length𝐸𝑡𝑖
𝑚 → ∞ as 𝑖 → ∞,

∙

1

2
<

length𝐸𝑡𝑖
𝑚

max{length𝐸𝑡𝑖
𝑚1, … , length𝐸𝑡𝑖

𝑚𝑝}
< 2

for all 𝑖 = 1, 2, … , and
∙ there is an expanding cylinder 𝐵𝑡𝑖 homotopic𝑚 that 1

3
-dominatesMod𝐸𝑡𝑖

𝑚.

Then, up to a subsequence, wemay in addition assume that𝐵𝑡𝑖 is expanding in the same direction.
Then, let 𝐹 be the connected component of 𝑆 ⧵ 𝑀 such that𝑚 is a boundary component of 𝐹 and
𝐵𝑡𝑖 expands toward 𝐹. As the size of 𝐹𝑡𝑖

becomes bigger and bigger than the length of length𝐸𝑡𝑖 𝑚,
the first assumption of Proposition 6.4 holds. Thus, by the second condition on the loop 𝑚 and
the sequence {𝑡𝑖}, the second assumption of Proposition 6.4 is satisfied. □

By this corollary, we obtained a contradiction by Proposition 6.4 against the convergence of 𝜌𝑡.
Hence, we obtain Theorem 6.1.
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 33 of 69

7 CONVERGENCE OF ℂ𝐏𝟏-STRUCTURES AWAY FROM PINCHED
LOOPS

We continue to suppose that 𝑋𝑡 is pinched along a multiloop. We will first see that the holonomy
𝜌∞(𝑚) determines the type of a conformally long Euclidean cylinder in 𝐸𝑡 that is homotopic to𝑚
for 𝑡 ≫ 0.

Lemma 7.1.

(1) Suppose that there are a sequence 𝑡1 < 𝑡2 < … diverging to∞ and a sequence of expanding cylin-
ders 𝐵𝑡𝑖 in 𝐸𝑡𝑖

homotopic to 𝑚 at time 𝑡𝑖 , such thatMod𝐸𝑡𝑖
𝐵𝑡𝑖 → ∞ as 𝑡 → ∞. Then, 𝜌∞(𝑚) is

parabolic.
(2) Suppose that there is a sequence of flat cylinders𝐴𝑡𝑖

in 𝐸𝑡𝑖
homotopic to a fixed loop𝑚 on 𝑆 such

that Mod𝐴𝑡𝑖
diverges to ∞ and the circumference of 𝐴𝑡𝑖

is bounded from below and above by
positive numbers. Let 𝑤 ∈ ℂ be such that the Möbius transformation 𝑧 ↦ (exp𝑤)𝑧 conjugates
to 𝜌∞(𝑚). Then,

√
2 ∫𝑚

√
𝑞𝑡𝑖 converges to 𝑤 mod 2𝜋𝑖 up to a sign.

Proof.

(1) If a puncture of a ℂP1-structure corresponds to a regular point of its holomorphic quadratic
differential, its peripheral holonomy is parabolic. Suppose that there are a sequence 𝑡1 < 𝑡2 <

… and an expanding cylinder 𝐵𝑡𝑖 in 𝐸𝑡𝑖
homotopic to 𝑚 such that Mod𝐵𝑡𝑖 → ∞ as 𝑡 → ∞.

Then, by Corollary 6.2, the length of the shorter boundary component of 𝐵𝑡𝑖 goes to zero as
𝑖 → ∞, and it asymptotically corresponds to, at most, a pole of order 1 of the quadratic differ-
ential. (A pole of order at least two corresponds to an infinite area end.) Therefore, 𝜌∞(𝑚) is
parabolic, against the hypothesis.

(2) follows immediately from Proposition 4.4. □

Given a compact surface 𝐹 with boundary, let 𝐹̂ denote the surface with punctures obtained by
pinching each boundary component of 𝐹 to a (puncture) point.

Proposition 7.2. Let 𝜖 > 0 be a number less than the Bers constant. Let 𝐹 be a component of 𝑆 ⧵

𝑀, and let 𝐹𝜖
𝑡 be the component of the conformally 𝜖-thick part of 𝐸𝑡 isotopic to 𝐹 for 𝑡 ≫ 0. Then,

if

lim inf
𝑡→∞

Area𝐸𝑡 (𝐹
𝜖
𝑡 ) > 0,

there is a path of ℂP1-structures 𝐹̂𝑡 on the punctured surface 𝐹̂ such that

(1) for every 𝜖 > 0, if 𝑡 > 0 is sufficiently large, then 𝐹𝜖
𝑡 isomorphically embeds into 𝐹̂𝑡 ,

(2) for each boundary component 𝓁 of 𝐹, there is a cylinder 𝐴𝓁,𝑡 in 𝐸𝑡 homotopic to 𝓁 such that
∙ Mod𝐴𝓁,𝑡 → ∞ as 𝑡 → ∞;
∙ 𝐴𝓁,𝑡 is either a flat cylinder for all 𝑡 ≫ 0 or an expanding cylinder shrinking toward the
adjacent component of 𝑆 ⧵ 𝑀 across𝑚 for all 𝑡 ≫ 0;

(3) 𝐹̂𝑡 contains 𝐴𝓁,𝑡 for every boundary component 𝓁 of 𝐹.
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34 of 69 BABA

Proof. We first show that, for each boundary component 𝓁 of 𝐹, there is a cylinder𝐴𝓁 homotopic
to 𝓁, such that

(i) Mod𝐴𝓁,𝑡 → ∞ as 𝑡 → ∞, and
(ii) 𝐴𝓁,𝑡 remains either a flat cylinder for all sufficiently large 𝑡 > 0 or an expanding cylinder

shrinking forwards 𝓁 for all sufficiently large 𝑡 > 0.

Let 𝑌𝑡, 𝑍𝑡,𝑊𝑡 be disjoint cylinders homotopic to 𝓁, such that 𝑍𝑡 is a maximal flat cylinder, 𝑌𝑡 is
the maximal expanding cylinder expanding toward the thicker part of 𝐹𝑡 and𝑊𝑡 is the maximal
expanding cylinder expanding towards the adjacent component across the geodesic representative
𝓁𝑡 of 𝓁.
As𝑋𝑡 is pinched along𝑀, by Theorem 3.12,max{Mod𝑌𝑡,Mod𝑍𝑡,Mod𝑊𝑡} → ∞ as 𝑡 → ∞. Let

diam𝑊𝑡 and diam𝑌𝑡 denote the diameters of 𝑊𝑡 and 𝑌𝑡, respectively, in the Euclidean metric
𝐸𝑡. Then, by lim inf 𝑡→∞ Area𝐸𝑡 (𝐹

𝜖
𝑡 ) > 0 and the upper injectivity radius bound (Theorem 6.1),

the ratio 𝑑𝑖𝑎𝑚𝑊𝑡

𝑑𝑖𝑎𝑚𝑌𝑡+1
is bounded from above for all 𝑡 > 0. Thus, Mod𝑊𝑡

Mod𝑌𝑡+1
is bounded from above for

all 𝑡 > 0. Therefore, Mod𝑌𝑡 +Mod𝑍𝑡 diverges to ∞ as 𝑡 → ∞. We claim, moreover, that either
limMod𝑌𝑡 = ∞ or limMod𝑍𝑡 = ∞ holds.

Lemma 7.3. Suppose that lim sup𝑡→∞Mod𝑌𝑡 = ∞. Then,Mod𝑌𝑡 → ∞ as 𝑡 → ∞.

Proof. Let 𝑡1 < 𝑡2 < … be a sequence with lim𝑖→∞Mod𝑌𝑡𝑖
= ∞. Then, the circumference of 𝑍𝑡𝑖

limits to zero, and by Lemma 7.1 (1), 𝜌∞(𝓁) is parabolic.
Suppose to the contrary that there is a sequence 𝑠1 < 𝑠2 < … diverges to∞ such thatMod𝑌𝑠𝑖

is
bounded from above by some constant 𝑏 > 0. Then,Mod𝑍𝑠𝑖 → ∞, and the circumference of 𝑍𝑠𝑖

is
bounded from below 𝑐 > 0. On the other hand, sinceMod𝑌𝑡𝑖

→ ∞, the circumference of 𝑍𝑡𝑖 goes
to zero as 𝑖 → ∞. We can assume that 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < … by taking subsequences of 𝑠𝑖 and 𝑡𝑗
if necessary.
Therefore, for every 𝑟 ∈ (0, 𝑐), for every sufficiently large 𝑖, there is 𝑢𝑖 ∈ [𝑠𝑖, 𝑡𝑖], such that the

circumference of 𝑍𝑢𝑖 is 𝑟. Then, asMod𝑌𝑢𝑖
is bounded from above,Mod𝑍𝑢𝑖 → ∞ as 𝑖 → ∞.

Then, by Lemma 7.1 (2), the limit holonomy of 𝜌𝑢𝑖 (𝑚) is determined by the complex length
of the circumference. For almost all 𝑟 ∈ (0, 𝑐), 𝜌𝑢𝑖 (𝑚) is not parabolic. This contradicts the
convergence of 𝜌𝑡 as 𝜌∞(𝓁) is parabolic. □

Then, 𝑌𝑡 satisfies (i) and (ii).
Next suppose that lim sup𝑡→∞Mod𝑌𝑡 < ∞. Then, Mod𝑍𝑡 diverges to ∞ as 𝑡 → ∞, and the

circumference of 𝑍𝑡 converges to a positive number. Then, 𝑍𝑡 satisfies (i) and (ii).
We shall construct 𝐹̂𝑡 satisfying (3) as follows. Suppose that, for a boundary component 𝓁 of 𝐹,

lim𝑡→∞Mod𝑌𝑡 = ∞. Let 𝑌̂𝑡 be an expanding cylinder of infinite modulus, obtained by extending
the expanding cylinder 𝑌𝑡 only in the shrinking direction, so that 𝑌̂𝑡 is conformally a punctured
disk. Then replace 𝑌𝑡 by 𝑌̂𝑡 in 𝐸𝑡 by gluing 𝐸𝑡 ⧵ 𝑌𝑡 and 𝑌̂𝑡 along the boundary component of 𝑌̂𝑡.
Then the boundary component 𝓁 of 𝐹 corresponds to the puncture of 𝑌̂𝑡.
Next, suppose that lim sup𝑡→∞Mod𝑌𝑡 < ∞. Then, sinceMod𝑍𝑡 → ∞ and the circumference

Circ(𝑍𝑡) converges to a positive number as 𝑡 → ∞, we extend the flat cylinder 𝑍𝑡, in the direction
of𝑊𝑡, to the half-infinite flat cylinder 𝑍̂𝑡; then 𝑍̂𝑡 is conformally a punctured disk. Then, replace
𝑍𝑡 in 𝐸𝑡 with 𝑍̂𝑡 so that it has a puncture corresponding to 𝓁.
By applying, such a replacement for all boundary component 𝓁 of 𝐹, we obtain a desired

complete singular Euclidean surface 𝐹̂𝑡 satisfying (1), (2), (3), as (2) follows from (i) and (ii). 7.2
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 35 of 69

Theorem 7.4. Let𝐹 be a component of 𝑆 ⧵ 𝑀. Let 𝜖 > 0 be less than the Bers constant of 𝑆. For every
𝑡 > 0 large enough, let 𝐹𝜖

𝑡 be the component of the 𝜖-thick part of 𝐶𝑡 isotopic to 𝐹.

(1) Suppose that

lim inf
𝑡→∞

Area𝐸𝑡 (𝐹
𝜖
𝑡 ) = 0.

Then, there is a continuous function 𝜖𝑡 > 0 in 𝑡with lim𝑡→∞ 𝜖𝑡 = 0, such that𝐹𝜖𝑡
𝑡 converges (in the

Gromov–Hausdorff topology) to a complete hyperbolic structure on a closed surface with finitely
many punctures, denoted by 𝐹̂∞, which is homeomorphic to 𝐹, as 𝑡 → ∞.

(2) Suppose that

lim inf
𝑡→∞

Area𝐸𝑡 (𝐹
𝜖
𝑡 ) > 0.

Then, 𝐹̂𝑡 accumulates to a bounded subset on the space of ℂP1-structures on 𝐹̂. Moreover, if
𝜌∞(𝑚) ≠ 𝐼 for each boundary component𝑚 of 𝐹, then 𝐹̂𝑡 converges to a ℂP1-structure on 𝐹̂ as
𝑡 → ∞.

Remark 7.5. InCase (2), similarly to (1), one can take a sequence 𝑡1 < 𝑡2 < … diverging to∞ so that
𝐹̂𝑡 converges to a ℂP1-structure 𝐹̂∞ on 𝐹̂. Then, for every 𝜖 > 0 less than the Bers’ constant, the
𝜖-thick part 𝐹𝜖

𝑡𝑖
converge to a subsurface of 𝐹̂∞. If, in addition, the 𝜌∞(𝑚) ≠ 𝐼 for every boundary

component of 𝐹, then 𝐹𝜖
𝑡 converge to a subsurface of 𝐹̂∞.

Proof.

(1) Let 𝑡1 < 𝑡2 < … be a diverging sequence such that Area(𝐹𝑡𝑖
) → 0 as 𝑡 → ∞. Then, the holo-

morphic quadratic differential on 𝐹𝑡𝑖
asymptotically vanishes. Thus, for every small 𝜖 > 0,

𝐹𝜖
𝑡𝑖
and 𝑋𝑡𝑖

|𝐹𝜖
𝑡𝑖
asymptotically identical, where 𝑋𝑡𝑖

is regarded as a hyperbolic surface by the
uniformization theorem for each 𝑖. Here, by asymptotically identical, we mean that, for every
𝜐 > 0 and every compact set 𝐾 in the universal cover ℍ2 of 𝑋𝑡𝑖

, if 𝑖 is sufficiently large, the
developing map of 𝐹𝜖

𝑡𝑖
is 𝜐-close to the developing map of the hyperbolic structure 𝑋𝑡𝑖

|𝐹𝜖
𝑡𝑖
on

𝐾.
The holonomy representations of 𝐹𝜖𝑖

𝑡𝑖
and 𝑋𝑡𝑖

|𝐹𝜖
𝑡𝑖
are asymptotically identical in the char-

acter variety. As the holonomy of 𝐹𝜖𝑖
𝑡𝑖
converges in the representation variety, the holonomy

of 𝑋𝑡𝑖
|𝐹𝜖

𝑡𝑖
must converge in the representation variety. Thus, 𝑋𝑡𝑖

|𝐹𝜖
𝑡𝑖
converges to a complete

hyperbolic structure 𝜎∞ on 𝐹. Therefore, 𝐹𝜖𝑡
𝑡 must genuinely converge to 𝜎∞ (without taking

a subsequence). In particular, Area𝐸𝑡 𝐹
𝜖𝑡
𝑡 → 0 as 𝑡 → ∞.

(2) Suppose that lim inf 𝑡→∞ Area𝐹𝜖
𝑡 > 0 for sufficiently small 𝜖 > 0. Then, let 𝐹̂𝑡 denote the sin-

gular Euclidean structure on 𝐹̂ obtained from 𝐹𝑡 by Proposition 7.2. Then, 𝐹̂𝑡 induces a
ℂP1-structure on 𝐹̂. Let (𝑌𝑡, 𝑤𝑡) be the Schwarzian parameterization of 𝐹̂𝑡. Then, indeed, every
puncture of 𝑌𝑡 is, at most, a pole of order 2.
As 𝑋𝑡 is pinched along a multiloop 𝑀, 𝑌𝑡 is bounded in the Teichmüller space 𝖳(𝐹̂). By

Theorem 6.1, the upper injectivity radius of 𝐹̂𝑡 is also bounded from above, and (𝑌𝑡, 𝑤𝑡) is also
bounded in the parameter space. Thus, the ℂP1-structures 𝐹̂𝑡 are contained in a compact sub-
set of the deformation space of ℂP1-structures on 𝐹̂. Therefore, 𝐹̂𝑡 accumulates to a bounded
subset in the deformation space of ℂP1-structures on 𝐹̂.
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36 of 69 BABA

Moreover, if each peripheral loop has nontrivial holonomy at 𝑡 = ∞, by Theorem 5.6, the
convergence of the holonomy of 𝐹̂𝑡 implies the convergence in (2PSL2ℂ)

𝑛 ×(𝐹). Therefore,
𝐹̂𝑡 has a unique limit in (𝐹̂). □

Theorem 7.4 immediately implies

Corollary 7.6. Suppose that 𝑋𝑡 is pinched along a multiloop 𝑀. Then, for every sequence 𝑡1 <
𝑡2 < … diverging to∞, up to a subsequence, 𝑋𝑡𝑖

converges to a nodal Riemann surface 𝑋∞ and 𝑞𝑡𝑖
converges to a regular quadratic differential on 𝑋∞.

8 DEGENERATION BY NECK-PINCHING

In this section, we summarize our main theorems on asymptotic behavior under neck-pinching.
Let 𝐶𝑡 = (𝑓𝑡, 𝜌𝑡), 𝑡 ⩾ 0 be a path of ℂP1-structures that diverges to∞ in the deformation space,

such that its holonomy [𝜌𝑡] =∶ 𝜂𝑡 converges in the character variety 𝜒. By Proposition 3.2, we
can assume that the holonomy 𝜌𝑡 ∈  also converges in the representation variety. Let 𝑋𝑡 be the
complex structure of 𝐶𝑡.

Theorem 8.1. Suppose that 𝑋𝑡 is pinched along a loop 𝑚. Then, 𝜌∞(𝑚) is either 𝐼 or a parabolic
element. Moreover, 𝜌𝑡(𝑚) ≠ 𝐼 for large enough 𝑡 > 0.

Recall that 𝜙∶ 𝑆 → 𝑆 is the universal covering map. Let𝑁𝑚 be a regular neighborhood of𝑚 in
𝑆. Regard the loop𝑚 also as a fixed element of𝜋1(𝑆) representing𝑚, and let 𝑁̃𝑚 be the component
of 𝜙−1(𝑁𝑚) preserved by𝑚 ∈ 𝜋1(𝑆).

Theorem8.2 (Convergence of developingmaps). Suppose that𝑋𝑡 is pinched along a loop𝑚. Then,
exactly one of the following two holds.

(1)
∙ 𝜌∞(𝑚) is parabolic;
∙ the cusp neighborhoods of 𝐶∞ are horodisk quotients;
∙ 𝑓𝑡 ∶ 𝑆 → ℂP1 converges a 𝜌∞-equivariant continuous map 𝑓∞∶ 𝑆 → ℂP1 uniformly on
compact subsets;

∙ there is a multiloop 𝑀 on 𝑆 consisting of finitely many parallel copies of 𝑚, such that 𝑓∞
is a local homeomorphism on 𝑆 ⧵ 𝜙−1(𝑀) and it takes each component of 𝜙−1(𝑀) to its
corresponding parabolic fixed point.

(2) 𝜌∞(𝑚) = 𝐼, and, for every sequence 𝑡1 < 𝑡2 < … diverging to∞, up to a subsequence, there is a
path of markings 𝑆 → 𝐶𝑡 such that, as 𝑖 → ∞,
∙ 𝐶𝑡𝑖

|𝑆 ⧵ 𝑁𝑚 converges to aℂP1-structure on a surface with punctures homeomorphic to 𝑆 ⧵ 𝑚;
∙ the axis 𝑎𝑖 of 𝜌𝑡𝑖 (𝑚) converges to a point on ℂP1 or a geodesic in ℍ3;
∙ the restriction of 𝑓𝑡𝑖 to 𝑆 ⧵ 𝜙−1(𝑁𝑚) converges to a continuous map, and each boundary
component of 𝑁̃𝑚 maps to an ideal point of lim𝑖→∞ 𝑎𝑖 .

For each 𝑡 ⩾ 0, let (𝜏𝑡, 𝐿𝑡) ∈ 𝖳 × 𝖬𝖫 be the Thurston parameterization of 𝐶𝑡, and let 𝛽𝑡 ∶ ℍ2 →

ℍ3 be the 𝜌𝑡-equivariant pleated surface. In fact, 𝛽𝑡 converges a continuous map to ℍ3 ∪ ℂP1:
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Theorem 8.3. Suppose that 𝑋𝑡 is pinched along a loop𝑚 on 𝑆. Let 𝑁𝑚 be a regular neighborhood
of𝑚 on 𝑆. Then, by taking an appropriate path of markings 𝜄𝑡 ∶ 𝑆 → 𝜏𝑡 , exactly one of the following
two holds:

(1) 𝜌∞(𝑚) ∈ PSL2ℂ is parabolic, and 𝛽𝑡 ∶ 𝑆 → ℍ3 converges to a 𝜌∞-equivariant continuous map
𝛽∞∶ 𝑆 → ℍ3 ∪ ℂP1 uniformly on compact subsets as 𝑡 → ∞, such that 𝛽−1∞ (ℂP1) is a 𝜋1(𝑆)-
invariant multicurve that is 𝜋1(𝑆)-equivariantly homotopic to the multicurve 𝜙−1(𝑚).

(2) 𝜌∞(𝑚) = 𝐼 ∈ PSL2ℂ, and for every diverging sequence 𝑡1 < 𝑡2 < … , up to a subsequence,
𝛽𝑡𝑖 ∶ 𝑆 → ℍ3 converges to a 𝜌∞-equivariant continuous map 𝛽∞∶ 𝑆 → ℍ3 ∪ ℂP1 as 𝑖 → ∞ and
the axis 𝑎𝑖 of 𝜌𝑡𝑖 (𝑚) converges to a point ℂP1 or a geodesic of ℍ3 such that
∙ if lim𝑖→∞ 𝑎𝑖 is a point on ℂP1, then 𝛽−1∞ (ℂP1) = 𝜙−1(𝑚), and
∙ if lim𝑖→∞ 𝑎𝑖 is a geodesic 𝑎∞ in ℍ3, then 𝛽∞ takes each component of 𝜙−1(𝑁𝑚) to its corre-
sponding limit geodesic 𝑎∞ and each component of 𝑆 ⧵ 𝜙−1(𝑁𝑚) to either a pleated surface in
ℍ3 or a single point on ℂP1.

In order to prove Theorem 8.1, Theorem 8.2, and Theorem 8.3, we carefully observe the behavior
of 𝐶𝑡, fixing the isometry type of 𝜌∞(𝑚). In particular, for Theorem 8.1, we will show that, sup-
posing, to the contrary, that 𝜌∞(𝑚) is hyperbolic (§11) or elliptic (§12), then 𝜌𝑡 cannot converge.
The convergence when 𝜌∞(𝑚) = 𝐼 is given in §13 and the convergence when 𝜌∞(𝑚) is parabolic
is given in §10.

9 ℂ𝐏𝟏-STRUCTURES ON PUNCTURED SURFACESWITH
ELEMENTARY HOLONOMY

Lemma9.1. Let𝐹 be a closed surfacewith finitelymanypunctures, such that theEuler characteristic
of 𝐹 is negative. Let 𝐶 = (𝑓, 𝜌) be a ℂP1-structure on 𝐹 such that

∙ 𝜌 is an elementary representation, and
∙ for each puncture of 𝐶, its peripheral holonomy is nonhyperbolic (so that its developing image is a
single point on ℂP1).

LetΛ be the subset in ℂP1 of cardinality 0, 1, or 2 which Im𝜌 preserves as a set. Then, there is at least
one puncture of 𝐶 that maps to a point in the complement ℂP1 ⧵ Λ =∶ Ω by 𝑓.

Proof. The discrete subset 𝑓−1(Λ) in 𝐹̃ descends a finite subset 𝐷 on 𝐹.
We can assume thatΛ is a nonempty set, since ifΛ is the empty set, then the assertion is obvious.

First, suppose that the cardinality ofΛ is two, thenΩ admits a complete Euclideanmetric invariant
under Im𝜌. Then, if all cups of 𝐹 map to Λ, 𝐹 ⧵ 𝐷 admits a complete Euclidean metric, which is
a contradiction against the Euler characteristic of 𝐹.
Next, suppose that the cardinality of Λ is one. Suppose, to the contrary, that all cups of 𝐶 map

to the point Λ. Then, 𝐶 ⧵ 𝐷 has a complex affine structure.
We claim that 𝐶 ⧵ 𝐷 is complete, that is, the developing map of 𝐶 ⧵ 𝐷 is a diffeomorphism onto

ℂ, when we normalize dev 𝐶 so that {∞} corresponds to the punctures. Suppose, to the contrary,
that 𝐶 ⧵ 𝐷 is incomplete. As the cardinality of Λ is not two, Im𝜌 does not preserve an incomplete
point of 𝐶 ⧵ 𝐷 in ℂ. Thus, 𝐶 admits Thurston’s parametrization (𝜏, 𝐿) where 𝜏 is a finite area
hyperbolic structure on 𝐹 and 𝐿 is a measured lamination on 𝜏 (Theorem [27, Theorem 11.6], cf
[4, Theorem 3.1]). Since 𝐹 is incomplete and the cardinality of Λ is not two, there is a maximal
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38 of 69 BABA

ball 𝐵 of dev 𝐹 such that its ideal point set contains two distinct points in ℂ. Then, the holonomy
of 𝐹 must contain a hyperbolic element in PSL2ℂ whose fixed points are in ℂ, whose endpoints
are close to those two points in ℂ. This leads to a contradiction to all cups mapping to the same
point. Therefore, the 𝐶 ⧵ 𝐷 is complete.
Thus, the holonomy of 𝐹 consists of parabolic elements fixing ∞. Then, the Euler character-

istic of 𝐹 ⧵ 𝐷 is zero, since 𝐹 ⧵ 𝐷 admits Euclidean structure. Therefore, 𝐹 has a positive Euler
characteristic, which is a contradiction. □

Proposition 9.2. Let 𝐹 be a closed surface with two punctures 𝑝 and 𝑞 such that the Euler
characteristic of 𝐹 is negative. Suppose that 𝐶 = (𝑓, 𝜌) is a ℂP1-structure on 𝐹 such that

∙ the holonomy of 𝐶 is elementary, and the stabilizer of Im𝜌 (in PSL2ℂ) is nondiscrete, and
∙ the degrees of 𝑓 around the two punctures are the same.

Then, no cusp of 𝐹 maps to the subset Λ defined in Lemma 9.1.

Proof. By Lemma 9.1, we can assume that 𝑝 does not develop to Λ. As the Euler characteristic
of 𝐹 is negative, we let 𝐶 ≅ (𝜏, 𝐿) be the Thurston parameters of 𝐶 ; then by the assumption of
the holonomy, 𝑝 and 𝑞 correspond to cusps of 𝜏. Then, as the degrees at 𝑝 and 𝑞 agree, the total
weights of leaves of 𝐿 around the punctures are the same.
Suppose, to the contrary, that a puncture 𝑞 develops to a point of Λ. Then, 𝑓 takes all lifts of 𝑞

to the same point 𝑟 of Λ: Otherwise, as Λ has cardinality two, Im𝜌 contains hyperbolic elements,
and it also contains an elliptic element exchanging the points ofΛ; then the stabilizer of Im𝜌must
be discrete against the hypothesis.
Let 𝓁 be a leaf of 𝐿 initiating from 𝑞. Then, its lift 𝓁 to the universal cover of 𝜏 maps, by the

bendingmap 𝛽∶ ℍ2 → ℍ3, to a geodesic inℍ3 initiating from 𝑞. As all lifts of 𝑝map to 𝑟, the other
endpoint of 𝛽(𝓁) is the image of a lift of 𝑞. Therefore, all leaves of 𝐿 initiating from 𝑞 must end at
𝑝. For every complementary region 𝑅 of 𝜏 ⧵ 𝐿, letting 𝑅̃ be the universal cover of 𝑅 (in 𝜏̃ = ℍ2), at
most, one ideal point of 𝑅̃ maps to 𝑞 by the pleated surface.
Moreover, every leaf of 𝐿 initiating from 𝑝 must end at 𝑞, since the total weights of 𝐿 around 𝑝

and 𝑞 agree. Let 𝐿𝑝,𝑞 be the sublamination of 𝐿 consisting of the isolated leaves of 𝐿 connecting
𝑝 and 𝑞. This implies that each component 𝜎 of 𝜏 ⧵ 𝐿𝑝,𝑞 has a negative Euler characteristic. Since
no leaves of 𝐿 ⧵ 𝐿𝑝,𝑞 have an endpoint on the boundary of 𝜏 ⧵ 𝐿𝑝,𝑞, the restriction of 𝜌 to 𝜋1(𝜎) is
nonelementary, which is a contradiction. □

10 PARABOLIC LIMIT

In this section, we assume that 𝜌∞(𝑚) is parabolic, and analyze the limit of 𝐶𝑡 as 𝑡 → ∞ in terms
of its bending map and developing map. First, by Theorem 7.4, for each component 𝐹 of 𝑆 ⧵ 𝑚, by
taking an appropriate base point 𝑏𝑡 in the thick part of 𝐶𝑡 homotopic to 𝐹, (𝐶𝑡, 𝑏𝑡) converges to a
ℂP1-structure𝐹∞ on a compact surfacewith one or two punctures, such that𝐹∞ is homeomorphic
to 𝐹. Let 𝐶∞ be the disjoint union of all such geometric limits 𝐹∞ over all thick parts. Then, 𝐶∞

is a ℂP1-structure on a closed surface with two cusps homeomorphic to 𝑆 ⧵ 𝑚. Note that 𝐶∞ is
not connected if and only if𝑚 is separating. Then, the limit holonomy has the following algebraic
property.
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Lemma 10.1. Suppose that 𝜌∞(𝑚) is parabolic. Then, for each component 𝐹 of 𝑆 ⧵ 𝑚, 𝜌∞(𝐹)

is nonelementary.

Proof. Since 𝑆 is a closed oriented surface of genus at least two, each component of 𝑆 ⧵ 𝑚 is also
of hyperbolic type. Thus, let (𝜎, 𝜈) be the Thurston parameterization of 𝐹∞, where 𝜎 is a complete
closed hyperbolic with one or two cusps homeomorphic to𝐹 and 𝜈 is ameasured lamination on 𝜎.
Clearly, the cusps of 𝐹∞ correspond to the cusps of 𝜎. Then, there is a bi-infinite simple geodesic
𝓁 properly embedded in 𝜎 such that 𝓁 is a leaf of 𝜈 or disjoint from 𝜈 (note that each endpoint of
𝓁 is at a cusp of 𝜎).
Let 𝛽∶ ℍ2 → ℍ3 be the bending map given by (𝜎, 𝜈), such that 𝛽 is equivariant via 𝜌∞|𝜋1(𝐹).

Let 𝓁 be a lift of 𝓁 to the universal coverℍ2 of 𝜎. Then, the endpoints of 𝓁 are parabolic fixed points
in the ideal boundary ofℍ2. Let 𝛾1, 𝛾2 ∈ 𝜋1(𝐹) be the peripheral elements fixing the endpoints. As
𝓁 does not cross 𝜈, its image 𝛽(𝓁) is a geodesic inℍ3. Moreover, as 𝛽 is 𝜌∞-equivariant, 𝜌∞(𝛾1) and
𝜌∞(𝛾2) are parabolic elements fixing the different endpoints of𝛽(𝓁). Therefore,𝜌∞(𝛾1) and𝜌∞(𝛾2)

are noncommuting parabolic elements in PSL2ℂ, and they generate a nonelementary subgroup
of PSL2ℂ. □

Proposition 5.2 implies that the developing map extends to cups with parabolic holonomy.

Proposition 10.2. Let 𝐶 = (𝑓, 𝜌) be a ℂP1-structure on a closed surface with finitely many punc-
tures, denoted by 𝐹, such that the holonomy around each puncture is parabolic. Then, the developing
map 𝑓∶ 𝐹̃ → ℂP1 extends continuously to the lift of cups so that they map to their corresponding
parabolic fixed points.

Proof. Set 𝐶 ≅ (𝜏, 𝐿) in Thurston’s parameters, where 𝜏 is a hyperbolic surface homeomorphic to
𝐹 and 𝐿 is a measured lamination on 𝜏. For each cusp 𝑐 of𝐶, by Proposition 5.2, as the holonomy 𝜌
around 𝑐 is parabolic element in PSL2ℂ, 𝑐 corresponds to a cusp of 𝜏 and the total weight of leaves
of 𝐿 ending at the cusp is either 0 or a positivemultiple of 2𝜋. Let 𝛽∶ ℍ2 → ℍ3 be the bendingmap,
and let 𝐿̃ be the 𝜋1(𝐹)-invariant measured lamination on ℍ2 by pulling back 𝐿 by the universal
covering map ℍ2 → 𝜏. Let 𝑟 be a geodesic ray in the universal cover ℍ2 ending at a parabolic fixed
point 𝑝 of a peripheral element of 𝜋1(𝑆). Then, 𝑟 eventually does not cross the 𝐿̃. Thus, the curve
𝛽(𝑟) is eventually a geodesic ray inℍ3 ending at 𝑝. By the correspondence between the developing
map and the pleated surface, the assertion follows. □

Recall that 𝜙∶ 𝑆 → 𝑆 denotes the universal covering map. Then, the above lemmas imply a
good convergence of the developing map of 𝐶𝑡 away from𝑚.

Theorem 10.3. Suppose that 𝜌∞(𝑚) is parabolic. Then there is a regular neighborhood 𝑁 of 𝑚
such that 𝑓𝑡|𝑆 ⧵ 𝜙−1(𝑁) converges to a 𝜌∞-equivariant continuous map 𝑓∞∶ 𝑆 ⧵ 𝜙−1(𝑁) → ℂP1

uniformly on compact subsets, such that the developing image of each boundary component of 𝑆 ⧵

𝜙−1(𝑁)maps to its corresponding parabolic fixed point.

Proof. By Theorem 7.4 (2), the restriction 𝐶𝑡 to 𝑆 ⧵ 𝑁 converges to 𝐶∞ as 𝑡 → ∞ by taking an
appropriate isotopy of 𝑆 uniformly. Since 𝜌∞(𝐹) is nonelementary (Lemma 10.1), the restriction
of 𝑓𝑡 to 𝑆 ⧵ 𝜙−1(𝑁) converges to the developing map of 𝐶∞ uniformly on compact subsets. By
Proposition 10.2, each boundary component 𝑆 ⧵ 𝜙−1(𝑁) converges to its corresponding parabolic
fixed point uniformly on compact subsets. □
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40 of 69 BABA

In the rest of this section, we show the convergence of the developing map of 𝐶𝑡 on the entire
surface. First, we analyze the holonomy of 𝐶𝑡 along𝑚.

Proposition 10.4. For sufficiently large 𝑡 > 0, 𝜌𝑡(𝑚) is not the identity element of PSL2ℂ. More-
over, if the cusp neighborhoods of 𝐶∞ are horodisk quotients. Then, for sufficiently large 𝑡 > 0, 𝜌𝑡(𝑚)

is hyperbolic.

Proof. Set𝐶𝑡 ≅ (𝜏𝑡, 𝐿𝑡) ∈ 𝖳 × 𝖬𝖫 in Thurston’s parameters for 𝑡 > 0. Similarly, set𝐶∞ ≅ (𝜏∞, 𝐿∞),
where 𝜏∞ is a complete hyperbolic structure on 𝐹 ⧵ 𝑚 with finite volume, and 𝐿∞ is a measured
geodesic lamination on 𝜏∞.
Let𝑚𝑡 denote the geodesic representative of𝑚 on 𝜏𝑡. Then, the length of𝑚𝑡 on 𝜏𝑡 converges to

0 as 𝑡 → ∞ since 𝜌∞(𝑚) is parabolic.
Suppose, to the contrary, that there is a sequence 𝑡1 < 𝑡2 < … diverging to∞ such that 𝜌𝑡𝑖 (𝑚)

is not hyperbolic. Then, a leaf 𝓁𝑖 of 𝐿𝑡𝑖 intersects the geodesic loop 𝑚𝑡𝑖
for each 𝑖 = 1, 2… . Pick

a point 𝑝𝑖 on 𝑚𝑡𝑖
∩ 𝐿𝑡𝑖 . Pick a lift 𝑚̃𝑡 of 𝑚𝑡 to the universal cover 𝜏̃𝑖 ≅ ℍ2 that is preserved by an

element 𝛾𝑚 in 𝜋1(𝑆) whose free homotopy class is𝑚. Then, for each 𝑖, let 𝑝𝑖,𝑗 (𝑗 ∈ ℤ) be the lifts
of 𝑝𝑡𝑖 on 𝑚̃𝑡𝑖

in ℍ2 indexed linearly, so that 𝑝𝑖,𝑗 = 𝛾
𝑗
𝑚 ⋅ 𝑝𝑖,0.

For 𝑡 > 0, let 𝛽𝑡 ∶ ℍ2 → ℍ3 be the 𝜌𝑡-equivariant bending map induced by (𝜏𝑡, 𝐿𝑡). Then, since
{𝑝𝑖,𝑗}𝑗∈ℤ is an orbit of the infinite cyclic group generated by 𝛾𝑚, its image {𝛽𝑡𝑖 (𝑝𝑖,𝑗)}𝑗∈ℤ is an orbit of
the cyclic group generated by 𝜌𝑡𝑖 (𝛾𝑚) ∈ PSL2ℂ. Then, since 𝜌𝑡𝑖 (𝑚) is elliptic or parabolic (possibly
the identity), by basic hyperbolic geometry, the points 𝛽𝑡𝑖 (𝑝𝑖,𝑗) is contained in a totally geodesic
hyperbolic plane 𝐻𝑡𝑖

in ℍ3. (In comparison, if 𝜌𝑡𝑖 (𝑚) is hyperbolic and its screw rotation angle is
not a multiple of 𝜋, then most of its orbits do not lie in a totally geodesic plane.)
Note that 𝐻𝑡𝑖

is uniquely determined by the choice of 𝑝𝑖 and the lift 𝑚̃𝑖 , unless 𝜌𝑡𝑖 (𝑚) is
the identity.
If 𝜌𝑡𝑖 is the identity element in PSL2ℂ, then, letting 𝓁𝑖 be the leaf of 𝐿̃𝑡𝑖 intersecting 𝑚̃𝑖 in 𝑝𝑖,𝑗 , let

𝐻𝑡𝑖
be the hyperbolic plane orthogonal to the geodesic 𝛽𝑡𝑖 (𝓁𝑖) in the point 𝛽𝑡𝑖 (𝑝𝑖,𝑗) for some 𝑗 ∈ ℤ.

Clearly,𝐻𝑡𝑖
is independent on the choice of 𝑗 ∈ ℤ, as 𝜌𝑡𝑖 (𝑚) is the identity.

The infimum of ∠𝜏𝑡𝑖
(𝑚𝑡𝑖

, 𝐿𝑡𝑖 ) ⩾ 0 over 𝑖 = 1, 2, … is positive, since ∠𝜏𝑖
(𝑚𝑡𝑖

, 𝐿𝑡𝑖 ) is close to zero,
then 𝜌𝑡𝑖 must be hyperbolic (Theorem 2.1). Then, there is 𝛿 > 0, such that, if 𝑖 is large enough,
then, if a leaf 𝓁 of 𝐿̃𝑡𝑖 intersects 𝑚̃𝑡𝑖

, then the angle between the geodesic 𝛽𝑡𝑖 (𝓁) and the hyperbolic
plane𝐻𝑡𝑖

is at least 𝛿. Indeed, otherwise, lim𝑖→∞ ∠𝜏𝑖
(𝑚𝑡𝑖

, 𝐿𝑡𝑖 ) = 0.
Recall that 𝜏∞ is a complete hyperbolic surface of finite volume homeomorphic to 𝑆 ⧵ 𝑚, so

that each boundary component of 𝑆 ⧵ 𝑚 corresponds to a cusp of 𝜏∞. Pick a loop 𝛼 on 𝑆 such
that

(1) 𝛼 essentially intersects 𝑚 in a single point if 𝑚 is nonseparating, and in two points if 𝑚 is
separating,

(2) each segment 𝛼 ⧵ 𝑚 descends to a geodesic g on 𝜏∞ with endpoints at cusps, and g does not
crossing 𝐿∞.

Below we show that the translation length of 𝜌𝑡𝑖 (𝛼) diverges to∞, which contradicts the con-
vergence of 𝜌𝑡. We assume that𝑚 is nonseparating, and one can similarly prove the case when𝑚
is separating.
For each 𝑖 = 1, 2… , let 𝛼𝑖 be the piecewise geodesic loop on 𝜏𝑡𝑖 to homotopic to 𝛼, such that

∙ 𝛼𝑖 is a union of two geodesic segments,
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F IGURE 10 The quasi-geodesic 𝛽𝑡𝑖 (𝛼̃𝑖) preserved by the hyperbolic element 𝜌𝑡𝑖 (𝛼).

∙ one geodesic segment 𝑠𝑖 of 𝛼𝑖 has its interior contained in 𝜏𝑡𝑖 ⧵ 𝑚𝑡𝑖
, and at each endpoint, 𝑠𝑖

meets𝑚𝑡𝑖
orthogonally, and

∙ the other geodesic segment 𝑢𝑖 contained in𝑚𝑡𝑖
.

Since 𝜏𝑡𝑖 is pinched along𝑚 as 𝑖 → ∞, the length of 𝑠𝑖 goes to∞. Let 𝛼̃𝑖 be a lift of 𝛼𝑖 to ℍ2 that
is a simple piecewise geodesic, and it is a bilipschitz curve.
For each 𝑖 = 1, 2, … , let 𝑢̃𝑖 be a lift of 𝑢𝑖 to a geodesic segment of 𝛼̃𝑖 . Then, let 𝑚̃𝑖 be the lift of

𝑚𝑡𝑖
to ℍ2 that contains 𝑢̃𝑖 , and let 𝛾𝑢̃𝑖 ∈ 𝜋1(𝑆) be the element preserving 𝑚̃𝑡𝑖

. For every 𝜖 > 0 if 𝑖
is large, the 𝛽𝑡𝑖 (𝑢̃𝑖) is contained in the 𝜖-neighborhood the 𝜌𝑡𝑖 (𝛾𝑢̃𝑖 )-invariant hyperbolic plane𝐻𝑢̃𝑖
above, since length𝜏𝑡𝑖 𝑚𝑡𝑖

goes to 0.
Let 𝑠𝑖 be a lift of 𝑠𝑖 to a segment of 𝛼̃𝑖 . Then, the length of 𝑠𝑖 goes to ∞ as 𝑖 → ∞. For every

𝜖 > 0, by (10), the transversal measure of 𝑠𝑖 by 𝐿𝑡𝑖 in the 𝜖-thick part of 𝜏𝑡𝑖 limits to 0 as 𝑖 → ∞. In
addition, there is 𝑟 > 0, such that, the intersection angle of 𝐿𝑡𝑖 and 𝑠𝑖 in the 𝑟-thin part of 𝜏𝜏𝑡𝑖 goes
to zero as 𝑖 → ∞. Therefore, for every 𝜖 > 0, if 𝑖 is sufficiently large, then the restriction of 𝛽𝑡𝑖 to
𝑠𝑖 is a (1 − 𝜖, 1 + 𝜖)-bilipschitz embedding. Let g𝑖 be the bi-infinite geodesic in ℍ3 passing through
the endpoints of 𝛽𝑡𝑖 (𝑠𝑖).
Let 𝑢𝑖,1, 𝑢𝑖,2 be the lifts of 𝑢𝑖 to the geodesic segments of 𝛼̃𝑡𝑖 that are adjacent to 𝑠𝑖 . Then, let𝐻𝑖,1

and𝐻𝑖,2 be the hyperbolic planes corresponding to 𝑢𝑖,1 and 𝑢𝑖,2, respectively. Then, g𝑖 transversally
intersects 𝐻𝑖,1 and 𝐻𝑖,2 at angle at least 𝛿∕2. Moreover, for every 𝜖 > 0, if 𝑖 is large enough, then
those intersection points are 𝜖-close to the endpoints of 𝛽𝑡𝑖 (𝑠𝑖). Therefore, the distance between
the hyperbolic planes 𝐻𝑖,1 and 𝐻𝑖,2 goes to ∞ as 𝑖 → ∞ (Figure 10). Therefore, the translation
length of 𝜌𝑡(𝛼) goes to ∞ as desired. This contradicts the hypothesis. Therefore, 𝜌𝑡(𝑚) must be
parabolic for sufficiently large 𝑡 > 0. □

Let 𝜙∶ 𝑆 → 𝑆 be the universal covering map. Let 𝜅𝑡 ∶ 𝐶𝑡 → 𝜏𝑡 denote the collapsing map of 𝐶𝑡,
and 𝜅̃𝑡 ∶ 𝐶̃𝑡 → ℍ2 denote its lift from the collapsing of the universal cover (§2.2.2). We next show
the convergence of the bending map.

Theorem 10.5. Suppose that 𝜌∞(𝑚) is parabolic. Then, up to an isotopy of 𝑆 in 𝑡, 𝛽𝑡 ◦ 𝜅̃𝑡 ∶ 𝑆 → ℍ3

converges to a 𝜌∞-equivariant continuous map 𝛼∶ 𝑆 → ℍ3 ∪ ℂP1 such that

∙ 𝛼−1(ℂP1) is a 𝜋1(𝑆)-invariant multicurve on 𝑆 isotopic to 𝜙−1(𝑚) though 𝜋1(𝑆)-invariant
multicurves, and
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42 of 69 BABA

∙ for each component 𝑃 of 𝑆 ⧵ 𝜙−1(𝑚), the restriction 𝛽𝑡 ◦ 𝜅̃𝑡|𝑃 converges to the pleated surface for
the component of 𝐶∞ corresponding to 𝑃.

Proof. The second assertion holds immediately from Theorem 10.3.
The axis 𝑎𝑡 of 𝜌𝑡(𝑚) converges to the parabolic fixed point of 𝜌∞(𝑚). By Proposition 10.4,

𝜌𝑡(𝑚) is a hyperbolic element for sufficiently large 𝑡 > 0. Let 𝐷 ⊂ ℍ3 be a horoball centered at
the parabolic fixed point of 𝜌∞(𝑚). Then, we pick a continuous path of 𝜌𝑡(𝑚)-invariant subsets
𝐷𝑡 in ℍ3 bounded by the surface equidistant from the axis of 𝜌𝑡(𝑚) so that 𝐷𝑡 converges to 𝐷 as
𝑡 → ∞.
Pick a sufficiently small 𝛿 > 0. For sufficiently large 𝑡 > 0, let 𝑁𝛿

𝑡 be the component of the 𝛿-
thin part of 𝜏𝑡 homotopic to 𝑚. Let 𝑁̃𝛿

𝑡 be the lift of 𝑁
𝛿
𝑡 to the universal cover 𝜏̃ ≅ ℍ2. If 𝛿 > 0 is

sufficiently small, by the convergence of 𝜌𝑡, the 𝛽𝑡-image of 𝑁̃𝛿
𝑡 is eventually contained in𝐷𝑡. This

implies the first assertion. □

Next, we prove that cusp neighborhoods of the limit surface are isomorphic to cusp
neighborhoods of a hyperbolic surface.

Proposition 10.6. Suppose that 𝜌∞(𝑚) is parabolic. The cusps of 𝐶∞ must be horodisk quotients.

Proof. Suppose, to the contrary, that the cusp neighborhoods of 𝐶∞ are not horodisk quotients.
Let𝐶𝑡 ≅ (𝜏𝑡, 𝐿𝑡)denote theThurston’s parameters of𝐶𝑡. Then, as𝜌∞(𝑚) is parabolic,𝐿𝑡(𝑚) con-

verges to a nonnegative integral multiple 2𝜋𝑛 of 2𝜋. As the limit cusp neighborhoods are assumed
to be not horodisk quotients, 𝑛 is a positive integer. Similarly, let 𝐶∞ ≅ (𝜏∞, 𝐿∞) denote Thurston
parameters of 𝐶∞. Thus, the 𝐿∞-transversal measure of each peripheral loop of 𝐶∞ is 2𝜋𝑛.
For sufficiently large 𝑡 > 0, 𝜌𝑡(𝑚) is not the identity; let 𝑎𝑡 be its axis (Definition 3.6). Pick

𝛿 > 0 less than the two-dimensional Margulis constant. Let𝑁𝑡 be the 𝛿-thin part of 𝜏𝑡 homotopic
to𝑚. Let 𝑁̃𝑡 be the lift of 𝑁𝑡 to the universal cover ℍ2. If 𝛿 > 0 is sufficiently small, for all 𝑡 large
enough, each component of 𝑁𝑡 ∩ 𝐿𝑡 is a geodesic segment connecting one boundary component
of𝑁𝑡 to the other. Since the transversal measure of each peripheral loop of 𝐿𝑡 is close to 2𝜋𝑛 > 0.
Thus, for 𝑡 ≫ 0, pick a fundamental domain 𝐹𝑡 in 𝑁̃𝑡 bounded by two leaves of 𝐿̃𝑡 such that a
component 𝐹𝑡,1 of 𝐹𝑡 ⧵ 𝑚̃𝑡 converges to a fundamental domain of the bending map 𝛽∞∶ ℍ2 →

ℍ3 ∪ ℂP1 (Theorem 10.5) near a cusp of 𝜏∞.
Let 𝓁𝑡 be a leaf of 𝐿̃∞ bounding 𝐹𝑡, so that, for each component 𝑟𝑡 of 𝓁𝑡 ⧵ 𝑚̃𝑡, the restriction of

𝛽𝑡 converges to a bi-infinite geodesic in ℍ3 as 𝑖 → ∞. Clearly, the length of 𝓁𝑡 ∩ 𝑁̃𝑡 goes to∞, and
the length of each segment of 𝓁𝑡 ∩ 𝑁̃𝑡 ⧵ 𝑚̃𝑡 goes to∞ as 𝑡 → ∞.
Let 𝐹𝑡,2 be the other component of 𝐹𝑡 ⧵ 𝑚̃𝑡. Then, there is an element 𝛾𝑡 of 𝐺𝑡 such that the

restriction of 𝛽𝑡 to 𝛾𝑡𝐹𝑡,2 converges to the fundamental domain of the other cusp of 𝐶∞.
We first show that if 𝜌𝑡(𝑚) is hyperbolic, it must be “almost elliptic” for sufficiently large 𝑡 > 0.

Claim 10.7. Suppose that there is a sequence 𝑡1 < 𝑡2 < … diverging to∞, such that 𝜌𝑡𝑖 (𝑚) is hyper-
bolic for each 𝑖 = 1, 2, … . Then, the complex translation of 𝜌𝑡𝑖 (𝑚) goes to zero from the imaginary
direction as 𝑖 → ∞. In other words, the sequence tr2 𝜌𝑡𝑖 (𝑚) ∈ ℂ converges to 4 tangentially to the
real ray {𝑥 ∈ ℝ ∣ 𝑥 ⩽ 4}.

Proof. Suppose to the contrary that there is a sequence 𝑡1 < 𝑡2 < … such that 𝜌𝑡𝑖 (𝑚) is hyperbolic
and the complex translation length converges to 0 from the nonimaginary direction. As 𝜌𝑡𝑖 (𝑚) is
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F IGURE 11 The left figure is the normalization of the right figure so that 𝑝𝑖 is at the center.

hyperbolic, the axis is a geodesic and it converges to the parabolic fixed point of 𝜌∞(𝑚). Pick a
point 𝑝𝑖 on 𝛽𝑡𝑖 (𝐹𝑡𝑖

) closest to 𝑎𝑡𝑖 in ℍ3. Let 𝑅𝑖 be the set of points in ℍ3 whose distance from 𝑎𝑡𝑖 is
at most the distance from 𝑝𝑖 to the axis 𝑎𝑡𝑖 .
For each 𝑖, let 𝐺𝑖 be a one-dimensional Lie subgroup of PSL2ℂ containing 𝜌𝑡𝑖 (𝑚) such that the

infinite cyclic group ⟨𝜌𝑡𝑖 (𝑚)⟩ is asymptotically dense in 𝐺𝑖 as 𝑖 → ∞ w.r.t. the path metric on 𝐺𝑖

induced by the invariantmetric on PSL2ℂ. Since the complex translation length of 𝜌𝑡𝑖 converges to
0 from a nonimaginary direction, 𝐺𝑡 converges to a one-dimensional subgroup in PSL2ℂ consist-
ing of only hyperbolic elements except the identity. For every 𝑖, let 𝑐𝑖 be the 𝐺𝑖-invariant smooth
curve in ℍ3 passing 𝑝𝑖 . Then, 𝑐𝑖 spirals on the boundary of 𝑅𝑖 limiting to the endpoints of 𝑎𝑖 . (See
Figure 11.)
The 𝛽𝑡𝑖 -image of the leaf 𝓁𝑖 is a geodesic in ℍ3 tangent to 𝑅𝑖 passing 𝑝𝑖 . Then, moreover, the

geodesic 𝛽𝑡𝑖 (𝓁𝑖) and the curve 𝑐𝑖 are asymptotically tangent to each other at 𝑝𝑖 as 𝑖 → ∞, because
of the convergence of the bending map 𝛽𝑡𝑖 and the holonomy 𝜌𝑡𝑖 (𝑚) as 𝑖 → ∞.
Let 𝑠𝑖,1 be the geodesic segment 𝓁𝑖 ∩ 𝐹𝑖,1, so that 𝛽𝑡𝑖 (𝑠𝑖,1) converges to a geodesic ray limiting

to the fixed point of 𝜌∞(𝑚). Let 𝑞1,𝑖 be the endpoint of 𝑠𝑖,1 that is on the boundary of 𝑁̃𝑖 , and let
𝑞2,𝑖 be the other endpoint of 𝓁𝑖 ∩ 𝑁̃𝑖 . Then, 𝛽𝑡𝑖 (𝑞𝑖,1) converges to a point in ℍ3 as 𝑖 → ∞. Then,
𝛽𝑡𝑖 (𝛾𝑖𝑞𝑖,2) also converges to a point on ℍ3.
Since the length of each segment of 𝓁𝑖 ∩ 𝑁̃𝑖 ⧵ 𝑚̃𝑖 goes to infinity, and 𝛽𝑖(𝓁𝑖) is asymptotically

tangent to the curve 𝑐𝑖, therefore the distance between𝛽𝑡𝑖 (𝑞𝑖,1) and𝛽𝑡𝑖 (𝑞𝑖,2)diverges to∞ as 𝑖 → ∞.
This is a contradiction against the convergence of the bending map 𝛽𝑡𝑖 as 𝑖 → ∞. □

Next, we show that the convergence of 𝜌𝑡 forces the convergence of twisting parameter along𝑚.

Claim 10.8. The Fenchel–Nielsen twisting parameter of 𝜏𝑡 along𝑚must converge (inℝ) as 𝑡 → ∞.

Proof. First, for each nonidentity element of PSL2ℂ, we describe an associated foliation. For a
hyperbolic isometry or an elliptic isometry of ℍ3, the hyperbolic planes containing its axis give
a foliation on ℍ3 minus the axis. For a parabolic isometry 𝛼 ∈ PSL2ℂ, pick a hyperbolic plane
𝐻 in ℍ3 invariant under 𝛼, which contains the parabolic fixed point. Then, there is a folia-
tion of ℍ3 by hyperbolic planes orthogonal to 𝐻 and containing the parabolic fixed point; this
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F IGURE 1 2 The right figure is a normalization of the left figure so that the axis 𝑎𝑡 passes the center.

foliation is independent of the choice of𝐻. For sufficiently large 𝑡 > 0, as 𝜌𝑡(𝑚) is not the identity
(Proposition 10.4), let 𝑡 denote such a foliation for 𝜌𝑡(𝑚).
Let 𝑚̃ be a lift of 𝑚 to the universal cover 𝑆. Let 𝑃1, 𝑃2 be the connected components of 𝑆 ⧵

𝜙−1(𝑚) adjacent along 𝑚̃. For each 𝑖 = 1, 2, given a point 𝑥𝑖 in 𝑃𝑖 near 𝑚̃, let 𝑣∞,𝑖 be the tangent
vector at the point 𝛽∞ ◦ 𝜅̃∞(𝑥𝑖) in ℍ3 orthogonal its support hyperbolic plane of 𝑥𝑖 in the normal
direction (§2.2.2). Since the 𝐿𝑡-transversal measure along 𝑚𝑡 converges to 2𝜋𝑛 > 0, we can pick
𝑥𝑖 so that 𝑣∞,𝑖 is tangent to the foliation ∞. Similarly, for each 𝑡 ≫ 0, pick a point 𝑥𝑡,𝑖 in 𝑃𝑖 such
that, letting 𝑣𝑡,𝑖 be the tangent vector of 𝛽𝑡 ◦ 𝜅̃𝑡 at 𝑥𝑡,𝑖 orthogonal to its support plane, 𝑣𝑡,𝑖 is tangent
to 𝑡 and 𝑣𝑡,𝑖 converges to 𝑣∞,𝑖 as 𝑡 → ∞. (See Figure 12.)
Let 𝑡 be the circular measured lamination on 𝐶𝑡 that descends to the measured lamination

of Thurston’s parametrization by the collapsing map. Let 𝑒𝑡 be the minimal transversal measure,
given by 𝑡, of arcs connecting 𝑥1 to 𝜌𝑡(𝛾𝑡)𝑥𝑡,2. Note that, since the isometry 𝜌𝑡(𝑚) preserves the
foliation 𝑡, the tangent vector 𝜌𝑡(𝛾𝑡)𝑣𝑡,2 at 𝜌𝑡(𝛾𝑡)𝑥𝑡,2 is also tangent to 𝑡. By Claim 10.7, 𝜌𝑡(𝑚)

is either parabolic, elliptic, or “almost elliptic” for 𝑡 ≫ 0. Therefore, for every 𝜖 > 0, if 𝛿 > 0 is
sufficiently small, then, for 𝑡 ≫ 0, the transversal measure 𝑒𝑡 is 𝜖-close to a multiple of 2𝜋. Thus,
the twisting parameter along𝑚 converges modulo 2𝜋. By continuity, the twisting parameter of 𝜏𝑡
along𝑚must converge as 𝑡 → ∞. □

By Claim 10.8, the Fenchel–Nielsen twisting parameter of 𝜏𝑡 along 𝑚 converges. For all 𝑡 > 0,
let 𝑄𝑡,1 and 𝑄𝑡,2 be the adjacent components of ℍ2 ⧵ 𝜓−1(𝑚𝑡) corresponding to 𝑃1 and 𝑃2, respec-
tively, so that 𝑄𝑡,1 and 𝑄𝑡,2 are separated by the geodesic 𝑚̃𝑡. Then, as the restriction of 𝛽𝑡 of the
component𝑄𝑡,1 converges, uniformly on compact subsets, to the bending map of the correspond-
ing cusp neighborhood of 𝐶∞ by Theorem 10.5. Then, since the length of the geodesic loop 𝑚𝑡

goes to 0 as 𝑡 → ∞, the convergence of the twisting parameter implies that the restriction of 𝛽𝑡 to
𝑄𝑡,2 converges to the parabolic fixed point of 𝜌∞(𝑚) uniformly on compact subsets. This is a con-
tradiction against the convergence of the bending map 𝛽𝑡 of 𝑄𝑡,2 uniformly on compact subsets
guaranteed by Theorem 10.5. 10.6

Theorem10.9. Suppose that𝜌∞(𝑚) is parabolic. Then, by an appropriate isotopy of 𝑆 in 𝑡,𝑓𝑡 ∶ 𝑆 →

ℂP1 converges to a 𝜌∞-equivariant continuous map 𝑆 → ℂP1 such that, for some multiloop𝑀 on 𝑆
consisting of finitely many parallel copies of𝑚,

∙ 𝑓∞ is a local homeomorphism on 𝑆 ⧵ 𝜙−1(𝑀), and
∙ 𝑓∞ takes each component of 𝜙−1(𝑀) to its corresponding parabolic fixed point.
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Under the assumption of Theorem 10.9, each cusp of 𝐶∞ is a horodisk quotient by Propo-
sition 10.6. Thus, by Proposition 10.4, 𝜌𝑡(𝑚) is hyperbolic for all sufficiently large 𝑡 > 0, and it
converges to the parabolic element 𝜌∞(𝑚) as 𝑡 → ∞.
More generally, let 𝛾𝑡 ∈ PSL2ℂ, 𝑡 ⩾ 0 be a path of hyperbolic elements such that 𝛾𝑡 converges

to a parabolic element 𝛾∞ in PSL2ℂ as 𝑡 → ∞. Let 𝐺𝑡 be the one-parameter subgroup of PSL2ℂ
containing 𝛾𝑡 such that the cyclic group generated by 𝛾𝑡 is asymptotically dense in𝐺𝑡 with respect
to the path metric on 𝐺𝑡 induced by the (left) invariant metric on PSL2ℂ.
Continuously conjugate 𝛾𝑡 by elements 𝜔𝑡 of PSL2ℂ so that the axis of 𝜔𝑡 ⋅ 𝛾𝑡 ∶= 𝑟𝑡𝑤𝑡𝑟

−1
𝑡

remains, for all 𝑡, to be the geodesic in ℍ3 that connects 0 to ∞ in the ideal boundary ℂP1 =

ℂ ∪ {∞}.

Proposition 10.10. Let 𝐴 be a cylinder and homeomorphically identify 𝐴 with [−1, 1] × 𝕊1, and
let 𝐴̃ be the universal cover of 𝐴. Let 𝐴𝑡 (𝑡 > 0) be a path of ℂP1-structures on a cylinder 𝐴, and let
𝑓𝑡 be its developing map that changes continuously in 𝑡, such that

∙ the holonomy of 𝐴𝑡 is the limit holonomy isomorphism 𝜋1(𝑆) ≅ ℤ → ⟨𝛾𝑡⟩,
∙ each boundary of 𝐴𝑡 develops onto a 𝐺𝑡-invariant curve on ℂP1 for all 𝑡 > 0,
∙ for each boundary circle 𝑏 of 𝐴, the restriction of 𝑓𝑡 to the lift 𝑏̃ to 𝐴̃ converges to a 𝐺∞-invariant
simple curve on ℂP1 (which is a 𝐺∞-invariant round circle minus the parabolic fixed point).

Then, by an isotopy of 𝐴 fixing the boundary, dev 𝐴𝑡 ∶ 𝐴̃ → ℂP1 converges to an continuous map
𝑓∞∶ 𝐴̃ → ℂP1 such that

∙ 𝑓∞ is equivariant via the isomorphism ℤ → ⟨𝛾∞⟩;
∙ there is a multiloop 𝑀 consisting of loops homotopy equivalent to 𝐴, such that 𝑓∞ is a local
homeomorphism on 𝐴̃ ⧵ 𝑀̃;

∙ 𝑓∞ takes 𝑀̃ to the parabolic fixed point of 𝛾∞.

Proof. We construct a path of fundamental membranes 𝑍𝑡 for the developing maps 𝑓𝑡 that give
the desired limit as 𝑡 → ∞.
The normalized developing map 𝜔𝑡 ◦𝑓𝑡 ∶ 𝐴̃ → ℂ ∪ {∞} is identified with the restriction of

exp∶ ℂ → ℂ∗ to a bi-infinite strip 𝐼𝑡 bounded by parallel lines in ℂ ≅ 𝔼2. Let 𝑏1 and 𝑏2 denote
the boundary components of 𝐴. Regarding 𝑏1, 𝑏2 as simple closed curves, we can lift 𝑏1 and 𝑏2
to segments 𝑠1 and 𝑠2, respectively, of segments of the boundary components of 𝐴̃. For each 𝑡 > 0

and 𝑖 = 1, 2, let 𝑠𝑖,𝑡 be the segment of the boundary line of 𝐼𝑡 such that𝜔𝑡 ◦𝑓𝑡(𝑠𝑖) = exp(𝑠𝑖,𝑡). Then,
𝑠1,𝑡 and 𝑠2,𝑡 are parallel and have the same length. Thus, 𝑠2,𝑡 is the Euclidean translation of 𝑠1,𝑡 by
unique 𝑧𝑡 ∈ ℂ ⧵ {0}.

Claim 10.11.

(1) The length of 𝑠𝑖,𝑡 goes to zero as 𝑡 → ∞, and
(2) 𝑧𝑡 converges to an integer multiple of 2𝜋𝑖 as 𝑡 → ∞.

Proof.

(1) As 0 and∞ are the fixed points of 𝜔𝑡𝛾𝑡𝜔
−1
𝑡 and 𝛾𝑡 converges to 𝛾∞, both 𝜔−1

𝑡 (0) and 𝜔−1
𝑡 (∞)

converge to the parabolic fixed point of 𝛾∞ as 𝑡 → ∞. Since the development of 𝑏𝑖 converges
to a 𝐺∞-invariant curve on ℂP1, clearly, the development of 𝑠𝑖,𝑡 converges to a simple arc
contained in the 𝐺∞-invariant curve. Therefore, since 𝑓𝑡 = 𝑤−1

𝑡 exp on 𝐴̃, the norm of the
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F IGURE 13 The limiting behavior of the fundamental membrane 𝑍𝑡 of 𝐴𝑡 , where 𝑛 = 2 and 𝑡1 < 𝑡2.

derivative of𝑓𝑡 at each point on the segment 𝑠𝑖 goes to infinity as 𝑡 → ∞. Hence, the Euclidean
length of 𝑠𝑖,𝑡 must go to zero as 𝑡 → ∞.

(2) Since the Euclidean length of 𝑠1,𝑡 goes to zero on 𝐼𝑡 ⊂ ℂ, translating 𝐼𝑡 by a multiple of 2𝜋𝑖,
we may assume that 𝑠1,𝑡 converges to a point 𝑝 on ℂ. Let 𝑞 ∈ ℂP1 be the parabolic fixed point
of 𝛾∞. Let 𝐾 be a compact subset 𝐾 in ℂP1 ⧵ {𝑞} and 𝑈𝑝 be a neighborhood of 𝑝 in ℂ. Let 𝑈
denote the union of translates of 𝑈𝑝 by the integer multiples of 2𝜋𝑖. Then, if 𝑡 is sufficiently
large, then 𝜔−1

𝑡 exp(𝐼𝑡 ⧵ 𝑈) is contained in ℂP1 ⧵ 𝐾. Therefore, as the developments of 𝑠1,𝑡
and 𝑠2,𝑡 converge to simple arcs in ℂP1 ⧵ {𝑞}, their difference 𝑧𝑡 must converge to a multiple
of 2𝜋𝑖. □

Let 𝑛 be the integer such that 𝑧𝑡 converges to 2𝜋𝑖𝑛. Pick a polygonal fundamental domain 𝑍𝑡
of 𝐴𝑡 in 𝐼𝑡 with following properties: 𝑍𝑡 is a union of (𝑛 + 1)-rectangles 𝑅𝑡,1, 𝑅𝑡,2, … , 𝑅𝑡,𝑛+1 and 𝑛
parallelograms 𝑃𝑡,1, … , 𝑃𝑡,𝑛 as in the figure (Figure 13) so that

∙ for each 𝑖 = 1, … , 𝑛, 𝑛 + 1, a pair of edges of 𝑅𝑡,𝑖 are parallel to the boundary of the Euclidean
strip 𝐼𝑡, the boundary segment 𝑠1,𝑡 is an edge of 𝑅𝑡,1, the boundary segment 𝑠2,𝑡 is an edge of
𝑅𝑡,𝑛+1, and, for each 𝑖 = 2, … , 𝑛 − 2, the Euclidean translation of 𝑠𝑡,𝑖 by 2𝜋𝑖 decomposes 𝑅𝑡,𝑖+1
into two isometric rectangles, and

∙ for each 𝑖 = 1, … , 𝑛, the parallelogram 𝑃𝑡,𝑖 have edges parallel to the boundary of 𝐼𝑡 that are an
edge 𝑅𝑡,𝑖 and an edge 𝑅𝑡,𝑖+1.

In addition, we take 𝑅𝑡,1, 𝑅𝑡,2, … , 𝑅𝑡,𝑛+1 and 𝑛 parallelograms 𝑃𝑡,1, … , 𝑃𝑡,𝑛 appropriately so that

∙ the development of 𝑃𝑡,𝑖 by 𝑓𝑡 converges to the parabolic fixed point of 𝛾∞ as 𝑡 → ∞;
∙ the 𝑓𝑡-images of 𝑅𝑡,1 and 𝑅𝑡,𝑛+1 converge to horodisks bounded by the limit of 𝑓𝑡(𝑏̃) in the
hypothesis, and the restriction of 𝑓𝑡 to 𝑅𝑡,1 and 𝑅𝑡,𝑛+1 converge to a developingmap of horodisk
quotients;

∙ for 𝑖 = 2, … , 𝑛, the restriction of 𝑓𝑡 to 𝑅𝑡,𝑖 converges to a developing map of the Euclidean
cylinder (ℂP1 ⧵ {𝑝})∕⟨𝛾∞⟩ (Figure 14).
Let𝑀 be amultiloop on𝐴 consisting of 𝑛 boundary parallel loops. Pick a path of regular neigh-

borhood𝑁𝑡 of𝑀 so that𝑁𝑡 converges to𝑀 as 𝑡 → ∞. Isotope 𝐴 so that a fundamental domain 𝐹
of 𝐴̃maps to 𝑍𝑡 and that𝑁𝑡 are identified with 𝑃𝑡,1, … , 𝑃𝑡,𝑛. Then, we desired a convergence. □
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ft(Pt,i)

F IGURE 14 The development of a part of the polygonal fundamental domain.

Proof of Theorem 10.9. We already know the convergence of the developing map in every thick
part by Theorem 10.3. There are two cusps 𝑐1, 𝑐1 of 𝐶∞, which are horodisk quotients by Propo-
sition 10.6. For each cusp 𝑐𝑖 of 𝐶∞, pick a simple closed curve 𝓁𝑖 that develops to a 𝐺∞-invariant
simple curve on ℂP1. Then, for large 𝑡 > 0, pick a simple closed curve 𝓁𝑖,𝑡 on 𝐶𝑡 such that 𝓁𝑖,𝑡
develops onto a 𝐺𝑡-invariant curve on ℂP1 and 𝓁𝑖,𝑡 converges to 𝓁𝑖 as 𝑡 → ∞.
Let𝐴𝑡 be the cylinder in 𝐶𝑡 bounded by 𝓁1,𝑡 and 𝓁2,𝑡. Then, we can take such a path of cylinders

𝐴𝑡 in 𝐶𝑡 and a constant 𝛿 > 0 such that 𝐴𝑡 contains the 𝛿-thin part of 𝐶𝑡 for all sufficiently large
𝑡. Thus, by applying Proposition 10.10 to 𝐴𝑡, we obtain a multiloop for the desired convergence
property of dev 𝐶𝑡. □

10.1 Convergence in holomorphic quadratic differential in the case
of parabolic cusps

Under the assumption that 𝜌∞(𝑚) is parabolic, we already have the limit 𝐶∞ of 𝐶𝑡 as 𝑡 → ∞

where 𝐶∞ is a ℂP1-structure on a Riemann surface 𝑋∞ with two cusps homeomorphic to 𝑆 ⧵ 𝑚.
Moreover, each cusp of 𝐶∞ has a neighborhood that is a horodisk quotient (i.e., isomorphic, as
a ℂP1-structure, to a cusp neighborhood of a hyperbolic surface) by Proposition 10.6. Then, the
holomorphic quadratic differential 𝜙∞ on 𝑋∞ representing 𝐶∞ has, at worst, a first order pole at
each cusp. Therefore, we have the following convergence of the differential.

Theorem 10.12. Suppose that 𝜌∞(𝑚) is parabolic. Then, 𝑋𝑡 converges to a nodal Riemann sur-
face 𝑋∞ such that 𝑋∞ minus the node is homeomorphic to 𝑆 ⧵ 𝑚 and 𝑞𝑡 converges to a quadratic
differential 𝑞∞ on 𝑋∞ such that the node is at worst first order pole.

11 𝝆∞(𝒎) CANNOT BE HYPERBOLIC

In this section, we show that 𝜌∞(𝑚) cannot be a hyperbolic element.

Lemma 11.1. Suppose that 𝑋𝑡 is pinched along a loop𝑚 and 𝜌∞(𝑚) is hyperbolic. Then,
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48 of 69 BABA

(1) 𝐶𝑡 converges to a ℂP1-structure 𝐶∞ on a compact surface with two punctures, which is homeo-
morphic to 𝑆 ⧵ 𝑚, in the sense that, for every 𝜖 > 0, the 𝜖-thick part of 𝐶𝑡 converges to the 𝜖-thick
part of 𝐶∞ uniformly, and

(2) 𝜌∞(𝐹) is nonelementary for each component 𝐹 of 𝑆 ⧵ 𝑚.

Proof.

(1) is an immediate corollary of Theorem 7.4.
(2) Let 𝐹∞ be the component of 𝐶∞ corresponding to 𝐹. Let (𝜎, 𝜈) denote the Thurston

parametrization of 𝐹∞. Then, 𝜎 is a hyperbolic surface with geodesic boundary, such that
the lengths of the boundary components are the translation length of 𝜌∞(𝑚) (see the proof
of Lemma 5.4). Let (𝜎̃, 𝜈̃) be the universal cover of (𝜎, 𝜈) so that 𝜎̃ is a convex subset of ℍ2

bounded by geodesics and that 𝜈̃ is a 𝜋1(𝜎)-invariant lamination on 𝜎̃.

Let 𝛼∶ 𝜎̃ → ℍ3 be its pleated surface equivariant by the holonomy of 𝐹∞. Let 𝓁 be a boundary
geodesic of 𝜎̃. Then, the endpoints of 𝛼(𝓁) are in the limit set Λ of Hol 𝐹∞, as 𝛼(𝓁) is the axis of
the hyperbolic 𝜌∞(𝑚). Every component 𝑅 of 𝜎̃ ⧵ 𝜈̃ has at least three ideal points. Then, the ideal
points of 𝛼(𝑅) are in Λ (see [5, Lemma 5.1]). Thus, 𝜌∞|𝐹 is nonelementary. □

Lemma 11.2. For each cusp 𝑝 of𝐶∞, there is a neighborhood of 𝑝 foliated by isomorphic admissible
loops that develop to simple curves on ℂP1 invariant under a one-parameter subgroup in PSL2ℂ

containing 𝜌𝑡(𝑚).

Proof. The developing map near a cusp neighborhood is the restriction of the exponential map
exp∶ ℂ → ℂ∗; moreover, by taking an appropriate neighborhood, one can assume that the restric-
tion is to a half-plane bounded by a straight line in ℂ invariant under the deck transformation
corresponding to the hyperbolic element 𝜌𝑡(𝑚).
The half-plane is foliated by straight lines parallel to the boundary, and this foliation descends

to a desired foliation of the cusp neighborhoods by admissible loops. □

Proposition 11.3. If 𝜖 > 0 is sufficiently small, then, for every sufficiently large 𝑡 > 0, there is a
cylinder 𝐴𝑡 in 𝐶𝑡 homotopy equivalent to𝑚 such that

∙ 𝐴𝑡 changes continuously in 𝑡 ≫ 0;
∙ 𝐴𝑡 is foliated by admissible loops whose developments are invariant under a one-parameter
subgroup 𝐺𝑡 in PSL2ℂ containing 𝜌𝑡(𝑚);

∙ 𝐴𝑡 contains the conformally 𝜖-thin part of 𝐶𝑡;
∙ 𝐶𝑡 ⧵ 𝐴𝑡 converges to a ℂP1-structure on 𝑆 ⧵ 𝑚 whose boundary components are admissible loops.

Proof. Consider the cusp neighborhoods of𝐶∞ foliated by admissible loops by Lemma 11.2. By the
convergence of Lemma 11.1 and the stability of the admissible loops, for 𝑡 ≫ 0, there is a cylinder
𝐴𝑡 foliated by admissible loops whose developments are invariant under 𝐺𝑡. Then, it is easy to
realize other desired properties. □

By Claim 11.1 (2), the developing map of 𝐶𝑡 ⧵ 𝐴𝑡 converges uniformly on compact subsets. By
normalizing 𝜌𝑡 by PSL2ℂ continuously, so that, for sufficiently large 𝑡 > 0, we can, in addition,
assume that the axis of the hyperbolic element 𝜌𝑡(𝑚) connects 0 and∞ of ℂP1 = ℂ ∪ {∞}. Then,
the developing map of the cylinder 𝐴𝑡 is the restriction of the exponential map exp∶ ℂ → ℂ∗ to
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the strip region 𝑅𝑡 bounded by parallel lines, since the boundary components of𝐴𝑡 develop to 𝐺𝑡-
invariant curves by Proposition 11.3. Since the boundary components of𝐴𝑡 converge to peripheral
loops of 𝐶∞, by the continuity of dev 𝐶𝑡 in 𝑡, the region 𝑅𝑡 converges to a strip in ℂ with finite
width. Therefore, 𝐴𝑡 must converge as 𝑡 → ∞. Thus, 𝐶𝑡 converges to a ℂP1-structure on 𝑆—this
contradicts the divergence of 𝐶𝑡 in the deformation space. Hence, 𝜌∞(𝑚) cannot be hyperbolic.

12 𝝆∞(𝒎) CANNOT BE ELLIPTIC

In this section, similarly to the previous section (§11), we show that 𝜌∞(𝑚) cannot be elliptic. To
show this, we assume, to the contrary, that 𝜌∞(𝑚) is elliptic and obtain a contradiction against
the convergence of 𝜌𝑡 as 𝑡 → ∞. By Theorem 7.4, we have the following.

Proposition 12.1. Suppose that 𝜌∞(𝑚) is elliptic. Then, 𝐶𝑡 converges to a ℂP1-structure 𝐶∞ on
a compact surface minus two points homeomorphic to 𝑆 ⧵ 𝑚, in the sense that, for every 𝜖 > 0, the
𝜖-thick part of 𝐶𝑡 converges to the 𝜖-thick part of 𝐶∞.

Lemma 12.2. For each component 𝐹∞ of 𝐶∞, the stabilizer of 𝜌∞(𝐹∞) by conjugation is a discrete
subgroup in PSL2ℂ.

Proof. Let 𝐹∞ be a component of 𝐶∞. Then, let (𝜎, 𝜈) be the Thurston parametrization of 𝐹∞, and
let (𝜎̃, 𝜈̃) be the universal cover of (𝜎, 𝜈). Then, the rotation angle of the elliptic element 𝜌∞(𝑚)

is, modulo 2𝜋, equal to the total weight, given by 𝜈, of the leaves ending at a puncture (Proposi-
tion 5.2). Let 𝛽∞∶ 𝜎̃ → ℍ3 be the equivariant pleated surface. Pick a leaf 𝓁 of 𝜈 whose endpoints
are at cusps of 𝜈; then 𝓁 is an isolated leaf. Let 𝓁 be a leaf of 𝜈̃ that is a lift of 𝓁. Then, its image
𝛽∞(𝓁) is a geodesic in ℍ3. Each endpoint of this geodesic is a fixed point of the parabolic element
in the image 𝜌∞(𝜋1(𝐹)) corresponding to its associated peripheral loop.
As the leaf 𝓁 is isolated, 𝓁 bounds a component 𝑃 of 𝜎̃ ⧵ 𝜈̃, and 𝑃 has at least three ideal points.

Then, for each ideal point 𝑝 of 𝑃, let 𝛾 ∈ 𝜋1(𝐹∞) be such that 𝛾 fixes 𝑝. Then, 𝛽∞(𝑝) is fixed by the
elliptic element 𝜌∞(𝛾). Therefore, the stabilizer of 𝜌∞(𝐹∞) is a discrete subgroup of PSL2ℂ. □

Similarly to Proposition 11.3, the following follows from Lemma 12.1 and Lemma 12.2.

Proposition 12.3. If 𝜖 > 0 is sufficiently small, then for every sufficiently large 𝑡 > 0, there is a
cylinder 𝐴𝑡 in 𝐶𝑡 homotopy equivalent to𝑚 such that

∙ 𝐴𝑡 changes continuously in 𝑡 ≫ 0;
∙ 𝐴𝑡 is foliated by loops whose developments are invariant under the one-dimensional subgroup
𝐺𝑡 of PSL2ℂ containing 𝜌𝑡(𝑚), and 𝐺𝑡 converges to a one-dimensional subgroup 𝐺∞ of PSL2ℂ
containing 𝜌∞(𝑚);

∙ 𝐴𝑡 contains the conformally 𝜖-thin part of 𝐶𝑡 homotopic to𝑚;
∙ 𝐶𝑡 ⧵ 𝐴𝑡 converges to a ℂP1-structure on 𝑆 ⧵ 𝑚 such that the boundary components cover round
circles on ℂP1.

Proposition 12.4. Suppose that 𝜌∞(𝑚) is elliptic. Then,𝐶𝑡 converges to aℂP1-structure on 𝑆, which
is a contradiction as desired.
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50 of 69 BABA

Proof. Fix sufficiently small 𝜖 > 0, and let𝐴𝑡 be a cylinder given by Proposition 12.3. Let 𝜙𝑡 ∶ 𝐶̃𝑡 →

𝐶𝑡 be the universal covering map. Then, the developing map of 𝐶𝑡 ⧵ 𝜙
−1
𝑡 (𝐴𝑡) converges uniformly

on compact subsets. Let 𝐴̃𝑡 be the component of 𝜙−1𝑡 (𝐴𝑡) invariant under 𝑚 ∈ 𝜋1(𝑆), so that 𝐴𝑡

changes continuously in 𝑡. We can normalize dev 𝐶𝑡 by PSL2ℂ continuously in 𝑡, such that, for
sufficiently large 𝑡 > 0, the geodesic axis of 𝜌𝑡(𝑚) connects 0 and∞ of ℂP1 = ℂ ∪ {∞}. Then, the
restriction of dev 𝐶𝑡 = 𝑓𝑡 to 𝐴̃𝑡 is the restriction of the exponentialmap exp∶ ℂ → ℂ∗ to an infinite
strip in ℂ. Since 𝑓𝑡 converges on the boundary components of 𝐴̃𝑡, thus the restriction of 𝑓𝑡 to 𝐴̃
converges as 𝑡 → ∞. Hence, 𝐴𝑡 must converge as 𝑡 → ∞ as a ℂP1-structure on a cylinder with
boundary. Therefore, 𝐶𝑡 converges to a ℂP1-structure on 𝑆, which is a contradiction. □

13 LIMITWHEN 𝝆∞(𝒎) = 𝑰

Let𝐴 be a regular neighborhood of a loop𝑚 on 𝑆. For 𝑡 ⩾ 0, let (𝜏𝑡, 𝐿𝑡) be Thurston parameters of
𝐶𝑡. Let 𝛽𝑡 ∶ ℍ2 → ℍ3 be its 𝜌𝑡-equivariant pleated surface. Let 𝜅𝑡 ∶ 𝐶 → 𝜏 be the collapsing map,
and 𝜅̃𝑡 ∶ 𝐶̃ → ℍ2 denote the lift of 𝜅 to the map between their universal covers. Let 𝑎𝑡 denote the
axis of 𝜌𝑡(𝑚) ∈ PSL2ℂ (Definition 3.6).
Note that a ℂP1-structure on 𝑆 is defined up to an isotopy of the base surface 𝑆. Thus, the

developing map 𝑓𝑡 ∶ 𝑆 → ℂP1 of the path 𝐶𝑡 of ℂP1-structures on 𝑆 can be modified by an iso-
topy 𝜓𝑡 ∶ 𝑆 → 𝑆 in 𝑡 without changing 𝐶𝑡. Finally, recall that 𝜙∶ 𝑆 → 𝑆 is the universal covering
map.

Theorem 13.1. Suppose that 𝜌∞(𝑚) = 𝐼. Then, the following hold:

(1) 𝜌𝑡(𝑚) ≠ 𝐼 for sufficiently large 𝑡 > 0.
(2) The Fenchel–Nielsen twisting parameter (in ℝ) of 𝑋𝑡 along𝑚 diverges to either∞ or to −∞.
(3) For every diverging sequence 0 < 𝑡1 < 𝑡2 < … , there is a subsequence such that

(a) the axis 𝑎𝑡𝑖 converges to a point on ℂP1 or a geodesic in ℍ3, denoted by 𝑎∞;
(b) there is a ℂP1-structure in (𝑆 ⧵ 𝑚) such that, for every 𝜖 > 0, the 𝜖-thick part of 𝐶𝑡𝑖

converges to the 𝜖-thick part of 𝐶∞ uniformly;
(c) up to an isotopy of 𝑆 in 𝑡, the restriction of 𝑓𝑡𝑖 to 𝑆 ⧵ 𝜙−1(𝐴) converges to a 𝜌∞-equivariant

continuous map 𝑓∞∶ 𝑆 ⧵ 𝜙−1(𝐴) → ℂP1 as 𝑡𝑖 → ∞ such that, for each component 𝐴̃ of
𝜙−1(𝐴), its boundary components map onto the ideal points of 𝑎∞;

(4) the pleated surface 𝛽𝑡𝑖 ◦ 𝜅̃𝑡𝑖 ∶ 𝑆 → ℍ3 converges to a 𝜌∞-equivariant continuous map 𝑆 → ℍ3 ∪

ℂP1, up to an isotopy of 𝑆.

Notice that, by the surjectivity in (3c), if 𝑎∞ is a geodesic, then the different boundary
components of 𝐴̃map to the different endpoints of 𝑎∞.
We will prove (13.1) in the next subsection (§13.0.1). In this section, we will prove the other

assertions: (1) will be proved in Lemma 13.8; (2) will be proved in Lemma 13.9; and (3c) will be
proved in Proposition 13.12. The proof of (3b) is similar to the proof of Theorem 7.4.
Let 𝐶∞ ≅ (𝜎∞, 𝜈∞) denote the Thurston parameterization, where 𝜎∞ be a hyperbolic structure

in the Teichmüller space 𝖳(𝑆 ⧵ 𝑚) and 𝜈∞ be a measured lamination on 𝜎∞. Then, 𝜎∞ has two
cusps. At each cusp 𝑐 of𝜎∞, there are only finitelymany leaves of 𝜈∞ ending at 𝑐 by a basic property
of geodesic laminations ([7]). Then, since 𝜌∞(𝑚) = 𝐼, the total weight of those leaves is a positive
2𝜋-multiple.
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F IGURE 15 The loop 𝛾 and its action on ℍ2.

Lemma 13.2. If 𝜈∞ contains an irrational sublamination, then the holonomy of 𝐶∞ is
nonelementary.

Proof. Suppose that 𝜈∞ contains an irrational sublamination. Then, there is a minimal irrational
sublamination 𝑁 of 𝐿, so that every leaf of 𝑁 is dense in 𝑁. Let 𝐹 be a (topologically) smallest
subsurface of 𝑆 containing𝑁, such that𝐹 ⊂ 𝑁 is a𝜋1-injective. Let 𝓁 be a geodesic loop in 𝜎∞ that
is a good approximation of𝑁. Let 𝛽∞∶ ℍ2 → ℍ3 be the equivariant pleated surface corresponding
to (𝜎∞, 𝜈∞). Then, for each component 𝑅 of 𝐹 ⧵ 𝓁, the restriction of 𝛽∞ to 𝑅 is a quasi-isometric
embedding ([2]). Thus, 𝜌∞|𝜋1𝑅 is nonelementary, immediately implying the lemma. □

Using the assumption that 𝐶𝑡 is pinched along a single loop, we prove the following.

Proposition 13.3. For each component 𝐹 of 𝑆 ⧵ 𝑚, the restriction of 𝜌∞ to 𝜋1𝐹 is a nontrivial
representation in the representation variety.

Remark 13.4. On the other hand, the restriction 𝜌∞|𝜋1(𝐹)may be the trivial representation in the
character variety (see Theorem 14.5).

Proof. If 𝜈∞ contains an irrational lamination, by Lemma 13.2, 𝜌∞ is nonelementary. Then, we
can assume, without loss of generality, that 𝜈∞ contains only isolated leaves, and 𝜈∞ divides 𝜎∞
into ideal polygons.
Since each component of 𝜎∞ has one or two cusps, there is a leaf 𝓁 of 𝜈∞ whose endpoints are

at a single cusp 𝑐 of 𝜎∞. Let 𝐷 be a small horodisk quotient neighborhood of 𝑐. Then, 𝓁 ⧵ 𝐷 is
a long geodesic segment, and by connecting its endpoints by a horocyclic simple arc in 𝜕𝐷, we
obtained a simple loop 𝛾 (which is a good approximation of 𝓁); see Figure 15 (Left).
Pick a lift 𝓁 of 𝓁 to the universal coverℍ2 of 𝜎∞ and fix an orientation. Then, there is 𝛼𝛾 ∈ 𝜋1(𝑆)

representing 𝛾 that takes the oriented (bi-infinite) geodesic 𝓁 to an oriented geodesic starting from
the endpoint of 𝓁; see Figure 15 (Right). Clearly, 𝛽∞(𝓁) is an oriented geodesic in ℍ3. Then, by
the equivariant proeprty, the holonomy along 𝛼 takes the oriented geodesic 𝛽∞(𝓁) to an oriented
geodesic starting from the endpoint of 𝛽∞(𝓁), and thus, 𝜌∞(𝛾) ≠ 𝐼. □

Lemma 13.5. Let 𝐺 be a nontrivial subgroup of PSL2ℂ. Consider the (pointwise) stabilizer of the
action PSL2ℂ ↷ 𝐺 by conjugation. Suppose that the stabilizer is continuous. Then there is a set Λ of
one or two points of ℂP1 fixed pointwise by the action of 𝐺.

Proof. Suppose that 𝐺 has a continuous stabilizer. Then, clearly, 𝐺 is an elementary subgroup of
PSL2ℂ. First suppose, in addition, that 𝐺 contains a hyperbolic element ℎ. Then, no element in
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52 of 69 BABA

𝐺 exchanges the fixed points of ℎ, as otherwise, the stabilizer cannot be continuous. Therefore, Λ
is the fixed point set of ℎ, and all elements in 𝐺 ⧵ {𝐼}must be hyperbolic or elliptic elements with
the same axis.
Next suppose that𝐺 contains a parabolic element 𝑝. Then, there is no elliptic element or hyper-

bolic element in 𝐺, as otherwise, the stabilizer cannot be continuous. Then, Λmust be the single
fixed point of 𝑝, and all 𝐺 ⧵ {𝐼} are all parabolic elements with the same fixed point.
Suppose that 𝐺 contains an elliptic element 𝑒 and contains no hyperbolic element. Then, simi-

larly,Λmust be the fixed point set of 𝑒, and𝐺 contains no parabolic element.Moreover,𝐺 ⧵ {𝐼} are
all elliptic elements with a common axis. Then, Λ is the set of the two endpoints of the axis. □

Given a ℂP1-surface with a cusp such that the holonomy around the cusp is trivial, its devel-
oping map continuously extends to the cusp, so that it is a branched covering map near the
cusp.

Lemma 13.6. Let 𝐹 be a compact surface with finitely many punctures, such that the Euler
characteristic of 𝐹 is negative. Let (𝑓, 𝜌) be a developing pair of a ℂP1-structure 𝐶 on 𝐹 such that

∙ 𝜌∶ 𝜋1(𝐹) → PSL2ℂ is not the trivial representation,
∙ the holonomy around each puncture is trivial, and
∙ the stabilizer of Im 𝜌 in PSL2ℂ is continuous; thus, let Λ ⊂ ℂP1 be the one- or two-point set in
Lemma 13.5.

Then, there is a cusp 𝑝 of 𝐹 such that 𝑓(𝑝) is not a point of Λ.

Proof. Notice that ℂP1 minus Λ admits a complete Euclidean metric invariant under Im𝜌, which
is unique up to scaling. Thus, if𝑓 takes all cusps of𝐹 intoΛ, then the surface𝐹minus finitelymany
points admits a complete Euclidean metric. This is a contradiction as the Euler characteristic of
𝐹 is negative. □

The next proposition immediately follows from Proposition 9.2.

Proposition 13.7. Let 𝐹 be a compact connected surface with two punctures, such that the Euler
characteristic of 𝐹 is negative. Let 𝐶 = (𝑓, 𝜌) be a ℂP1-structure on 𝐹, such that

∙ Im 𝜌 has a continuous stabilizer in PSL2ℂ;
∙ the holonomy around each puncture is trivial;
∙ the degrees around the two punctures are the same.

Then, no cusp of 𝐶 maps to a point of Λ by 𝑓, where Λ is as in Lemma 13.5.

Let 𝑚̃ be a lift of 𝑚 to 𝑆. Let 𝑄 and 𝑅 be the adjacent components of 𝑆 ⧵ 𝜙−1(𝑚) across 𝑚̃. Let
Stab𝑄 and Stab 𝑅 denote the subgroups in 𝜋1(𝑆) that setwise preserve 𝑄 and 𝑅, respectively. Let
𝐶𝑄
∞, 𝐶𝑅

∞ denote the component of 𝐶∞ corresponding 𝑄, 𝑅 (if𝑚 is nonseparating, 𝐶𝑄
∞ = 𝐶𝑅

∞).
We first prove (1) in Theorem 13.1.

Lemma 13.8. For sufficiently large 𝑡 > 0, 𝜌𝑡(𝑚) ≠ 𝐼.

Proof. Suppose, to the contrary, that there is a diverging sequence 0 ⩽ 𝑡1 < 𝑡2 < … such that
𝜌𝑡𝑖 (𝑚) = 𝐼 for each 𝑖. We may, in addition, assume that 𝐶𝑡𝑖

converges to 𝐶∞ as 𝑖 → ∞ uniformly
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 53 of 69

on compact subsets as 𝑖 → ∞. Then, as 𝜌𝑡𝑖 (𝑚) = 𝐼 and 𝐶𝑡 is pinched along𝑚, for 𝑖 ≫ 0, there is a
cylinder 𝐴𝑖 in 𝐶𝑡𝑖

homotopic to𝑚 such that

∙ 𝐴𝑖 is bounded by round circles (i.e., the development of each boundary component is a round
circle on ℂP1),

∙ Mod𝐴𝑖 → ∞, and
∙ 𝐶𝑡𝑖

⧵ 𝐴𝑖 converges to 𝐶∞ minus cusp neighborhoods bounded by round circles (in other words,
for every 𝜖 > 0, if 𝑖 is sufficiently large, then 𝐴𝑖 is contained in 𝜖-thin part of 𝐶𝑡𝑖

).

We can normalize 𝜌𝑡𝑖 so that 𝜌𝑡𝑖 | Stab 𝑅 converges as 𝑖 → ∞ and the developing map 𝑓𝑡𝑖 |𝑅 also
converges to a developing map of 𝐶𝑅

∞ as 𝑖 → ∞. Then, the development of 𝑚̃ converges to a point
𝑝 on ℂP1.
First suppose that the stabilizer of 𝜌∞| Stab 𝑄 is discrete. Then, there are elements 𝛼1, 𝛼2 of

Stab 𝑄 with disjoint fixed point sets on ℂP1. Pick a sequence 𝛾𝑖 ∈ PSL2ℂ such that the restriction
of the conjugation 𝛾𝑖𝜌𝑡𝑖 𝛾

−1
𝑖

=∶ 𝜌′𝑡𝑖
to Stab𝑄 converges as 𝑖 → ∞. Therefore, the properties of 𝐴𝑖

imply that 𝛾𝑖 must leave every compact in PSL2ℂ. As 𝛼1, 𝛼2 have disjoint fixed point sets in ℂP1,
one of the fixed-point sets does not contain the puncture point of 𝐶𝑄

∞. Therefore, either 𝜌𝑡𝑖 (𝛼1) or
𝜌𝑡𝑖 (𝛼2) diverges to infinity in PSL2ℂ as 𝑖 → ∞ against the hypothesis.
Next, suppose that the stabilizer of 𝜌∞| Stab 𝑄 is continuous. Then, by Proposition 13.7 and

Lemma 13.6, with respect to the normalization 𝜌′𝑡𝑖
, no cusp of 𝐶𝑄

∞ develops to a point of Λ for
𝐶𝑄
∞. Let 𝜔 ∈ Stab𝑄 such that 𝜌∞(𝑤) is nontrivial (Proposition 13.3). Then, by the properties of𝐴𝑖 ,

𝜌𝑡𝑖 (𝜔)must diverge to∞ since the continuous stabilizer preserves Λ.
This is a contradiction against the convergence of 𝜌𝑡. □

Lemma 13.9. The Fenchel–Nielsen twist coordinate along𝑚must diverge to∞ or −∞ as 𝑡 → ∞.

Proof. The proof is similar to that of Lemma 13.8. Suppose to the contrary that there is a sequence
𝑡1 < 𝑡2 < 𝑡3 < … such that the Fenchel–Nielsen twist parameter of 𝐶𝑡𝑖

along 𝑚 converges as
𝑖 → ∞. We normalize 𝜌𝑡𝑖 so that 𝜌𝑡𝑖 | Stab 𝑅 converges as 𝑖 → ∞ the developing map 𝑓𝑡𝑖 |𝑅 also
converges to a developing map of 𝐶𝑅

∞ as 𝑖 → ∞. Then, similarly to the proof of Lemma 13.8, one
can show that 𝜌𝑡𝑖 | Stab 𝑄 diverges to infinity, since the cylinder𝐴𝑖 becomes longer and longer and
it pushes 𝜌𝑡𝑖 | Stab 𝑄 farther and farther away; this contradicts the convergence of 𝜌𝑡 as 𝑡 → ∞. □

Then, for each 𝑡 > 0, let 𝜄𝑡 be some power of the Dehn twist of 𝑆 along 𝑚 such that the twist
coordinates of 𝜄𝑡𝐶𝑡 along 𝑚 is bounded from above and below in ℝ uniformly in 𝑡 > 0. Then, by
Lemma 13.9, the power must diverge to either∞ or −∞ as 𝑡 → ∞.
There is a diverging sequence 0 ⩽ 𝑡1 < 𝑡2 < … such that 𝐶𝑡𝑖

→ 𝐶∞ as 𝑖 → ∞ uniformly on
compact. Let 𝐹 be a component of 𝑆 ⧵ 𝑚. Let 𝐹̃ be the universal cover of 𝐹.
First, suppose that 𝜌∞|𝐹 has a discrete stabilizer (in PSL2ℂ). Let 𝐹∞ be a component of 𝐶∞

that corresponds to 𝐹. Then, dev 𝐹∞ is the limit of 𝑓𝑡𝑖 |𝐹̃, so that lim𝑖→∞ 𝑓𝑡𝑖 takes each boundary
component of 𝐹̃ to a single point corresponding to a cusp of 𝐶∞.
Pick a fundamental domain 𝐷𝑖 in 𝐹̃ with an arc 𝑠𝑖 on 𝜕𝐷𝑖 ∩ 𝜕𝐹̃ such that 𝑠𝑖 descends to a loop

𝑚𝑖 isotopic to𝑚, the loop𝑚𝑖 is contained in the 𝜖𝑖-thin part of 𝐶𝑡𝑖
with 𝜖𝑖 ↘ 0 as 𝑖 → ∞, and the

development of𝑚𝑖 is invariant under a one-dimensional subgroup 𝐺𝑖 of PSL2ℂ containing 𝜌𝑖(𝑚).
As 𝜌𝑡𝑖 (𝑚) → 𝐼, the image of 𝑠𝑖 becomes more and more like a round circle 𝑐𝑖 as 𝑖 → ∞.
Next suppose that 𝜌∞(𝐹) has a continuous stabilizer. Then, 𝜌∞(𝐹) is elementary, and the

restriction of 𝑓𝑡𝑖 to 𝐹̃ may not converge to a local homeomorphism, even up to a subsequence.
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54 of 69 BABA

Nonetheless, as 𝐶𝑡𝑖
converges to 𝐶∞ in 𝖯(𝑆 ⧵ 𝑚), clearly we can normalize 𝜌𝑡𝑖 for the convergence

of developing pairs.

Lemma 13.10. Suppose that there is no subsequence of 𝑡𝑖 such that 𝑓𝑡𝑖 |𝐹̃ converges to a developing
map of 𝐹∞. Then, there is a sequence 𝛾𝑖 of PSL2ℂ such that, up to a subsequence, 𝛾𝑖(𝑓𝑡𝑖 |𝐹̃, 𝜌𝑡𝑖 |𝜋1𝐹)

converges to a developing pair (ℎ∞, 𝜁∞) of 𝐹∞.

Next, without normalization, we show a convergence of the developing map as a continuous
map.

Proposition 13.11. Suppose that there is no subsequence such that the restriction 𝑓𝑡𝑖 |𝐹̃ converges to
a developing map of 𝐹∞ as 𝑖 → ∞. Then, 𝑓𝑡𝑖 |𝐹̃ converges to a 𝜌∞|𝜋1𝐹-equivariant continuous map
𝑓𝐹,∞ ∶ 𝐹̃ → ℂP1 uniformly on compact subsets, such that each boundary component of 𝐹̃ maps to a
single point. Moreover, either 𝑓𝐹,∞ is a constant map to a fixed point of 𝜌∞|𝐹 or there are open disks
𝐷1,… , 𝐷𝑛 on 𝐹 such that 𝑓𝐹,∞ takes 𝐹̃ ⧵ 𝜙−1(𝐷1 ⊔⋯ ⊔ 𝐷𝑛) to a fixed point 𝑝 of 𝜌∞(𝐹) and each lift
𝐷̃𝑖 of 𝐷𝑖 to ℂP1 ⧵ {𝑝} for all 𝑖 = 1, … , 𝑛.

Proof. Let 𝛾𝑖 ∈ PSL2ℂ be the sequence and (ℎ∞, 𝜁∞) be the normalized limit obtained by
Lemma 13.10. By the non-subconvergence hypothesis, 𝜌∞(𝜋1𝐹) is an elementary representation.
We divide the proof into cases depending on the types of elementary subgroups.
First suppose that 𝜌∞(𝜋1𝐹) contains a loxodromic or elliptic element. Then, let 𝓁 be the axis

of the loxodromic or the elliptic element. Then, there is a corresponding loxodromic or elliptic
element in Imℎ∞, and let 𝓁′ be its axis. By the non-subconvergence hypothesis, there is 𝜔 ∈ 𝜋1𝐹

such that ℎ∞(𝜔) is a parabolic element but 𝜌∞(𝜔) is the identity in PSL2ℂ. Thus, 𝛾𝑖 must be a
hyperbolic element for sufficiently large 𝑖 such that as 𝑖 → ∞, the translation length of 𝛾𝑖 diverges
to infinity. In addition, Axis(𝛾𝑖) converges to the 𝓁′ in ℍ3. Let 𝑝 be the limit of the repelling fixed
point of 𝛾𝑖 , and let 𝑞 be the limit of the attracting fixed point of 𝛾𝑖 , so that {𝑝, 𝑞} are the endpoints
of 𝓁′. Note that as 𝜌∞(𝜋1(𝐹)) is elementary, 𝜌∞𝜋1(𝐹) preserves 𝑝 and 𝑞 pointwise.
Take a connected compact fundamental domain 𝑄 in 𝐹̃. We can assume that 𝑄 ∩ 𝜕𝐹̃ is disjoint

from 𝑞, by perturbing the loop𝑚𝑖 on 𝐶𝑡𝑖
if necessary. For simplicity, we first suppose that ℎ∞(𝑄)

is disjoint from 𝑞. Then, letting 𝑓𝑖 = 𝑓𝑡𝑖 , the restriction 𝑓𝑖|𝑄 converges to the constant map to 𝑝
uniformly, as 𝑖 → ∞, and thus, 𝑓𝑖 ∶ 𝐹̃ → ℂP1 converges to the constant map to 𝑝 uniformly on
compact subsets.
Suppose that ℎ∞(𝑄) ∩ {𝑞} ≠ ∅. Then, by the compactness of 𝑄, there are finitely many points

of ℎ−1∞ (𝑞) in the interior of 𝑄. Pick small disjoint open disk neighborhoods of the points in ℎ−1∞ (𝑞)

in 𝑄. Then, as the disks are contained in a fundamental domain, their images 𝐷1,… , 𝐷𝑛 in 𝐹 are
disjoint. Then, as 𝜁∞ preserves 𝑞, the restriction of 𝑓𝑖 to 𝐹̃ ⧵ 𝜙−1(𝐷1 ⊔⋯ ⊔ 𝐷𝑛) converges to the
constant map to 𝑝 uniformly on compact subsets. Moreover, for each lift 𝐷̃𝑖 of𝐷𝑖 to 𝐹̃, 𝐷̃𝑖 contains
a unique point mapping to 𝑞. Thus, up to an isotopy of 𝑆, we can in addition assume that 𝑓𝑖|𝐷𝑖

converges to a homeomorphism to ℂP1 ⧵ {𝑝}, as desired. By Lemma 9.1 and Proposition 9.2, the
boundary components of 𝐹̃ all map to 𝑝.
Next, suppose that 𝜌∞(𝐹) contains a (nontrivial) parabolic element but no hyperbolic and ellip-

tic element. Let 𝜔 ∈ 𝜋1𝐹 such that 𝜌∞(𝜔) is also a nontrivial parabolic element. Therefore, 𝜌∞
and 𝜌′∞ are conjugate to each other, and (𝑓𝑡𝑖 , 𝜌𝑡𝑖 |𝜋1𝐹) converges to a developing pair of 𝐹∞. This
contradicts the non-subconvergence hypothesis.
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 55 of 69

F IGURE 16 The trajectories of 𝐺𝑖 when 𝐺𝑖 is hyperbolic (Left) and parabolic (Right).

Last, suppose that 𝜌∞(𝜋1𝐹) is the trivial representation. This case will be similar to the case
when 𝜌∞(𝜋1𝐹) contains an elliptic or a hyperbolic element. Then, the normalized holonomy 𝜁∞
is a parabolic representation. Let 𝑝 be the parabolic fixed point of 𝜁∞. We can assume that 𝛾𝑖 is a
hyperbolic element for 𝑖 large, and the axis of 𝛾𝑖 converges to a geodesic 𝓁 starting from 𝑝. Let 𝑞
be the other endpoint of 𝓁. Pick a connected fundamental domain𝑄 in 𝐹̃ so that ℎ−1(𝑝) is disjoint
from 𝜕𝑄. Suppose in addition that no point of 𝑄maps to 𝑝. Then, up to a subsequence, 𝑓𝑖|𝐹̃ con-
verges to a constant map to 𝑞 uniformly on compact subsets. Suppose there are (finitely many)
points of 𝑄 which map to 𝑝. Then, similarly to the case of a hyperbolic and an elliptic represen-
tation, take disjoint open ball neighborhoods of those points in 𝑄, and let 𝐷1, 𝐷2 …𝐷𝑛 be disjoint
disks on 𝐹 that lift to those open balls. Then, the desired convergence follows similarly. □

By Proposition 13.11, the restriction of 𝑓𝑖 to 𝑆 ⧵ 𝜙−1(𝐴) converges to a 𝜌∞-equivariant map
𝑓∞∶ 𝑆 ⧵ 𝜙−1(𝐴) → ℂP1.We next prove the convergence of the boundary components to complete
the proof of (3c).

Proposition 13.12. For each component 𝐴̃ of 𝜙−1(𝐴), let 𝛾 ∈ 𝜋1(𝑆) be the representative of 𝑚
preserving 𝐴̃. Then, by taking a subsequence so that Axis(𝜌𝑡𝑖 (𝛾)) =∶ 𝑎𝑖 converges to a subset 𝑎∞ ∈

ℍ3 ∪ ℂP1, which is either a point onℂP1 or a geodesic inℍ3, then 𝑓∞ takes the boundary components
of 𝐴̃ onto the ideal points of 𝑎∞.

Proof. By Lemma 13.8, 𝜌𝑡𝑖 (𝑚) ≠ 𝐼 for sufficiently large 𝑖 ∈ ℤ>0. Thus, by taking a subsequence, we
may in addition assume that 𝜌𝑡𝑖 (𝛾) converges to 𝐼 tangentially to a unit tangent vector of PSL2ℂ at
𝐼. Let 𝐺𝑖 be the one-parameter subgroup of PSL2ℂ that contains 𝜌𝑡𝑖 (𝛾), such that the cyclic group
generated by 𝜌𝑡𝑖 (𝛾) is asymptotically dense in 𝐺𝑖 with respect to the intrinsic metric on 𝐺𝑖 . Then,
the trajectories of 𝐺𝑖 yield a unique foliation of ℍ3 except that, if 𝜌𝑡𝑖 (𝛾) is elliptic, only of ℍ

3 ⧵ 𝑎𝑖
(Figure 16). We have chosen a subsequence 𝑡𝑖 so that 𝐶𝑡𝑖

→ 𝐶∞ uniformly on every thick part
and the axis 𝑎𝑖 converges to a closed subset 𝑎∞ of ℍ3. Let 𝑃,𝑄 be the components of 𝑆 ⧵ 𝜙−1(𝐴)

adjacent across 𝐴̃.

Claim 13.13. Let 𝓁 be the common boundary component of 𝑃 and 𝐴̃. Suppose, to the contrary, that
lim𝑓𝑡𝑖 (𝓁) is not a point, in ℂP1, of the limit axis 𝑎∞. Then, 𝜌𝑡𝑖 |𝑄 diverges to∞ in 𝜒.

Proof. Let 𝜄𝑖 be some power of the Dehn twist of 𝑆 along 𝑚 so that the Fenchel–Nielsen twist
parameter of the remarked Riemann surface 𝜄𝑖𝑋𝑡𝑖

along 𝑚 is bounded from above and below
uniformly in 𝑖.
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56 of 69 BABA

F IGURE 17 The limt axis 𝑎∞ and the location of the puncture. The left picture illustrates the convergence
of holonomy and the right picture illustrates the divergence of holonomy.

Let 𝓁′ be the common boundary component of 𝐴̃ and𝑄. By Proposition 13.3, there is 𝛾 ∈ 𝜋1(𝑆)

belonging to Stab𝑄 such that 𝜌∞(𝛾) is not the identity matrix. We may in addition assume that
the axis of 𝜌𝑡𝑖 (𝜄𝑖 ⋅ 𝛾) converges to the point 𝑓𝐹,∞(𝓁) on ℂP1 (if 𝜌∞(Stab𝑄) is elementary, use
Lemma 13.6 and Proposition 13.7). By the tangential convergence of 𝜌𝑖(𝑚) → 𝐼, the 𝐺𝑖-invariant
foliation 𝑖 of ℍ3 converges to a foliation ∞ of ℍ3. If 𝑓𝑃,∞(𝓁) is not the ideal point of 𝑎∞,
Axis(𝜌𝑖(𝜄𝑖 ⋅ 𝛾)) be eventually disjoint from every compact subset in the space of the leaves of ∞.
Therefore, since the 𝐺𝑖-invariant foliations 𝑖 limit to ∞, Axis(𝜌𝑖(𝛾)) also leaves every compact
subset of the leaf space of ∞. Hence, 𝜌𝑖(𝛾)must diverge to∞ in PSL2ℂ, which is a contradiction.
(Figure 17.) □

This claim completes the proof. 13.12

It remains only to prove the surjectivity in Theorem 13.1 (3c).

Lemma 13.14. Suppose that 𝑎∞ is a geodesic in ℍ3. Then, 𝑓∞(𝓁) and 𝑓∞(𝓁′) are the different
endpoints of 𝑎∞.

Proof. By Claim 13.13, 𝑓𝑖|𝓁 converges to the constant map to an endpoint of 𝑎∞.
Let 𝑛𝑖 ∈ ℤ be the power of the Dehn twist along 𝑚 that gives 𝜄𝑖 ∈ MCG(𝑆). Thus, 𝜌𝑖(𝛾𝑛𝑖 ) is a

hyperbolic element whose axis 𝑎𝑖 converges to 𝑎∞, and its translation length diverges to infinity
as 𝑖 → ∞. Then, the attracting fixed point of 𝜌𝑖(𝛾𝑛𝑖 ) converges to the endpoint of 𝑎∞ that is not
𝑓∞(𝓁). Thus, 𝑓∞(𝓁′)must be at the other endpoint. □

13.12

13.0.1 Convergence of pleated surfaces when 𝜌∞(𝑚) = 𝐼

First, we compare developingmaps ofℂP1-structures and the exponential map exp∶ ℂ → ℂ∗. Let
𝓁 be the geodesic in ℍ3 connecting 0 to∞ of 𝜕ℍ3 = ℂ ∪ {∞}. Let Ψ∶ ℂ∗ → 𝓁 be the continuous
extension of the nearest point projection ℍ3 → 𝓁. Then, the composition is Ψ ◦ exp∶ ℂ → ℍ3 is
the Epstein map of the ℂP1-structure on ℂ given by exp.
Recall that, given a ℂP1-structure 𝐶 = (𝑋, 𝑞), for 𝑥 ∈ ℂ, 𝑑(𝑥) is the Euclidean distance from

𝑥 to the set of the zeros of the holomorphic differential 𝑞. Note that, if 𝑑(𝑥) is large, then we can
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 57 of 69

naturally embed a large neighborhood of 𝑥 into ℂ(≅ 𝔼2) by an isometric map onto its image, so
that vertical leaves map into horizontal lines, and horizontal leaves map into vertical lines.

Proposition 13.15. For every 𝜖 > 0, there is 𝑅 > 0, such that, if 𝑥 ∈ 𝐶 satisfies 𝑑(𝑥) > 𝑅, then the
Epstein map Σ∶ 𝐶̃ ≅ 𝑆 → ℍ3 is 𝜖-close, in the 𝐶1-topology, to the composition of the collapsing map
𝜅̃ ∶ 𝑆 → ℍ2 and the bending map 𝛽∶ ℍ2 → ℍ3 at every lift 𝑥̃ of 𝑥.

Proof of Proposition 13.15. The proof is reduced to showing the following lemma.

Lemma 13.16. For every 𝜖 > 0, there is 𝑅 > 0, such that, if 𝑧 ∈ 𝐶̃ satisfies 𝑑(𝑧) > 𝑅, then the
maximal ball centered at 𝑧 is 𝜖-close to the maximal ball of the corresponding exponential map.

Proof. As the Epstein map of 𝐶 and exp are close, their developing maps are also close. This
implies the closeness of their maximal balls centered at 𝑧 and their ideal points. □

The proposition follows from the above lemma and Proposition 4.9. 13.15

Recall that we have already proved Theorem 13.1 (1), (2), (3) regarding the asymptotic behavior
of𝐶𝑡 using the decomposition of𝐶𝑡 into the restriction of𝐶𝑡 to the thin part𝐴 and its complement.
We prove additional compatibility of the corresponding bending map.

Proposition 13.17. Suppose that 𝜌∞(𝑚) = 𝐼. Then, for every diverging sequence 𝑡1 < 𝑡2 < … , up to
taking a subsequence, there are a sequence of diffeomorphisms 𝜄𝑖 ∶ 𝑆 → 𝜏𝑡𝑖 representing the mark-
ing of 𝐶𝑡𝑖

and a path of cylinders 𝐴𝑖 in 𝐶𝑡𝑖
homotopy equivalent to 𝑚, such that in addition to

Theorem 13.1 (1), (2), (3), the following holds:

(1) 𝐴maps to 𝐴𝑖 by 𝜄𝑖;
(2) 𝛽𝑡𝑖 ◦ 𝜅̃𝑡𝑖 ∶ 𝑆 → ℍ3 converges to a 𝜌∞-equivariant continuous map 𝑆 → ℍ3 ∪ ℂP1 uniformly on

compact subsets;
(3) for each connected component 𝐹 of 𝑆 ⧵ 𝜙−1(𝐴), the restriction of 𝛽𝑡𝑖 ◦ 𝜅𝑡𝑖 to 𝐹 converges to the

pleated surface of the corresponding component of 𝐶∞ or the constant map to an ideal point of
𝑎∞ (in Proposition 13.12);

(4) letting 𝐴̃ be a connected component of 𝜙−1(𝐴) in 𝑆, then 𝛽𝑡𝑖 ◦ 𝜅̃𝑡𝑖 |𝐴̃ converges to a map onto 𝑎∞
uniformly on compact subsets in 𝐴̃ with respect to a fixed closed disk metric on ℍ3 ∪ ℂP1.

Proof. For 𝑡 ≫ 0, there is a one-parameter family of loops homotopic to𝑚 such that their develop-
ments are invariant under a unique one-dimensional subgroup 𝐺𝑡 of PSL2ℂ that contains 𝜌𝑡(𝑚)

(as in the proof of Proposition 13.11). Then, we can pick a cylinder 𝐴𝑡 in 𝐶𝑡 homotopy equivalent
to𝑚, such that

∙ 𝐴𝑡 is foliated by loops whose developments are invariant under 𝐺𝑡 for each 𝑡 ≫ 0,
∙ 𝐶𝑡 ⧵ 𝐴𝑡 converges to 𝐶∞ as 𝑡 → ∞, and
∙ Mod𝐴𝑡 → ∞ as 𝑡 → ∞.

By the second property, 𝐴𝑡 is contained in a thinner and thinner part of 𝐶𝑡 as 𝑡 → ∞. Then, the
developing map of 𝐴𝑡 is the restriction of exp∶ ℂ → ℂ∗ to a bi-infinite strip 𝑇𝑡, that is, a region in
ℂ bounded by a pair of parallel lines. Then, its deck transformation group (≅ ℤ) is generated by a
translation of 𝑇𝑡. Then, 𝐴𝑡 has a natural Euclidean metric by identifying ℂ with 𝔼2.
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58 of 69 BABA

Recall that 𝐴 is a cylinder in 𝑆 homotopic to𝑚, and fix a finite volume Euclidean structure on
𝐴 with geodesic boundary (by picking a homeomorphism 𝐴 → 𝕊1 × [−1, 1]). We can easily pick
a marking 𝜄𝑡 ∶ 𝑆 → 𝐶𝑡 such that

∙ 𝜄𝑡 takes 𝐴 to 𝐴𝑡 ((1));
∙ the restriction of 𝐶𝑡 to 𝜄𝑡(𝑆 ⧵ 𝐴) converges to 𝐶∞;
∙ 𝜄𝑡|𝐴 is linear with respect to the Euclidean structures on 𝐴 and 𝐴𝑡.

Given a component 𝐹 of 𝑆 ⧵ 𝜙−1(𝐴), suppose that 𝑓𝑡𝑖 |𝐹 converges to a developing map of the
component of 𝐶∞. Then, clearly, 𝛽𝑖 ◦ 𝜅̃𝑖|𝐹 converges to a pleated surface for the corresponding
component of 𝐶∞. By Proposition 13.11, if 𝑓𝑡𝑖 |𝐹 does not converge to a developing map, then
𝛽𝑖 ◦ 𝜅̃𝑖|𝐹 converges to the constant map to an ideal point of the axis limit 𝑎∞. Thus, we have (3).
Last we prove (4). As we have already shown the convergence of the developing map in the

thick part, we need to show that the convergence extends to the convergence on the neck. As the
developing map of some components of 𝑆 ⧵ 𝑚 may degenerate as described in Proposition 13.11,
accordingly, one needs to be careful about the behavior of 𝛽𝑖 ◦ 𝜅𝑖 on the neck.
By Theorem 13.1(2), the Fenchel–Nielsen twisting parameter of 𝐶𝑡 along 𝑚 diverges to either

∞ or −∞ as 𝑡 → ∞. We can assume that the twisting of 𝐶𝑡 along𝑚 occurs in 𝐴𝑡 by isotopy of 𝑆.
(Case One) Suppose that 𝑎∞ ∶= lim𝑖→∞ Axis 𝜌𝑡𝑖 (𝑚) is a bi-infinite geodesic. Then, 𝜌𝑡𝑖 (𝑚) is

hyperbolic if 𝑖 is large enough, and the translation length of 𝜌𝑡𝑖 (𝑚) times the number of twist
goes to infinity as 𝑖 → ∞. For 𝑟 > 0, let 𝑈𝑖(𝑟) be the 𝑟-neighborhood of 𝑎𝑖 in ℍ3. Clearly, 𝑈𝑖(𝑟)

is invariant under 𝜌𝑖(𝑚). Let (𝜏𝑖, 𝐿𝑖) ∈ 𝖳 × 𝖬𝖫 be the Thurston parameters of 𝐶𝑖 for each 𝑖. Pick
𝜖 > 0 less than the Bers’ constant, and let 𝑁𝑖 = 𝑁𝜖

𝑖
be the 𝜖-thin part of 𝜏𝑖 . Let 𝑁̃𝑖 be the lift of 𝑁𝑖

to the universal cover ℍ2 of 𝜏𝑖 invariant under the fixed representative the loop 𝑚 in 𝜋1(𝑆). Let
𝓁𝑖,1,𝓁𝑖,2 denote the boundary components of 𝑁̃𝑖 , which connect the endpoints of the geodesic 𝑎𝑖

Lemma 13.18. If 𝑟 > 0 is sufficiently large, then 𝛽𝑖(𝑁̃𝑖) is contained in𝑈𝑖(𝑟) for sufficiently large 𝑖.

Proof. Let 𝐴̃ be the lift of𝐴 to 𝑆 that is invariant under𝑚 ∈ 𝜋1(𝑆). Let𝑃1 and𝑃2 be the components
of 𝑆 ⧵ 𝜙−1(𝐴) adjacent across a lift 𝐴̃. Suppose, to the contrary, that for every 𝑟 > 0, the image
𝛽𝑖(𝑁̃𝑖) is not eventually contained in 𝑈𝑖 as 𝑖 → ∞. Then, either

(i) for every 𝑟 > 0, if 𝑖 is sufficiently large, then 𝛽𝑖(𝓁𝑖,1) and 𝛽𝑖(𝓁𝑖,2) are both not contained in𝑈𝑖 ,
or

(ii) for every large 𝑟 > 0, if 𝑖 is sufficiently large, then one of 𝛽𝑖(𝓁𝑖,1) and 𝛽𝑖(𝓁𝑖,2) is contained in
𝑈𝑖 but the other is not.

First, suppose (i). Then, let𝜙𝑖 ∶ ℍ2 → 𝜏𝑖 be the universal coveringmap. Let𝑃′𝑖,1 and𝑃
′
𝑖,2
be the com-

ponent ofℍ2 ⧵ 𝜙−1
𝑖
(𝑁𝑖). For each 𝑖 = 1, 2, … and 𝑗 = 1, 2, pick compact fundamental domains𝐷𝑖,𝑗

of Stab 𝑃𝑗 ↷ 𝑃′
𝑖,𝑗
, such that 𝐷𝑖,𝑗 converges to a fundamental domain of the 𝜖-thick components of

𝜏∞. Recall that 𝑈𝑖 is invariant under 𝜌𝑖(𝑚). Then, for every 𝑟 > 0, if 𝑖 is sufficiently large, both
fundamental domains of 𝑃′

𝑖,1
or 𝑃′

𝑖,2
map to outside 𝑈𝑖 by 𝛽𝑖 . Therefore, it follows from Proposi-

tion 13.3 and Proposition 13.7 that 𝜌𝑖| Stab 𝑃1 or 𝜌𝑖| Stab 𝑃2must diverge to∞ up to a subsequence,
against to the convergence of 𝜌𝑖 .
Next we suppose (ii). Without loss of generality, we can assume that 𝛽𝑖(𝓁𝑖,1), not contained

in 𝑈𝑖 but 𝛽𝑖(𝓁𝑖,2) is contained in 𝑈𝑖 for sufficiently large 𝑖. Then, for every 𝑟 > 0, similarly, the
fundamental domain 𝑃𝑖,1 of 𝑃′1 maps to outside 𝑈𝑖 by 𝛽𝑖 if 𝑖 is sufficiently large. Then, by the
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Ui(r)
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F IGURE 18 This figure illustrates the divergence of 𝜌𝑖| Stab 𝑃𝑗 in the upper half space model of ℍ3. The
arrows indicate how the action by an element 𝜔 in Stab 𝑃𝑗 changes, and it diverges as 𝑖 increases in PSL2ℂ, where
𝑟′ > 𝑟 and 𝑖′ > 𝑖.

assumption of 𝛽𝑖(𝓁𝑖,2) being contained in𝑈𝑖 , one can similarly show 𝜌𝑖| Stab 𝑃1 diverges to∞, up
to a subsequence (Figure 18). □

If follows from Lemma 13.18 that, for every 𝜖′ > 0, by taking 𝛿 > 0 sufficiently smaller than
𝜖 > 0 above, similarly letting 𝑁̃𝛿

𝑖
be the 𝜌𝑖(𝑚)-invariant lift of 𝑁𝛿

𝑖
to the universal cover ℍ2, the

image 𝛽𝑖(𝑁̃𝛿
𝑖
) is 𝜖′-close to the axis 𝑎𝑖 for sufficiently large 𝑖.

Recall that we have a convergence of 𝛽𝑖 ◦ 𝜅𝑖 on 𝑃1, 𝑃2 so that, in the limit, the boundary com-
ponents of 𝐴̃map to the endpoints of 𝑎∞. Therefore, by taking an appropriate isotopy of 𝑆, 𝛽𝑖 ◦ 𝜅𝑖
converges to a continuous map, up to a subsequence, such that 𝑁̃ maps to 𝑎∞.
(Case Two) Suppose that 𝑎∞ is a single point on ℂP1. Pick any horoball 𝐵 in ℍ3 tangent at 𝑎∞.

For each 𝑖, pick a subset 𝑈𝑖 ⊂ ℍ3 converging to 𝐵 uniformly on compact subsets as 𝑖 → ∞, such
that, if 𝜌𝑖(𝛾) is either hyperbolic or elliptic, then 𝑈𝑖 is an 𝑟𝑖-neighborhood of 𝑎𝑖 for some 𝑟𝑖 > 0,
and if 𝜌𝑖(𝛾) is parabolic, then 𝑈𝑖 is a horoball centered at the parabolic fixed point of 𝜌𝑖(𝛾).
For sufficiently large 𝑖, let 𝑁𝑖 be the 𝜖-thin part of 𝜏𝑖 homotopy equivalent to 𝑚. Let 𝑁̃𝑖 be a

component of 𝜓−1
𝑖
(𝑁𝑖).

Lemma 13.19. If 𝜖 > 0 is sufficiently small, then 𝛽𝑖(𝑁̃𝑖) is eventually contained in 𝑈𝑖 as 𝑖 → ∞.
Therefore, 𝛽𝑖 ◦ 𝜅𝑖|𝑁̃ converges to the constant map to the point 𝑎∞.

Proof. Let 𝑃1 and 𝑃2 be the components of 𝑆 ⧵ 𝜙−1(𝐴) adjacent across the lift 𝐴̃ of 𝐴 invariant by
𝜌𝑖(𝑚). Suppose, to the contrary, for every 𝜖 > 0, the image 𝛽𝑖(𝑁̃𝜖

𝑖
) is not eventually contained in

𝑈𝑖 . Then, at least one of 𝛽𝑖(𝓁𝑖,1) or 𝛽𝑖(𝓁𝑖,2) is not contained in𝑈𝑖 for sufficiently large 𝑖. Therefore,
it follows from using Proposition 13.3 and Proposition 13.7 that either 𝜌𝑖| Stab 𝑃1 or 𝜌𝑖| Stab 𝑃2
diverges to∞, up to a subsequence. □

13.17

13.0.2 Convergence of holomorphic quadratic differentials when 𝜌∞(𝑚) = 𝐼

We next describe the limit quadratic differential. In the case that 𝜌∞(𝑚) = 𝐼, the singular
Euclidean structure𝐸𝑡𝑖

contains a flat cylinder𝐴𝑡 homotopic to𝑚, such thatMod𝐴𝑡 → ∞ and the
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60 of 69 BABA

complex length of its circumference converges to a positive multiple of 𝜋∕
√
2, by Proposition 5.2.

Therefore,

Proposition 13.20. Let𝐶∞ be the limit of𝐶𝑡 in Theorem 13.1 (3b). Then, the Schwarzian parameters
of 𝐶∞ consist of a Riemann surface with two punctures homeomorphic to 𝑆 ⧵ 𝑚 and a holomorphic
quadratic differential 𝑞∞, such that both punctures are a pole of order 2 and their residues are the
same nonzero integer multiple of

√
2𝜋.

13.1 Nondiscreteness of holonomy

We in addition show the nondiscreteness of the holonomy representation 𝜌𝑡 for large 𝑡.

Theorem 13.21. Suppose that 𝜌∞(𝑚) = 𝐼. Then, Im𝜌𝑡 ⊂ PSL2ℂ is a nondiscrete subgroup for
sufficiently large 𝑡 > 0.

Proof. Recall that 𝜌𝑡(𝑚) → 𝐼 but 𝜌𝑡(𝑚) ≠ 𝐼 (Theorem 13.1(1)). For each component 𝐹 of 𝑆 ⧵ 𝑚,
𝜌𝑡(𝜋1(𝐹)) is nontrivial for sufficiently large 𝑡 ≫ 0 (Proposition 13.3). Recall from Proposition 13.12
that, if 𝐶𝑡𝑖

converges to a ℂP1-structure of a punctured surface homeomorphic to 𝐹 for a diverg-
ing sequence 𝑡1 < 𝑡2 < … , then, in the limit, its cusp point develops to an endpoint of the limit
of the axis of 𝜌𝑡𝑖 . Therefore, the subgroup of Im𝜌𝑡 generated by { 𝜌𝑡(𝑚)𝛾𝜌𝑡(𝑚)−1 | 𝛾 ∈ 𝜌𝑡(𝐹) } is
nonelementary since the endpoint in ℂP1 is not preserve by some nontrivial element in 𝜌𝑡(𝜋1(𝐹))

by (Lemma 13.6 and Proposition 13.7). As 𝜌𝑡(𝑚) → 𝐼, by the Margulis lemma, Im𝜌𝑡 cannot be
discrete. □

14 EXAMPLES OF EXOTIC DEGENERATION

We construct examples of a path𝐶𝑡 = (𝑓𝑡, 𝜌𝑡) ofℂP1-structures on 𝑆 asymptotically pinched along
a loop 𝑚 as 𝑡 → ∞ such that 𝜌∞(𝑚) = 𝐼 and [𝜌𝑡] converges in 𝜒 as 𝑡 → ∞, as in the second case
of Theorem C.We construct two examples: one with 𝜌𝑡(𝑚) hyperbolic and one with 𝜌𝑡(𝑚) elliptic
for all sufficiently large 𝑡 > 0.

14.1 Hyperbolic 𝝆𝒕(𝒎) converging to 𝑰

Let 𝐸 be the singular Euclidean surface obtained from an 𝐿-shaped polygon by identifying the
opposite edges (Figure 19). Then,𝐸 has exactly one cone point, and its cone angle is 6𝜋. Let𝐹 be the
underlying topological surface of 𝐸, which is a closed surface of genus two. Let 𝐸′ denote 𝐸minus
the cone point, and let 𝐹′ denote the underlying topological surface of 𝐸′. Let 𝓁𝑝 be the (oriented)
peripheral loop around the removed cone point. Let 𝜉 ∶ 𝜋1(𝐹

′) → PSL2ℂ be the holonomy of 𝐸′.
Then, as 𝐹′ has a Euclidean structure, the image of 𝜉 consists of parabolic elements, and we can
assume that its image consists of upper triangular matrices with 1’s on the diagonal. In particular,
𝜉(𝓁𝑝) = 𝐼 (as before, by abuse of notation, we regard 𝓁𝑝 also as a fixed element of 𝜋1(𝑆) by picking
a basepoint of 𝜋1(𝑆) on 𝓁.) Notice that there is a point in the universal cover 𝐸̃ of 𝐸 corresponding
to𝓁𝑝 ∈ 𝜋1(𝑆). (Namely, by lifting𝓁𝑝 to a loop in the universal cover𝐸 starting from the base point,
there is a unique cone point of 𝐸̃ in the disk region bounded by the lift.)

 17538424, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70010 by T
he U

niversity O
f O

saka, W
iley O

nline L
ibrary on [02/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 61 of 69

a1

a2

b1

b2

F IGURE 19 A singular Euclidean surface obtained from a 𝐿-shaped polygon, and a generating set of its
fundamental group.

Proposition 14.1. There is a path of ℂP1-structures, 𝐷𝑡 = (ℎ𝑡, 𝜉𝑡), on 𝐹′ converging to 𝐸′ = (ℎ, 𝜉)

as 𝑡 → ∞, such that 𝜉𝑡(𝓁𝑝) is a hyperbolic translation whose axis converges to a geodesic connecting
the global (parabolic) fixed point of 𝜉 and the ℎ-image of the corresponding singular point of 𝐸̃.

Proof. Note that elements of Im 𝜉 are translations of ℂ. Pick nonseparating simple closed curves
𝑎1, 𝑏1, 𝑎2, 𝑏2 on 𝐸 as in Figure 19 forming a standard generating set of 𝜋1(𝐹) so that

∙ for each 𝑖 = 1, 2, 𝑎𝑖 and 𝑏𝑖 intersect in a single point, and [𝑎1, 𝑏1][𝑎2, 𝑏2] = 𝐼,
∙ the translation directions of 𝑎1 and 𝑎2 are the same and the translation direction of 𝑏1 and 𝑏2
are the same, and

∙ the translation directions of 𝑎𝑖 and 𝑏𝑖 are orthogonal for each 𝑖 = 1, 2.

Let 𝑐 be a separating loop on 𝐸 that separates {𝑎1, 𝑏1} and {𝑎2, 𝑏2}. Then, let 𝐹1 and 𝐹2 be the
components of 𝐹 ⧵ 𝑐 that are homeomorphic to a torus minus a disk.

Lemma 14.2. Let 𝑞𝑖 be any geodesic in ℍ3 starting from the global fixed point 𝑝 ∈ ℂP1 of Hol 𝐸,
and let 𝐻𝑖 be the hyperbolic plane, in ℍ3, containing an ⟨𝑎𝑖⟩-orbit of 𝑞𝑖 . For each 𝑖 = 1, 2, given any
path ℎ𝑖,𝑡 (𝑡 ⩾ 0) of hyperbolic elements in PSL2ℂ such that

(1) the axis of ℎ𝑖,𝑡 is orthogonal to𝐻𝑖 at a point in 𝑞𝑖 for all 𝑡 ⩾ 0, and
(2) ℎ𝑖,𝑡 → 𝐼 as 𝑡 → ∞.

Then, there is a path 𝜁𝑖,𝑡 ∶ 𝜋1(𝐹𝑖) → PSL2ℂ of homomorphisms which converges to the restriction of
Hol(𝐸) to 𝜋1(𝐹𝑖) as 𝑡 → ∞ such that 𝜁𝑖,𝑡(𝑐) = ℎ𝑖,𝑡 .

Proof. The point 𝑝 is contained in the ideal boundary of 𝐻𝑖 . Let 𝑟𝑖 be a geodesic in 𝐻𝑖 , such that
𝑅(𝑟𝑖)𝑅(𝑞𝑖) = 𝜉(𝑎𝑖), where 𝑅(𝑟𝑖) and 𝑅(𝑞𝑖) are the 𝜋-rotations of ℍ3 about 𝑟𝑖 and 𝑞𝑖 , respectively
(Figure 20, Right).
Let𝐻⟂

𝑖
be the hyperbolic plane in ℍ3 orthogonal to the hyperbolic plane𝐻𝑖 along the geodesic

𝑞𝑖 . As Axis(ℎ𝑖,𝑡) is in𝐻⟂
𝑖
and orthogonal to 𝑞𝑖 , we let 𝑞𝑖,𝑡 and 𝑞′𝑖,𝑡 be continuous paths of geodesics

in 𝐻⟂
𝑖
such that 𝑅(𝑞𝑖,𝑡)𝑅(𝑞′𝑖,𝑡) = ℎ𝑖,𝑡, the geodesics 𝑞𝑖,𝑡 and 𝑞′𝑖,𝑡 converge to 𝑞𝑖 as 𝑡 → ∞ uniformly

on compact subsets, and the 𝜋-rotation 𝑅(𝑞𝑖) exchanges 𝑞𝑖,𝑡 and 𝑞′𝑖,𝑡. By this symmetry, there is a
path of geodesics 𝑟𝑖,𝑡 in𝐻𝑖 such that, for all 𝑡 ≫ 0,

∙ there is a hyperbolic plane intersecting 𝑟𝑖,𝑡, 𝑞𝑖,𝑡, 𝑞′𝑖,𝑡 orthogonally, and
∙ 𝑑ℍ3(𝑟𝑖,𝑡, 𝑞𝑖,𝑡) = 𝑑ℍ3(𝑟𝑖,𝑡, 𝑞

′
𝑖,𝑡
).
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F IGURE 20 The axies of reflections to construct 𝜁𝑖,𝑡 .

v1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,tv1,t u1,t
v2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,tu2,t

q

F IGURE 2 1 The axies Axis ℎ1,𝑡 , Axis ℎ2,𝑡 in𝐻 and their endpoints.

Thus, by the symmetry, tr 𝑅(𝑞𝑖,𝑡)𝑅(𝑟𝑖,𝑡) = tr 𝑅(𝑞′
𝑖,𝑡
)𝑅(𝑟𝑖,𝑡) ∈ ℝ ⧵ [−2, 2].

The surface𝐹𝑖 ⧵ 𝑎𝑖 is a pair of pants, and two of its boundary components correspond to 𝑎𝑖 . Con-
sider the path of homomorphisms 𝜁𝑖,𝑡 ∶ 𝜋1(𝐹𝑖 ⧵ 𝑎𝑖) → PSL2ℂ for 𝑡 > 0, such that the two boundary
components corresponding to 𝑎𝑖 map to 𝑅(𝑞𝑖,𝑡)𝑅(𝑟𝑖,𝑡) and 𝑅(𝑟𝑖,𝑡)𝑅(𝑞′𝑖,𝑡)—thus the other boundary
corresponding to 𝜕𝐹𝑖 maps to 𝑅(𝑞𝑖,𝑡)𝑅(𝑞′𝑖,𝑡) = ℎ𝑖,𝑡 (see [17]). Then, by Theorem 5.6, there is a path
of ℂP1-structures on 𝐹𝑖 ⧵ 𝑎𝑖 with holonomy 𝜁𝑖,𝑡 that converges to the component of 𝐸 ⧵ (𝑐 ∪ 𝑎𝑖)

as 𝑡 → ∞ corresponding to 𝐹𝑖 ⧵ 𝑎𝑖 . As the holonomies along the two boundary components are
conjugate, for large enough 𝑡 > 0, there is a path of ℂP1-structures Σ𝑖,𝑡 on 𝐹𝑖 that converges to
the component of 𝐸 ⧵ 𝑐, so thatHol Σ𝑖,𝑡|𝜋1𝐹𝑖 = 𝜁𝑖,𝑡. In particular, the holonomy of Σ𝑖,𝑡 around the
puncture is the hyperbolic element 𝑅(𝑞𝑖,𝑡)𝑅(𝑞′𝑖,𝑡) = ℎ𝑖,𝑡. □

Notice that 𝐻1 and 𝐻2 are totally geodesic hyperbolic planes in ℍ3 tangent at 𝑝. Therefore, we
can, in addition, assume that𝐻1 and𝐻2 are different and𝐻⟂

1
= 𝐻⟂

2
=∶ 𝐻. Pick a geodesic 𝑞 in𝐻

initiating from𝑝 contained in the region bounded by the geodesics 𝑞1 = 𝐻 ∩ 𝐻1 and 𝑞2 = 𝐻 ∩ 𝐻2.

Proposition 14.3. We can choose the path of the hyperbolic isometries ℎ1,𝑡, ℎ2,𝑡 (given by
Lemma 14.2) so that their compositionℎ1,𝑡ℎ2,𝑡 is eventually a hyperbolic elementwhose axis converges
to 𝑞 as 𝑡 → ∞.

Proof. Pick ℎ1,𝑡 and ℎ2,𝑡 such that their axes converge to the parabolic fixed point 𝑝. Since ℎ1,𝑡 and
ℎ2,𝑡 converge to 𝐼, their product ℎ1,𝑡ℎ2,𝑡 also converges to 𝐼 in PSL2ℂ.
For each 𝑖 = 1, 2, let 𝑢𝑖,𝑡 be the attracting fixed point, and let 𝑣𝑖,𝑡 be the repelling fixed point of

ℎ𝑖,𝑡. We may first assume that the endpoints of Axis ℎ1,𝑡, Axis ℎ2,𝑡 lie on 𝜕𝐻 in this cyclic order
𝑢2,𝑡, 𝑣1,𝑡, 𝑣2,𝑡, 𝑢1,𝑡 (Figure 21). The composition ℎ1,𝑡ℎ2,𝑡 fixes a point on the arc in 𝜕𝐻 between 𝑣1,𝑡
and 𝑣2,𝑡 for each 𝑡 > 0. Note that the segment contains𝑝. Then, asAxis(ℎ1,𝑡), Axis(ℎ2,𝑡) converge to
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 63 of 69

the parabolic fixed point 𝑝, there is a fixed point of ℎ1,𝑡ℎ2,𝑡 converging to 𝑝. Moreover, as ℎ2,𝑡 → 𝐼,
one can continuously adjust the translation length of ℎ1,𝑡 so that ℎ1,𝑡ℎ2,𝑡 also fixes the other end-
point of 𝑞 for sufficiently large 𝑡 > 0. Let 𝑠 be the endpoint of the geodesic 𝑞 that is not 𝑝. Then,
after this adjustment, clearly, ℎ1,𝑡ℎ2,𝑡(𝑠) = 𝑠 holds for all large 𝑡 > 0 and ℎ2,𝑡(𝑠) → 𝑠 as 𝑡 → ∞.
Since the axis of the hyperbolic element ℎ1,𝑡 converges to the ideal point 𝑝(≠ 𝑠), the translation
length of ℎ1,𝑡 must converge to zero; thus, ℎ1,𝑡 converges to the identity (so that the condition (2)
in Lemma 14.2 remains satisfied after the modification).
Clearly, the composition ℎ1,𝑡ℎ2,𝑡 does not fix the endpoints of the axes of the hyperbolic ele-

ments ℎ1,𝑡 and ℎ2,𝑡 for all large 𝑡 > 0. Therefore, ℎ1,𝑡ℎ2,𝑡 is a hyperbolic element with the axis 𝑞 for
sufficiently large 𝑡 > 0, which is not the identity. □

Let ℎ1,𝑡, ℎ2,𝑡 ∈ PSL2ℂ be the paths given by Proposition 14.3. Then, by Lemma 14.2, for each
𝑖 = 1, 2, wehave a path of homomorphisms 𝜁𝑖,𝑡 ∶ 𝜋1(𝐹𝑖) → PSL2ℂ such that 𝜁𝑖,𝑡(𝓁) = ℎ𝑖,𝑡 for 𝑡 ≫ 0.
Then, there is a unique path 𝜁𝑡 ∶ 𝜋(𝐹′) → PSL2ℂ so that 𝜁𝑡|𝜋1(𝐹𝑖) = 𝜁𝑖,𝑡 for 𝑖 = 1, 2; thus 𝜁𝑡(𝓁𝑝) =
ℎ1,𝑡ℎ2,𝑡. Then, by the holonomy theorem (Theorem 5.6), there is a path 𝐷𝑡 of ℂP1-structures on 𝐹′

with holonomy 𝜁𝑡 for 𝑡 ≫ 0 such that 𝐷𝑡 converges to 𝐸′ as 𝑡 → ∞. 14.1

Remark 14.4. Since 𝜉𝑡 converges to the parabolic representation 𝜉 and the axis of the hyperbolic
element 𝜌𝑡(𝓁𝑝) converges to a geodesic starting from the parabolic fixed point of 𝜉 as 𝑡 → ∞,
by normalizing by an appropriate power 𝑟𝑡 of isometries 𝜉𝑡(𝓁𝑝), the conjugation 𝜉𝑡(𝓁𝑝)

𝑟𝑡 ⋅ 𝜉𝑡 ⋅
𝜉𝑡(𝓁𝑝)

−𝑟𝑡 converges to the trivial representation, and the developing map 𝜉𝑡(𝓁𝑝)
𝑟𝑡ℎ𝑡 converges

to the constant map to the endpoint of 𝑞 which is not 𝑝.

14.1.1 Constructing a closed surface from punctured surfaces

To make a desired example of exotic degeneration, we take two copies 𝐷𝑡 of ℂP1-surfaces with a
single puncture from Proposition 14.1, and glue them together with many twists.

Theorem 14.5. There is a path of ℂP1-structures 𝐶𝑡 = (𝑓𝑡, 𝜌𝑡) on a closed surface 𝑆 of genus four
with following properties:

∙ The conformal structure 𝑋𝑡 is pinched along a separating loop𝑚 as 𝑡 → ∞; let 𝐹1 and 𝐹2 be the
connected components of 𝑆 ⧵ 𝑚.

∙ 𝜌𝑡 ∶ 𝜋1(𝑆) → PSL2ℂ converges in the representation variety as 𝑡 → ∞.
∙ Pick an element 𝛾 ∈ 𝜋1(𝑆)whose free homotopy class is𝑚. Then, 𝜌∞(𝛾) = 𝐼, and, for all 𝑡 > 0, the
holonomy 𝜌𝑡(𝛾) is a hyperbolic element such that its axis 𝑎𝑡 converges to a geodesic 𝑎∞ in ℍ3 as
𝑡 → ∞.

∙ Let 𝐹̃1, 𝐹̃2 be the connected components of 𝑆 ⧵ 𝜙−1(𝑚) that are adjacent across the lift 𝑚̃ of 𝑚
preserved by 𝛾 ∈ 𝜋1(𝑆). Then,𝐶𝑡|𝐹̃1 converges to the developingmap of aℂP1-structure on a genus
two surface minus a point such that the cusp maps to an endpoint of 𝑎∞ as 𝑡 → ∞.

∙ 𝑓𝑡|𝐹̃2 converges to the constant map to the other endpoint of 𝑎∞ uniformly on compact subsets,
and 𝜌∞|𝜋1(𝐹2) is the trivial representation.

Remark 14.6. In fact, Im𝜌∞ consists of parabolic elements with a global fixed point on ℂP1, and
therefore, the limit representation 𝜌∞ is identified with the trivial representation in the character
variety 𝜒. In other words, the frontier of PSL2ℂ-orbit of 𝜌∞ contains the trivial representation.
Thus, there is a path 𝛼𝑡 (𝑡 > 0) in PSL2ℂ such that 𝛼𝑡𝜌𝑡𝛼−1𝑡 converges to the trivial representation.

 17538424, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70010 by T
he U

niversity O
f O

saka, W
iley O

nline L
ibrary on [02/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



64 of 69 BABA

Proof. For sufficiently large 𝑡 > 0, the ℂP1-structure 𝐷𝑡 with a single puncture from Propo-
sition 14.1 has a cusp neighborhood 𝑁𝑡 foliated by admissible loops whose developments are
invariant under the one-dimensional subgroup 𝐺𝑡 of PSL2ℂ containing 𝜉𝑡(𝓁𝑝). We can assume
that𝑁𝑡 changes continuously in 𝑡 and is asymptotically the empty set on 𝐸′ as 𝑡 → ∞. Note that as
𝐺𝑡 is a one-dimensional subgroup 𝜌𝑡(𝑚) of PSL2ℂ, integer powers 𝜌𝑡(𝑚)𝑛 for 𝑛 ∈ ℤ continuously
extends to real powers.
First take two copies Σ1,𝑡, Σ2,𝑡 of 𝐷𝑡 ⧵ 𝑁𝑡 and, since the boundary of 𝑁𝑡 is invariant by the one-

parameter subgroup 𝐺𝑡, glue them together along their boundary components without adding a
twist. Let 𝐶′

𝑡 = (𝑓′
𝑡 , 𝜌

′
𝑡) be the resulting developing pair. Then, we can normalize by PSL2ℂ so that

the axis of the hyperbolic element 𝜌′𝑡(𝑚) is the geodesic 𝑞 for all 𝑡. In addition, we can renormalize
the developing pair by PSL2ℂ so that the restriction of 𝑓′

𝑡 to 𝐹̃1 and the restriction of 𝜌′𝑡 to the sta-
bilizer Stab 𝐹̃1 of 𝐹̃1 in 𝜋1(𝑆) converges to a developing pair of 𝐸′ as 𝑡 → ∞. Then, as𝑁𝑡 converges
to the empty set, the restriction of 𝜌′𝑡 to Stab 𝐹2 leaves every compact in the representation variety,
and the restriction of 𝑓′

𝑡 to 𝐹̃2 does not converge to a continuous map as 𝑡 → ∞.
Recall that the holonomy 𝜌′𝑡 along 𝑚 is a hyperbolic element with axis 𝑞, and the translation

length of 𝜌′𝑡(𝑚) goes to zero as 𝑡 → ∞. Therefore, whenwe glueΣ1,𝑡, Σ2,𝑡 of𝐷𝑡 ⧵ 𝑁𝑡, we can contin-
uously add more and more twists along𝑚, which conjugates the structure on 𝐹2 by 𝜌′𝑡(𝑚) raised
to the power of the amount of twist along 𝑞, so that

∙ the restriction of 𝑓′
𝑡 to 𝐹̃1 and the restriction of 𝜌′𝑡 to Stab 𝐹̃1 still converges to a developing pair

for 𝐸′, and
∙ the restriction of 𝜌′𝑡 to Stab 𝐹̃2 converges to the trivial representation, and the restriction of 𝑓′

𝑡
to 𝐹̃2 converges to the constant map to the other endpoint of 𝑞 (by Remark 14.4) as 𝑡 → ∞.

We obtained a desired path 𝐶′
𝑡 . □

14.2 Elliptic 𝝆𝒕(𝒎) converging to the identity

In this section, we construct an example of 𝐶𝑡 = (𝑓, 𝜌𝑡) in Theorem C (ii) such that 𝜌𝑡(𝑚) is an
elliptic element for all sufficiently large 𝑡 > 0 and it converges to 𝐼 as 𝑡 → ∞.
Given an elliptic element 𝑒 ∈ PSL2ℂ, normalize the unit disk model 𝔻3 ⊂ ℝ3 of ℍ3 centered at

the origin, so that Axis(𝑒) is contained in the axis of the third coordinate. Let 𝜁 ∈ (0, 2𝜋) be the
rotation angle of 𝑒. Then, define 𝑏𝑒 ∶ ℝ → 𝜕ℍ3 by 𝑥 ↦ (cos(𝜁𝑥) sin 𝑥, sin(𝜁𝑥) sin 𝑥, cos 𝑥) which
is equivariant under ℤ → ⟨𝑒⟩.
Lemma 14.7. Let 𝑟 be a geodesic in ℍ3. Pick a parallel vector field 𝑉 ⊂ 𝑇ℍ3 along 𝑟 such that 𝑉 is
orthogonal to 𝑟. Then, there are a path of (nontrivial) elliptic elements 𝑒𝑡 ∈ PSL2ℂ and a continuous
function 𝜃𝑡 ∈ ℝ⩾0 in 𝑡 > 0 that satisfies the following.

∙ 𝑒𝑡 → 𝐼 as 𝑡 → ∞.
∙ Axis(𝑒𝑡) orthogonally intersects 𝑟, and Axis(𝑒𝑡) converges to an endpoint of 𝑟 on ℂP1 as 𝑡 → ∞.
∙ Letting 𝜃𝑡 ∈ ℝ be a continuous function such that the angle betweenAxis 𝑒𝑡 and𝑉 is 𝜃𝑡 mod 2𝜋,
when an orientation of 𝐴𝑥𝑖𝑠(𝑒𝑡) is fixed continuously in 𝑡.

∙ Let 𝑢𝑡 = 2𝜃𝑡 . Then, the rotation angle of 𝑒
𝑢𝑡
𝑡 is 𝜋 for all 𝑡 ⩾ 0, so that 𝑒𝑢𝑡𝑡 takes 𝑟 to itself, reversing

the orientation.
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NECK-PINCHING OF ℂP1-STRUCTURES IN THE PSL2ℂ-CHARACTER VARIETY 65 of 69

F IGURE 22 The development of a fundamental membrane for 𝐴𝑡 .

Proof. It is easy to construct an example satisfying the first three conditions. Then, adjust the
rotation angle of 𝑒𝑡 so that it also satisfies the last condition. □

Lemma 14.8. Let 𝑒𝑡 be as in Lemma 14.7. Let 𝑝 be the endpoint of 𝑟 to which Axis(𝑒𝑡) converges.
Pick a round disk𝐷 in ℂP1 containing 𝑝 such that the hyperbolic plane in bounded by the boundary
of 𝐷 is orthogonal to the geodesic 𝑟. Then, there is a path𝐴𝑡 of ℂP1-structures on an annulus 𝐴 with
smooth boundary for sufficiently large 𝑡 ≫ 0, such that

∙ 𝐴𝑡 converges to the once-punctured disk 𝐷 ⧵ {𝑝} as 𝑡 → ∞ as a ℂP1-structure, and
∙ the developments of the both boundary components of 𝐴𝑡 are curves equivalent to 𝑏𝑒𝑡 by elements
of PSL2ℂ.

Proof. For sufficiently large 𝑡 > 0, one can easily construct the fundamental membrane for𝐴𝑡 for
sufficiently large 𝑡 > 0 (Figure 22). □

Proposition 14.9. Let 𝑃 be a pair of pants, and pick a boundary component 𝓁 of 𝑃. Let 𝓁 be a lift
of 𝓁 to the universal cover of 𝑃. Consider a (flat) Euclidean cylinder with geodesic boundary, and let
𝑃∞ be the surface obtained by removing an interior point 𝑝 of 𝑃∞; regard 𝑃∞ as a ℂP1-structure on
𝑃, and let (ℎ, 𝜉) be its developing pair, so that ℎ takes 𝓁 to a single point 𝑣 on ℂP1.
Let 𝑟 be the geodesic in ℍ3 connecting 𝑣 and the parabolic fixed point of ℎ, and let 𝑒𝑡 ∈ PSL2ℂ be

a path of (nontrivial) elliptic elements given by Lemma 14.7 for 𝑟.
Then, there is a path of ℂP1-structures 𝑃𝑡 = (ℎ𝑡, 𝜉𝑡) on 𝑃 satisfying the following:

(1) For all 𝑡 > 0, 𝜉𝑡(𝓁) = 𝑒𝑡 .
(2) 𝑃𝑡 converges to 𝑃∞ as 𝑡 → ∞. Let 𝛾𝑡 ∈ PSL2ℂ be a path of hyperbolic elements with the axis 𝑟,

such that 𝛾𝑡 Axis(𝑒𝑡) converges to a geodesic g∞ in ℍ3 orthogonal to 𝑟 as 𝑡 → ∞ (so that 𝛾𝑡 is a
large hyperbolic translation towards 𝑣 for 𝑡 ≫ 0). Let 𝐻 ⊂ ℍ3 be the totally geodesic hyperbolic
plane orthogonal to 𝑟 and containing g∞. Then, the developing pair 𝛾𝑡(ℎ𝑡, 𝜉𝑡) normalized by 𝛾𝑡
converges to a developing pair for a round disk minus a point, where the removed point is 𝑣 and
the disk is the component of ℂP1 ⧵ 𝜕𝐻 containing 𝑣.

(3) Let 𝓁𝑡 be the boundary component of 𝑃𝑡 corresponding to 𝓁. Then, dev 𝑃𝑡 along a lift of 𝓁𝑡 is 𝑏𝓁𝑡
(up to PSL2ℂ).

(4) Let 𝛼 be a boundary component of 𝑃 not equal to 𝓁. Then, 𝜉𝑡(𝛼) is a hyperbolic element for all
𝑡 ≫ 0 (converging to a parabolic element as 𝑡 → ∞).
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F IGURE 2 3 Realize 𝑒𝑡 as the compositions of the 𝜋-rotations about 𝑞𝑡 and 𝑞′𝑡 .

Proof. First, we construct an appropriate path of representations 𝜉𝑡 ∶ 𝜋1(𝑃) → PSL2ℂ. Let 𝑎𝑡
denote Axis(𝑒𝑡). Pick a pair of geodesics 𝑞𝑡, 𝑞′𝑡 in ℍ3 for each 𝑡 > 0 such that

∙ 𝑅(𝑞𝑡)𝑅(𝑞
′
𝑡) = 𝑒𝑡, where 𝑅(𝑞𝑡), 𝑅(𝑞′𝑡) ∈ PSL2ℂ are the 𝜋-rotations of ℍ3 about 𝑞𝑡, 𝑞′𝑡 , respectively;

∙ 𝑞𝑡 and 𝑞′𝑡 change continuously in 𝑡 > 0;
∙ 𝑞𝑡 and 𝑞′𝑡 intersect at the intersection 𝑎𝑡 ∩ 𝑟;
∙ 𝑞𝑡 and 𝑞′𝑡 are symmetric about 𝑟;
∙ 𝑞𝑡 and 𝑞′𝑡 are orthogonal to 𝑎𝑡;
∙ 𝑞𝑡 and 𝑞′𝑡 converge to 𝑟 as 𝑡 → ∞ (see Figure 23).

There is a path of geodesics ℎ𝑡 (𝑡 ⩾ 0) in ℍ3 such that

∙ ℎ𝑡 is disjoint from 𝑞𝑡 and 𝑞′𝑡 for all 𝑡 ⩾ 0, and
∙ ℎ𝑡 converges to a geodesic ℎ in ℍ3 sharing an endpoint with 𝑟 as 𝑡 → ∞, such that the
composition 𝑅(𝑟)𝑅(ℎ) is the parabolic holonomy along a boundary geodesic of 𝑃∞.

Indeed, one can first find the limit geodesic ℎ that satisfies the second condition, then as 𝑞𝑡, 𝑞′𝑡
converges to 𝑟, one can take a desired path ℎ𝑡.
Let 𝜉𝑡 ∶ 𝜋1(𝑃) → PSL2ℂ be such that the holonomy along boundary components are

𝑅(ℎ𝑡)𝑅(𝑞𝑡), 𝑅(𝑞𝑡)𝑅(𝑞
′
𝑡), 𝑅(𝑞

′
𝑡)𝑅(ℎ𝑡). Note that 𝑅(ℎ𝑡)𝑅(𝑞𝑡), 𝑅(𝑞

′
𝑡)𝑅(ℎ𝑡) are hyperbolic elements, as

the rotation axes are disjoint, and they converge to the parabolic holonomy along the boundary
geodesics of 𝑃∞.
Pick a round disk 𝐷 on 𝑃∞ containing 𝑝 such that 𝜕𝐷 on ℂP1 bounds a hyperbolic plane in ℍ3

orthogonal to 𝑟. Then, apply Lemma 14.8 to 𝐷, let 𝐷𝑡 be a path of ℂP1-structures on an annulus
converging to 𝐷 ⧵ {𝑝}, so that it gives the desired path only near the punctured of 𝑃∞.
Pick a smaller closed regular neighborhood 𝐷′ of the puncture 𝑝 of 𝑃∞ such that 𝜕𝐷′ bounds

a hyperbolic plane orthogonal to 𝑟 and that 𝐷′ is contained in the interior of 𝐷. Clearly, its com-
plement 𝐾 in 𝑃∞ and the interior of 𝐷 ⧵ {𝑝} form an open cover of 𝑃∞. Then, 𝐾 is topologically a
pair of pants. Similarly to the proof of Theorem 5.6 using the stability of transversal sections for
the Thurston–Ehresmann principle ([18]), we can prove that there is a path of ℂP1-structures on
a pair of pants𝐾𝑡 for sufficiently large 𝑡 > 0 such that𝐾𝑡 converges to𝐾 and 𝑒𝑡 is the holonomy of
𝐾𝑡 around the boundary component corresponding to 𝜕𝐷′. Moreover, by deformation nearly the
boundary, we can in addition assume that the boundary of 𝐾𝑡 is equivalent to 𝑏𝓁𝑡 .
Then, since 𝐾 and 𝐷 ⧵ {𝑝} form an open cover of 𝑃∞, for sufficiently large 𝑡 by gluing 𝐾𝑡 and

𝐴𝑡 in the overlapping region, we obtained a desired path of ℂP1-structures 𝑃𝑡. □
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Proposition 14.10. Let 𝑃𝑡 = (ℎ𝑡, 𝜉𝑡) be a path of ℂP1-structures on a pair of pants from Proposi-
tion 14.9. Then, there is a path Σ𝑡 of ℂP1-structures on a closed surface 𝐹 minus a point that satisfies
the following.

∙ There is a subsurface 𝐴 of 𝐹 whose interior contains 𝑝, such that 𝐴 is homeomorphic to a pair of
pants, and Σ𝑡|𝐴 = 𝑃𝑡 for all large enough 𝑡 > 0.

∙ Σ𝑡 converges to a ℂP1-structure Σ∞ on 𝐹 as 𝑡 → ∞.

Proof. First, we construct the limit structure Σ∞. Take any complete hyperbolic surface 𝜏 with
a single cusp, such that 𝜏 is homeomorphic to a closed surface minus a point, denoted by 𝐹′.
Pick a cusp neighborhood 𝑁 of 𝜏, a horodisk quotient. The pair of pants 𝑃∞ has two boundary
components and one puncture. As the two boundary components of 𝑃∞ lift to horocycles, we can
glue a copy of 𝜏 ⧵ 𝑁 along each boundary component of 𝑃∞. We thus obtained a ℂP1-structure on
a closed surface with a single puncture so that 𝑃∞ is its subsurface.
There are paths 𝜁1,𝑡 and 𝜁2,𝑡 of representations 𝜋1(𝜏) → PSL2ℂ that converge to the holon-

omy of 𝜏 as 𝑡 → ∞, such that their images of the peripheral loop are 𝑅(𝑟𝑡)𝑅(𝑞′𝑡) and 𝑅(𝑞𝑡)𝑅(𝑟𝑡),
respectively, which are hyperbolic elements (cf. [17]). Let 𝜏1,𝑡, 𝜏2,𝑡 be paths ofℂP1-structures home-
omorphic to 𝜏 ⧵ 𝑁 for 𝑡 ≫ 0 such thatHol(𝜏1,𝑡) = 𝜁1,𝑡, andHol(𝜏2,𝑡) = 𝜁2,𝑡 and 𝜏1,𝑡, 𝜏2,𝑡 converge to
𝜏 ⧵ 𝑁. We may in addition assume that the boundary components of 𝜏1,𝑡, 𝜏2,𝑡 are invariant under
one-dimensional subgroups of PSL2ℂ containing 𝑅(𝑟)𝑅(𝑞′𝑡) and 𝑅(𝑞𝑡)𝑅(𝑟), respectively.
Then, by gluing 𝜏𝑡,1, 𝜏𝑡,2, 𝑃𝑡 along their boundary, we obtain a desired path Σ𝑡 of ℂP1-

structures. □

Let Σ𝑡 be the path of ℂP1 -structures, obtained from Proposition 14.10, on a compact surface
with one boundary component. Let 𝑅𝑡 be the 𝜋-rotation of ℍ3 around the axis 𝑎𝑡 of the elliptic
𝑒𝑡. By Proposition 14.9(2, 3), we can glue two copies of Σ𝑡 by the involution 𝑅𝑡, and we obtain a
path of ℂP1-structures 𝐶𝑡 on a closed surface, so that two copies of Σ𝑡 are embedded in 𝐶𝑡 dis-
jointly up to an isotopy. Let𝑚 be the loop along which the two copies are glued. Then, to obtain
a marked projective structure, we need to specify the twisting along 𝑚. We glue then so that the
Fenchel–Nielsen twisting parametermatches to be 𝑢𝑡 so that, by the𝜋-rotation along 𝑎𝑡, the devel-
oping maps of adjacent components of 𝑆 ⧵ 𝑚̃ are identical. Let Σ1𝑡 = (ℎ1𝑡 , 𝜌

1
𝑡 ), Σ

2
𝑡 = (ℎ2𝑡 , 𝜌

2
𝑡 ) are the

subsurfaces of 𝐶𝑡 corresponding to Σ𝑡.

Theorem 14.11. Let 𝐶𝑡 = (𝑓𝑡, 𝜌𝑡) be the path of ℂP1-structures as above, and let 𝑚 be the loop on
𝐶𝑡 corresponding to the boundary components of Σ1𝑡 and Σ2𝑡 . Let 𝑁 be the regular neighborhood of
𝑚. Then, by taking an appropriate isotopy of 𝑆, 𝐶𝑡 satisfies the following.

(1) 𝜌𝑡(𝑚) converges to 𝐼 as 𝑡 → ∞, and 𝜌𝑡(𝑚) is an elliptic element for all 𝑡 > 0;
(2) the axis of 𝜌𝑡(𝑚) converges to the point 𝑝 of ℂP1;
(3) 𝑓𝑡 ∶ 𝑆 ⧵ 𝜙−1(𝑁) → ℂP1 converges to a 𝜌∞-equivariant continuous map 𝑓∞∶ 𝑆 ⧵ 𝜙−1(𝑁) →

ℂP1, such that 𝑓∞ is a local homeomorphism in the interior;
(4) for each connected component 𝑁̃ of 𝜙−1(𝑁), the boundary components of 𝑁̃ map to its

corresponding limit given by (2).

Proof. Let𝐹1, 𝐹2 be the connected components of 𝑆 ⧵ 𝑁.We normalize the developing pair of𝐶𝑡 by
a path of PSL2ℂ so that the restriction to 𝐹̃1 converges to a developing pair forΣ∞. Then, (1) and (2)
clearly hold. Moreover, we can take an appropriate isotopy of 𝑆 so that each boundary component
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F IGURE 24 The left figure is a section of the right figure by a horizontal plane containing 𝑎𝑡 . It illustrates
the rotation about 𝑎𝑡 by 𝜋, and it makes the restriction of 𝑓𝑡 on 𝐹1 coincide with that to 𝐹2 coincide.

of 𝐹̃1 converges to the corresponding limit point of its corresponding axis. Since the rotation angle
of 𝑒𝑢𝑡𝑡 is𝜋 by Lemma 14.7, the restriction of 𝑓𝑡 to 𝐹̃2 is the same as that to 𝐹̃1 (Figure 24). Therefore,
the restriction of 𝑓𝑡 to 𝐹̃2 converges to a developing map of Σ∞ as well. Thus, we have (3). Then,
by the equivariant property, we also have (4). □

14.11
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