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Abstract

We characterize a certain neck-pinching degeneration
of (marked) CP!-structures on a closed oriented sur-
face S of genus at least two. In a more general setting,
we take a path of CP!-structures C, (t >0) on S that
leaves every compact subset in its deformation space,
such that the holonomy of C; converges in the PSL,C-
character variety as t — oo. Then, it is well known that
the complex structure X, of C; also leaves every com-
pact subset in the Teichmdiller space of S. In this paper,
under an additional assumption that X, is pinched along
aloop m on S, we describe the limit of C; from different
perspectives: namely, in terms of the developing maps,
holomorphic quadratic differentials, and pleated sur-
faces. The holonomy representations of CP!-structures
on S are known to be nonelementary (i.e., strongly irre-
ducible and unbounded). We also give a rather exotic
example of such a path C;, whose limit holonomy is the
trivial representation.
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1 | INTRODUCTION

Let S be a (connected) closed oriented surface of genus at least two, throughout this paper. For a
(marked) CP!-structure C on S, the holonomy of C is a homomorphism 7,(S) — PSL,C uniquely
determined up to conjugation by PSL,C; see §2.2. This correspondence yields the holonomy
map

Hol: P — y,

where P(= R'29712) is the deformation space of all CP!-structures on S and y is the PSL,C-
character variety of S. Note that there are many CP!-structures whose holonomy is not
discrete.

Hejhal [21] proved that Hol is a local homeomorphism (moreover, it is a local biholomorphic
map [10, 23]). However, it is not a covering map onto its image ([21]). Thus, it is a natural question
to ask how the path-lifting property fails.

Problem 1.1 (Kapovich [25, Problem 1], see also [15, Problem 12.5.1]). Let C; (¢t > 0) be a path of
CP!-structures on S such that

(1) C, leaves every compact subset in P at t — o0, and
(2) the holonomy 7, € y of C; converges toz,, € y ast — oo.

What is the asymptotic behavior of C,?

In this paper, we give various limiting behaviors to answer Question 1.1 in the “neck-
pinching” case.
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1.1 | Pinching loops on Riemann surfaces

For each t > 0, let X; denote the complex structure on S induced by C,. Then, by the work of
Kapovich ([25], see also [9, 15]), the conditions (1) and (2) imply that X, must also leave every
compact subset in the Teichmiiller space T (see Corollary 2.3).

We focus on the following basic type of degeneration of X,. Given a path X, € T, X, is pinched
along a loop m if

. lengthXt m — 0, and
* if an essential loop # in S \ m is not homotopic to m, then lengthy # is bounded between two
positive numbers for all ¢ > 0.

Here “lengthy " is either the extremal length of X; or the hyperbolic length of the uniformization
of X,. (In the augmented Teichmiiller space, this definition of pinching is equivalent to saying that
X, accumulates to a compact subset of the boundary stratum corresponding to m being pinched.)

A multiloop is a union of disjoint finitely many essential simple closed curves. Then, similarly,
we say that X is pinched along a multiloop M on S, if,

* for each loop m of M, lengthX[ m — 0ast — oo, and
* for each loop # in S\ M not homotopic to a loop of M, lengthy ¢ is bounded between two
positive numbers for all ¢ > 0.

The quasi-Fuchsian representation 7,(S) — PSL,C is a discrete faithful representation whose
limit set is a Jordan curve in CP?, the quasi-Fuchsian Space QF is an open subset of the character
variety y. There is no path C, in Problem 1.1, whose limit holonomy 7, is in QF. On the other
hand, a dense subset of the boundary of QF consists of holonomy representations of CP!-structures
pinched along loops ([30]), and it has been quite important to study such degeneration for the
study of Kleinian groups.

1.2 | Asymptotic behaviors

One of our main results is that trz, (m) must be +2. In other words, the holonomy along m at
t = oo corresponds to either (i) a parabolic element (which is not the identity) or (ii) the identity
of PSL,C. We will describe, in both Cases (i) and (ii), the asymptotic behavior of C, from three
different perspectives of CP!-structures:

(A) A holomorphic quadratic differential on a marked Riemann surface homeomorphic to S
(Schwarzian parameters).

(B) A hyperbolic structure on S and a measured lamination, which induces an equivariant
pleated surface H?> — H3 (Thurston parameters).

(C) A developing map f: §— CP! and a holonomy representation p: 7;(S) — PSL,C.
(Developing pair)

The residue of a meromorphic quadratic differential q at a pole is the integral of i\/a around
the pole, which is well defined up to sign (see [20]). Given a pole of order 2, letting r be its residue,
q is expressed as r? /z~2dz? for an appropriate parametrization in a neighborhood of the pole (see
[35, Theorem 6.3]).

}) SUORIPUOD pue SWB | 3L} 89S *[6202/20/20] U0 AriqiauluO A8 'exesO JO A1sieAlin 8y L Aq 0T00L 0doyZTTT OT/I0p/wod A | imAReiqijeut|uo'acsyrewpuo | //sdny Wwoip pepeojunmoq ‘T ‘S20Z 'v2v8esLT

0" A3 IM

B5UBO 1T SUOWILOD BAIESID) 3(gedljdde 8y} Ag pousenoB ae SO ILe YO SN JO 3N 104 ARIqIT BUIUO AD|IM UO



4 of 69 | BABA

Let X be a nodal Riemann surface, and let X be the smooth part of X. Then, the normalization
X of X is the smooth Riemann surface together with a continuous map & : X — X such that ¢
is a biholomorphic in é~1(X) and for each node p of X, £~1(p) consists of exactly two points. A
regular quadratic differential on X is a meromorphic quadratic differential § on X such that

* every pole of g has an order at most two and it maps to a node of X, and
* ifz,,z, on Z map to the same node on X, then the residue around z, is equal to that of z,

(see [6], [28]).

For Perspective (A), the path C; corresponds to a path of pairs (X;,q;), t > 0 in Schwarzian
coordinates, where X, is a marked Riemann surface homeomorphic to S and g, is a holomorphic
quadratic differential g, on X, forall ¢ > 0.

Theorem A.

* Suppose that X, is pinched along a loop m. Then, exactly one of the following holds.
(i) X; converges to a nodal Riemann surface X ., with a single node, and q; converges to a regular
quadratic differential on X o, such that the node is at worst a pole of order 1 (Theorem 10.12).
(ii) For every diverging sequence 0 < t; < t, < ..., up to a subsequence, X 1, converges to a nodal
Riemann surface X ., with a single node and q;, converges to a regular quadratic differen-

tial q, on X, such that the residue of each pole is a nonzero integral multiple of \/En
(Theorem 13.20).

* Suppose that X, is pinched along a multiloop M consisting of n loops. Then, for every diverging
t) <ty <.., thereis a subsequence such that X, converges a nodal Riemann surface X, with n
nodes and q, converges to a meromorphic quadratic differential q ., on X such that each node of
X, is, at most, a pole of order 2 (Corollary 7.6).

The convergence of the holomorphic quadratic differential in Theorem A is normal conver-
gence, and, in particular, the CP!-structure C, converges to the CP!-structure corresponding to
(X o> 9o ) minus the node, uniformly on every compact subset.

The space of homomorphisms 77,(S) — PSL,C is called the representation variety, and the char-
acter variety y is the GIT-quotient of the representation variety (see §3). In order to obtain an
equivariant object as a limit of C;, we pick a (continuous) lift p, : 7,(S) — PSL,C of 5, € x, such
that p, converges, as t — oo, to a homomorphism p_, : 7,(S) — PSL,C that maps to 7. In fact,
we prove the existence of such a lift in Proposition 3.2, since it is not obvious when 7, is an
elementary representation.

Note that for every discrete faithful representations 7, (S) — PSL,C, there is a unique equivari-
ant continuous map 9, 7,(S) = S' — CP! called the Cannon-Thurston map ([32]). This map is
closely related to the question which we consider, by identifying the ideal boundary of § with S'.

Let N be a regular neighborhood of the loop m in S. For t > 0, let C, = (t;,L,) be Thurston
parameters, where 7, is a path of marked hyperbolic structures on S and L, is a path of measured
laminations on S (§2.2.2). Fixing a marking ¢, : S — 7 in its isotopy class, (z;, L,) yields to a p,-
equivariant pleated surface 3, : S = H?> — H3, which changes continuously in ¢ > 0. Then, in fact,
B, converges to a continuous equivariant map.

Theorem B. Suppose that X, is pinched along a loop m. Then, by taking an appropriate path of
markings i, : S — 1, (t > 0), exactly one of the following holds:
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(i) po,(m) € PSL,C is a parabolic element, and f, : S — H?* converges to a p,-equivariant con-
tinuous map B, : S — H3>UCP! uniformly on compact subsets, such that 8 '(CP') is a
7,(S)-invariant multicurve on S that is m,(S)-equivariantly homotopic to ¢~'(m), where
¢ : S = S is the universal covering map (Theorem 10.5).

(i) po(m) is the identity in PSL,C, and, for every sequence 0 < t; < t, < ... diverging to oo, up to a
subsequence, 8; : S — H> converges to a p.,-equivariant continuous map B, : S — H* U CP!
such that ﬁgol (CPY) descends either to the loop m or to a subsurface isotopic to one or two
components of S \ N (§13.0.1).

Let f, : S — CP! be the developing map of C, that is a p,-equivariant local homeomorphism.
As C, changes continuously in ¢, we may assume that f, also changes continuously in ¢ > 0. Such
a family (f,) is unique up to a path of isotopies S — S in ¢ > 0 homotopic to the identity.

Pick a regular neighborhood N of m. Pick a component N of $~!(N). By abuse of notation, we
regard the loop m also as the element of 77;(S) that preserves N. We show that the developing
map f, converges in the complement of $~!(N), and the asymptotic behavior on d¢~(N) is well
controlled by the holonomy p,(m). Hyperbolic structures are, in particular, CP!-structures. If a
hyperbolic surface has a cusp, it has a neighborhood obtained by quotienting a horodisk in H? by
the cyclic group generated by a parabolic holonomy around the puncture.

Theorem C. Suppose that X, is pinched along a loop m. Then, by an appropriate isotopy of S in
t > 0 homotopic to the identity, exactly one of (i) and (ii) holds.
®

* P (m) is parabolic.

* The cusps of C, have horodisk quotient neighborhoods.

* fi: S — CP! converges to a p,,-equivariant continuous map f, : S — CP! uniformly on
compact subsets, and moreover, there is a multiloop M that is a union of finitely many parallel
copies of m such that f ., is a local homeomorphism exactly on S \ $~1(M), and f , takes each
component i of ¢~ (M) to its corresponding parabolic fixed point (Theorem 10.9).

(i) po(m) =1, and for every diverging sequencet; < t, < ..., up to a subsequence,

* the restriction of f; to S\ ¢~1(N) converges to a p,-equivariant continuous map f., : S\
¢~ 1(N) - CPY, and

* Axis(p; (m)) converges to a geodesic in H3 or a point in CP! so that f, takes the boundary
components of N onto the ideal points (in CP!) of lim; Axis(ptl_(m)) (Theorem 13.1), where

11— 00

Axis(pll_ (m)) is the convex hull of the fixed point on CP' (Definition 3.6).

Remark 1.2. If a general CP'-structure has a cusp with parabolic peripheral holonomy, there is its
cusp neighborhood isomorphic to either a horodisk quotient or a grafting of a horodisk quotient.
(See Proposition 5.2.)

A (27-)grafting is a cut-and-paste operation of a CP!-structure, and it yields a new CP!-structure
with the same holonomy, by inserting an appropriate cylinder along an (admissible) loop ([16],
see also [5, 26]). Let n be the number of parallel copies of m constituting M in (i). Then, there is
another diverging path C; of CP!-structure on S with holonomy p, and a path of admissible loops
m] on C/ for t > 0 such that C, is obtained by 277(n — 1)-grafting of C/.

In fact, Cases (i) and (ii) in Theorem A, Theorem B, and Theorem C correspond. In particular,
the Type (i) degeneration occurs on the boundary of the quasi-Fuchsian space, by pinching a loop
on a Bers slice.
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On the other hand, Type (ii) degeneration is new indeed. In particular, 7, must be a nondiscrete
representation for all sufficiently large ¢ > 0, possibly except att = oo (Theorem 13.21). Notice that
if the peripheral loop of a cusp of a CP!-structure has trivial holonomy, then the CP!-structure
can be deformed without changing its holonomy (of the entire surface), by moving the cusp (cf.
Theorem 5.6). Then, since p,(m) = I, therefore it is necessary to take a subsequence. In §14, we
give examples of Type (ii) degenerations.

Next, we explain a certain uniform bound of C;, which yields the convergence of C; away from
the pinched loop m. This uniform bound holds for a more general path C; with a multiloop being
pinched. The integration of \/q_t along paths on X, yields a singular Euclidean structure E, on X,
such that a zero of order d of g, is the singular point of cone angle (d/2 + 1)7 of E, (see, e.g., [13,
35]). Recall that the upper injectivity radius of E, is the supremum of the injectivity radii over all
points in E, (as E, is compact, it is indeed maximum).

Theorem D (Theorem 6.1). Suppose that X, is pinched along a multiloop. Then, the upper
injectivity radius of E; for all t > 0 is bounded from above.

It is a classical theorem that the holonomy map Hol is a local homeomorphism for the closed
surface S. In the limit of C,, we have a CP!-structure with cusps, such that cusp points are at
most poles of order 2 in the Schwarzian coordinates. The holonomy theorem is proved for such
CP!-surfaces cusps by Luo ([29]) if punctures have nontrivial peripheral holonomy. In this paper,
we prove a more general holonomy theorem (Theorem 5.6) for the developing pairs of CP!-
structures allowing trivial holonomy around punctures. We apply this holonomy theorem for the
convergence on C, in every thick part as t — oo. This holonomy theorem is given by appropri-
ately enlarging the character variety, and this enlargement is a certain ramification of the framed
representation space introduced by Fock and Goncharov ([14]). (For recent developments on
CP!-structure corresponding to higher order poles, see [1, 19].)

Gallo, Kapovich, and Marden algebraically characterized the image of Hol; in particular, it is
almost onto one of the two components of the character variety y ([15]). To be more precise,
p: m(S) - PSL,C € ImHol if and only if Im p is nonelementary and p lifts to a homomor-
phism from 7,(S) into SL(2,C). As an example of Type (ii) degeneration, we construct a path
C; whose holonomy limits to an elementary representation, or even to the trivial representation
in the representation variety (§14).

If the holonomy of a CP!-structure around a puncture is trivial, as stated above, the CP!-
structure can be deformed around the puncture without changing the holonomy of the entire
surface. A nonelementary subgroup of PSL,C has a nontrivial stabilizer, a similar difficulty occurs
when the limit holonomy of a component of S \ m is elementary. As a result of such flexibility, we
have rather exotic degenerations described in Case (ii) of Theorem B and Theorem C.

One may certainly hope that some of the results extend to a more general setting of Problem
1.1. In particular, Theorem D may hold in general.

Conjecture E. In the setting of Problem 1.1 (without the neck-pinching assumption), let E; be the sin-
gular Euclidean structure on X, given by the Schwarzian parameters of C,. Then, the upper injectivity
radius of E; is bounded from above uniformlyint > 0.

Recall that p; (t > 0) is a topological path in the character variety y that converges to p, as
t — oo without any regularity assumption. It is plausible that Cases (A) in Theorem A, Theorem B,
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NECK-PINCHING OF CP!-STRUCTURES IN THE PSL,C-CHARACTER VARIETY | 7 of 69

and Theorem C do not occur if o, has a one-side derivative at t = oo (in the ambient affine space
of y).

Conjecture F. Suppose that X, is pinched along a loop m. If the path p, is tangential at t = oo, then
7 (m) € PSL,C is a parabolic element (not equal to the identity I).

1.3 | Outline of this paper

In §2, we recall CP!-structures, the Schwarzian parameters, Thurston parameters, and the Epstein
surfaces for CP!-structures. In §3, we prove a lifting property of paths in the character variety to
paths in the representation variety. In §4, we give some estimates of the Epstein surfaces, based
on Dumas’ work [9]. In §5, we prove a holonomy theorem for the space of developing pairs of
CP!-structures on surfaces with punctures, where punctures are at most poles of order 2. In §6,
we show that there is an upper bound for the upper injectivity radius of E, for all ¢ > 0.

In §7, we show that C, converges on every thick part as t — oo, so that C, converges to a CP!-
structure on a surface with two punctures homeomorphic to S \ m. In §8, we state our main
theorems and prove some properties of developing maps of a surface with punctures. The limit
holonomy around m can only be parabolic or the identity. This will be shown, in §11 and §12. In
§10, we determine the asymptotic behavior of C; when p_ (m) is parabolic. In §13, we give the
asymptotic behavior of C; when p_(m) = 1.

In §14, we give new examples realizing (ii) in Theorem A, Theorem B, and Theorem C.

2 | PRELIMINARIES
2.1 | Hyperbolic geometry

Let 7 be a hyperbolic structure on S. Let L be a geodesic measured lamination on 7. Given a
geodesic loop m on 7, for a point x in the intersection of m and L, let 2, (L, m) € [0, ) denote
the intersection angle of of the leaf L and m intersecting at x. Then, the angle 2.(m,L) € [0,1)
between L and m be the maximum of £, (L, m) over all intersection points x € LN mifLNnm # @,
and £, (m,L) =0ifLnm = @.

Let ¢ : H?> — 7 denote the universal covering map. Then, the ¢-inverse image L of L is a 7, (S)-
invariant measured lamination on H?. The pair (z, L) induces a bending map 8 : H?> — H? that is
equivariant via an associated homomorphism p : 7,(S) — PSL,C. This mapping § is defined by
bending the universal cover H? of 7 along L, where the bending angle is given by the transversal
measure of L ([12]). Then, the pair (z, L) determines 8 : H> — H* uniquely up to PSL,C; thus, the
pair (3, p) is identified with (a o 8, apa™!) for & € PSL,C.

It follows from [3, Corollary 4.3] (see also [4, Theorem 5.1]) that, if a geodesic loop on 7 intersects
the lamination in a small angle, then the holonomy along the loop must be hyperbolic.

Theorem 2.1. Thereisa universal constant > 0such thatif 2.(L,m) < 8, then p(m) is hyperbolic.

Proof. Let i be a lift of m to the bi-infinite geodesic in the universal cover # = H2. Then, the restric-
tion of B to 1 is a (1 + €)-bilipschitz embedding (Corollary 4.3 in [3]). Since § is p-equivariant,
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8 of 69 | BABA

p(m) is a hyperbolic element whose axis connects the ideal point of the bilipschitz embedding

B(m). O

2.2 | CP!-structures

(General references of CP!-structures are found in [8, 26].)

A CP!-structure C, or a complex projective structure, on S is a (CP!, PSL,C)-structure, that is, an
atlas of charts embedding into CP! with transition maps given by PSL,C.

Let S be the universal cover of S. Then, equivalently, a CP!-structure is a pair (f,p) of a
local homeomorphism f: § — CP! and a homomorphism 7,(S) — PSL,C such that f is p-
equivariant. The map f is called the developing map and p is called the holonomy representation
of C.

The pair is defined up to PSL,C, that is, (f,p) ~ (af,apa™!) for all « € PSL,C. Thus, the
holonomy is in the character variety y = Hom(x,(S), PSL,C) / PSL,C.

221 | Schwarzian parametrization

Each CP!-structure corresponds to a holomorphic quadratic differential g on a marked Riemann
surface X. Thus, the deformation space P of CP!-structures is an (affine) vector bundle over the
Teichmiiller space T, such that a fiber over a Riemann surface X is the vector space Q(X) of
holomorphic quadratic differentials on X (in fact, it is the cotangent bundle). In this paper, consid-
ering the projection map IT: P — T given by the uniformization, we regard the space of marked
hyperbolic structures on S as our real analytic zero section.

Although Hol : P — y is a highly nonproper map ([21]), for each X € T, the restriction of Hol
to the space Q(X) is a proper embedding onto a complex analytic subvariety of y (see [15, Theorem
11.4.1] and its proof). Moreover,

Theorem 2.2 [25, 36]. For every compact subset K of T, the restriction of Hol to II"'(K) is a
proper map.

Corollary 2.3. Suppose that C, € P leaves every compact subset in P and its holonomy p, converges
in x. Then, the complex structure X, of C, also leaves every compact subset in T ast — oo.
2.2.2 | Thurston’s parametrization of CP!-structures

([24, 27], see also [5].)
Thurston gave a homeomorphism

P~TxML,

where T is the space of marked hyperbolic structures on S and ML is the space of measured
laminations on S.
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NECK-PINCHING OF CP!-STRUCTURES IN THE PSL,C-CHARACTER VARIETY | 9 of 69

A pair (7,L) € T X ML yields a pleated surface H?> — H* equivariant under the holonomy
7,(S) = PSL,C of its corresponding CP!-structure on S. Given a CP!-structure C on S, its associ-
ated collapsing map x : C — tisamarking preserving continuous map that relates the developing
map and the bending map of C. First, there is a measured lamination £ on C consisting of circu-
lar leaves, such that topologically, £ is obtained by replacing each periodic leaf # of L by cylinder
foliated circumferences so that the weight of ¢ is equal to the total transversal measure of the
foliated cylinder. The collapsing map x, conversely, collapses such foliated cylinders of £ to their
corresponding periodic leaves of L, and « takes the strata of £ to the strata of L.

Moreover, k relates the developing map f : S — CP! and the pleated surface 8 : H?> — H?inan
equivariant manner: For each z € S, let B, be the maximal ball in C whose core contains z. Let
¥, : B, —» Convd, B, C H3 denote the orthogonal projection, where Convd B, is the hyperbolic
plane (support plane) bounded by the boundary circle. Then, in fact, the commutativity

Bok(z) =¥, f(2),

holds equivariantly, where # : C = H? — % be the lift of x to a map between universal covers. Note
that there is a canonical normal direction of the support plane ConvdB, at ¥, f(z) toward f(z).

2.3 | Epstein maps

LetC =(X,q)bea CP!-structure on S in the Schwarzian coordinates, where X is the complex
structure of X, and q is a holomorphic quadratic differential on X. Then, the integration of \/E
along paths yields a singular Euclidean metric E on X in the same conformal class (see, e.g.,
[13]). In the complex plane, the lines parallel to the real axis give a foliation of C, and it has
a transversal measure induced by the vertical length (horizontal measured foliation). Similarly,
the lines parallel to the imaginary axis give a foliation of C, and it has a transversal measure
induced by the horizontal length (vertical measured foliation). Then, by pulling back the verti-
cal and the horizontal foliations of C, we obtain a vertical singular measured foliation V' and a
horizontal singular measured foliation H on E, where the singular points are the zeros of the dif-
ferential g. Moreover, H and V are orthogonal, and the vertical and the horizontal foliation of C are
orthogonal.

Given a point x € H3, we can normalize the unit disk model of H* so that x is the center of the
disk; then the ideal boundary of H* has the spherical metric uniquely determined by x € H3.

Theorem 2.4 (Epstein [11]). Given a CP!-structure C = (f, p) on S, there is a unique continuous
p-equivariant map Ep : X — H3, such that, for every point z € X, the Euclidean metric of E at z
agrees with the spherical metric at f(z) € CP! when CP! is identified with S? so that Ep(z) € H3 is
at the center of the disk model of H3.

Moreover Ep : X — H3 is smooth away from the singular points of E (see Equation (3.1) in [9]).

Let UH? denote the unit tangent bundle of H3. Then, Ep lifts to a (Lagrangian) immersion
Ep, : TE —» U(H?) ([9, Lemma 3.2]) that is a unit normal vector of the surface Ep: X — H? in
the complement of the singular points of E. For z € X, let d(z) denote the Euclidean distance
from z to the set Z of the zeros of the differential q.
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Lemma 2.5 (Lemma 2.6 and Lemma 3.4 in [9]). Let h/(z) and v’ (z) be the horizontal and vertical

unit tangent vectorsatz € X \ Z. If% < %, then

/ 6
W I1Ep. K@ < 75

@ V2<I|Ep. VIl <V2+ 75
(3) W'(z),V'(z) are the principal directions of Ep at z, and

@) |k, < %, where k, is the curvature of Ep in the v-direction.

3 | ALIFTING PROPERTY OF PATHS IN THE CHARACTER VARIETY

Definition 3.1. A representation p : 7;(S) — PSL,C is elementary if Im p fixes a point in H3 U
CP! or preserves two points on CP'. Equivalently, p is elementary if Im p is strongly irreducible
and Im p is unbounded in PSL,C. Otherwise p is called nonelementary.

Let R denote the PSL,C-representation variety of S, the space of representations 7,(S) —
PSL,C. By fixing a generating set y,...,7,, the topology of R is the restriction of the product
topology on PSL,C", which is independent on the choice of y, ..., 7,.. The Lie group PSL,C acts
on R by conjugation, and its GIT-quotient

¥: R — y ={m,(S) - PSL,C} / PSL,C

is called the PSL,C-character variety of S.

Each fiber of this GIT-quotient is an extended orbit equivalence class: Namely, for
P1,02 : m(S) = PSL,C, p; ~ p, if and only if the closure of the PSL,C-orbit of p; intersects that
of p, in R. In fact, equivalently, p; ~ p, if and only if tr? p,(y) = tr? p,(y) for all y € 7,(S) [22]. In
particular, for a nonelementary representation r;(S) — PSL,C, its PSL,C-orbit is a closed subset
of PSL,C and form a single equivalence class ([33]). For p € R, let [p] denote it equivalent class

Y(p)in .

Proposition 3.2. Suppose that C, (¢ > 0) is a one-parameter family of CP'-structures on S, such that
its holonomy 1, € x converges to 1, € x. Then, n, lifts a path p, € R that converges to p,, € R as
t — o, 50 that [P, ] = Neo-

Remark 3.3. The limit 7, can be an elementary representation (§14), and thus this proposition is
nontrivial. In addition, there is 7 € R with [n] = p., such that there is no lift , of p, ending at .

Proof of Proposition 3.2. Fix a generating set y, ..., ¥, of 7,(S). We divide the proof into three
cases.

(1) 14 is nonelementary.

(2) 714, is elementary and there is y € PSL,C such that . (y) is hyperbolic, that is, tr’(y) € C \
[0, 4].

(3) 714, is elementary and there is no hyperbolic element in its image, that is, tr’ 5., () € [0, 4] for
ally € m,(S).
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NECK-PINCHING OF CP!-STRUCTURES IN THE PSL,C-CHARACTER VARIETY 11 of 69

Case 1.

Lemma 3.4. Suppose that 1), is nonelementary. For every lift o, € R of 1, € x, there is a lift
P; € R of the pathn; € y such that p; = py, ast — oo.

Proof. Over nonelementary representations, ¥ is a fiber bundle with fibers PSL,C. This implies
the lemma. O

Case 2. Suppose that 7, is elementary and there is y € 7;(S) such that n (y) is hyperbolic.
Then, if p € ¥~1(1,,), letting # be the axis of the hyperbolic element p(y), we have either:

(i) Im p preserves ¢ and contains an elliptic element that reverses the orientation of Z, or
(ii) Im p pointwise fixes the endpoints of # on CP!.

Case (i). Suppose that p € ¥~1(5,) contains an elliptic element which exchanges the endpoints
of 7.

Claim 3.5. There are generators yy, ¥, ..., ¥, of 71(S), such that, foreachi =1, ..., n,

(1) p(y;)is a hyperbolic element fori =1, ...,n — 1, and
(2) p(y,) is an elliptic element of order 2 about a geodesic orthogonal to £.

Proof. By the hypothesis, one can pick generators y;,¥5, ..., ¥,, of 7,(S), such that p(y,) is a (non-
trivial) hyperbolic element. Then, we can, in addition, assume that p(y,), ..., o(y,) are not I, by
composing y; (i > 2) with y; if necessary. If p(y;) is an elliptic element preserving the orientation
of #, then p(y,¥;) is hyperbolic—thus without loss of generality, we can assume that if p(y;) is an
elliptic element, it must reverse the orientation of #. Suppose that p(y;) and p(y ;) are both ellip-
tic elements reversing the orientation of #; then p(y;y ;) preserves the orientation of #. Thus, by
replacing y; with y;y ;, we can reduce the number of the generators that map to elliptic elements
reversing the orientation of #. We can repeat such replacements of generators, and we obtain a
desired generating set. O

Let ¥4, %5, -, ¥, be the generating set of 7,(S) obtained by Claim 3.5. We show that there is
indeed a lift p, in R of 5, converging to p ast — oo.

One can easily find a lift p, (¢t > 0) so that p,(y;) converges to p(y;). Then, Axis(p,;(y;)) must
converge to 7. For all 1 <i < n — 1, Axis(p;(y;)) and Axis(p;(y,,)) are asymptotically orthogonal,
as 7, is an equivalence class of some elementary representation. In particular, we can in addition
assume that p,(y,,) converges to p(y,,), so that Axis(p;(y,,)) converges to a geodesic m orthogonal
to Z. Then, for 1 < i < n, Axis(p,(y;)) converges Z, since it is asymptotically orthogonal to m and
7 1s elementary. Thus, o, converges to p as t — oo.

Case (ii). Next, suppose that p € ¥~1(,,) preserves the endpoints of #. Then, similarly to Claim
3.5, we can find a generating set y,, ..., ¥, such that n (y), ..., ), (¥,,) are all hyperbolic elements
(ie., tr’ny,(¥;) € C\ [0,4]).

Pick any lift o, of , for ¢t > 0 (which may not converge as t — o).

Fix a PSL,C-invariant metric on the projectivized unit tangent bundle PT'H3 of H3. Then, given
two geodesics #;, 7, in H?, we can measure their distance by embedding #; and #, into the bundle.
Thus, similarly, forall 1 < i, j < n, the distance between Axis(p,(y;)) and Axis(p,(y j)) goes to zero
ast — oo, since otherwise 7, is an equivalent class of some nonelementary representations due to
the limit of p,(y;) and p,(y ;). Thus, we can continuously conjugate p; by elements of PSL,C so that
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all axes of p;(y,), ..., p;(¥,,) converge to geodesics sharing an endpoint. Therefore, p, converges as
t — oo by this normalization.

Case 3. Suppose that Im 7, contains no hyperbolic elements. Given an elliptic element and a
parabolic element in PSL,C sharing a fixed point on CP!, then their product is an elliptic element.
Therefore, we can pick generators y,, ..., ¥, of ;(S), such that n (y;) are either all elliptic or all
parabolic: In fact, given a generating set y4, ..., ¥,,, if the 7 -image of at least one y; is elliptic,
then by replacing y; with parabolic 7, (y;) with y;¥;, we obtain a generating set with elements
whose 7, -images are all elliptic. Pick any lift p, € R of the path , € y for t > 0, which may not
converge as t — 0.

Definition 3.6. For y € PSL,C, the axis of y is the convex hull of the fixed point set in H* U CP!
of y, and we denote it by Axis(y) C H* U CP!.

In particular, if y is hyperbolic or elliptic, Axis(y) is a geodesic in H? plus its endpoints in CP!,
and if y is parabolic, Axis(y) is a single point on CP'. Clearly, an ideal point of Axis(y) is a fixed
point of y on CP!.

Suppose that y,w € PSL,C be hyperbolic or elliptic elements with axes #,,7,,. As above, we
measure the distance between 7, 7, by embedding them into the projective unit tangent bundle
of H3.

Lemma 3.7.

(1) Suppose that 1,(y;) and 1.,(y;) are both elliptic for distinct 1 < i, j < n. Then, the distance
between Axis(o,(y;)) and Axis(p,(y;)) in PT'(H?) limits to zero as t — oco.

(2) Suppose that 0o, (v;), N (¥ ) DoY) are all elliptic for distinct 1 < i, j, k < n. Then, there is a
lift p; € R of n; for t > 0, such that Axis(p;(y;)), Axis(pt(yj)), and Axis(p,(y;)) converge to
geodesics sharing a common endpoint on CPL.

Proof.

(1) If there is a diverging sequence 0 < t; < t, < ... such that the distance between Axis(p,(y;))
and Axis(pt(yj)) in PT'(H?) is bounded from below by a positive number, then 7, is
nonelementary. This is a contradiction.

(2) By (1), if the assertion of (2) fails, there is a lift p, such that Axis(p,(y;)), Axis(pt(yj)),
and Axis(p,(y,)) converge to the distinct edges of an ideal triangle in H3. Then, 7., is
nonelementary against the hypothesis. O

Corollary 3.8. Suppose that there is a generating set {y,,..,¥,} of 7 (S), such that
Neo(V1)> > N (¥n) areall elliptic. Then, thereis alift o, € R of n, such that p,(y,), ..., p;(¥,,) converge
to elliptic elements whose axes share an endpoint on CP!,

Last, we suppose that 7 (¥;), ..., 1 (¥,,) are all parabolic, and we show that there is a lift of p,
of 5, to R such that p, converges to the trivial representation.

Pick a base point O € H3. For each t > 0, let §,; = d3(0, p,(¥,)0). Let i, € {1, ..., n} be such
that

6,; =max§d, ;.
Lin = Jéicn b
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NECK-PINCHING OF CP!-STRUCTURES IN THE PSL,C-CHARACTER VARIETY | 13 of 69

Lemma 3.9. Let t; <t, < .. be a sequence diverging to oo, such that, at t, , the indices i, €
{1,..,n} (k = 1,2,...) defined above are a fixed constant h. Suppose that there is a sequence w;, €
PSL,C such that the conjugation w p; (vp,) cot_kl =! @y - py, (¥4) converges in PSL,C, as k — oo,

u

to a parabolic element <(1) 1) in PSL,C with u # 0. Then, for every j =1,...,n, the conjugation

W, Py, (yj) accumulates to a bounded subset of (é f) that has a diameter less than |u| in C.

Proof. First, we show that, unless w, -p; (y;) — I, the limit of the fixed point set of e, - o, (¥;) C
CP! must converge to {co}. Suppose, to the contrary, that this assertion fails. Then, up to a subse-
quence, the limit set of the fixed point set of W, Py, (rj) c CP! converges to a point on CP! not
equal to co. For sufficiently large positive integers, p, w; -p;, (yhyip ) are hyperbolic elements and
their translation lengths diverge to co as p — oo ([15, Lemma 2.1.1 (iii)]). This contradicts that
Im 7, consists of only parabolic elements.

Foreachk =1,2,..., set

W, Py (V) = <aj’k bj’k> . @

ik djk

Thus, c;; — 0 and a;;,d;; — 1 as k — co. Then, the definition of /4 implies that b, , —

max, ¢, b;, ; — 0. Hence, we have the upper bound on the image in C. O

By a straight computation, we obtain the following.

Corollary 3.10. For every j=1,...,n, let Sjk>0 be a sequence in k, such that Sjx — 0 and

Vicikl

. — 0. Then, using the notation from (1), we have
j.k

S-k 0 a; b S'k 0 1 0
< JO s‘1> < M d]’k> ( jO sT1 - 0 1 @
k) \Cik  Gjk .k

ask — oo.

Moreover, Corollary 3.10 implies that the sequence max;_; _,s; in k yields the convergence
(2)forall j =1, ..., n. Therefore, we have the following.

Proposition 3.11. There is a continuous path w, € PSL,C such that w;- p,(y;) accumulates to a
bounded subset of parabolic elements in (é 01:) foreach i. Therefore, there is a continuous path w; €
PSL,C such that w, - p, converges to the trivial representation in R.

We have completed the proof for all cases.

3.1 | Approximation of moduli

Let E be a singular Euclidean surface induced by a holomorphic quadratic differential on a Rie-
mann surface X. A regular annulus Ay is a cylinder embedded in E such that there is a closed
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geodesic loop ¢ on E and the annulus Ay, is foliated by loops equidistant from #. Minsky gave a
useful approximation of the modulus of cylinders.

Theorem 3.12 ([31], Theorem 4.6; see also [34], Theorem 6.2). Let E be a singular Euclidean surface
induced by a holomorphic quadratic differential on a Riemann surface X. There are constant 0 <
¢ < 1depending on the topology of the surface, such that, for every essential annulus A embedded in
X, there is a regular annulus Ay in E homotopy equivalent to A satisfying Mod(E,) > ¢ Mod(A).

4 | HOLONOMY ESTIMATES AWAY FROM ZEROS

In this section, based on Dumas’ work on Epstein surfaces [9], we give some further analy-
sis of the Epstein surfaces in the horizontal direction. We use Dumas’ notations as below. Let
g1 = e*|dz|, g, = e®2|dz| be two conformal metrics on a Riemann surface; then the Schwarzian
derivative of g, relative to ¢, is the quadratic differential

B(g1,95) = [(2t)),, — azi — (o), + (cxl)i]dzz.

LetC =(X,q)bea CP!-structure on S. Then, we set the following notations associated with C:

* Let 7 be the hyperbolic metric on S uniformizing X.

* Let |\/§ | denote the singular Euclidean metric on X obtain by integrating \/E along paths.

* Let gop1 be the spherical metric on CP! given by some conformal identification CP! 2 S2.

* Let f: X — CP! be the developing map of C, and f*(gcp1) be the pull back of the conformal
metric gep1 by f to the universal cover X.

Then, set
w = 2B(7, f*(gep1))s
& = 2B(1/ql. f*(gep)).
v = 2B(0,4/9),

which are holomorphic quadratic differentials on X.

4.1 | Curvature of Epstein surfaces in the horizontal direction

Let k;, and k, be the principle curvatures of Ep: X — H? in the horizontal and the vertical
directions, respectively. First, by [9, Equation 3.7],

_ o] —|w]

C ]+ ol

As the Gaussian curvature x;x, = 1 ([9, p448]), we have

_ o]+ el

h= Tx .
@] — |l
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In addition, recalling that ' denotes a unit tangent vector in the horizontal direction at a
nonsingular point, we have

(18] — |w])?

Ep, H|* =
Il Ep, 7]l 20d)

(Equation 3.6 in [9, p448]). Therefore,

A 2 ~
o] + le> (I8] = Jw])?

@] = [e] 2|wa|

(kyll Ep,(R)ID? = (

(181% + |w]?)
2|d|

@ W
S1ed(l9, ey
2\ |w| &

=1+

Since @ = w — v ([9, p447]), we have

12| = 12| ao.paso,
w 1)
By [9, Lemma 2.6], we have
v(2) < 6
w(z) d(z)?

Thus, recalling that d(z) is the distance from the singular points, we have

|&(2)]
|eo(2)]

(kp(@II Ep, (' (2)II)* = 2+ 0(d(2) ™).

=1+ 0(d(z)™?), and

Therefore, we have the following.

Lemma 4.1. For all nonzero z € X of the differential g,

k(@) Ep, (' @)l = V2 + 0(d(2)™).

4.2 | Holonomy estimates of long flat cylinders

Let E be a singular Euclidean surface. A flat cylinder in E is a cylinder foliated by closed geodesics.
A cylinder A in E is expanding if there is a geodesic loop # or a puncture p on E, such that A is
foliated by a one-parameter family of circles equidistant from £ or p, respectively, whose length
strictly increases as the distance to ¢ or p increases.

LetEp : X — H?3 be the Epstein surface of a projective structure C = (X,q)onS. Leta : [0,1] —
C =~ X be an arc such that «(0) and a(1) are in X \ Z and « differentiable at both endpoints. Then,
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the curve Ep o : [0,1] — H? is differentiable at both endpoints. Let {(a) € PSL,C be such that
¢(a) takes the unit tangent vector a’(0) to &’(1) on Ep and the unit normal Ep, a(0) to the unit
normal Ep,, a(1). We call {(a) € PSL,C the holonomy (of Ep) along .

Definition 4.2. For a € PSL,C, the rotation angle in [0, 7] is the (unsigned) rotation angle of the
tangent plane of CP! at a fixed point of a.

In the case that a has two fixed points on CP?, then the “signed” rotation angle of « that takes
avalue in [-7, 7] /(wr ~ —7) at a fixed point is —1 times the “signed” rotation angle at the other
fixed point, where the sign is determined by the orientation from CP'; thus, the unsigned rotation
angle is well defined in Definition 4.2.

Let (E, V) be the singular Euclidean surface given by C = (X, q).

Definition 4.3. Let a : [0,1] — H? be a C!-smooth arc on the Epstein surface £ — H3. Let v(t)
and h(t) denote the (unit) vector fields along a tangent to the vertical and horizontal foliations of
E, respectively.

Let # be a geodesic in H3. Let H be the foliation of H* by the totally geodesic hyperbolic planes H
orthogonal to #. Note that these hyperbolic planes are isometrically identified by parallel transport
along 7, and thus, their ideal boundary circles are also identified diffeomorphically.

Suppose that v(t) is transversal to the foliation H. Let H, be the leaf of H containing a(t). The
translation length of a along # is the distance between H,, and H; (i.e., the length of the segment
of ¢ between H, and H,).

As v(t) is transversal to H, then, by the orthogonal projection H> — H,, the horizontal tangent
vector h(t) projects to a nonzero vector at the tangent space T H,. This nonzero tangent vec-
tor determines a geodesic ray in H* by being its initial tangent direction. Let 6(¢) € d. H, be the
endpoint of the geodesic ray in H, given by the tangent vector. As all ideal boundaries d . H, are
identified, 6(t) € S! lifts to 8(t) € R. The rotation angle of a about Z is the total increase of 8(t),
which takes a value in R.

Proposition 4.4. Let C; = (f;, p;) be a sequence of CP'-structures on S, and let (E;, V;) be the pair
of a singular Euclidean structure E; and a vertical foliation V; on E; induced by the Schwarzian
parameters of C;. Suppose that there are a loop m on S, a geodesic representative m; of m on E; for
each i, and a flat cylinder A; in E; contains m;, such that

* m; is in the middle of A;, so that A; \ m; is a union of two isometric flat cylinders,

* Mod(4;) » oo asi — oo, and

* the height a; of A; divergesto oo asi — .

Let m; be a segment on the universal cover E; obtained by lifting the simple closed curve m;. Then,

by parametrizing m; by arc length s € [0,length(m,)], for every € > 0, if i > 0 is sufficiently large,

then

(1) the translation length of Ep; m;(s) along ¢; is (1 + €)-bi-Lipschitz to \/E(Re I \/q_t),

(2) the total rotation angle of Ep;m; about ¢; is (1 + €,¢€)-bi-Lipschitz to \/E(Im fm_ \/q_t),
where Ep; : E; — H? denotes the Epstein surface of C;.

Proof. Isotope m; in A;, fixing a point on m;, so that m; is a union of a vertical segment u; and a
horizontal segment w; (Figure 1). Then, m; remains close to the middle of A;.
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Wy

FIGURE 1 Isotope m; to a union of a vertical and horizontal segment.

We first analyze the vertical segment Ep; |u;. In the principal direction, the normal vector is
preserved by parallel transports. Thus, the parallel transport along the curve %; |u; yields the holon-
omy ¢;(u;(s)) € PSL,C. By the hypotheses, the distance from the loop u; U w; and the set Z; of zeros
of the differential g; diverges to co. Therefore, by Lemma 2.5 (4), the curvature along Ep; |u; limits
to zero, and it asymptotically has a constant speed \/5 by Lemma 2.5 (2), so that its length is \/5
times the Euclidean length of u;, which yields (1).

To analyze the total rotation angle in the vertical direction, we next consider the total curvature.
In a more general setting, the following holds.

Lemma 4.5. For every € > 0, if R > 0 is sufficiently large, then, if a vertical segment u on a CP'-
surface C has Euclidean length less than R /¢, then total curvature of the curve Ep |u is less than e,
where Ep : C — H? is the Epstein surface of C.

Proof. The curvature of the curve Ep |u at every point on u is bounded from % by Lemma 2.5 (4).

Since, by the hypothesis, the length of u is bounded from above by 5;_, the total curvature along u
is bounded from above by

R 6 _6
€ R2 ¢€R
Therefore, if R > e% then the total curvature along u is bounded from above by e. O

In our current setting, as a; — oo and Mod(4;) — oo, one can easily show that, for every ¢, the
vertical segment u; satisfies the conditions of Lemma 4.5 when i is sufficiently large. Thus, the
following corollary holds.

Corollary 4.6. The total (principal) curvature of the vertical segment Ep; |u; limits to zero asi — oo.
‘We next show that the rotational holonomy along u; asymptotically vanishes as i — oo.
Lemma 4.7. For every € > 0, if R > 0 is sufficiently large, then, if a vertical segment v on a CP!-

surface C has length less than R /e and a distance at least R from the singular set w.r.t. the singular
Euclidean structure of C, then, letting Ep be its Epstein surface, the derivative of rotation of its
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FIGURE 2 Infinitesimal change of the rotation angle n’(t).

Ep-image is bounded from above by €. Moreover, the total rotation of its Ep-image bounded from
above by € with respect to the geodesic ¢ connecting the endpoints of Ep.

Proof. Fix € > 0. Let v be a vertical segment on C of length less than R/e. Let a : [0,7] — H?
be the curve Ep o v, where # is the Euclidean length of v. Let s(t) be the geodesic segment in
H3 connecting a(0) and a(t) for each t € [0,7]. For u € [0,7], let Ep(u) be the surface which
s(t) sweeps out over t € [0,u], so that Ep(u) is bounded by ([0, u]) and the geodesic segment
s(u) connecting its endpoints. Then, the intrinsic metric of Ep(u) is a hyperbolic surface. Then,
if R > 0 is sufficiently large, then Ep(u) isometrically embeds into a hyperbolic plane H? so that
its image is bounded by a geodesic segment isometric to s(u) and a curve isometric to a(u). The
curvature of the second segment is bounded from above the curvature of «|[0, u] at every point.
Therefore, if R > 0 is sufficiently large, then the area of Ep is less than ¢ by the Gauss—Bonnet
theorem to Ep, since the total curvature « is small. Let n(t) denote the unit normal vector Ep,,
at u(t). Let n’(t) be the parallel transport of n(t) along the geodesic segment s(¢), so that n’(t)
be a tangent vector at «t(0). By the Gauss-Bonnet theorem, the norm of the derivative dn’(t)/dt
is bounded from above by the curvature of a and the derivative of the area of Ep(¢) (Figure 2).
Thus, the total rotation of n/(¢) from ¢ = 0 to t = £ is bounded from above by the sum of the total
curvature of o and the total area of Ep. Therefore, by the combination of the small upper bounds
above if R > 0 is sufficiently large, the total rotation is bounded by €. [l

Next we analyze the holonomy along the horizontal segment w;. By Lemma 2.5 (1),

6lengthy m;

length, s Ep; w; <
g H3 pl 1 (ai/3)2

s

asi — oo.

Proposition 4.8. Let v;(t) denote the tangent vector of Ep; at Ep; w;(t) in the direction of V;. For
every € > 0, if i is large enough, then along w;, Ep* w;(t) is contained in an e-ball in the unit tangent
bundle T'H3.

Proof. Let E; be the universal cover of E;. Pick a lift @; of the vertical segment u; in E; to E;. Let R,
be a Euclidean rectangle, in Ei, bounded by vertical and horizontal edges, such that w; divides R;
into two isometric rectangles of half height (Figure 3, left). We may in addition assume that the
height of R; divided by the width of R; goes to zero as i — oo.

The vertical foliation V; and the horizontal foliation H; of E; induce a vertical and a horizontal
foliation of R;. By Lemma 2.5 (2), for every ¢ > 0, if i is large enough, the restrictions of Ep; to
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FIGURE 3 The Epstein-map image of a horizontal segment far away from the zero set.

vertical leaves in R; are (V2-e 2+ €)-bi-Lipschitz. By Lemma 2.5 (1), the Ep;-images of the
horizontal leaves in R; have diameters less than €. Therefore, for sufficiently large i, the images of
vertical leaves of R; are pairwise e-close in the Hausdorff metric (Figure 3, right). As v; is tangent
to the image of such a vertical leaf, we have the lemma. O

‘We have already shown a good approximation of the holonomy along the vertical segment u;.
For every € > 0, if i is sufficiently large, then the translation length along u; is (1 + ¢)-bilipschitz
to /2 times the Euclidean length of u; and the rotation is less than ¢ (Lemma 4.7). On the other
hand, by Proposition 4.8 and Lemma 4.1, if i is sufficiently large, then the total rotation along the
horizontal segment w; is (1 + ¢, €)-bi-Lipschitz to \/E times the Euclidean length of w; and the
translation is less than €. Thus, we obtained, (1) and (2).

4.3 | The exponential map and Epstein surfaces

Recall that, given a CP!-structure C = (X, qg)on S, for x € C, d(x) is the Euclidean distance from
the singular set of the singular Euclidean structure E induced by the holomorphic quadratic dif-
ferential q. Note that, if x € C is not a singular point of E, then there is a neighborhood U of x in
E so that U is isometrically embedded in the Euclidean plane C = E? so that vertical leaves of E
in U map into horizontal lines of C, and horizontal leaves map into vertical lines.

Consider the exp: C — C \ {0}. Its domain C is isometrically identified with the Euclidean
plane E2, and the codomain C \ {0} admits a push-forward Euclidean metric. Note that this
induced Euclidean metric on C \ {0} is invariant under the dilations C —» C : z — kz for all
k € C \ {0}. Therefore, given, any two distinct points p, g in CP!, by a conformal mapping from
CP!\ {p,q} to C \ {0}, the complement CP! \ {p, g} has the push-forward Euclidean metric. By
abuse of notation, we denote this composition by exp: C — \{p, q} and call it the normalized
exponential map.

Let (p, g) be the geodesic in H* connecting p to g. Recalling that CP! is the ideal boundary
of H3, let W: CP' \ {p,q} — (p,q) be the orthogonal projection along a geodesic rays in H3. Let
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W, : CP'\ {p,q} —» T'H? be the map taking z € CP! \ {p, g} to the unit tangent vector at ¥(z) €
H? that is tangent to the geodesic ray from ¥(z) to z € dH?3.

For r > 0, let Q,(z) be a r-neighborhood of a point z of the singular Euclidean surface E in the
L*®-metric (w.r.t. the vertical and the horizontal directions). If Q,(z) contains no singular point,
then it is a square with horizontal and vertical edges of length 2r.

Proposition 4.9. For every € > 0, there is R > 0 such that, if z € C satisfies d(z) > R, then we
have a normalized exponential map exp: C — CP! \ {p, q} and can isometrically embed the %
neighborhood Q, (z) of z in C exchanging the horizontal and the vertical directions, such that, in
the C%-metric,

%),

(1) the restriction of the Epstein surface X to Q, /e(z) ise-closetow — ¥, exp(
(2) therestriction of £, to Q, () of z is e-close to w — ¥, exp( \/_) and

(3) the restriction of the developing map f to Q, /.(2) is e-close to the normalized exponential map.

Proof. We prove the desired approximations by showing them along all leaves of the restriction
of the vertical foliation V and the horizontal foliation H to the square Q /E(z).
For every ¢’ > 0, by Lemma 2.5 and Lemma 4.7, if R > 0 is sufficiently large, then

(i) the restriction of X to each leaf of the vertical foliation V in Q1 (z) is a smoothly (\/_ —
6,

2 + ¢’)-bilipschitz embedding,

(ii) the restriction of X to each leaf of the horizontal foliation H in Q 1 (z) has derivative less than
E,

¢/, and
(iii) the derivative of the rotation of X, along a vertical leaf in Q 1 (z) is bounded from above by

¢/, and the total rotation along the leaf is also bounded from above by €'
Pick a vertical leaf v, in Q1(z), and let # be the geodesic in H* passing through the endpoints

of the (\/5 —é, \/E + ¢’)-bilipschitz curve Z|v,. We normalize the exponential map with respect
to the endpoints of this geodesic. Then, (i) and (ii) imply (1) with this normalization.

We next show (3). We first analyze f on each vertical leaf. By (i) and (iii), the restriction of the
developing map f to v, is €’-close to the normalized exponential map, by isometrically embedding
e onto C = E? in the scaled Euclidean metric \/EE (i.e., the metric on v, is scaled by \/5).

The Z-images of horizontal segments are very short curves in H3. Therefore, for every ¢/ > 0, if
R > 0is sufficiently large, then for each vertical leaf v of Q1 (z), the restriction of f to v is ¢’-close
to the restriction of the normalized exponential map to a vertical segment in C by isometrically
embedding v w.r.t. \/EE

Next, we analyze f on horizontal leaves. Let h be a horizontal leafin Q1 (z). Consider the vector
field along & consisting of the unit vectors in the vertical direction. Then,sfor everye’ > 0,ifR >0
is sufficiently large, then, as in the proof of Proposition 4.8, the image of the tangent vectors is
¢’-close to each other in the C°-topology. By the curvature estimate along the horizontal direction
in Lemma 4.1, for every ¢’ > 0 if R > 0 is large enough, the amount of the total rotation of f
along every horizontal segment in Q1(z) is close to the horizontal length times \/5 Therefore,
a restriction of f to every horizontal€ segment h is €’-close to the restriction of exp when h is
isometrically embedded onto a horizontal segment after scaling the length of h by \/E Therefore,
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a restriction of T, to every horizontal segment h is ¢’-close to the restriction of ¥, exp when h is

isometrically embedded onto a horizontal segment w.r.t. the \/EE -metric.
We proved that the restrictions of f to horizontal and vertical leaves in Q1(z) are ¢’-close to

the normalized exponential map when Q1 (z) is isometrically embedded in C. This immediately

implies (3).
Finally, (1) and (3) immediately imply (2), since f(z) and W(z) determines ¥, (z).

5 | HOLONOMY MAPS FOR SURFACES WITH PUNCTURES
5.1 | Classification of cusps of CP!-structures

Definition 5.1. Let F be a surface with punctures. A CP!-structure on F is a pair (X, q) of a
Riemann surface structure X on F and a holomorphic quadratic differential g, such that at each
puncture of X, g is at most a pole of order 2.

This class is a natural class to consider, especially in our setting due to the upper injectivity
radius bound (see Theorem 6.1).

Proposition 5.2. Let F be a closed surface with at least one puncture c such that the Euler charac-
teristic of F is negative. Let C = (f, p) denote a CP'-structure on F expressed by a developing pair.
Denote by ¢, the peripheral loop around c. Let C = (t, L) denote Thurston parameters, and (E, V') be
the singular Euclidean structure E with the vertical foliation V' given by the Schwarzian parameters
of C.

(1) Suppose that a cusp neighborhood of c in E is an expanding cylinder of infinite modulus
shrinking towards c. Then,
* o(Z,) is parabolic,
* c has a horodisk quotient neighborhood, and
* in Thurston parameters (t,L), ¢ also has a horodisk quotient neighborhood where the
lamination L is the empty lamination.
(2) Suppose that a cusp neighborhood of c in E is a (half-infinite) flat cylinder F of infinite modulus.
Then, exactly one of the following holds.
(a) The circumferences of F are not orthogonal to V, p(¢,) is hyperbolic, and \/5 / ‘ \/E is its
complex translation length.
In Thurston parameters, the cusp c corresponds to boundary component b of T whose
length is the real part of the translation length (in C/2miZ).
(b) The circumferences of F are orthogonal to V.
« If\/2V(¢,) is not a 27r-multiple, then p(¢,) is an elliptic element of angle \/Eff\ Va (e
R). In Thurston parameters, c is a cusp of T and the total weight of leaves of L around ¢
(counted with multiplicity) is, modulo 27, equal to the rotation angle of p(Z ).
o If \/5 V(Z.) is a 2r-multiple, then p(Z,) is either the identity I or a parabolic element. In
Thurston parameters, c is a cusp of T and the total weight of L around c is the 2rr-multiple.

In (2b), by “counted with multiplicity,” we mean that, if a single leaf of L has both endpoints at
¢, the weight of the leaf is counted twice.
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Proof.

@

@

(2a)

(2b)

5.2

We first describe an intuition, and then make it precise. As the Euclidean distance to the
cusp is finite in E, in the hyperbolic metric on X, the quadratic differential g vanishes
asymptotically toward the cusp c. A Riemann surface with the zero differential (in our
parametrization) corresponds to a hyperbolic structure.

To make it precise, for t > 0, let D, be the punctured disk of radius t centered at c. Note
that the ¢ may be the zero of the quadratic differential g induced by C. Thus, if t > 0 is
small enough, D, is a union of the Euclidean semidisks of radius ¢ foliated by geodesics
parallel to the diameter segment. Consider the restriction of q to D,. Then, by conformally
identifying a once-punctured unit disk with D,, the holomorphic quadratic differential on
D, the differential goes to zero uniformly on every compact subset as t — 0.

The solution of the Schwarzian equation depends continuously in the differential. As a
punctured disk with the zero differential corresponds to a hyperbolic structure & with a cusp
at the puncture, and the holonomy around the cusp is parabolic. Therefore, the developing
map of D, converges to the developing map of the hyperbolic cusp-neighborhood structure
h, which is a quotient of horodisk by the infinite cyclic group generated by a parabolic ele-
ment. By the equivariance property of the developing maps, the holonomy of D, around the
cusp must converge to a parabolic element, and as the holonomy of D, around the cusp is
independent of t > 0, the holonomy is genuinely parabolic. Moreover, if one deforms a lit-
tle bit the hyperbolic structure h on the punctured disk to any other CP!-structure on the
punctured disk keeping the holonomy around the cusp parabolic, it still contains a horodisk
quotient as a cusp neighborhood. Therefore, c has a horodisk quotient neighborhood in C.

In Thurston parameters, c is a cusp of 7, and L is the empty lamination in a sufficiently

small neighborhood of c.
By Proposition 4.9, the developing map of the half-infinite flat cylinder becomes closer and
closer to the exponential map exp : C — C* as a point in the domain approaches the cusp,
where, in the domain C, the vertical direction corresponds to the real direction and the hor-
izontal direction corresponds to the imaginal direction (to be precise, the exp is composed
with the calling to the domain C by \/5). Thus, the assertions about the holonomy along
Z. hold.

It remains only to show the description in Thurston parameters.

By Proposition 4.4, outside of a large compact set of F, all circumferences of F are admis-
sible loops. Therefore, an appropriate neighborhood of ¢ corresponds to an infinite grafting
cylinder. By [4, Proposition 8.3], the hyperbolic surface 7 has a (possibly open) boundary
component corresponding to ¢, and its boundary length is indeed the translation length of
the hyperbolic element p(#,).

The developing map in an appropriate cusp neighborhood is the exponential mapexp : C —
C* so that the deck transformation corresponds to the translation in the imaginary direction
in the domain.

Therefore, c is a cusp of T and the total weight of leaves of L near ¢ must be the length of

the circumference times \/E (Proposition 4.4 (2)).

| PSL,C and fixed points on CP’

In order to construct an appropriate holonomy map for a surface with punctures, we will make
PSL,C slightly bigger as a topological space, by carefully pairing its elements with their fixed
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points on CP!. Let (CP1)2/Z, denote the set of unordered pairs of points on CP!. Let PSL,C be
the set of all pairs (y, A) € PSL,C x ((CP')?/Z,) such that

* ifyisahyperbolic element with zero rotation (i.e., try € R \ [—2, 2] when y islifted to SL(2, C)),
then A is a pair of (not necessarily distinct) fixed points of y, and
» otherwise, A is the pair (a, a) of identical fixed points a € CP! of y.

We call the pair A a framing. In particular, if y = I, then A can be (a, a) for any a € CP!. The
second case also includes the case where y is a hyperbolic element with nonzero torsion. (By
abuse of notation, if A is a pair (a, a) of identical points on CP?, for simplicity, we may regard A
as a single point a.)

Fock and Goncharov introduced a framing of a representation, which equivariantly assigns a
single fixed point to each peripheral element ([14]). What is new here is that we are assigning a
pair of fixed points in the first case.

Next, we define a (non-Hausdorff) topology on P/SLZ\C by the following open base of
neighborhoods at each (y,A) € ﬁLZ\C

+ If y is hyperbolic, then, for every (small) connected neighborhood U of y in PSL,C consisting
of hyperbolic elements, the set of all pairs (y/,A’) € m such that
o iftryisreal and A = 2, then for y’ € U with try’ real, A’ = 2, and
o otherwise y’ € U and, A’ is a pairs of identical points identified with A by identifying the
fixed points of y with those of ¥’ by a path connecting y to y’ in U.
 Ify is not hyperbolic, then the topology near (¥, A) is given by the product topology of PSL,C X
(CPY)? /7, equipped with the Hausdorff topology on (CP')?/Z,.

Remark 5.3. Let C = (f, p) be a CP!-structure on a surface with punctures. Let a € 7,(S) be such
that its free homotopy class is the peripheral loop around a cusp ¢ of C. Then, y corresponds to a
unique element in (CP')?/Z, as follows: As the universal cover C of C is conformally identified
with H? by the uniformization, let ¢ be the point on the ideal boundary of dH? fixed by a € 7,(S).
Let (7,L) € T X ML be the Thurston parametrization of C, and let £ be the circular measured
lamination on C that descends to L. For each leaf # of £ ending at ¢, the corresponding endpoint
of the circular arc f(#) on CP! is a fixed point of p(«). If £ is nonempty in a small neighborhood
of the cusp, let A be the set of such half leaves of £ ending at c. Then, « corresponds to a unique
element (p(a), A) in m If £ is empty near the cusp, an appropriate cusp neighborhood of c is
a horodisk quotient, and « corresponds to (o(a), A), where A is the parabolic fixed point of p(«).

5.3 | Cusp neighborhoods in Thurston parameters

The following lemma determines the isomorphism classes of cusp neighborhoods of CP!-
structures in Thurston coordinates.

Lemma 5.4. Let C = (f, p) be a CP'-structure on a surface F with cusps. Let C = (t, L) be Thurston
parameters of C. Then, for each cusp c of C, its small neighborhood (i.e., its germ) in C is determined

by

* the holonomy h € PSL,C around c,
* the transversal measure of a peripheral loop around c given L, and
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hyperbolic

different spiraling directions

elliptic, parabolic, identity

FIGURE 4 Cusp neighborhoods in Thurston parameters.

FIGURE 5 The opposite spiral directions give the holonomy the opposite rotational directions.

* if h is hyperbolic, the direction in which the leaves of L spirals toward the boundary component.

(See Figure 4.)

Proof. Let (E, V) be the pair of a singular Euclidean structure E on F, and V be a vertical foliation
on E induced by C.

Hyperbolic Case. First, suppose that h € PSL,C is hyperbolic. Then, by Proposition 5.2, its cusp
neighborhood, in (E, V'), corresponds to a half-infinite cylinder A, and the complex translation
length is v/2 /. ,. 1/q, where 7, is a peripheral loop of c.

The developing map f of a small neighborhood of c is a restriction of the exponential map
C — C*.Thus, the complex translation length determines the deck transformation on the domain
C by Z =~ (¢,), which determines the CP!-structure of a small cusp neighborhood.

The cusp ¢ corresponds to the geodesic boundary circle b of T whose length is equal to the
translation length of h. By the properties of bending maps, one can show that the total weight of
L along 7, times \/5 is the rotational angle of h and the direction of rotation in which leaves of L
spiral toward b determines the orientation of the angle (Figure 5).

Parabolic Case. Suppose that h is parabolic.

If a neighborhood of a cusp c in E is an expanding cylinder shrinking towards c, then a
neighborhood of c in (7, L) is a hyperbolic cusp with the empty lamination (Proposition 5.2 (1)).
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Next, suppose that the cusp neighborhood of ¢ in (E, V) is a half-infinite flat cylinder A in E.
Then, the circumferences of A are orthogonal to V, and \/EV(K .) is a positive 2zr-multiple.

Let Ep : X — H? be the Epstein map associated with C = (X, q). Let V be the pullback of V' to
the universal cover of E, and let é be the lift of ¢ to the ideal boundary of X =~ H?. Lety € 7,(F) be
the element that fixes ¢ such that its free homotopy class is #... Then, for every leaf # of V ending
at ¢, its image Ep(¢) is indeed a quasi-geodesic limiting to the parabolic fixed point of p(y) on
CP!, and its curvature of Ep(#) converges to zero as it approaches the fixed point by Lemma 2.5.
Therefore, ¢ corresponds to a cusp of 7. By Proposition 4.4, the total weight of the leaves must be
Vav(£,).

Elliptic case. The proof when # is elliptic is similar to the parabolic case.

Let D be the unit closed disk in C centered at the origin O. Let D* = D \ {O}, and let £ be the
peripheral loop around the origin. Let P(D*) denote the space of all developing pairs (f, h) for
the CP!-structures on D \ {O} (not up to PSL,C) so that O is a cusp and the boundary circle is
smooth, where f : D* — CP! is the developing map and h € PSL,C is the holonomy along 7.
Recall from Remark 5.3 that each cusp corresponds to a unique element (y, A) in PEIE Let D*
be a subsurface of D* obtained by removing a regular neighborhood of the boundary circle of D*.

By the following proposition, the deformation of the CP!-structures of the cusp neighborhoods
is locally modeled on m

Proposition 5.5. Let F be a closed surface minus finitely many points, and let C be a CP!-structure
on F, and pick its developing pair (f, p). Then, each cusp c of C has a disk neighborhood ~ = (f,y) €
P(D*) of ¢ in C with the following properties:

(1) Let(y,N) € ﬁLZ\C be the element corresponding to the peripheral loop around c. Then, for every
€ > 0 and every compact subset K of the universal cover Z, there is a subset U = U(K, €) of (y, A)
in m such that, for every (y',A") € U,
(@) iftA = 1, then thereis X' = X/ (y',A’) € P(D*) with holonomy y' and the framing A, such
that its developing map ' of 2(y’, \') is e-close, in C'-topology, to the developing map f of
Yink,
(b) iftA = 2, then there is a neighborhood W of y in PSL,C, such that, for everyy’ € W, there is
¥ =3y, N) € P(D*)with holonomyy’ and a unique framing A, such that its developing
map f'" of (y’, A') is e-close, in C*-topology, to the developing map f of £ in K.
(2) Moreover, X' is uniquely determined on D* by an isotopy of D* (uniqueness near the cusp).

Proof of Proposition 5.5. We divide the proof by the isometry type of y. In each case, we con-
struct a deformation of £ in a small neighborhood in F§L2\C by specifying the deformation of a
fundamental membrane.

Elliptic Case. First, suppose that y =1 or y is an elliptic element. Then, the puncture O
corresponds to a unique point f(0) on CP! by continuously extending f. Then, pick a cusp neigh-
borhood X biholomorphic to a punctured disk, such that the development of the boundary circle
is a round circle a on CP! and there is a unique Lie subgroup of PSL,C isomorphic to SO(2) that
preserves a and f(O). We identify CP! with C U {co} so that the puncture f(O) is at the origin and
a is the unit circle of C centered at the origin f(O).

Pick a “fan-shaped fundamental domain” in D* bounded by three circular arcs e;, e,, e; such
that
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FIGURE 6 Perturbing a fundamental membrane of a cusp with elliptic holonomy.

* fle; and f'|e, are radii of « connecting f(O) to points on «, so thaty f (e;) = f(e,) are orthogonal
to a, and
* fle; immerses into «, and it connects the endpoints of e; and e,

(Figure 6, left). Let q be the endpoint of the arc f(e;) onr.

If the neighborhood U of (y, f(0)) is sufficiently small, then given (y’, A’) € U, one can easily
construct a CP!-structure ¥’ = (f’,y") close to £ on D* realizing (¥, A’). Indeed, we pick z € A/,
we can construct a fundamental membrane bounded by e;, eg, eg such that,

(1) f’(e})is a straight line on C connecting z and fq,

(2) f'(e))is y'(f’(e})) (which is a circular arc connecting z and y(q)),

3) 1’ (e;) is an arc connecting q to y(q) so that f (eg) is a segment of a trajectory under a one-
dimensional Lie subgroup of the affine transformations of C preserving z, and

(4) f'(e;)is close to f(e;) in the Hausdorff topology on CP!.

(See Figure 6, right). (The choice of z may not be unique if r is identity and tr’ € R \ [-2, 2],
i.e., hyperbolic without screw motion.)

On the other hand, one can easily see that, for every small deformation X’ of X, there is a
“fan-shaped” fundamental membrane satisfying all conditions (1)-(4) such that the fundamental
membranes coincide on D*. Therefore, we have the uniqueness property of X’ near the cusp.

Generic hyperbolic case. Let (7,L) be the Thurston parametrization of C, and let £ be the
Thurston lamination on C. Let £ be the peripheral loop around O. Suppose that y is hyperbolic
and L(?) # 0, so that A is a single point. Then, 7 has a geodesic boundary loop b corresponding to
the cusp c and, as L(¢) > 0, leaves of L spiral towards b. Let b be a lift of b to the universal cover 7
of 7, so that b is a boundary geodesic of £. Then, those spiraling leaves lift to geodesics in # having
a common endpoint at an endpoint of b; by the bending map 8 : # — H3, the endpoint maps to
the point A. Accordingly, the leaves of £ near the cusp O develop onto circular arcs ending at A.

Normalize CP! = C U {oo} by an element of PSL,C, so that 0 = A and the other fixed point of
y is at o0. Let (E, V) be the foliated singular Euclidean structure given by C. Then, there is a half-
infinite flat cylinder A in E that corresponds to a cusp neighborhood of ¢ ; then each circumference
has a positive transversal measure given by the horizontal foliation. Therefore, one can take a cusp
neighborhood = bounded by a loop m such that m develops onto a spiral on CP?, that is, a curve
invariant under a one-parameter subgroup in PSL,C that contains y.

Take, similarly, a “fan-shaped” fundamental domain F in the universal cover £ that is bounded
by three smooth segments e, e,, e; such that
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FIGURE 7 Perturbing a fundamental membrane of a cusp with a hyperbolic holonomy.

* ¢, and e, are half-leaves of £ such that ye, = e, and the circular arcs f(e;) and f(e,) end at
0 € C,and

* f(e3)isin asegment of the spiral that connects the other endpoints of f(e;) and f(e,) (Figure 7,
left).

Then, y(f(e;)) = f(e,) by the equivariant property.

Take a sufficiently small neighborhood U of (¥, A) such that the subset W C PSL,C of holonomy
elements of pairs in U consists of only hyperbolic elements closed to y; then, for all (', A’) € U,
the fixed point A’ of the hyperbolic element y’ uniquely corresponds to the fixed point of y in A
by every short path connecting ¥’ to y in W. Then, similarly to the elliptic case, one can easily find
a CP!-structure on D* close to X that realizes (y’, A’), by constructing a fundamental membrane
close to F (Figure 7).

On the other hand, for every small deformation = of X realizes (y’, A’), one can easily find a
fundamental membrane of X' so that it coincides on D* with that of ¥’ constructed above.

Special hyperbolic case ({A = 2). Suppose that y is hyperbolic and L(#) = 0 (in particular, try €
R). Then, the boundary component b of 7 is a leaf of L with weight infinity ([4, Proposition 8.3]).

Let x : C — 7 be the collapsing map. Then, x~'(b) =: F is a half-infinite cylinder. The devel-
oping map of F is the restriction of exp : C — C* to a half-space bounded by a horizontal line in
C. Then, we identify the universal cover F of F with the half-space, so that y acts as a horizontal
translation ty. Take a fundamental domain Q in F such that Q is a vertical half-infinite strip in C
bounded by two vertical rays and one horizontal segment (Figure 8).

If W is a small neighborhood of y in PSL,C consisting of hyperbolic elements, for everyy’ € W,
there is a translation ¢,, of C (close to the horizontal translation ty), such that t,, descends to y' by
the exponential map up to PSL,C. Therefore, there is a small deformation of ¥ realizing (y’, A’),
and (1) holds.

On the other hand, arbitrary deformations of the cusp neighborhood F contain such a deforma-
tion of such a half-infinite strip fundamental domain on D. Moreover, if U is sufficiently small,
then if there are two ¢-small deformations of F with the same framed holonomy (y’, A”), up so
isotopy, the structures on D* coincide by the e-closeness to F. Thus, the uniqueness holds (2).

Parabolic case. Suppose that y is parabolic. Then, in Thurston parameters, the puncture corre-
sponds to a cusp of the hyperbolic surface 7, and the total weight of L along the peripheral loop
¢ is a nonnegative 2zz-multiple. Then, similarly to the case that y = I, we can show the claim by
finding a cusp neighborhood and a fundamental domain in its universal cover that is bounded by

circular arcs.
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FIGURE 8 Deformation of a hyperbolic cusp neighborhood.

5.3.1 | Holonomy maps of CP!-structures with cusps

Let F be a closed surface minus finitely many points p,, ..., p,,. Recall that P(F) denotes the space
of all developing pairs (f, p) for CP'-structures on F. Let (f, p) € P(F). Then, (f, p) gives a CP!-
structure on F, and we let X be its induced complex structure on F. Identify the universal cover X
of X with H?; then for eachi = 1, ... n, pick alift p; of p; to a point on the ideal boundary of X. Then,
by Remark 5.3, for every (f, o) € P(F) and a puncture p;, we have a corresponding element in
i) € ﬁLZ\C Thus, by the definition of the topology of ﬁLz\C we have a continuous mapping
from hol : P(F) — (PSL,C)" x R(F) taking (f, p) € P(F) to ((7;, A}, p). In fact, hol yields a
holonomy theorem in our setting.

Theorem 5.6. Every (f,p) € P(F) has a neighborhood W such that
hol |[W

is a local homeomorphism onto its image. Moreover, for any (f, o) € P(F), if thereis a path p, (t >
0) converging to p in R(F) ast — oo, then there is a lift of p, to a path in P(F) for t > 0 converging

to (f,p)-

Remark 5.7. The image of hol(W) is contained in

{(O/i’AL')?:l’ ;O) | P € W’P(“i) = yi (l = 1’27 ,l’l) }

Furthermore, its subset cut by the condition on the framing given by Proposition 5.5 (1) determines
the local image hol(W).

Proof. Let (f,p) € P(F), and let C be the CP!-structure on F given by the developing pair (f, p).
Applying Proposition 5.5 to a small € > 0, we obtain, for each i =1, ..., n, a (small) cusp neigh-
borhood C; of the puncture p; of C, and a neighborhood U; of (¥;,4;) in m modeling the
deformation of C;. Let N; be the underlying topological cusp neighborhood of the punctured sur-
face F supporting C;. Without loss of generality, we can assume C, ..., C,, are disjoint in C. Let
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C! be an open cusp neighborhood of p; smaller than C; and U; be a subset of ﬁLZ\C containing
hol((f, p)) given by Proposition 5.5(2), such that the small deformation of C; on Ci’ is parametrized
the framed holonomy in U;.

Let N i” be an (even smaller) cusp neighborhood of p; whose closure is contained in the inte-
rior of N l’ .Let F be F\ ;N l’ ', and let C be the restriction of C to F. For every (ylf , Ag ) € U,, let
Ci(y],A}) denote the unique CP'-structure on N/ with the framed holonomy (y/, A]) € U, such
that C;(y], A!) is sufficiently close to C;.

We shall regard (f, p) as a smooth section T of a CP!-bundle B over F such that T is transversal
to the horizontal foliation H, associated with p (see, e.g., [18]). Let 3 be the restriction of T to
the bundle over the subsurface F. Then, there is a neighborhood U of p in the representation
variety R(F) such that, for each & € U, letting H ¢ be the horizontal foliation of B associated with
£, 2 is still transversal to H ¢ by the openness of transversality; then % yields a projective structure
C; on F with holonomy £. In this way, we obtain a unique CP!-structure on F close to (f, o) on
F. This new structure is unique in a compact subset of F whose interior contains the closure of
F\ UL N/

For each i, pick any A; in Fix &;(y;) € CP! so that (£;(y;), A\;) € U;. Then, C;(&,(y,), AA;) is its asso-
ciated deformation. Then, we can glue C ¢ and C;(§;(y;), ;) in the overlapping region, and obtain
a desired developing pair for a CP'-structure on F. Consider the subset W in IT"_ U; x R(F) con-
sisting (y;, Ai)in:p p) satisfying p(a;) = y; (i = 1,2, ..., n); clearly, W contains hol(f, p). In this way,
given a sufficiently small neighborhood of hol((f, p)) in this subset W, for every element in this
neighborhood, we construct a developing pair realizing it. This new CP!-structure on F is unique
by the uniqueness of the thick part Cv‘g on F\ UN l’ and the uniqueness of the cusp neighborhoods
Ci(&(ri), Ay) on Nl-,-

Notice that W projects to a neighborhood of p in R. The path lifting along a path in R easily
follows from the construction as U is a neighborhood of p in R(F).

6 | BOUND ON THE UPPER INJECTIVITY RADIUS

Recall that C, = (f,, p,) is a path of CP! structures on S such that C, diverges to co and the equiv-
alence class [p,] =: 5, converges in the character variety as t — oo. Recall also that C, = (X,,q;)
is the expression in the Schwarzian parameters.

1
Let E, be the singular Euclidean structure on X, given by |q|. Let R(E,) > 0 denote that the
upper injectivity radius of E,. In this section, we show the following.

Theorem 6.1. Suppose that X, is pinched along a multiloop M. Then, the upper injectivity radius
R(E,) of E; is bounded from above for all t > 0.

Immediately, we have the following.
Corollary 6.2. There is an upper bound for the area of the expanding cylinders in E, forall t > 0.
The rest of this section is a proof of Theorem 6.1. We suppose, to the contrary, that

lim sup R(E;) = oo and show that p, cannot converge. Let M, be a geodesic representative of M
on E, (in the Euclidean metric) such that, for every € > 0 if t > 0 is sufficiently large, then M, is
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contained in the e-thin part of X,. We will find a conformally thick part that is, in the Euclidean
metric, bigger than its adjacent thick parts.

Lemma 6.3. Suppose that there is a diverging sequence (0 <)t; < t, < ... such that E, contains a
flat cylinder A; homotopy equivalent to a fixed loop m of M such that

€] ModAtl_ — ooasi — oo, and
(2) the circumference of A, limits to co (equivalently Area A, — oo) asi — oo.

Then, leaves of the vertical foliation V. must be asymptotically orthogonal to the circumferences
of A,
Proof. Suppose, to the contrary, that V; is not asymptotically orthogonal to circumferences. Then,
up to a subsequence, we may assume that there is alimiting angle 6, € [0, 7/2) between the angle
between V; and the circumferences of A, . Let m; be a geodesic representative of m which sits
in the middle of A, . Since 6, # 7/2, Hypotheses (1) and (2) imply that the transversal measure
of the horizontal foliation H, along m, diverges to infinity as i — co. By Proposition 4.9, the

translation length of p[i(m[i) is asymptotically \/5 times the transversal measure. Therefore, the
translation length of ,o[l_(mtl_) must diverge to infinity, which contradicts the convergence of [p;]
ast — oo. Ll

Proposition 6.4. Suppose that there are a component F of S\ M and a diverging sequence
(0 <)ty <t, < ... such that, letting F, be the component of E; \ M, homotopic to F on S,

. AreaEt_ Fz,- —> ooasi — oo, and

* for each boundary component ¢ of F, there is an expanding cylinder B, in F, bounded by the
boundary component ¢; othl_ homeotopic to ¢ on S such that
o By, shrinks toward ¢;, thatis, ¢, is the shorter boundary component of B, ;., and
o ModB,; — o asi— oo.

Then, [Pti]|7T1F divergesto oo in y asi — oo.

Proof. Let k; > 0 be such that k; Area(F,i) =1foreachi=1,2,.... Then, as AreaFti — o0, thus
k, — 0 asi— oco. All ends of F; have conformally long expanding cylinders shrinking towards
adjacent components. Take a base point in the thick part of F . Let F denote the compact sur-
face with finitely many punctures, obtained by pinching the boundary loops of F to puncture
points. Then, the space of all holomorphic quadratic differentials on Riemann surfaces structures
on F with Euclidean area one is a sphere of finite dimension. Then, by compactness, up to a
subsequence

* k;E, converges, in the Gromov-Hausdorff topology, to a compact singular Euclidean surface
minus finitely many points, E_,, which is homeomorphic to F, and
* the restriction of k;V; to k;E,; converges to a measured foliation V, on E.

Take a piecewise geodesic loop # on E, such that

(1) ¢ does not cross any singular point of E,
(2) each segment of # is either vertical or horizontal, and # contains at least one vertical segment,
and
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Y

FIGURE 9 Staircase closed loops # consisting of long vertical segments and short horizontal segments.

(3) 7 is a geodesic in the L*®°-metric, so that at adjacent singular points, £ bends in the different
direction by an angle 7 /2.

In fact, if V contains a periodic leaf, then take it as #, which obviously satisfies the conditions.
Otherwise, V, contains a minimal irrational subfoliation, using the density of each leaf in the
subfoliation, a standard closing lemma gives a desired loop # as in Figure 9 (see [ 7, 1.4.2.15]). By the
convergence k;E; — E, for i large enough, we pick a piecewise geodesic loop ¢; on E; satisfying
the properties (1)-(3) such that #; has the same number of horizontal and vertical segments as
¢ has, and k;¢; on k;E; converges to £ on E_, smoothly on each segment as i — oo. Then, the
distance from £; to the singular set of E; goes to oo as k; — 0. Therefore, by Proposition 4.9, o, )

is a hyperbolic element of translation length close to \/5 times the total length of the vertical
segment of ;. Then, as k; — 0, the total vertical length of #; on E; goes to infinity, and therefore,
tr p;(?) must diverge to infinity. O

Let my,...,m » be the loops of the multiloop M.

Proposition 6.5. For every (large) T > 0, therearet > T and k € {1, ..., p} such that

lengthy, (my)

1
< <2,
2 max; _plengthy (m;) h

and Modg, (my) is %-dominated by an expanding cylinder B). , homotopic to my, that is,

Mod By 1
—_— >
Modg, m;, 3
Proof. For u>T, let m be the loop realizing max;_, _,lengthy (m;). We may assume that
max;_, ,lengthy (m;) > oo as t — oco: in fact, otherwise, since limsup R(E;) = oo, Proposi-
tion 6.4 implies that [p,] diverges in y.

We first show that if a long flat cylinder persists, then its circumference must stay almost the
same. Namely,
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Claim 6.6. For every € > 0, there is K > 0 such that, if there are w > u > K and a flat cylinder in
E, of height at least K homotopic to m, then, for every ¢t € [u, w], then

length, m

1 <l+e¢

— < —_—
¢ lengthy, m
forall t € [u,w].

Proof. By Lemma 6.3, for every e > 0,if K > Ois sufficiently large, then the vertical foliation V, is ¢-
almost orthogonal to circumferences of the flat cylinder homotopic to m. Then, by Proposition 4.4,
for every € > 0, if K > 0 is sufficiently large, then the total rotation angle along m is (1 + €)-bi-
Lipschitz to \/5 length, m fort € [u, w]. As the holonomy of p,(m) convergesast — oo, for every
€ > 0, if K is sufficiently large, then the total rotation along m must be e-almost constant for all
t € [u,w]. Thus, if K is sufficiently large, then the ratio of length; m and length; m is e-close

to 1. O

By Claim 6.6, for every € > 0, if K > 0 is sufficiently large, then, if a flat cylinder i-dominates

I th
805 M < 1 4 eforallf € [u, w]. Sup-

Modm,_ forallt € [u,w] forsomeu > K;then1l —¢ < ————*
u lengthy, my,

pose, in addition, that there is a loop m), of M not m_ , such that m;, on E; becomes exactly twice
aslongas my onE, for the first time at f = w < v after t = u. Then, by applying Claim 6.6 to m,,
we can show that there is t € [u, w) such that Modg, my, is 1/3-dominated by an expanding cylin-

.....

allt € [u,w].

Corollary 6.7. There are a component F of S \ M and a diverging sequence 0 < t; <t, < ... such
that the corresponding component F; of E; \ M, satisfies the assumptions of Proposition 6.4.
Proof. By Proposition 6.5, there is a loop m of M and a diverging sequence ¢; < ¢, < ... such that

. - i —>
lengthEti m— ocoasi — oo,

length, m
- <2

1
- <
2 max{lengthy my, ..., lengthy m,}

foralli=1,2,..,and
* there is an expanding cylinder B, homotopic m that %-dominates Modg, m.

Then, up to a subsequence, we may in addition assume that B, is expanding in the same direction.
Then, let F be the connected component of S \ M such that m is a boundary component of F and
B, expands toward F. As the size of F;, becomes bigger and bigger than the length of lengthEt_ m,
the first assumption of Proposition 6.4 holds. Thus, by the second condition on the loop m and
the sequence {t;}, the second assumption of Proposition 6.4 is satisfied. O

By this corollary, we obtained a contradiction by Proposition 6.4 against the convergence of p;.
Hence, we obtain Theorem 6.1.
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7 | CONVERGENCE OF CP!-STRUCTURES AWAY FROM PINCHED
LOOPS

We continue to suppose that X, is pinched along a multiloop. We will first see that the holonomy
P (m) determines the type of a conformally long Euclidean cylinder in E, that is homotopic to m
fort > 0.

Lemma 7.1.

(1) Suppose thatthere are a sequencet, < t, < ... diverging to oo and a sequence of expanding cylin-
ders B, in E; homotopic to m at time t;, such that Modg B, — oo ast — co. Then, p,(m) is
parabolic. l

(2) Suppose that there is a sequence of flat cylinders A, in E; homotopic to a fixed loop m on S such
that Mod A, diverges to co and the circumference of A, is bounded from below and above by
positive numbers. Let w € C be such that the Mobius transformation z — (exp w)z conjugates

to po,(m). Then, \/Efm 4/;, converges tow mod 27i up to a sign.

Proof.

(1) If a puncture of a CP!-structure corresponds to a regular point of its holomorphic quadratic
differential, its peripheral holonomy is parabolic. Suppose that there are a sequence t; < t, <
.. and an expanding cylinder B, in E; homotopic to m such that Mod B; — oo as f — .
Then, by Corollary 6.2, the length of the shorter boundary component of B, goes to zero as
i — oo, and it asymptotically corresponds to, at most, a pole of order 1 of the quadratic differ-
ential. (A pole of order at least two corresponds to an infinite area end.) Therefore, p () is
parabolic, against the hypothesis.

(2) follows immediately from Proposition 4.4. O

Given a compact surface F with boundary, let ' denote the surface with punctures obtained by
pinching each boundary component of F to a (puncture) point.

Proposition 7.2. Let € > 0 be a number less than the Bers constant. Let F be a component of S \
M, and let F} be the component of the conformally e-thick part of E; isotopic to F for t > 0. Then,

if

limg}f Areag, (F;) >0,

there is a path of CP'-structures F, on the punctured surface F such that

(1) foreverye > 0, ift > 0 is sufficiently large, then F¢ isomorphically embeds into F,,
(2) for each boundary component ¢ of F, there is a cylinder A, , in E, homotopic to ¢ such that
* ModA,; - ccast — oo;
* Ay, is either a flat cylinder for all t > 0 or an expanding cylinder shrinking toward the
adjacent component of S \ M across m for all t > 0;
(3) F, contains Ay, for every boundary component ¢ of F.
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Proof. We first show that, for each boundary component # of F, there is a cylinder A, homotopic
to Z, such that

(i) ModA,; — oo ast — oo, and
(ii) A, remains either a flat cylinder for all sufficiently large ¢ > 0 or an expanding cylinder
shrinking forwards ¢ for all sufficiently large t > 0.

LetY,,Z,, W, be disjoint cylinders homotopic to ¢, such that Z, is a maximal flat cylinder, Y, is
the maximal expanding cylinder expanding toward the thicker part of F, and W, is the maximal
expanding cylinder expanding towards the adjacent component across the geodesic representative
£, of.

As X, is pinched along M, by Theorem 3.12, max{Mod Y,,Mod Z,, Mod W,} — oo ast — 0. Let
diam W, and diam Y, denote the diameters of W, and Y,, respectively, in the Euclidean metric
E,. Then, by liminf Areag (F;) > 0 and the upper injectivity radius bound (Theorem 6.1),

diamW, Mod W,
Fiam¥ +1 is bounded from above for all ¢t > 0. Thus, Mod Y, +1

allt > 0. Therefore, Mod Y, + Mod Z, diverges to oo as t — oo. We claim, moreover, that either
limModY,; = oo or limMod Z, = oo holds.

t—o00

the ratio is bounded from above for

Lemma 7.3. Suppose thatlimsup,;_, ., ModY; = co0. Then, ModY,; - o0 ast — oo.

Proof. Lett; <t, <... be a sequence with lim;_,, ModY; = oo. Then, the circumference of Z,
limits to zero, and by Lemma 7.1 (1), p,(¢) is parabolic.

Suppose to the contrary that there is a sequence s, <'s, < ... diverges to co such that Mod Y is
bounded from above by some constant b > 0. Then, Mod Z 5 = 0, and the circumference of Zsi is
bounded from below ¢ > 0. On the other hand, since Mod Yti — 00, the circumference of Zli goes
to zero as i — co. We can assume that s; <, <s, <t, < ... by taking subsequences of s; and ¢;
if necessary.

Therefore, for every r € (0, c), for every sufficiently large i, there is u; € [s;, t;], such that the
circumference of Z,, is r. Then, as Mod Y, is bounded from above, Mod Z,, — oo asi — oo.

Then, by Lemma 7.1 (2), the limit holonomy of Py, (m) is determined by the complex length
of the circumference. For almost all r € (0,c¢), pui(m) is not parabolic. This contradicts the
convergence of p; as p,(¢) is parabolic. O

Then, Y, satisfies (i) and (ii).

Next suppose that limsup,_,,, ModY, < co. Then, Mod Z, diverges to oo as t — oo, and the
circumference of Z, converges to a positive number. Then, Z, satisfies (i) and (ii).

We shall construct F, satisfying (3) as follows. Suppose that, for a boundary component # of F,
lim,_, ., Mod Y, = oo. Let Y, be an expanding cylinder of infinite modulus, obtained by extending
the expanding cylinder Y, only in the shrinking direction, so that Y, is conformally a punctured
disk. Then replace Y, by Y, in E, by gluing E, \ Y, and Y, along the boundary component of Y.
Then the boundary component # of F corresponds to the puncture of Y.

Next, suppose that lim sup,_,,, Mod Y, < co. Then, since Mod Z, — oo and the circumference
Circ(Z,) converges to a positive number as t — oo, we extend the flat cylinder Z,, in the direction
of W,, to the half-infinite flat cylinder Z,; then Z, is conformally a punctured disk. Then, replace
Z, in E, with Z, so that it has a puncture corresponding to .

By applying, such a replacement for all boundary component # of F, we obtain a desired
complete singular Euclidean surface F, satisfying (1), (2), (3), as (2) follows from (i) and (ii).
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Theorem 7.4. Let F be a component of S \ M. Let € > 0 be less than the Bers constant of S. For every
t > 0 large enough, let F; be the component of the e-thick part of C, isotopic to F.

(1) Suppose that

li¥r_1>(i)£1f Areag (F{) =0

Then, thereis a continuous functione, > Ointwithlim,_, . €, = 0, such thatF te‘ converges (in the
Gromov-Hausdorff topology) to a complete hyperbolic structure on a closed surface with finitely
many punctures, denoted by F > Which is homeomorphicto F, ast — .

(2) Suppose that

li%l_l) glf Areay, (F7)>o.

Then, F, accumulates to a bounded subset on the space of CP'-structures on F. Moreover, if
Poo(m) # I for each boundary component m of F, then F, converges to a CP'-structure on F as
t — o0.

Remark 7.5. In Case (2), similarly to (1), one can take asequence t; < t, < ... diverging to co so that
F, converges to a CP!-structure F on F. Then, for every ¢ > 0 less than the Bers’ constant, the
e-thick part F; converge to a subsurface of F_ . 1f, in addition, the p_ (m) # I for every boundary

component of F, then F¢ converge to a subsurface of F,

Proof.

(1) Lett; <t, < .. be adiverging sequence such that Area(F[i) — 0 as t — oo. Then, the holo-
morphic quadratic differential on F;, asymptotically vanishes. Thus, for every small € > 0,
Fe and X, |F5 asymptotically 1dentlcal where X, is regarded as a hyperbolic surface by the
unlformlzatlon theorem for each i. Here, by asymptotlcally identical, we mean that, for every
v > 0 and every compact set K in the universal cover H? of X, i,» if 1 is sufficiently large, the
developing map of Ffl is v-close to the developing map of the hyperbolic structure X, |Ffi on

K.
The holonomy representations of FZ" and X, |Ffi are asymptotically identical in the char-

acter variety. As the holonomy of F f_" converges in the representation variety, the holonomy
1
of X, |F; must converge in the representation variety. Thus, X, |F; converges to a complete
1 1

hyperbolic structure o, on F. Therefore, Ff‘ must genuinely converge to o, (without taking
a subsequence). In particular, Areag, Ff‘ —0ast — oo.

(2) Suppose that liminf,_, , Area F; > 0 for sufficiently small € > 0. Then, let F, denote the sin-
gular Euclidean structure on F obtained from F, by Proposition 7.2. Then, F, induces a
CP!-structure on F. Let (Y;, w;) be the Schwarzian parameterization of F ;. Then, indeed, every
puncture of Y, is, at most, a pole of order 2.

As X, is pinched along a multiloop M, Y, is bounded in the Teichmiiller space T(F). By
Theorem 6.1, the upper injectivity radius of F, is also bounded from above, and (Y, w,) is also
bounded in the parameter space. Thus, the CP!-structures F, are contained in a compact sub-
set of the deformation space of CP!-structures on F. Therefore, F', accumulates to a bounded
subset in the deformation space of CP!-structures on F.
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Moreover, if each peripheral loop has nontrivial holonomy at ¢t = oo, by Theorem 5.6, the
convergence of the holonomy of F, implies the convergence in (PSL,C)" X R(F). Therefore,
F, has a unique limit in P(F). O

Theorem 7.4 immediately implies

Corollary 7.6. Suppose that X, is pinched along a multiloop M. Then, for every sequence t; <
t, < ... diverging to oo, up to a subsequence, X, converges to a nodal Riemann surface X ., and q;,
converges to a regular quadratic differential on X .

8 | DEGENERATION BY NECK-PINCHING

In this section, we summarize our main theorems on asymptotic behavior under neck-pinching.

LetC, = (f;,p;), t = 0be a path of CP!-structures that diverges to oo in the deformation space,
such that its holonomy [p,] =: », converges in the character variety y. By Proposition 3.2, we
can assume that the holonomy p; € R also converges in the representation variety. Let X, be the
complex structure of C,.

Theorem 8.1. Suppose that X, is pinched along a loop m. Then, p.,(m) is either I or a parabolic
element. Moreover, p,(m) # I for large enough t > 0.

Recall that ¢ : § — S is the universal covering map. Let N,,, be a regular neighborhood of m in
S. Regard the loop m also as a fixed element of 77, (S) representing m, and let N,,, be the component
of $~1(N,,) preserved by m € 7,(S).

Theorem 8.2 (Convergence of developing maps). Suppose that X, is pinched along a loop m. Then,
exactly one of the following two holds.

ey)

* 0. (m) is parabolic;

* the cusp neighborhoods of C, are horodisk quotients;

* f;: S — CP! converges a p,,-equivariant continuous map f., : S — CP! uniformly on
compact subsets;

* there is a multiloop M on S consisting of finitely many parallel copies of m, such that f
is a local homeomorphism on S\ ¢~'(M) and it takes each component of $~1(M) to its
corresponding parabolic fixed point.

(2) po(m) =1, and, for every sequence t; < t, < ... diverging to oo, up to a subsequence, there is a

path of markings S — C; such that, as i — o,

* C.IS \ N,,, converges to a CP'-structure on a surface with punctures homeomorphicto S \ m;

* the axis a; of p; (m) converges to a point on CP! or a geodesic in H3;

* the restriction of f, to S\ ¢~'(N,,) converges to a continuous map, and each boundary
component of N, maps to an ideal point of lim,_,  q;.

Foreacht > 0, let (7,,L;) € T X ML be the Thurston parameterization of C;, and let 3, : H2 -
H? be the p,-equivariant pleated surface. In fact, 8, converges a continuous map to H* U CP':
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Theorem 8.3. Suppose that X, is pinched along a loop m on S. Let N,,, be a regular neighborhood
of mon S. Then, by taking an appropriate path of markings, : S — t,, exactly one of the following
two holds:

(1) po(m) € PSL,C is parabolic, and B, : S — H? converges to a p,-equivariant continuous map
Be i S = H3UCP! uniformly on compact subsets as t — oo, such that '(CP') is a 7,(S)-
invariant multicurve that is 7r,(S)-equivariantly homotopic to the multicurve = (m).

(2) poo(m) =1 € PSL,C, and for every diverging sequence t; <t, < ..., up to a subsequence,
By, = S — W converges to a p,-equivariant continuous map f, : § — H> UCP! asi — co and
the axis a; of p; (m) converges to a point CP! or a geodesic of H? such that
* iflim;_ , a; is a point on CP', then B_(CP') = ¢~'(m), and
* iflim;_ . a; is a geodesic a, in H3, then B, takes each component of $=*(N,,) to its corre-

sponding limit geodesic a,, and each component of S \ $~'(N,,,) to either a pleated surface in
H3 or a single point on CP'.

In order to prove Theorem 8.1, Theorem 8.2, and Theorem 8.3, we carefully observe the behavior
of C,, fixing the isometry type of p, (m). In particular, for Theorem 8.1, we will show that, sup-
posing, to the contrary, that p (m) is hyperbolic (§11) or elliptic (§12), then p, cannot converge.
The convergence when p (m) = I is given in §13 and the convergence when p (m) is parabolic
is given in §10.

9 | CP!-STRUCTURES ON PUNCTURED SURFACES WITH
ELEMENTARY HOLONOMY

Lemma9.1. Let F be a closed surface with finitely many punctures, such that the Euler characteristic
of F is negative. Let C = (f, p) be a CP'-structure on F such that

* pis an elementary representation, and
* foreach puncture of C, its peripheral holonomy is nonhyperbolic (so that its developing image is a
single point on CP!).

Let A be the subset in CP! of cardinality 0, 1, or 2 which Im p preserves as a set. Then, there is at least
one puncture of C that maps to a point in the complement CP* \ A =: Q by f.

Proof. The discrete subset f~!(A) in F descends a finite subset D on F.

We can assume that A is a nonempty set, since if A is the empty set, then the assertion is obvious.
First, suppose that the cardinality of A is two, then Q admits a complete Euclidean metric invariant
under Im p. Then, if all cups of F map to A, F \ D admits a complete Euclidean metric, which is
a contradiction against the Euler characteristic of F.

Next, suppose that the cardinality of A is one. Suppose, to the contrary, that all cups of C map
to the point A. Then, C \ D has a complex affine structure.

We claim that C \ D is complete, that is, the developing map of C \ D is a diffeomorphism onto
C, when we normalize dev C so that {co} corresponds to the punctures. Suppose, to the contrary,
that C \ D is incomplete. As the cardinality of A is not two, Im p does not preserve an incomplete
point of C \ D in C. Thus, C admits Thurston’s parametrization (z,L) where 7 is a finite area
hyperbolic structure on F and L is a measured lamination on 7 (Theorem [27, Theorem 11.6], cf
[4, Theorem 3.1]). Since F is incomplete and the cardinality of A is not two, there is a maximal
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ball B of dev F such that its ideal point set contains two distinct points in C. Then, the holonomy
of F must contain a hyperbolic element in PSL,C whose fixed points are in C, whose endpoints
are close to those two points in C. This leads to a contradiction to all cups mapping to the same
point. Therefore, the C \ D is complete.

Thus, the holonomy of F consists of parabolic elements fixing co. Then, the Euler character-
istic of F \ D is zero, since F \ D admits Euclidean structure. Therefore, F has a positive Euler
characteristic, which is a contradiction. O

Proposition 9.2. Let F be a closed surface with two punctures p and q such that the Euler
characteristic of F is negative. Suppose that C = (f, p) is a CP!-structure on F such that

* the holonomy of C is elementary, and the stabilizer of Im p (in PSL,C) is nondiscrete, and
* the degrees of f around the two punctures are the same.

Then, no cusp of F maps to the subset A defined in Lemma 9.1.

Proof. By Lemma 9.1, we can assume that p does not develop to A. As the Euler characteristic
of F is negative, we let C = (r, L) be the Thurston parameters of C ; then by the assumption of
the holonomy, p and g correspond to cusps of 7. Then, as the degrees at p and g agree, the total
weights of leaves of L around the punctures are the same.

Suppose, to the contrary, that a puncture q develops to a point of A. Then, f takes all lifts of g
to the same point r of A: Otherwise, as A has cardinality two, Im p contains hyperbolic elements,
and it also contains an elliptic element exchanging the points of A; then the stabilizer of Im p must
be discrete against the hypothesis.

Let # be a leaf of L initiating from g. Then, its lift # to the universal cover of T maps, by the
bending map 8 : H? — H3, to a geodesic in H? initiating from gq. As all lifts of p map to r, the other
endpoint of 3(£) is the image of a lift of q. Therefore, all leaves of L initiating from g must end at
p. For every complementary region R of 7 \ L, letting R be the universal cover of R (in = H?), at
most, one ideal point of R maps to g by the pleated surface.

Moreover, every leaf of L initiating from p must end at g, since the total weights of L around p
and g agree. Let L, , be the sublamination of L consisting of the isolated leaves of L connecting
p and g. This implies that each component o of 7 \ L, , has a negative Euler characteristic. Since
no leaves of L \ L, , have an endpoint on the boundary of 7 \ L, ,, the restriction of p to 7,(0) is
nonelementary, which is a contradiction. O

10 | PARABOLIC LIMIT

In this section, we assume that p  (m) is parabolic, and analyze the limit of C; as t — oo in terms
of its bending map and developing map. First, by Theorem 7.4, for each component F of S \ m, by
taking an appropriate base point b, in the thick part of C, homotopic to F, (C,, b;) converges to a
CP!-structure F,, on a compact surface with one or two punctures, such that F, is homeomorphic
to F. Let C, be the disjoint union of all such geometric limits F, over all thick parts. Then, C
is a CP!-structure on a closed surface with two cusps homeomorphic to S \ m. Note that C_, is
not connected if and only if m is separating. Then, the limit holonomy has the following algebraic

property.
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Lemma 10.1. Suppose that p . (m) is parabolic. Then, for each component F of S\ m, p(F)
is nonelementary.

Proof. Since S is a closed oriented surface of genus at least two, each component of S \ m is also
of hyperbolic type. Thus, let (o, v) be the Thurston parameterization of F,, where o is a complete
closed hyperbolic with one or two cusps homeomorphic to F and v is a measured lamination on o.
Clearly, the cusps of F, correspond to the cusps of o. Then, there is a bi-infinite simple geodesic
¢ properly embedded in o such that Z is a leaf of v or disjoint from v (note that each endpoint of
¢ is at a cusp of o).

Let B : H? — H? be the bending map given by (o, v), such that § is equivariant via p, |7, (F).
Let Z be a lift of # to the universal cover H? of 0. Then, the endpoints of Z are parabolic fixed points
in the ideal boundary of H2. Lety,, y, € 7, (F) be the peripheral elements fixing the endpoints. As
¢ does not cross v, its image 8(£) is a geodesic in H*. Moreover, as 8 is p, -equivariant, p.. (y;) and
P (7,) are parabolic elements fixing the different endpoints of 3(£). Therefore, p . (y;) and p, (7,)
are noncommuting parabolic elements in PSL,C, and they generate a nonelementary subgroup
of PSL,C. O

Proposition 5.2 implies that the developing map extends to cups with parabolic holonomy.

Proposition 10.2. Let C = (f, p) be a CP'-structure on a closed surface with finitely many punc-
tures, denoted by F, such that the holonomy around each puncture is parabolic. Then, the developing
map f: F — CP! extends continuously to the lift of cups so that they map to their corresponding
parabolic fixed points.

Proof. Set C = (7, L) in Thurston’s parameters, where 7 is a hyperbolic surface homeomorphic to
F and L is a measured lamination on 7. For each cusp c of C, by Proposition 5.2, as the holonomy p
around c is parabolic element in PSL,C, ¢ corresponds to a cusp of r and the total weight of leaves
of L ending at the cusp is either 0 or a positive multiple of 27z. Let § : H?> — H?3 be the bending map,
and let L be the 7, (F)-invariant measured lamination on H? by pulling back L by the universal
covering map H? — 7. Let r be a geodesic ray in the universal cover H? ending at a parabolic fixed
point p of a peripheral element of 77, (S). Then, r eventually does not cross the L. Thus, the curve
B(r) is eventually a geodesic ray in H* ending at p. By the correspondence between the developing
map and the pleated surface, the assertion follows. O

Recall that ¢ : S — S denotes the universal covering map. Then, the above lemmas imply a
good convergence of the developing map of C; away from m.

Theorem 10.3. Suppose that p (m) is parabolic. Then there is a regular neighborhood N of m
such that f,|S \ ¢~1(N) converges to a p,-equivariant continuous map f, : S\ ¢~*(N) - CP!
uniformly on compact subsets, such that the developing image of each boundary component of S \
¢~ () maps to its corresponding parabolic fixed point.

Proof. By Theorem 7.4 (2), the restriction C; to S \ N converges to C, as t — oo by taking an
appropriate isotopy of S uniformly. Since p (F) is nonelementary (Lemma 10.1), the restriction
of f, to §\ ¢~'(N) converges to the developing map of C, uniformly on compact subsets. By
Proposition 10.2, each boundary component S \ ¢ ~'(IN) converges to its corresponding parabolic
fixed point uniformly on compact subsets. O
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In the rest of this section, we show the convergence of the developing map of C; on the entire
surface. First, we analyze the holonomy of C, along m.

Proposition 10.4. For sufficiently large t > 0, p,(m) is not the identity element of PSL,C. More-
over, if the cusp neighborhoods of C, are horodisk quotients. Then, for sufficiently large t > 0, p;(m)
is hyperbolic.

Proof. SetC; = (1;,L,) € T X MLin Thurston’s parameters for ¢ > 0. Similarly, set C, = (7, L),
where 7, is a complete hyperbolic structure on F \ m with finite volume, and L_, is a measured
geodesic lamination on 7.

Let m, denote the geodesic representative of m on t,. Then, the length of m; on 7, converges to
0 ast — oo since p,,(m) is parabolic.

Suppose, to the contrary, that there is a sequence t; <, < ... diverging to co such that p, (m)
is not hyperbolic. Then, a leaf #; of L, intersects the geodesic loop m, for each i =1,2.... Pick
a point p; on m; N L, . Pick a lift i, of m, to the universal cover 7; = H? that is preserved by an
element y,,, in 77,(S) whose free homotopy class is m. Then, for each i, let p; ; (j € Z) be the lifts
of p, onm in H? indexed linearly, so that pij= yfn “ Dio-

For t > 0, let B, : H?> — H? be the p,-equivariant bending map induced by (z,, L,). Then, since
{pi j}jez isan orbit of the infinite cyclic group generated by y ,,, its image {6% (P j)}jez s an orbit of
the cyclic group generated by p;, (¥m) € PSL,C. Then, since p;,(m) is elliptic or parabolic (possibly
the identity), by basic hyperbolic geometry, the points §; (p;, ;) is contained in a totally geodesic
hyperbolic plane H, in H3. (In comparison, if pti(m) is hyperbolic and its screw rotation angle is
not a multiple of 7z, then most of its orbits do not lie in a totally geodesic plane.)

Note that H, is uniquely determined by the choice of p; and the lift 173;, unless p, (m) is
the identity.

If p,, is the identity element in PSL,C, then, letting Z; be the leaf of I:ti intersecting ; in p; ;, let
H, be the hyperbolic plane orthogonal to the geodesic 8, (¢;) in the point 8, (p; ;) for some j € Z.
Clearly, H,, is independent on the choice of j € Z, as p; (m) is the identity.

The infimum of L, (mtl_,Lti) > 0overi=1,2,.. is positive, since Ari(m[i,Lti) is close to zero,
then p, must be hypelrbolic (Theorem 2.1). Then, there is § > 0, such that, if i is large enough,
then, ifaleaf # of I:ti intersects 171, , then the angle between the geodesic 3, (¢) and the hyperbolic
plane H, is atleast 8. Indeed, otherwise, lim;_,, £ (m;,L;) = 0.

Recall that 7, is a complete hyperbolic surface of finite volume homeomorphic to S \ m, so
that each boundary component of S \ m corresponds to a cusp of 7. Pick a loop « on S such
that

(1) « essentially intersects m in a single point if m is nonseparating, and in two points if m is
separating,

(2) each segment a \ m descends to a geodesic ¢g on 7, with endpoints at cusps, and g does not
crossing L.

Below we show that the translation length of p, (a) diverges to co, which contradicts the con-
vergence of p,. We assume that m is nonseparating, and one can similarly prove the case when m
is separating.

Foreachi=1,2..., let a; be the piecewise geodesic loop on 7, to homotopic to «, such that

* q; is a union of two geodesic segments,
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FIGURE 10 The quasi-geodesic §, (&) preserved by the hyperbolic element p, ().

* one geodesic segment s; of a; has its interior contained in 7, \ m, , and at each endpoint, s;
meets m, orthogonally, and
* the other geodesic segment u; contained in m, .

Since 7, is pinched along m as i — oo, the length of 5; goes to co. Let &; be a lift of o; to H? that
is a simple piecewise geodesic, and it is a bilipschitz curve.

Foreachi=1,2,..., let @; be a lift of u; to a geodesic segment of &;. Then, let ri; be the lift of
my, to H? that contains ;, and let Ya, € m1(S) be the element preserving i, . For every € > 0 if i
is large, the §, (@;) is contained in the e-neighborhood the p, (y; )-invariant hyperbolic plane Hy,
above, since lengthrt_ m,, goes to 0.

Let §; be a lift of é,- to a segment of &;. Then, the length of §; goes to oo as i - oo. For every
€ > 0, by (10), the transversal measure of s; by L;, in the e-thick part of 7, limits to 0 asi — 0. In
addition, there is 7 > 0, such that, the intersection angle of Lti and s; in the r-thin part of T, goes
to zero as i — oo. Therefore, for every € > 0, if i is sufficiently large, then the restriction oflﬁti to
§;isa (1 —¢,1 + ¢)-bilipschitz embedding. Let g; be the bi-infinite geodesic in H* passing through
the endpoints of 8, (5;).

Letu; ;,u; , be the lifts of u; to the geodesic segments of &, that are adjacent to §;. Then, let H; ;
and H; , be the hyperbolic planes corresponding to u; ; and u; ,, respectively. Then, g; transversally
intersects H; ; and H, , at angle at least /2. Moreover, for every € > 0, if i is large enough, then
those intersection points are e-close to the endpoints of 3, (5;). Therefore, the distance between
the hyperbolic planes H; ; and H;, goes to oo as i — oo (Figure 10). Therefore, the translation
length of p,(«) goes to oo as desired. This contradicts the hypothesis. Therefore, p,(m) must be
parabolic for sufficiently large ¢ > 0. [l

Let¢: S — S be the universal covering map. Letx, : C, — 7, denote the collapsing map of C,,
and %, : C, — H? denote its lift from the collapsing of the universal cover (§2.2.2). We next show
the convergence of the bending map.

Theorem 10.5. Suppose that p.,(m) is parabolic. Then, up to an isotopy of S int, f; o %, : § — H?
converges to a p,-equivariant continuous map a : S — H* U CP! such that

« a”!(CPY) is a m,(S)-invariant multicurve on S isotopic to ¢~'(m) though m,(S)-invariant
multicurves, and
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* for each component P of S \ ¢~1(m), the restriction f3, o %,|P converges to the pleated surface for
the component of C, corresponding to P.

Proof. The second assertion holds immediately from Theorem 10.3.

The axis a; of p;(m) converges to the parabolic fixed point of p (m). By Proposition 10.4,
p,(m) is a hyperbolic element for sufficiently large t > 0. Let D C H* be a horoball centered at
the parabolic fixed point of p (m). Then, we pick a continuous path of p,;(m)-invariant subsets
D, in H? bounded by the surface equidistant from the axis of p,(m) so that D, converges to D as
[ — oo.

Pick a sufficiently small 6§ > 0. For sufficiently large t > 0, let N f be the component of the §-
thin part of 7, homotopic to m. Let N f be the lift of N f to the universal cover # & H?. If § > 0 is
sufficiently small, by the convergence of p,, the 8,-image of N f is eventually contained in D;. This
implies the first assertion. O

Next, we prove that cusp neighborhoods of the limit surface are isomorphic to cusp
neighborhoods of a hyperbolic surface.

Proposition 10.6. Suppose that p,(m) is parabolic. The cusps of C,, must be horodisk quotients.

Proof. Suppose, to the contrary, that the cusp neighborhoods of C, are not horodisk quotients.

LetC, = (t;,L,) denote the Thurston’s parameters of C,. Then, as p (m) is parabolic, L,(m) con-
verges to a nonnegative integral multiple 27zn of 27. As the limit cusp neighborhoods are assumed
to be not horodisk quotients, » is a positive integer. Similarly, let C, = (7, L,,) denote Thurston
parameters of C,. Thus, the L -transversal measure of each peripheral loop of C, is 27n.

For sufficiently large t > 0, p,(m) is not the identity; let a, be its axis (Definition 3.6). Pick
d > 0 less than the two-dimensional Margulis constant. Let N, be the §-thin part of 7, homotopic
to m. Let N, be the lift of N, to the universal cover H2. If § > 0 is sufficiently small, for all ¢ large
enough, each component of N, N L, is a geodesic segment connecting one boundary component
of N, to the other. Since the transversal measure of each peripheral loop of L, is close to 2zn > 0.
Thus, for ¢ > 0, pick a fundamental domain F, in N, bounded by two leaves of L, such that a
component F, ; of F, \ i, converges to a fundamental domain of the bending map 8, : H* —
H3 U CP! (Theorem 10.5) near a cusp of 7.

Let #, be a leaf of L, bounding F,, so that, for each component r, of Z; \ 1, the restriction of
BB, converges to a bi-infinite geodesic in H* as i — co. Clearly, the length of Z, N N, goes to oo, and
the length of each segment of , N N, \ 1, goes to co ast — co.

Let F, , be the other component of F, \ . Then, there is an element y, of G, such that the
restriction of 8, to y,F, , converges to the fundamental domain of the other cusp of C,.

We first show that if p,(m) is hyperbolic, it must be “almost elliptic” for sufficiently large ¢t > 0.

Claim10.7. Suppose that there isa sequence t; < ¢, < ... divergingto co, such that p, (m)is hyper-
bolic for each i = 1,2,.... Then, the complex translation of p, (m) goes to zero from the imaginary
direction as i — oo. In other words, the sequence tr? p;,(m) € C converges to 4 tangentially to the
realray {x € R | x < 4}.

Proof. Suppose to the contrary that there is a sequence ¢; <, < ... such that p, (m) is hyperbolic
and the complex translation length converges to 0 from the nonimaginary direction. As p, (m) is
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FIGURE 11 The left figure is the normalization of the right figure so that p; is at the center.

hyperbolic, the axis is a geodesic and it converges to the parabolic fixed point of p (m). Pick a
point p; on g, (F; ) closest to a; in H3. Let R; be the set of points in H* whose distance from a is
at most the distance from p; to the axis a, .

For each i, let G; be a one-dimensional Lie subgroup of PSL,C containing p, (m) such that the
infinite cyclic group (p, (m)) is asymptotically dense in G; as i — oo w.r.t. the path metric on G;
induced by the invariant metric on PSL,C. Since the complex translation length of p, converges to
0 from a nonimaginary direction, G, converges to a one-dimensional subgroup in PSL,C consist-
ing of only hyperbolic elements except the identity. For every i, let ¢; be the G;-invariant smooth
curve in H? passing p;. Then, ¢; spirals on the boundary of R; limiting to the endpoints of a;. (See
Figure 11.)

The f3; -image of the leaf £; is a geodesic in H? tangent to R; passing p;. Then, moreover, the
geodesic 51,- (¢;) and the curve c; are asymptotically tangent to each other at p; as i — oo, because
of the convergence of the bending map 8, and the holonomy p, (m) as i — .

Let 5;, be the geodesic segment £; N F; ;, so that 8, (s; ;) converges to a geodesic ray limiting
to the fixed point of p,(m). Let g, ; be the endpoint of 5; ; that is on the boundary of N;, and let
q,,; be the other endpoint of #; N N;. Then, B:,(q;,) converges to a point in H? as i — co. Then,
B:,(¥ig;,) also converges to a point on H3.

Since the length of each segment of #; N N; \ m; goes to infinity, and 3;(¢;) is asymptotically
tangent to the curve ¢;, therefore the distance between 3, (g; ;) and 3, (g; ,) divergestoco asi — oo.
This is a contradiction against the convergence of the bending map 8, asi — oo. 1

Next, we show that the convergence of p, forces the convergence of twisting parameter along m.
Claim10.8. The Fenchel-Nielsen twisting parameter of 7, along m must converge (in R)ast — oo.

Proof. First, for each nonidentity element of PSL,C, we describe an associated foliation. For a
hyperbolic isometry or an elliptic isometry of H3, the hyperbolic planes containing its axis give
a foliation on H*® minus the axis. For a parabolic isometry a € PSL,C, pick a hyperbolic plane
H in H? invariant under «, which contains the parabolic fixed point. Then, there is a folia-
tion of H* by hyperbolic planes orthogonal to H and containing the parabolic fixed point; this
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FIGURE 12 The right figure is a normalization of the left figure so that the axis a, passes the center.

foliation is independent of the choice of H. For sufficiently large ¢t > 0, as p,(m) is not the identity
(Proposition 10.4), let 7, denote such a foliation for o,(m).

Let # be a lift of m to the universal cover S. Let P, P, be the connected components of S\
¢~'(m) adjacent along 1. For each i = 1,2, given a point x; in P; near i, let v, ; be the tangent
vector at the point 8, o %, (x;) in H* orthogonal its support hyperbolic plane of x; in the normal
direction (§2.2.2). Since the L,-transversal measure along m, converges to 2zrn > 0, we can pick
x; so that v, ; is tangent to the foliation 7. Similarly, for each ¢ > 0, pick a point x, ; in P; such
that, letting v, ; be the tangent vector of 3, o &, at x, ; orthogonal to its support plane, v, ; is tangent
to 7, and v, ; converges to v, ; as t — 0. (See Figure 12.)

Let £, be the circular measured lamination on C, that descends to the measured lamination
of Thurston’s parametrization by the collapsing map. Let e, be the minimal transversal measure,
given by L, of arcs connecting x; to p,(y,)x, ,. Note that, since the isometry p,(m) preserves the
foliation 7, the tangent vector p,(y,)v, , at p,(¥,)x, , is also tangent to 7. By Claim 10.7, p,(m)
is either parabolic, elliptic, or “almost elliptic” for ¢ > 0. Therefore, for every € > 0, if § > 0 is
sufficiently small, then, for ¢t > 0, the transversal measure e, is e-close to a multiple of 27z. Thus,
the twisting parameter along m converges modulo 27r. By continuity, the twisting parameter of 7,
along m must converge as t — co. O

By Claim 10.8, the Fenchel-Nielsen twisting parameter of r; along m converges. For all ¢ > 0,
let Q;; and Q; , be the adjacent components of H? \ ¥~ (m,) corresponding to P, and P,, respec-
tively, so that Q,; and Q, , are separated by the geodesic 71,. Then, as the restriction of §; of the
component Q; ; converges, uniformly on compact subsets, to the bending map of the correspond-
ing cusp neighborhood of C,, by Theorem 10.5. Then, since the length of the geodesic loop m,
goes to 0 as t — oo, the convergence of the twisting parameter implies that the restriction of 3, to
Q, » converges to the parabolic fixed point of p ,(m) uniformly on compact subsets. This is a con-
tradiction against the convergence of the bending map g, of Q; , uniformly on compact subsets

guaranteed by Theorem 10.5.

Theorem 10.9. Suppose that p .. (m) is parabolic. Then, by an appropriate isotopy of S int, f, : § —
CP! converges to a p,,-equivariant continuous map S — CP! such that, for some multiloop M on S
consisting of finitely many parallel copies of m,

* fo is alocal homeomorphism on S\ ¢~ (M), and
* fo takes each component of $~1 (M) to its corresponding parabolic fixed point.
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Under the assumption of Theorem 10.9, each cusp of C, is a horodisk quotient by Propo-
sition 10.6. Thus, by Proposition 10.4, p,(m) is hyperbolic for all sufficiently large ¢ > 0, and it
converges to the parabolic element p_ (m) as t - .

More generally, let y, € PSL,C, ¢ > 0 be a path of hyperbolic elements such that y, converges
to a parabolic element y, in PSL,C as t — oo. Let G; be the one-parameter subgroup of PSL,C
containing y, such that the cyclic group generated by y, is asymptotically dense in G, with respect
to the path metric on G, induced by the (left) invariant metric on PSL,C.

Continuously conjugate y, by elements w, of PSL,C so that the axis of @, -y, 1= rw,r;*
remains, for all ¢, to be the geodesic in H3 that connects O to oo in the ideal boundary CP! =
C U {oo}.

Proposition 10.10. Let A be a cylinder and homeomorphically identify A with [—-1,1] X S, and
let A be the universal cover of A. Let A, (t > 0) be a path of CP'-structures on a cylinder A, and let
[ be its developing map that changes continuously in t, such that

* the holonomy of A, is the limit holonomy isomorphism ,(S) = Z — (y,),

* each boundary of A, develops onto a G,-invariant curve on CP! forall t > 0,

« for each boundary circle b of A, the restriction of f, to the lift b to A converges to a G -invariant
simple curve on CP! (which is a G, -invariant round circle minus the parabolic fixed point).

Then, by an isotopy of A fixing the boundary, dev A, : A — CP! converges to an continuous map
fo : A = CP!such that

* fo is equivariant via the isomorphism Z — (y ),

* there is a multiloop M consisting of loops homotopy equivalent to A, such that f is a local
homeomorphism on A \ M;

* fo takes M to the parabolic fixed point of y .

Proof. We construct a path of fundamental membranes Z, for the developing maps f, that give
the desired limit as t — 0.

The normalized developing map w, o f,: A — C U{oo} is identified with the restriction of
exp: C — C* to a bi-infinite strip I, bounded by parallel lines in C = E2. Let b; and b, denote
the boundary components of A. Regarding b,, b, as simple closed curves, we can lift b; and b,
to segments s, and s,, respectively, of segments of the boundary components of A. For each ¢ > 0
andi = 1,2,lets; , be the segment of the boundary line of I, such that w, o f(s;) = exp(s; ;). Then,
sy and s, ; are parallel and have the same length. Thus, s, , is the Euclidean translation of s; ;, by
unique z, € C \ {0}.

Claim 10.11.
(1) The length of s; , goes to zero as t — oo, and
(2) z, converges to an integer multiple of 27zi as t —» 0.

Proof.

(1) As 0 and oo are the fixed points of w,y,w;! and y, converges to y,,, both @;*(0) and w;*(c0)
converge to the parabolic fixed point of ¥, as t — oo. Since the development of b; converges
to a G -invariant curve on CP!, clearly, the development of s;; converges to a simple arc
contained in the G -invariant curve. Therefore, since f, = w; 1 exp on A, the norm of the
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FIGURE 13 The limiting behavior of the fundamental membrane Z, of A,, wheren =2 and t; < t,.

derivative of f; at each point on the segment s; goes to infinity as ¢ — co. Hence, the Euclidean
length of 5; , must go to zero as ¢ — co.

(2) Since the Euclidean length of s ; goes to zero on I; C C, translating I, by a multiple of 27,

we may assume that s; , converges to a point pon C. Let g € CP! be the parabolic fixed point
of y.. Let K be a compact subset K in CP! \ {g} and U, be a neighborhood of p in C. Let U
denote the union of translates of U, by the integer multiples of 27i. Then, if ¢ is sufficiently
large, then wt_l exp(I, \ U) is contained in CP! \ K. Therefore, as the developments of St
and s, , converge to simple arcs in CP! \ {g}, their difference z, must converge to a multiple
of 27ri. O

Let n be the integer such that z, converges to 2zin. Pick a polygonal fundamental domain Z,

of A, in I, with following properties: Z, is a union of (n + 1)-rectangles R, 1, R, , ..., R, ,41 and n
parallelograms P, ;, ..., P, , as in the figure (Figure 13) so that

foreachi =1,...,n,n + 1, a pair of edges of R, ; are parallel to the boundary of the Euclidean
strip I;, the boundary segment s, , is an edge of R, ;, the boundary segment s, is an edge of
R, 41, and, for each i = 2,...,n — 2, the Euclidean translation of s, ; by 27i decomposes R, ;,;
into two isometric rectangles, and

for each i = 1, ..., n, the parallelogram P, ; have edges parallel to the boundary of I, that are an
edge R, ; and an edge R, ;-

In addition, we take R; ;,R; , ..., R; ;11 and n parallelograms P, ,, ..., P, , appropriately so that

the development of P, ; by f, converges to the parabolic fixed point of y, as t — oo;

the f,-images of R, , and R, ,,, converge to horodisks bounded by the limit of f,(b) in the
hypothesis, and the restriction of f; to R, ; and R, ,, ., converge to a developing map of horodisk
quotients;

for i = 2,...,n, the restriction of f, to R,; converges to a developing map of the Euclidean

cylinder (CP! \ {p})/(7,) (Figure 14).

Let M be a multiloop on A consisting of n boundary parallel loops. Pick a path of regular neigh-

borhood N; of M so that N, converges to M ast — oo. Isotope A so that a fundamental domain F
of A maps to Z; and that N, are identified with P, ,, ..., P, ,. Then, we desired a convergence. []
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FIGURE 14 The development of a part of the polygonal fundamental domain.

Proof of Theorem 10.9. We already know the convergence of the developing map in every thick
part by Theorem 10.3. There are two cusps c;, ¢; of C,, which are horodisk quotients by Propo-
sition 10.6. For each cusp c; of C,, pick a simple closed curve #; that develops to a G -invariant
simple curve on CP'. Then, for large ¢ > 0, pick a simple closed curve #;, on C, such that 7, ,
develops onto a G,-invariant curve on CP! and #; , converges to £; as t — oo.

Let A, be the cylinder in C, bounded by ¢, ; and ¢, ;. Then, we can take such a path of cylinders
A, in C, and a constant § > 0 such that A, contains the §-thin part of C, for all sufficiently large
t. Thus, by applying Proposition 10.10 to A;, we obtain a multiloop for the desired convergence
property of dev C,. Ll

10.1 | Convergence in holomorphic quadratic differential in the case
of parabolic cusps

Under the assumption that p (m) is parabolic, we already have the limit C,, of C, as t — oo
where C,, is a CP!-structure on a Riemann surface X, with two cusps homeomorphic to S \ m.
Moreover, each cusp of C, has a neighborhood that is a horodisk quotient (i.e., isomorphic, as
a CP!-structure, to a cusp neighborhood of a hyperbolic surface) by Proposition 10.6. Then, the
holomorphic quadratic differential ¢, on X, representing C, has, at worst, a first order pole at
each cusp. Therefore, we have the following convergence of the differential.

Theorem 10.12. Suppose that p.,(m) is parabolic. Then, X; converges to a nodal Riemann sur-

face X, such that X minus the node is homeomorphic to S \ m and g, converges to a quadratic
differential q ., on X ., such that the node is at worst first order pole.

11 | p.(m) CANNOT BE HYPERBOLIC
In this section, we show that p (m) cannot be a hyperbolic element.

Lemma 11.1. Suppose that X; is pinched along a loop m and p,(m) is hyperbolic. Then,
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(1) C, converges to a CP!-structure C, on a compact surface with two punctures, which is homeo-
morphic to S \ m, in the sense that, for every € > 0, the e-thick part of C; converges to the e-thick
part of C, uniformly, and

(2) poo(F) is nonelementary for each component F of S \ m.

Proof.

(1) is an immediate corollary of Theorem 7.4.

(2) Let F, be the component of C, corresponding to F. Let (o,v) denote the Thurston
parametrization of F,. Then, o is a hyperbolic surface with geodesic boundary, such that
the lengths of the boundary components are the translation length of p_ (1) (see the proof
of Lemma 5.4). Let (&, %) be the universal cover of (o, v) so that & is a convex subset of H?
bounded by geodesics and that ¥ is a 7r; (0)-invariant lamination on &.

Leta : & — H?3 be its pleated surface equivariant by the holonomy of F,. Let # be a boundary
geodesic of 6. Then, the endpoints of a(¢) are in the limit set A of Hol F, as a(¢) is the axis of
the hyperbolic p (m). Every component R of & \ # has at least three ideal points. Then, the ideal
points of a(R) are in A (see [5, Lemma 5.1]). Thus, p, |F is nonelementary. O

Lemma 11.2. For each cusp p of C., there is a neighborhood of p foliated by isomorphic admissible
loops that develop to simple curves on CP' invariant under a one-parameter subgroup in PSL,C
containing p,(m).

Proof. The developing map near a cusp neighborhood is the restriction of the exponential map
exp : C — C*; moreover, by taking an appropriate neighborhood, one can assume that the restric-
tion is to a half-plane bounded by a straight line in C invariant under the deck transformation
corresponding to the hyperbolic element p,(m).

The half-plane is foliated by straight lines parallel to the boundary, and this foliation descends
to a desired foliation of the cusp neighborhoods by admissible loops. O

Proposition 11.3. If € > 0 is sufficiently small, then, for every sufficiently large t > 0, there is a
cylinder A, in C, homotopy equivalent to m such that

A, changes continuously in t > 0;

» A, is foliated by admissible loops whose developments are invariant under a one-parameter
subgroup G, in PSL,C containing p,(m);

* A, contains the conformally e-thin part of C,;

* C, \ A, converges to a CP'-structure on S \ m whose boundary components are admissible loops.

Proof. Consider the cusp neighborhoods of C, foliated by admissible loops by Lemma 11.2. By the
convergence of Lemma 11.1 and the stability of the admissible loops, for ¢t > 0, there is a cylinder
A, foliated by admissible loops whose developments are invariant under G,. Then, it is easy to
realize other desired properties. O

By Claim 11.1 (2), the developing map of C, \ A, converges uniformly on compact subsets. By
normalizing p; by PSL,C continuously, so that, for sufficiently large ¢ > 0, we can, in addition,
assume that the axis of the hyperbolic element p,(m) connects 0 and oo of CP! = C U {co}. Then,
the developing map of the cylinder A, is the restriction of the exponential map exp: C — C* to
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the strip region R, bounded by parallel lines, since the boundary components of A; develop to G,-
invariant curves by Proposition 11.3. Since the boundary components of A, converge to peripheral
loops of C,, by the continuity of dev C; in ¢, the region R, converges to a strip in C with finite
width. Therefore, A, must converge as t — co. Thus, C, converges to a CP!-structure on S—this
contradicts the divergence of C; in the deformation space. Hence, p,(m) cannot be hyperbolic.

12 | p.(m) CANNOT BE ELLIPTIC

In this section, similarly to the previous section (§11), we show that p_ (m) cannot be elliptic. To
show this, we assume, to the contrary, that p (m) is elliptic and obtain a contradiction against
the convergence of p, as t — co. By Theorem 7.4, we have the following.

Proposition 12.1. Suppose that p. (m) is elliptic. Then, C, converges to a CP'-structure C,, on
a compact surface minus two points homeomorphic to S \ m, in the sense that, for every € > 0, the
e-thick part of C, converges to the e-thick part of C .

Lemma 12.2. For each component F ., of C,, the stabilizer of p (F,) by conjugation is a discrete
subgroup in PSL,C.

Proof. Let F, be a component of C,. Then, let (g, v) be the Thurston parametrization of F, and
let (&, 7) be the universal cover of (o, 7). Then, the rotation angle of the elliptic element p_ (m)
is, modulo 27, equal to the total weight, given by v, of the leaves ending at a puncture (Proposi-
tion 5.2). Let B, : 6 — H?> be the equivariant pleated surface. Pick a leaf # of v whose endpoints
are at cusps of v; then # is an isolated leaf. Let Z be a leaf of ¥ that is a lift of #. Then, its image
B (£) is a geodesic in H3. Each endpoint of this geodesic is a fixed point of the parabolic element
in the image p_, (7r; (F)) corresponding to its associated peripheral loop.

As the leaf 7 is isolated, £ bounds a component P of & \ 7, and P has at least three ideal points.
Then, for each ideal point p of P, lety € m;(F ) be such that y fixes p. Then, 8, (p) is fixed by the
elliptic element p, (). Therefore, the stabilizer of p  (F,) is a discrete subgroup of PSL,C. []

Similarly to Proposition 11.3, the following follows from Lemma 12.1 and Lemma 12.2.

Proposition 12.3. If € > 0 is sufficiently small, then for every sufficiently large t > 0, there is a
cylinder A, in C, homotopy equivalent to m such that

* A, changes continuously in t > 0;

* A, is foliated by loops whose developments are invariant under the one-dimensional subgroup
G, of PSL,C containing p,(m), and G, converges to a one-dimensional subgroup G, of PSL,C
containing p,(m);

* A, contains the conformally e-thin part of C, homotopic to m;

* C, \ A, converges to a CP-structure on S \ m such that the boundary components cover round
circles on CP!.

Proposition 12.4. Suppose that p . (m) is elliptic. Then, C, converges to a CP'-structure on S, which
is a contradiction as desired.
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Proof. Fix sufficiently small € > 0, and let A, be a cylinder given by Proposition 12.3. Let ¢, : C, —
C, be the universal covering map. Then, the developing map of C, \ ¢; (4,) converges uniformly
on compact subsets. Let A, be the component of ¢;'(4,) invariant under m € 7,(S), so that A,
changes continuously in ¢. We can normalize dev C, by PSL,C continuously in ¢, such that, for
sufficiently large ¢t > 0, the geodesic axis of p,(m) connects 0 and co of CP! = C U {co}. Then, the
restriction of dev C, = f, to 4, is the restriction of the exponential map exp : C — C* to an infinite
strip in C. Since f, converges on the boundary components of A,, thus the restriction of f, to A
converges as t — oo. Hence, A, must converge as t — oo as a CP!-structure on a cylinder with
boundary. Therefore, C, converges to a CP!-structure on S, which is a contradiction. O

13 | LIMIT WHEN p_(m) = I

Let A be a regular neighborhood of a loop m on S. For ¢ > 0, let (z;, L,) be Thurston parameters of
C,. Let B, : H? — H? be its p,-equivariant pleated surface. Let x, : C — 7 be the collapsing map,
and %, : C — H? denote the lift of x to the map between their universal covers. Let a, denote the
axis of p,(m) € PSL,C (Definition 3.6).

Note that a CP!-structure on S is defined up to an isotopy of the base surface S. Thus, the
developing map f, : S — CP! of the path C, of CP!-structures on S can be modified by an iso-
topy ¥, : S — S in t without changing C,. Finally, recall that ¢ : S — S is the universal covering
map.

Theorem 13.1. Suppose that p (m) = I. Then, the following hold:

Q) p;(m) # I for sufficiently large t > 0.
(2) The Fenchel-Nielsen twisting parameter (in R) of X, along m diverges to either co or to —co.
(3) For every diverging sequence 0 < t; < t, < ..., there is a subsequence such that

(a) the axis a; converges to a point on CP! or a geodesic in H?, denoted by a;

(b) there is a CP-structure in P(S \ m) such that, for every € > 0, the e-thick part of C,
converges to the e-thick part of C, uniformly;

(¢) up to an isotopy of S in t, the restriction of f, to S\ ¢ (A) converges to a p,-equivariant
continuous map f,: S\ ¢~1(A) = CP! as t; » oo such that, for each component A of
¢~1(A), its boundary components map onto the ideal points of a ,;

(4) the pleated surface §, o%, : S — H* converges to a p,-equivariant continuous map S — H?> U

CPL, up to an isotopy of S.

Notice that, by the surjectivity in (3c), if a,, is a geodesic, then the different boundary
components of A map to the different endpoints of a,.

We will prove (13.1) in the next subsection (§13.0.1). In this section, we will prove the other
assertions: (1) will be proved in Lemma 13.8; (2) will be proved in Lemma 13.9; and (3c) will be
proved in Proposition 13.12. The proof of (3b) is similar to the proof of Theorem 7.4.

Let C, = (04, V) denote the Thurston parameterization, where o, be a hyperbolic structure
in the Teichmiiller space T(S \ m) and v, be a measured lamination on o,. Then, o, has two
cusps. Ateach cusp c of o, there are only finitely many leaves of v, ending at ¢ by a basic property
of geodesic laminations ([7]). Then, since p,(m) = I, the total weight of those leaves is a positive
27-multiple.
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FIGURE 15 Theloop y and its action on H?.

Lemma 13.2. If v contains an irrational sublamination, then the holonomy of C, is
nonelementary.

Proof. Suppose that v, contains an irrational sublamination. Then, there is a minimal irrational
sublamination N of L, so that every leaf of N is dense in N. Let F be a (topologically) smallest
subsurface of S containing N, such that F C N is a 77, -injective. Let # be a geodesic loop in o, that
is a good approximation of N. Let B, : H?> — H3 be the equivariant pleated surface corresponding
to (04, Vo )- Then, for each component R of F \ ¢, the restriction of 8, to R is a quasi-isometric
embedding ([2]). Thus, p, |7, R is nonelementary, immediately implying the lemma. O

Using the assumption that C; is pinched along a single loop, we prove the following.

Proposition 13.3. For each component F of S \ m, the restriction of p, to m,F is a nontrivial
representation in the representation variety.

Remark 13.4. On the other hand, the restriction p, |7r; (F) may be the trivial representation in the
character variety (see Theorem 14.5).

Proof. If v, contains an irrational lamination, by Lemma 13.2, p, is nonelementary. Then, we
can assume, without loss of generality, that v contains only isolated leaves, and v, divides o,
into ideal polygons.

Since each component of o, has one or two cusps, there is a leaf # of v, whose endpoints are
at a single cusp c of o,. Let D be a small horodisk quotient neighborhood of c. Then, # \ D is
a long geodesic segment, and by connecting its endpoints by a horocyclic simple arc in dD, we
obtained a simple loop y (which is a good approximation of ); see Figure 15 (Left).

Pick a lift Z of # to the universal cover H? of o, and fix an orientation. Then, there is a, € 7,(S)
representing y that takes the oriented (bi-infinite) geodesic £ to an oriented geodesic starting from
the endpoint of Z; see Figure 15 (Right). Clearly, B, (¢) is an oriented geodesic in H>. Then, by
the equivariant proeprty, the holonomy along « takes the oriented geodesic .. (£) to an oriented
geodesic starting from the endpoint of 8 (£), and thus, o () # I. O

Lemma 13.5. Let G be a nontrivial subgroup of PSL,C. Consider the (pointwise) stabilizer of the
action PSL,C ~ G by conjugation. Suppose that the stabilizer is continuous. Then there is a set A of
one or two points of CP! fixed pointwise by the action of G.

Proof. Suppose that G has a continuous stabilizer. Then, clearly, G is an elementary subgroup of
PSL,C. First suppose, in addition, that G contains a hyperbolic element h. Then, no element in
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G exchanges the fixed points of &, as otherwise, the stabilizer cannot be continuous. Therefore, A
is the fixed point set of i, and all elements in G \ {I} must be hyperbolic or elliptic elements with
the same axis.

Next suppose that G contains a parabolic element p. Then, there is no elliptic element or hyper-
bolic element in G, as otherwise, the stabilizer cannot be continuous. Then, A must be the single
fixed point of p, and all G \ {I} are all parabolic elements with the same fixed point.

Suppose that G contains an elliptic element e and contains no hyperbolic element. Then, simi-
larly, A must be the fixed point set of e, and G contains no parabolic element. Moreover, G \ {I} are
all elliptic elements with a common axis. Then, A is the set of the two endpoints of the axis. []

Given a CP!-surface with a cusp such that the holonomy around the cusp is trivial, its devel-
oping map continuously extends to the cusp, so that it is a branched covering map near the
cusp.

Lemma 13.6. Let F be a compact surface with finitely many punctures, such that the Euler
characteristic of F is negative. Let (f, p) be a developing pair of a CP'-structure C on F such that

* p: m(F) - PSL,C is not the trivial representation,

* the holonomy around each puncture is trivial, and

* the stabilizer of Im p in PSL,C is continuous; thus, let A C CP' be the one- or two-point set in
Lemma 13.5.

Then, there is a cusp p of F such that f(p) is not a point of A.

Proof. Notice that CP! minus A admits a complete Euclidean metric invariant under Im p, which
isunique up to scaling. Thus, if f takes all cusps of F into A, then the surface F minus finitely many
points admits a complete Euclidean metric. This is a contradiction as the Euler characteristic of
F is negative. O

The next proposition immediately follows from Proposition 9.2.
Proposition 13.7. Let F be a compact connected surface with two punctures, such that the Euler

characteristic of F is negative. Let C = (f, p) be a CP!-structure on F, such that

* Im p has a continuous stabilizer in PSL,C;
* the holonomy around each puncture is trivial;
* the degrees around the two punctures are the same.

Then, no cusp of C maps to a point of A by f, where A is as in Lemma 13.5.
Let 1 be a lift of m to S. Let Q and R be the adjacent components of S \ ¢~ (m) across #i. Let
Stab Q and Stab R denote the subgroups in 7, (S) that setwise preserve Q and R, respectively. Let

Cg, CR denote the component of C, corresponding Q, R (if m is nonseparating, Cgo =CR).
We first prove (1) in Theorem 13.1.

Lemma 13.8. For sufficiently larget > 0, p,(m) # 1.

Proof. Suppose, to the contrary, that there is a diverging sequence 0 < ¢; <, < ... such that
p;,(m) = I for each i. We may, in addition, assume that C; converges to C,, as i — co uniformly
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on compact subsets as i — oo. Then, as p; (m) = I and C, is pinched along m, for i > 0, there is a
cylinder A; in C; homotopic to m such that

* A; is bounded by round circles (i.e., the development of each boundary component is a round
circle on CP1),

* Mod A; - o, and

* C, \ A; converges to C,, minus cusp neighborhoods bounded by round circles (in other words,
for every € > 0, if i is sufficiently large, then A; is contained in e-thin part of C ).

We can normalize p, so that p; | StabR converges as i — oo and the developing map f ;IR also
converges to a developing map of Cfo asi — oo. Then, the development of i1 converges to a point
p on CPL.

First suppose that the stabilizer of p | Stab Q is discrete. Then, there are elements a;, ct, of
Stab Q with disjoint fixed point sets on CP!. Pick a sequence y; € PSL,C such that the restriction
of the conjugation yiptl_yl._l = p;i to Stab Q converges as i — oo. Therefore, the properties of A;
imply that y; must leave every compact in PSL,C. As a;, &, have disjoint fixed point sets in CP!,
one of the fixed-point sets does not contain the puncture point of COQO. Therefore, either Pti(%) or
pti(ocz) diverges to infinity in PSL,C as i — oo against the hypothesis.

Next, suppose that the stabilizer of o | Stab Q is continuous. Then, by Proposition 13.7 and
Lemma 13.6, with respect to the normalization p;l_, no cusp of Cgo develops to a point of A for

COQO. Let w € Stab Q such that p_ (w) is nontrivial (Proposition 13.3). Then, by the properties of A4;,
Py, (w) must diverge to oo since the continuous stabilizer preserves A.
This is a contradiction against the convergence of p;. O

Lemma 13.9. The Fenchel-Nielsen twist coordinate along m must diverge to co or —oco ast — oo.

Proof. The proofis similar to that of Lemma 13.8. Suppose to the contrary that there is a sequence
ty <t, <t3<.. such that the Fenchel-Nielsen twist parameter of C; along m converges as
i - co. We normalize p; so that p, | StabR converges as i — oo the developing map f |R also

converges to a developing map of Cfo as i - oo0. Then, similarly to the proof of Lemma 13.8, one
can show that p, | Stab Q diverges to infinity, since the cylinder A; becomes longer and longer and
itpushes p, | Stab Q farther and farther away; this contradicts the convergence of p, ast — co. []

Then, for each t > 0, let ¢, be some power of the Dehn twist of S along m such that the twist
coordinates of ¢,C, along m is bounded from above and below in R uniformly in ¢ > 0. Then, by
Lemma 13.9, the power must diverge to either co or —co ast — oo.

There is a diverging sequence 0 <t <f, <... such that C;, — C, as i — oo uniformly on
compact. Let F be a component of S \ m. Let F be the universal cover of F.

First, suppose that p |F has a discrete stabilizer (in PSL,C). Let F, be a component of C,
that corresponds to F. Then, dev F, is the limit of f;, |F, so that lim,_, , f ;, takes each boundary
component of F to a single point corresponding to a cusp of C,.

Pick a fundamental domain D; in F with an arc s; on dD; N 8F such that s; descends to a loop
m; isotopic to m, the loop m; is contained in the ¢;-thin part of C; with ¢; \, 0 asi — oo, and the
development of m; is invariant under a one-dimensional subgroup G; of PSL,C containing p;(m).
As p; (m) — I, the image of s; becomes more and more like a round circle ¢; as i — co.

Next suppose that p (F) has a continuous stabilizer. Then, p (F) is elementary, and the
restriction of f, to F may not converge to a local homeomorphism, even up to a subsequence.
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Nonetheless, as C;, converges to C, in P(S \ m), clearly we can normalize p,, for the convergence
of developing pairs.

Lemma 13.10. Suppose that there is no subsequence of t; such that f. |F converges to a developing
map of F,. Then, there is a sequence y; of PSL,C such that, up to a subsequence, y;(f t |F, Py, |7, F)
converges to a developing pair (h.,¢.,) of F..

Next, without normalization, we show a convergence of the developing map as a continuous
map.

Proposition 13.11. Suppose that there is no subsequence such that the restriction f [ |F converges to
a developing map of F, as i — 0. Then, fz,- |F converges to a p, |7, F-equivariant continuous map
SFoo: F — CP! uniformly on compact subsets, such that each boundary component of F maps to a
single point. Moreover, either f. ., is a constant map to a fixed point of p, |F or there are open disks
Dy, ...,D, onF such that fr. ., takes F \ ¢~1(D, U --- U D,) to a fixed point p of p,(F) and each lift
D; of D; to CP' \ {p}foralli =1,...,n.

Proof. Let y; € PSL,C be the sequence and (h,{,) be the normalized limit obtained by
Lemma 13.10. By the non-subconvergence hypothesis, o, (7, F) is an elementary representation.
We divide the proof into cases depending on the types of elementary subgroups.

First suppose that p (7, F) contains a loxodromic or elliptic element. Then, let # be the axis
of the loxodromic or the elliptic element. Then, there is a corresponding loxodromic or elliptic
element in Im h_,, and let £’ be its axis. By the non-subconvergence hypothesis, there is w € 7, F
such that h(w) is a parabolic element but p (w) is the identity in PSL,C. Thus, y; must be a
hyperbolic element for sufficiently large i such that asi — oo, the translation length of y; diverges
to infinity. In addition, Axis(y;) converges to the #” in H>. Let p be the limit of the repelling fixed
point of y;, and let q be the limit of the attracting fixed point of y;, so that {p, q} are the endpoints
of #’. Note that as p, (7, (F)) is elementary, p 7, (F) preserves p and g pointwise.

Take a connected compact fundamental domain Q in FF. We can assume that Q N dF is disjoint
from g, by perturbing the loop m; on C, if necessary. For simplicity, we first suppose that i (Q)
is disjoint from q. Then, letting f; = f 1 the restriction f;|Q converges to the constant map to p
uniformly, as i — oo, and thus, f; : F > cP! converges to the constant map to p uniformly on
compact subsets.

Suppose that h (Q) N {q} # @. Then, by the compactness of Q, there are finitely many points
of h;l (g) in the interior of Q. Pick small disjoint open disk neighborhoods of the points in h;l (@)
in Q. Then, as the disks are contained in a fundamental domain, their images D,, ..., D,, in F are
disjoint. Then, as ¢, preserves g, the restriction of f; to F\ ¢~1(D, U --- U D,)) converges to the
constant map to p uniformly on compact subsets. Moreover, for each lift D; of D; to F, D; contains
a unique point mapping to g. Thus, up to an isotopy of S, we can in addition assume that f;|D;
converges to a homeomorphism to CP! \ {p}, as desired. By Lemma 9.1 and Proposition 9.2, the
boundary components of F all map to p.

Next, suppose that p (F) contains a (nontrivial) parabolic element but no hyperbolic and ellip-
tic element. Let w € 7, F such that p (w) is also a nontrivial parabolic element. Therefore, o
and p/_ are conjugate to each other, and (f t,» Py, |70, F) converges to a developing pair of F,. This
contradicts the non-subconvergence hypothesis.
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FIGURE 16 The trajectories of G; when G; is hyperbolic (Left) and parabolic (Right).

Last, suppose that p (7, F) is the trivial representation. This case will be similar to the case
when p_ (7, F) contains an elliptic or a hyperbolic element. Then, the normalized holonomy ¢,
is a parabolic representation. Let p be the parabolic fixed point of { .. We can assume that y; isa
hyperbolic element for i large, and the axis of y; converges to a geodesic £ starting from p. Let q
be the other endpoint of 7. Pick a connected fundamental domain Q in F so that h~!(p) is disjoint
from 8Q. Suppose in addition that no point of Q maps to p. Then, up to a subsequence, f;|F con-
verges to a constant map to g uniformly on compact subsets. Suppose there are (finitely many)
points of Q which map to p. Then, similarly to the case of a hyperbolic and an elliptic represen-
tation, take disjoint open ball neighborhoods of those points in Q, and let D,, D, ... D,, be disjoint
disks on F that lift to those open balls. Then, the desired convergence follows similarly. O

By Proposition 13.11, the restriction of f; to S\ ¢~1(A) converges to a p_ -equivariant map
foo: S\ ¢71(A) — CP'. We next prove the convergence of the boundary components to complete
the proof of (3c).

Proposition 13.12. For each component A of $=1(A), let y € m,(S) be the representative of m
preserving A. Then, by taking a subsequence so that Axis(p, (y)) =t a; converges to a subset a,, €
H3 U CP!, which is either a point on CP! or a geodesic in H3, then f ., takes the boundary components
of A onto the ideal points of a,.

Proof. By Lemma 13.8, p, (m) # I for sufficiently large i € Z . Thus, by taking a subsequence, we
may in addition assume that p,, (y) converges to I tangentially to a unit tangent vector of PSL,C at
I. Let G; be the one-parameter subgroup of PSL,C that contains p,, (7), such that the cyclic group
generated by p,, (y) is asymptotically dense in G; with respect to the intrinsic metric on G;. Then,
the trajectories of G; yield a unique foliation of H* except that, if Py, (y) is elliptic, only of H3 \ q;
(Figure 16). We have chosen a subsequence ¢; so that C; — C, uniformly on every thick part

and the axis a; converges to a closed subset a, of H3. Let P, Q be the components of S\ ¢~1(A)
adjacent across A.

Claim 13.13. Let # be the common boundary component of P and A. Suppose, to the contrary, that
lim f [i(f) is not a point, in CP!, of the limit axis a.- Then, Py, |Q diverges to oo in y.

Proof. Let (; be some power of the Dehn twist of S along m so that the Fenchel-Nielsen twist
parameter of the remarked Riemann surface X, along m is bounded from above and below
uniformly in i.

}) SUORIPUOD pue SWB | 3L} 89S *[6202/20/20] U0 AriqiauluO A8 'exesO JO A1sieAlin 8y L Aq 0T00L 0doyZTTT OT/I0p/wod A | imAReiqijeut|uo'acsyrewpuo | //sdny Wwoip pepeojunmoq ‘T ‘S20Z 'v2v8esLT

0" A3 IM

B5UBO 1T SUOWILOD BAIESID) 3(gedljdde 8y} Ag pousenoB ae SO ILe YO SN JO 3N 104 ARIqIT BUIUO AD|IM UO



56 of 69 BABA

The axis at the puncture. The axis off the puncture; diverging.

FIGURE 17 The limt axis a,, and the location of the puncture. The left picture illustrates the convergence
of holonomy and the right picture illustrates the divergence of holonomy.

Let #’ be the common boundary component of A and Q. By Proposition 13.3, there is y € 7,(S)
belonging to Stab Q such that p (y) is not the identity matrix. We may in addition assume that
the axis of p, (1; - ¥) converges to the point fr (£) on CP! (if p,(StabQ) is elementary, use
Lemma 13.6 and Proposition 13.7). By the tangential convergence of p;(m) — I, the G;-invariant
foliation 7; of H* converges to a foliation F, of H3. If f (#) is not the ideal point of a,,
Axis(p;(t; - y)) be eventually disjoint from every compact subset in the space of the leaves of F,.
Therefore, since the G;-invariant foliations F; limit to F,, Axis(p;(y)) also leaves every compact
subset of the leaf space of . Hence, p;(y) must diverge to oo in PSL,C, which is a contradiction.

(Figure 17.) 0
This claim completes the proof.

It remains only to prove the surjectivity in Theorem 13.1 (3c).

Lemma 13.14. Suppose that a, is a geodesic in H3. Then, f. (¢) and f . (¢') are the different
endpoints of a,.

Proof. By Claim 13.13, f;|£ converges to the constant map to an endpoint of a .

Let n; € Z be the power of the Dehn twist along m that gives ; € MCG(S). Thus, p;(y™) is a
hyperbolic element whose axis a; converges to a,, and its translation length diverges to infinity
as i — oo. Then, the attracting fixed point of p;(y") converges to the endpoint of a, that is not
fo(©). Thus, f (¢) must be at the other endpoint. O

13.0.1 | Convergence of pleated surfaces when p_(m) = I

First, we compare developing maps of CP!-structures and the exponential map exp : C — C*. Let
¢ be the geodesic in H* connecting 0 to co of dH3> = C U {oo}. Let ¥ : C* — ¢ be the continuous
extension of the nearest point projection H*> — #. Then, the composition is ¥ o exp: C — H? is
the Epstein map of the CP!-structure on C given by exp.

Recall that, given a CP!-structure C = (X, q), for x € C, d(x) is the Euclidean distance from
x to the set of the zeros of the holomorphic differential q. Note that, if d(x) is large, then we can
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naturally embed a large neighborhood of x into C(2 E?) by an isometric map onto its image, so
that vertical leaves map into horizontal lines, and horizontal leaves map into vertical lines.

Proposition 13.15. For every € > 0, there is R > 0, such that, if x € C satisfies d(x) > R, then the
Epsteinmap L. C =~ S — H3 is e-close, in the C'-topology, to the composition of the collapsing map
%: S — H? and the bending map 8 : H? — H3 at every lift % of x.

Proof of Proposition 13.15. The proof is reduced to showing the following lemma.

Lemma 13.16. For every ¢ > 0, there is R > 0, such that, if z € C satisfies d(z) > R, then the
maximal ball centered at z is e-close to the maximal ball of the corresponding exponential map.

Proof. As the Epstein map of C and exp are close, their developing maps are also close. This

implies the closeness of their maximal balls centered at z and their ideal points. O
The proposition follows from the above lemma and Proposition 4.9. 13.15

Recall that we have already proved Theorem 13.1 (1), (2), (3) regarding the asymptotic behavior
of C, using the decomposition of C; into the restriction of C, to the thin part A and its complement.
We prove additional compatibility of the corresponding bending map.

Proposition 13.17. Suppose that p,(m) = I. Then, for every diverging sequence t, < t, < ..., up to
taking a subsequence, there are a sequence of diffeomorphisms ;: S — 1, representing the mark-
ing of C; and a path of cylinders A; in C, homotopy equivalent to m, such that in addition to
Theorem 13.1 (1), (2), (3), the following holds:

(1) Amapsto A; byy;

(2) B, 0%, : S — H’ converges to a p.,-equivariant continuous map S — H* U CP' uniformly on
compact subsets;

(3) for each connected component F of S\ ¢~'(A), the restriction of B;, o x;, to F converges to the
pleated surface of the corresponding component of C, or the constant map to an ideal point of
a, (in Proposition 13.12);

(4) letting A be a connected component of $~1(A) in S, then /3{’_ oR; |A converges to a map onto a.,
uniformly on compact subsets in A with respect to a fixed closed disk metric on H3 U CPL.

Proof. Fort > 0, there is a one-parameter family of loops homotopic to m such that their develop-
ments are invariant under a unique one-dimensional subgroup G, of PSL,C that contains p,(m)
(as in the proof of Proposition 13.11). Then, we can pick a cylinder A, in C, homotopy equivalent
to m, such that

* A, is foliated by loops whose developments are invariant under G, for each t > 0,
* C, \ A, converges to C, ast — oo, and
* ModA; - oo ast — oo.

By the second property, A, is contained in a thinner and thinner part of C;, as t — o. Then, the
developing map of A, is the restriction of exp : C — C* to a bi-infinite strip T,, that is, a region in
C bounded by a pair of parallel lines. Then, its deck transformation group (& Z) is generated by a
translation of T,. Then, A, has a natural Euclidean metric by identifying C with E2.
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Recall that A is a cylinder in S homotopic to m, and fix a finite volume Euclidean structure on
A with geodesic boundary (by picking a homeomorphism A — S! x [—1,1]). We can easily pick
amarking ¢, : S — C; such that

* 1, takes A to A, ((1));
* the restriction of C; to (;(S \ A) converges to C;
* 1,|Ais linear with respect to the Euclidean structures on A and A,.

Given a component F of S\ ¢~1(A), suppose that f ;,|F' converges to a developing map of the
component of C,. Then, clearly, §; o %;|F converges to a pleated surface for the corresponding
component of C,. By Proposition 13.11, if f ;,|F does not converge to a developing map, then
B; o &;|F converges to the constant map to an ideal point of the axis limit a_,. Thus, we have (3).

Last we prove (4). As we have already shown the convergence of the developing map in the
thick part, we need to show that the convergence extends to the convergence on the neck. As the
developing map of some components of S \ m may degenerate as described in Proposition 13.11,
accordingly, one needs to be careful about the behavior of 8; o x; on the neck.

By Theorem 13.1(2), the Fenchel-Nielsen twisting parameter of C; along m diverges to either
o0 Oor —oo as t — o0. We can assume that the twisting of C, along m occurs in A, by isotopy of S.

(Case One) Suppose that a, :=lim;_  Axis p[i(m) is a bi-infinite geodesic. Then, pti(m) is
hyperbolic if i is large enough, and the translation length of ,o[i(m) times the number of twist
goes to infinity as i - co. For r > 0, let U;(r) be the r-neighborhood of a; in H3. Clearly, U,(r)
is invariant under p;(m). Let (z;,L;) € T X ML be the Thurston parameters of C; for each i. Pick
€ > 0 less than the Bers’ constant, and let N; = N7 be the e-thin part of 7;. Let N; be the lift of N;
to the universal cover H? of 7; invariant under the fixed representative the loop m in 7,(S). Let
¢;1,¢;, denote the boundary components of N;, which connect the endpoints of the geodesic g;

Lemma 13.18. Ifr > 0 is sufficiently large, then f3;(N;) is contained in U,(r) for sufficiently large i.

Proof. Let A be thelift of A to S that is invariant under m € 7,(S). Let P, and P, be the components
of S\ ¢~1(A) adjacent across a lift A. Suppose, to the contrary, that for every r > 0, the image
B;(N;) is not eventually contained in U; as i — oo. Then, either

(i) foreveryr > 0,ifi is sufficiently large, then §;(¢; ;) and §3;(¢; ,) are both not contained in U;,
or

(ii) for every large r > 0, if i is sufficiently large, then one of 5;(¢; ;) and ;(#; ,) is contained in
U, but the other is not.

First, suppose (i). Then, let ¢; : H? — 7; be the universal covering map. Let P{,l and P;,z be the com-
ponent of H? \ qb‘l(N ). Foreachi =1,2,.. and j = 1,2, pick compact fundamental domains D,
of StabP; ~ P’ such that D; ; converges to a fundamental domain of the e-thick components of
- Recall that U is 1nvar1ant under p;(m). Then, for every r > 0, if i is sufficiently large, both
fundamental domains of P’ or P’ , map to outside U; by ;. Therefore, it follows from Proposi-
tion 13.3 and Proposition 13 7 that pl | Stab P; or p;| Stab P, must diverge to co up to a subsequence,
against to the convergence of p;.
Next we suppose (ii). Without loss of generality, we can assume that §;(¢; ), not contained
in U; but §;(¢;,) is contained in U; for sufficiently large i. Then, for every r > 0, similarly, the
fundamental domain P;; of P; maps to outside U; by g; if i is sufficiently large. Then, by the

}) SUORIPUOD pue SWB | 3L} 89S *[6202/20/20] U0 AriqiauluO A8 'exesO JO A1sieAlin 8y L Aq 0T00L 0doyZTTT OT/I0p/wod A | imAReiqijeut|uo'acsyrewpuo | //sdny Wwoip pepeojunmoq ‘T ‘S20Z 'v2v8esLT

0" A3 IM

B5UBO 1T SUOWILOD BAIESID) 3(gedljdde 8y} Ag pousenoB ae SO ILe YO SN JO 3N 104 ARIqIT BUIUO AD|IM UO



NECK-PINCHING OF CP!-STRUCTURES IN THE PSL,C-CHARACTER VARIETY 59 of 69

FIGURE 18 This figure illustrates the divergence of p;| Stab P; in the upper half space model of H3. The
arrows indicate how the action by an element w in Stab P; changes, and it diverges as i increases in PSL,C, where
r'>randi’ > i.

assumption of §;(¢; ,) being contained in U}, one can similarly show p; | Stab P, diverges to co, up
to a subsequence (Figure 18). O

If follows from Lemma 13.18 that, for every ¢’ > 0, by taking § > 0 sufficiently smaller than
€ > 0 above, similarly letting N f be the p;(m)-invariant lift of Nl.5 to the universal cover H?, the
image B;(N f ) is €’-close to the axis q; for sufficiently large i.

Recall that we have a convergence of 5; o x; on Py, P, so that, in the limit, the boundary com-
ponents of A map to the endpoints of a . Therefore, by taking an appropriate isotopy of S, f; o x;
converges to a continuous map, up to a subsequence, such that N maps to a,.

(Case Two) Suppose that a, is a single point on CP!. Pick any horoball B in H* tangent at a,.
For each i, pick a subset U; C H? converging to B uniformly on compact subsets as i — oo, such
that, if p;(y) is either hyperbolic or elliptic, then U; is an r;-neighborhood of a; for some r; > 0,
and if p;(y) is parabolic, then U; is a horoball centered at the parabolic fixed point of p;(y).

For sufficiently large i, let N; be the e-thin part of 7; homotopy equivalent to m. Let N; be a
component of 7 (N;).

Lemma 13.19. If ¢ > 0 is sufficiently small, then 3;(N;) is eventually contained in U; as i — co.
Therefore, B; o x;|N converges to the constant map to the point a .

Proof. Let P, and P, be the components of S \ ¢~1(A) adjacent across the lift A of A invariant by
p;(m). Suppose, to the contrary, for every € > 0, the image S;(N ;) is not eventually contained in
U;. Then, atleast one of 8;(¢; ;) or B;(¢; ;) is not contained in U; for sufficiently large i. Therefore,
it follows from using Proposition 13.3 and Proposition 13.7 that either p;| StabP; or p;| Stab P,
diverges to oo, up to a subsequence. [

13.0.2 | Convergence of holomorphic quadratic differentials when p_(m) =1

We next describe the limit quadratic differential. In the case that p(m) = I, the singular
Euclidean structure E; contains a flat cylinder A, homotopic to m, such that Mod A, — oo and the
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complex length of its circumference converges to a positive multiple of 7/ \/5 by Proposition 5.2.
Therefore,

Proposition 13.20. Let C, be the limit of C, in Theorem 13.1 (3b). Then, the Schwarzian parameters
of C, consist of a Riemann surface with two punctures homeomorphic to S \ m and a holomorphic
quadratic differential q,, such that both punctures are a pole of order 2 and their residues are the

same nonzero integer multiple of \/571

13.1 | Nondiscreteness of holonomy

We in addition show the nondiscreteness of the holonomy representation p, for large t.

Theorem 13.21. Suppose that p,(m) = I. Then, Im p, C PSL,C is a nondiscrete subgroup for
sufficiently large t > 0.

Proof. Recall that p,(m) — I but p;(m) # I (Theorem 13.1(1)). For each component F of S \ m,
p; (7 (F)) is nontrivial for sufficiently large ¢ > 0 (Proposition 13.3). Recall from Proposition 13.12
that, if C; converges to a CP!-structure of a punctured surface homeomorphic to F for a diverg-
ing sequence t; < t, < ..., then, in the limit, its cusp point develops to an endpoint of the limit
of the axis of Py, Therefore, the subgroup of Im p, generated by { p,(m)yp,(m)~! |y € p,(F)} is
nonelementary since the endpoint in CP! is not preserve by some nontrivial element in p, (7, (F))
by (Lemma 13.6 and Proposition 13.7). As p,(m) — I, by the Margulis lemma, Im p; cannot be
discrete. O

14 | EXAMPLES OF EXOTIC DEGENERATION

We construct examples of a path C, = (f,, p,) of CP!-structures on S asymptotically pinched along
aloop m ast — oo such that p (m) = I and [p,] converges in y ast — oo, as in the second case
of Theorem C. We construct two examples: one with p,(m) hyperbolic and one with p,(m) elliptic
for all sufficiently large t > 0.

14.1 | Hyperbolic p,(m) converging to I

Let E be the singular Euclidean surface obtained from an L-shaped polygon by identifying the
opposite edges (Figure 19). Then, E has exactly one cone point, and its cone angle is 677. Let F be the
underlying topological surface of E, which is a closed surface of genus two. Let E’ denote E minus
the cone point, and let F’ denote the underlying topological surface of E’. Let £ » be the (oriented)
peripheral loop around the removed cone point. Let & : 7,(F") — PSL,C be the holonomy of E’.
Then, as F’ has a Euclidean structure, the image of £ consists of parabolic elements, and we can
assume that its image consists of upper triangular matrices with 1’s on the diagonal. In particular,
& ») = I (as before, by abuse of notation, we regard £, also as a fixed element of 77, (S) by picking
a basepoint of 77, (S) on ¢.) Notice that there is a point in the universal cover E of E corresponding
toZ, € m,(S). (Namely, by lifting ¢, to aloop in the universal cover E starting from the base point,
there is a unique cone point of E in the disk region bounded by the lift.)
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ay
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FIGURE 19 Asingular Euclidean surface obtained from a L-shaped polygon, and a generating set of its
fundamental group.

Proposition 14.1. There is a path of CP'-structures, D, = (h;,&,), on F' converging to E' = (h, &)
ast — oo, such that &,(¢ ») is a hyperbolic translation whose axis converges to a geodesic connecting
the global (parabolic) fixed point of &€ and the h-image of the corresponding singular point of E.

Proof. Note that elements of Im £ are translations of C. Pick nonseparating simple closed curves
a;, by, a,,b, on E as in Figure 19 forming a standard generating set of 7, (F) so that

» foreachi = 1,2, g; and b; intersect in a single point, and [a,, b,][a,, b,] =1,

* the translation directions of a; and a, are the same and the translation direction of b; and b,
are the same, and

* the translation directions of a; and b; are orthogonal for each i = 1, 2.

Let ¢ be a separating loop on E that separates {a;, b;} and {a,, b,}. Then, let F; and F, be the
components of F \ ¢ that are homeomorphic to a torus minus a disk.

Lemma 14.2. Let q; be any geodesic in H? starting from the global fixed point p € CP' of Hol E,
and let H; be the hyperbolic plane, in H3, containing an {q;)-orbit of q;. For each i = 1,2, given any
path h; , (t > 0) of hyperbolic elements in PSL,C such that

(1) the axis of h;; is orthogonal to H; at a point in q; for all t > 0, and
(2) hjy > Iast — oo.

Then, there is a path {; , . m1(F;) — PSL,C of homomorphisms which converges to the restriction of
Hol(E) to 71 (F;) as t — oo such that §; ,(c) = h;,.

Proof. The point p is contained in the ideal boundary of H;. Let r; be a geodesic in H;, such that
R(rpR(q;) = &(a;), where R(r;) and R(q;) are the z-rotations of H* about r; and g;, respectively
(Figure 20, Right).

LetH lL be the hyperbolic plane in H* orthogonal to the hyperbolic plane H; along the geodesic
q;- As Axis(h; ) isin H lL and orthogonal to g;, we let g; , and qlf’ , be continuous paths of geodesics
in Hl.l such that R(ql,[)R(qi”t) = h;,, the geodesics g; ; and ql.”t converge to g; as t — oo uniformly
on compact subsets, and the 7z-rotation R(g;) exchanges g; , and qi’, .- By this symmetry, there is a
path of geodesics r; , in H; such that, for all £ > 0,

* there is a hyperbolic plane intersecting r; ;, q; ;, ql.’ . orthogonally, and
* dH3(Vi,p qi,t) = dH3(”i,p qi,,t)’
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FIGURE 20 The axies of reflections to construct ¢; ,.

(% (%
Ug 1,t 2,t Uy

]

q

FIGURE 21 The axies Axish, ,, Axis h,, in H and their endpoints.

Thus, by the symmetry, tr R(g; )R(r; ) = trR(qi”t)R(ri’[) eR\[-2,2].

The surface F; \ q; is a pair of pants, and two of its boundary components correspond to a;. Con-
sider the path of homomorphisms¢; , : 7;(F; \ a;) — PSL,Cfort > 0, such that the two boundary
components corresponding to a; map to R(q; /)R(r; ;) and R(ri’I)R(qlf’ t)—thus the other boundary
corresponding to dF; maps to R(qi,,)R(qi’, t) = h;, (see [17]). Then, by Theorem 5.6, there is a path
of CP!-structures on F; \ a; with holonomy ¢; , that converges to the component of E \ (c U a;)
as t — oo corresponding to F; \ a;. As the holonomies along the two boundary components are
conjugate, for large enough t > 0, there is a path of CP!-structures X;, on F; that converges to
the component of E '\ ¢, so that Hol X; ;|7 F; = {; ;. In particular, the holonomy of Z; , around the
puncture is the hyperbolic element R(qi,l)R(qlf’ D =hi;. O

Notice that H, and H, are totally geodesic hyperbolic planes in H? tangent at p. Therefore, we
can, in addition, assume that H, and H, are different and H f— =H é— =: H. Pick a geodesic g in H
initiating from p contained in the region bounded by the geodesics q; = H N H; and q, = H N H,.

Proposition 14.3. We can choose the path of the hyperbolic isometries hy,h,, (given by
Lemma 14.2) so that their composition hy ;h, , is eventually a hyperbolic element whose axis converges
togast — oo.

Proof. Pick h; ; and h, , such that their axes converge to the parabolic fixed point p. Since h, ; and
h, ; converge to I, their product h, ;h, ; also converges to I in PSL,C.

Foreachi = 1,2, let u;, be the attracting fixed point, and let v; ,; be the repelling fixed point of
h; ;. We may first assume that the endpoints of Axis h, ;, Axis h,; lie on 9H in this cyclic order
Uy, Uy 4, Uy, Uy, (Figure 21). The composition h, ,h, ; fixes a point on the arc in H between v ;
and v, , foreach ¢ > 0. Note that the segment contains p. Then, as Axis(h, ,), Axis(h, ;) converge to
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the parabolic fixed point p, there is a fixed point of h, ;h, , converging to p. Moreover, as h, ; — I,
one can continuously adjust the translation length of h, ; so that h, ;h, , also fixes the other end-
point of q for sufficiently large ¢ > 0. Let s be the endpoint of the geodesic g that is not p. Then,
after this adjustment, clearly, h, ;h, ,(s) = s holds for all large ¢ > 0 and h,,(s) — s as  — oo.
Since the axis of the hyperbolic element h, , converges to the ideal point p(# s), the translation
length of h; , must converge to zero; thus, h; , converges to the identity (so that the condition (2)
in Lemma 14.2 remains satisfied after the modification).

Clearly, the composition h, ,h, , does not fix the endpoints of the axes of the hyperbolic ele-
ments h, , and h, , for all large ¢ > 0. Therefore, h, ;h, , is a hyperbolic element with the axis q for
sufficiently large ¢t > 0, which is not the identity. [l

Let hy ;, h,, € PSL,C be the paths given by Proposition 14.3. Then, by Lemma 14.2, for each
i = 1,2, wehave a path of homomorphisms{; , : 7;(F;) — PSL,Csuchthat{; () = h;, fort > 0.
Then, there is a unique path §, : 7(F") — PSL,Cso that{, |7 (F;) = {;, fori = 1,2; thus {,(¢,) =
hy h,,. Then, by the holonomy theorem (Theorem 5.6), there is a path D, of CP!-structures on F’
with holonomy ¢, for t > 0 such that D, converges to E' as t — oo.

Remark 14.4. Since &, converges to the parabolic representation & and the axis of the hyperbolic
element p,(#,,) converges to a geodesic starting from the parabolic fixed point of § as ¢ — oo,
by normalizing by an appropriate power r; of isometries gt(fp), the conjugation §'t(fp)rl &
§,(£,)" converges to the trivial representation, and the developing map &,(¢,)"th, converges
to the constant map to the endpoint of g which is not p.

1411 | Constructing a closed surface from punctured surfaces

To make a desired example of exotic degeneration, we take two copies D, of CP!-surfaces with a
single puncture from Proposition 14.1, and glue them together with many twists.

Theorem 14.5. There is a path of CP'-structures C, = (f,, p,) on a closed surface S of genus four
with following properties:

* The conformal structure X, is pinched along a separating loop m ast — oo; let F; and F, be the
connected components of S \ m.

* o, m(S) = PSL,C converges in the representation variety ast — oo.

* Pick an elementy € 7,(S) whose free homotopy class is m. Then, p,(y) = I, and, forallt > 0, the
holonomy p,(y) is a hyperbolic element such that its axis a, converges to a geodesic a., in H* as
t — oo.

s Let F,,F, be the connected components of S \ ¢$~'(m) that are adjacent across the lift i of m
preserved by y € r,(S). Then, C,|F, converges to the developing map of a CP'-structure on a genus
two surface minus a point such that the cusp maps to an endpoint of a, ast — oo.

* f,|F, converges to the constant map to the other endpoint of a., uniformly on compact subsets,
and p, |7, (F,) is the trivial representation.

Remark 14.6. In fact, Im p, consists of parabolic elements with a global fixed point on CP!, and
therefore, the limit representation p, is identified with the trivial representation in the character
variety y. In other words, the frontier of PSL,C-orbit of p_, contains the trivial representation.
Thus, there is a path «, (¢ > 0) in PSL, C such that &, p,a; ! converges to the trivial representation.
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Proof. For sufficiently large ¢ > 0, the CP!-structure D, with a single puncture from Propo-
sition 14.1 has a cusp neighborhood N, foliated by admissible loops whose developments are
invariant under the one-dimensional subgroup G, of PSL,C containing §,(¢,,). We can assume
that N, changes continuously in t and is asymptotically the empty set on E’ ast — oco. Note that as
G, is a one-dimensional subgroup p,(m) of PSL,C, integer powers p,(m)" for n € Z continuously
extends to real powers.

First take two copies Z, ;, %, ; of D; \ N, and, since the boundary of N, is invariant by the one-
parameter subgroup G;, glue them together along their boundary components without adding a
twist. Let Ct’ =(f ;, pl’ ) be the resulting developing pair. Then, we can normalize by PSL,C so that
the axis of the hyperbolic element p}(m) is the geodesic q for all ¢. In addition, we can renormalize
the developing pair by PSL,C so that the restriction of f z, to F; and the restriction of p{ to the sta-
bilizer Stab F, of F; in 7, (S) converges to a developing pair of E’ ast — co. Then, as N, converges
to the empty set, the restriction of p; to Stab F, leaves every compact in the representation variety,
and the restriction of f] to F, does not converge to a continuous map as t — co.

Recall that the holonomy p/ along m is a hyperbolic element with axis g, and the translation
length of p/(m) goes to zero as t — oco. Therefore, when we glue X, ;, %, , of D, \ N,, we can contin-
uously add more and more twists along m, which conjugates the structure on F, by p/(m) raised
to the power of the amount of twist along g, so that

* the restriction of f] to F; and the restriction of p/ to Stab F still converges to a developing pair
for E/, and

* the restriction of p] to Stab F', converges to the trivial representation, and the restriction of f]
to F, converges to the constant map to the other endpoint of g (by Remark 14.4) as t — co.

We obtained a desired path C|. O

14.2 | Elliptic p,(m) converging to the identity

In this section, we construct an example of C; = (f, p;) in Theorem C (ii) such that p,(m) is an
elliptic element for all sufficiently large t > 0 and it converges to I as t — oo.

Given an elliptic element e € PSL,C, normalize the unit disk model D* C R? of H* centered at
the origin, so that Axis(e) is contained in the axis of the third coordinate. Let ¢ € (0, 27) be the
rotation angle of e. Then, define b, : R — dH? by x — (cos(¢x) sin x, sin({ x) sin x, cos x) which
is equivariant under Z — (e).

Lemma 14.7. Let r be a geodesic in H>. Pick a parallel vector field V C TH? along r such that V is
orthogonal to r. Then, there are a path of (nontrivial) elliptic elements e, € PSL,C and a continuous
function 6, € Ry int > 0 that satisfies the following.

* e —~>Tast — co.

* Axis(e,) orthogonally intersects r, and Axis(e,) converges to an endpoint of r on CP! ast — co.

* Letting 6, € R be a continuous function such that the angle between Axise; and V is 6, mod 2,
when an orientation of Axis(e,) is fixed continuously in t.

* Letu, = 20,. Then, the rotation angle of e?‘ ism forallt > 0, so that e?‘ takes r to itself, reversing
the orientation.
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&« =

FIGURE 22 The development of a fundamental membrane for A4,.

Proof. 1t is easy to construct an example satisfying the first three conditions. Then, adjust the
rotation angle of e, so that it also satisfies the last condition. I

Lemma 14.8. Let ¢, be as in Lemma 14.7. Let p be the endpoint of r to which Axis(e;) converges.
Pick a round disk D in CP! containing p such that the hyperbolic plane in bounded by the boundary
of D is orthogonal to the geodesic r. Then, there is a path A, of CP!-structures on an annulus A with
smooth boundary for sufficiently large t > 0, such that

* A, converges to the once-punctured disk D \ {p} as t — oo as a CP'-structure, and
* the developments of the both boundary components of A, are curves equivalent to b, by elements
of PSL,C.

Proof. For sufficiently large ¢t > 0, one can easily construct the fundamental membrane for A, for
sufficiently large t > 0 (Figure 22). O

Proposition 14.9. Let P be a pair of pants, and pick a boundary component ¢ of P. Let £ be a lift
of ¢ to the universal cover of P. Consider a (flat) Euclidean cylinder with geodesic boundary, and let
P, be the surface obtained by removing an interior point p of P.; regard P, as a CP'-structure on
P, and let (h, £) be its developing pair, so that h takes £ to a single point v on CP.

Let r be the geodesic in H* connecting v and the parabolic fixed point of h, and let e, € PSL,C be
a path of (nontrivial) elliptic elements given by Lemma 14.7 for r.

Then, there is a path of CP!-structures P, = (h,, §,) on P satisfying the following:

(1) Forallt > 0,&,(¢) =e,.

(2) P, converges to P, ast — 0. Let y, € PSL,C be a path of hyperbolic elements with the axis r,
such that y, Axis(e,) converges to a geodesic g.., in H* orthogonal to r as t — oo (so thaty, is a
large hyperbolic translation towards v for t > 0). Let H C H? be the totally geodesic hyperbolic
plane orthogonal to r and containing g,,. Then, the developing pair y,(h;, §,) normalized by y,
converges to a developing pair for a round disk minus a point, where the removed point is v and
the disk is the component of CP' \ 0H containing v.

(3) Let ¢, be the boundary component of P, corresponding to ¢. Then, dev P; along a lift of ¢; is bft
(up to PSL,C).

(4) Let o be a boundary component of P not equal to £. Then, &,(a) is a hyperbolic element for all
t > 0 (converging to a parabolic element as t — o).
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FIGURE 23 Realize ¢, as the compositions of the 7-rotations about g, and g;.

Proof. First, we construct an appropriate path of representations &, : 7;(P) - PSL,C. Let q,
denote Axis(e,). Pick a pair of geodesics q;, q; in H3 for each ¢ > 0 such that

* R(g,)R(q)) = e,, where R(q,), R(q]) € PSL,C are the z-rotations of H* about q,, g, respectively;
* g, and g change continuously in t > 0;

* g, and q] intersect at the intersection a, N r;

* g, and q; are symmetric about r;

* g, and q] are orthogonal to a;;

* g, and g converge to r as t — oo (see Figure 23).

There is a path of geodesics h, (¢ > 0) in H* such that

* h, is disjoint from g, and g, for all ¢ > 0, and
* h, converges to a geodesic h in H® sharing an endpoint with r as t — oo, such that the
composition R(r)R(h) is the parabolic holonomy along a boundary geodesic of P..

Indeed, one can first find the limit geodesic & that satisfies the second condition, then as gq;, qt’
converges to r, one can take a desired path ;.

Let & : m(P) - PSL,C be such that the holonomy along boundary components are
R(h,)R(q,),R(g;)R(q}), R(q))R(h,). Note that R(h,)R(q,),R(q})R(h,) are hyperbolic elements, as
the rotation axes are disjoint, and they converge to the parabolic holonomy along the boundary
geodesics of P .

Pick a round disk D on P, containing p such that dD on CP! bounds a hyperbolic plane in H?
orthogonal to r. Then, apply Lemma 14.8 to D, let D, be a path of CP!-structures on an annulus
converging to D \ {p}, so that it gives the desired path only near the punctured of P..

Pick a smaller closed regular neighborhood D’ of the puncture p of P, such that 8D’ bounds
a hyperbolic plane orthogonal to r and that D’ is contained in the interior of D. Clearly, its com-
plement K in P, and the interior of D \ {p} form an open cover of P_,. Then, K is topologically a
pair of pants. Similarly to the proof of Theorem 5.6 using the stability of transversal sections for
the Thurston-Ehresmann principle ([18]), we can prove that there is a path of CP!-structures on
a pair of pants K, for sufficiently large ¢ > 0 such that K, converges to K and ¢, is the holonomy of
K, around the boundary component corresponding to 8D’. Moreover, by deformation nearly the
boundary, we can in addition assume that the boundary of K; is equivalent to b, .

Then, since K and D \ {p} form an open cover of P, for sufficiently large ¢t by gluing K, and
A, in the overlapping region, we obtained a desired path of CP!-structures P,. [
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Proposition 14.10. Let P, = (h,,&,) be a path of CP'-structures on a pair of pants from Proposi-
tion 14.9. Then, there is a path =, of CP'-structures on a closed surface F minus a point that satisfies
the following.

* There is a subsurface A of F whose interior contains p, such that A is homeomorphic to a pair of
pants, and Z,|A = P, for all large enough t > 0.
* %, converges to a CP-structure L on F ast — oo.

Proof. First, we construct the limit structure X . Take any complete hyperbolic surface 7 with
a single cusp, such that 7 is homeomorphic to a closed surface minus a point, denoted by F’.
Pick a cusp neighborhood N of 7, a horodisk quotient. The pair of pants P, has two boundary
components and one puncture. As the two boundary components of P, lift to horocycles, we can
glue a copy of 7 \ N along each boundary component of P_,. We thus obtained a CP!-structure on
a closed surface with a single puncture so that P is its subsurface.

There are paths {;, and ¢, , of representations 7;(r) — PSL,C that converge to the holon-
omy of T as t — oo, such that their images of the peripheral loop are R(rt)R(q;) and R(q,)R(r,),
respectively, which are hyperbolic elements (cf. [17]). Let 7, ;, T, , be paths of CP!-structures home-
omorphictoz \ N for ¢t > 0such that Hol(z; ;) = ¢ ;,and Hol(z, ) = ¢, , and 7y ;, 7, , converge to
7\ N. We may in addition assume that the boundary components of 7, ;, 7, , are invariant under
one-dimensional subgroups of PSL,C containing R(r)R(q; ) and R(q,)R(r), respectively.

Then, by gluing 7,,,7,,,P, along their boundary, we obtain a desired path %, of CP!-
structures. O

Let %, be the path of CP! -structures, obtained from Proposition 14.10, on a compact surface
with one boundary component. Let R, be the 7-rotation of H* around the axis a, of the elliptic
e;. By Proposition 14.9(2, 3), we can glue two copies of X, by the involution R;, and we obtain a
path of CP!-structures C, on a closed surface, so that two copies of ¥, are embedded in C, dis-
jointly up to an isotopy. Let m be the loop along which the two copies are glued. Then, to obtain
a marked projective structure, we need to specify the twisting along m. We glue then so that the
Fenchel-Nielsen twisting parameter matches to be u; so that, by the z-rotation along a;, the devel-
oping maps of adjacent components of § \ 771 are identical. Let =] = (h}, p}), =7 = (h?, p?) are the
subsurfaces of C; corresponding to Z,.

Theorem 14.11. Let C, = (f;, p;) be the path of CP!-structures as above, and let m be the loop on
C, corresponding to the boundary components of Ztl and Zf. Let N be the regular neighborhood of
m. Then, by taking an appropriate isotopy of S, C, satisfies the following.

@) p;(m) convergestoI ast — oo, and p,;(m) is an elliptic element for all t > 0;

(2) the axis of p,(m) converges to the point p of CP!;

(3) f;: S\ ¢~'(N) — CP! converges to a p.,-equivariant continuous map f, : S\ ¢~(N) —
CP, such that f« is a local homeomorphism in the interior;

(4) for each connected component N of ¢~'(N), the boundary components of N map to its
corresponding limit given by (2).

Proof. Let Fy, F, be the connected components of S \ N. We normalize the developing pair of C; by
a path of PSL,C so that the restriction to F; converges to a developing pair for £,. Then, (1) and (2)
clearly hold. Moreover, we can take an appropriate isotopy of S so that each boundary component
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FIGURE 24 The left figure is a section of the right figure by a horizontal plane containing a,. It illustrates
the rotation about a, by 7, and it makes the restriction of f, on F, coincide with that to F, coincide.

of F; converges to the corresponding limit point of its corresponding axis. Since the rotation angle
of etu‘ is 7 by Lemma 14.7, the restriction of f, to F, is the same as that to F'; (Figure 24). Therefore,
the restriction of f, to F, converges to a developing map of _, as well. Thus, we have (3). Then,
by the equivariant property, we also have (4). O
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