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Temperature Distribution along Thin Rod with Radiation Loss

from Side Surfacet

Akira MATSUNAWA*, Tsutomu ISHIMURA** and Kimiyuki NISHIGUCHI**

Abstract

The paper describes a mathematical approach of solving the temperature distribution along a fine rod whoes one
end is highly heated, taking into account the radiation loss from the peripheral surface. A non-linear differential equa-
tion of heat conduction has a particular solution only under the special boundary condition, but it has no analytical solu-
tion under the arbitrary conditions such as when a cooling terminal is placed at a finite length from the hot end. Then,
the authors have applied a method of integration of series to solve the problems under question. Introducing a new pa-
rameter Oc that is related with the temperature gradient or heat flux density at the cooling terminal, one obtains the rig-

orous solution of the fundamental equation in the infinite series.

The effect of cooling terminal is minor if O is less enough

than 1, and in such cases the particular solution in analytical function is useful to estimate the thermal field near the hot

end.

1. Introduction

It is one of the theoretical interests to analyze the
temperature distribution along a rod in which the
radiation loss from the surface must be taken into
account. Examples are often met with in arc dis-
charges with refractory electrodes, where the one end
of a rod is heated to extremely high temperature by
the arc, while the another is kept low by water or air
cooling. Considering the heat balance at the electrode-
arc interface, the higher heat conduction loss to solid
will accompany the more increase in the electrode
potential drop (anode or cathode drops) to maintain
an arc. Those who conduct the calorimetric meausre-
ments of the electrodes coolant will notice that the
larger calory is absorbed by the coolant under the
shorter electrode strick-out conditions, but they will
hardly observe noticiable change in arc voltage in a
constant current discharge if the stick-out is not too
short. The above phenomena can not be explained
by a simple heat flow model in which only the conduc-
tion loss is taken into account. Hence, it will be neces-
sary to consider the effect of other types of heat loss,
for example, radiation and convection losses, on the
temperature distribution along an electrode.

A heat conduction equation including the radiation

and convection terms is not analytically solved. If
the temperature under question is very high, the con-
vection term will be reasonably omitted, and then the
mathematical treatment becomes simpler. In this
paper will be described the method to obtain the solu-
tion ‘of nonlinear differential equation of one dimen-
sional heat flow under the arbitrary boundary condition
and some examples of calculated results.

2. Heat flow model and analytical solution

In order to solve the temperature distribution along

a thin rod when the radiation loss from the side

surface is taken into account, the following assump-

tions are premitted in this analysis.

1) The end of a rod is kept at the constant tempera-
ture of T.

2) The rod diameter is small enough to neglect the
radial temperature distribution.

3) The temperature under consideration is high, then
the axial temperature distribution is govrened by
the radiation loss from the side surface and axial
heat conduction.

4) Physical properties such as heat conductivity and
emissivity are constant.
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Then, the steady state equation of one-dimensional
heat conduction is given as follow, taking the coordi-
nate as shown in Fig. 1.

T=To T=T(x) Qr(x)
— 44444
i _ x) _[=Qelxeax) % X
(XXX’
x=0 x X+ax

Fig. 1 Model of heat flow and coordinates

d?*T(x) _ 2ec
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where, K : heat conductivity (cal/cm-s. °K)
r : rod radius (cm) '
e : emissibity
¢ : Stephan-Boltzmann constant
(6=1.36 X 1072 cal/cm?s. °K*)
The equation (1) can be expressed in the non-dimen-
sional form as follow;
O _ Doy @
where, @=T/T,
& =x/r
9eorTo®
TK

A non-linear differential equation such as (2) is
proved not to integrate analytically under the arbitrary
boundary conditions as ©=1 at £&=0 and 6=0,
at £=¢,Y The equation (2) has, however, the fol-
lowing particular solutions only under the boundary
condition of

al

¢=0 ; 6=1
{$=oo; =0 @).
That is,

6(&)=(14as) 25,
Here, we consider no heat source along the rod except
the end surface, which is equivalent that (d©/d¢) is
always negative at any position. Then, a reasonable
solution is

6(&)=(1+4-ag)** .

Fig. 2 is an example of calculated temperature dis-

tribution for physical constants represented in the
figure supposing a graphite arc electrode. The tem-
perature decreases greatly in the short range of ¢,
reaching to the half value of 7, at é=5 (x=15mm),
but its gradient becomes lower in larger values of &.
This is naturally due to the radiation loss, which " is
clearly understood by introducing a new quantity,
radiation loss factor p.
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Fig. 2 Axial temperature distribution and radiation loss
factor under the boundary condition of (3)

Here, denoting the heat input at the edge (§=0)
by ¢ (=—de(0)/d¢) and heat output at &é=¢& by
q.(=—d6(¢)/d¢), the total radiation loss g, from the
surface between &é=0~¢ is equal to the amount
(90—q,), then o is expressed as follows.

o(€)=1—(q:/90)

=1—[d6(¢)/d¢1/[d6(0)/d¢]

=1—(1+af)™"* &)
In Fig. 2 is shown the calculated result of o(£¢) by the
dotted curve, where p increases rapidly with the in-
crease of & and 909 of the total heat input at the
edge qo is lost by the radiation in the range of &=
0~7 (x=0~21 mm).

3. Solution by a series expansion under the arbitrary
boundary condition

In the previous section was described the special
case which satisfies the boundary condition (3). In
the followings will be discussed the more general cases
that there exists a cooling terminal at the finite length
of &=¢..

When the both ends of a finite rod are fixed in
constant temperatures, i.e. the boundary condition of

=0 ; 6=1
{E=$w; O=0.,(0.<1) (©),
the basic equation (2) is impossible to solve analyti-
cally. Then, the authors applied a method of seriese
expansion to obtain the solution which satisfies the
condition (6).
Taking

2 .

then, the equation (2) and boundary condition (6)
are modified as follows.
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d*e

— 5§04
2d§2 =56
. [dONE_
. (ﬁ) =63%+const. ®)
{=0; 6=1

Defining the temperature gradient (—d©0/d{) at the
position {={. where &=6,,
de
—(Z2=), =6, (6,=20) . 10),
(5%)e. CE) (10)

the integration constant of equation (8) is 6.5, As is
evident from the above definition, the 6. is a quantity
which is related to the temperature gradient or cool-
ing rate at £=¢,. Reminding that d6/d¢ is always
negative, the equation becomes

de 1

7;“2‘—(@5—'_@&")2 (11).
Since =1 at {=0, the above relation is rewritten in
the form of integral equation.

j;(@w@cs)‘% d6=C (12)
or
6 -1
J‘@ (63+6.5)"Tdo=C,—C (13)
The equation (12) is approximated as equations (14)
and (15) depending on the amount of &..

If 6.6, the temperature distribution is linear as
shown in the next equation.

J‘;(@ur@ﬁ) 1 d6~6,"T(1—6)

kil 2a
T, @: _@cz C': _—
1 1 3
When 6.6, the result coinsides with the equation
(4) which is a particular solution under the boundary
condition of (3).

g (14)

1 -1 2 -3
J@(@H—@J’) Fd0=—2(1-67%)

3 @:(1 +%C>_%=(l+mj—‘)_% (15)

Under the condition of arbitrary value of 6., solu-
tion in series expansion will be described hereinafter.
In case of 6>6,;
57-1
7))

(@5_|_@Cs)‘%— %[1 +<
/i 2m—1)

—071 3 (—lymm (O )
2 —_— n m=

n=0 ) n! 2" (@ )
1 5

J' 0" Tdo=—

7]

1 _ pn -%)
)

Therefore, the equation (13) is expressed by series as
the next form.

[ 5+6.° __ld@
p—, ¢ 2
¢ JG(@ )

H(2m 1) .
—— (1) 0.5(1-67""3) (16)

n=0 n! 2"(5n—l—%>

While in case of ©,<0 <6,;

ot 3o ﬁl(zm—-l) 0 \n
5 2 = 2, — 1)y m= ([
(@67 =6.75 . 3 (- = ()
2]
@.’m @_— @5n+1 @ 5n+1
Jo. 40 = sy )
Then, the equation (14) becomes
o= fz (6°+6.%)71d6
-5 Z";’ 1 H1(2m_1) @sn+1
— 2. __ 1\ _m=
o n=0( ) n! 2*(5n+1) [ 6.5
@w5n+1
_W} a7

Here, denoting £=¢,. at @=6,, it is clear from the
equation (16) that

H(2m— 1)

3
¢, ———2(—1) —m=l  __05(1—6.7%2)
n=0 n! 2n (Sn -l—%)
18)
While, from the equation (17);
ot 1"1(2m-1) o 6
Y 2 . pm=1___ —_
Cw Cc 4 "50( 1) n, 2n(5 _}_1)[ @c!m :|
3 e IZ(2m——l)
. T3 . n m=1
=6, 1 nfo( D n! 2"(5n+1) |:1
@w Sn+1
()" ] (19)

Eliminating {. from equations (18) and (19), one
obtains

]Z(Zm—l)
Lo — 3 (—1)" e
n=0 n! 2" (Sn—{— )

(10n+7>m1171(2m—1)

nt 2(n+1)(5n+3)

7(2m—1)

N _2. fad ”ml)< >5n
6.2 Gwn{g D RECES))

(20)
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As described above, the solution of differential
equation (8) that satisfies the boundary condition of
(9) is thus rigorously expressed as relations (16), (17)
and (20) by using a cooling parameter .. The euqau-
tion (18) is the application limit of the both (16) and
(17). Namely, the equation (16) must be applied for
the range of {=0~.(0=1~6.), while the relation
(17) for {=C.~L(O@=6.~6y).

The next will be discussed the effect of cooling
terminal on the thermal field just in the vicinty of
heating end. It is evident from the equation (12)
that the temperature gradient at the hot end is

@D,

since &=1 at {=0. One should note here that the
value of (d6/d¢),_, in case of ©.=0 coincides with that
obtained from the solution (4). The relation (21)
indicates that the effect of ©. on the temperature gra-
dient at the heating end is minor when €. is less than
the unity. For example, the value of (d6/dé),., at
6.=0.73 is within the error of 109 of that at &.=0.
This leads one to a conclusion that the required heat
flux density to maintain the constant temperature at
the hot end does not change much even there exists a
cooling terminal at a finite length, since the non-dimen-
sional input heat flux density qo is given by the follow-
ing relation including the radiation loss from the end
surface to —&— (—x—) direction.
20 (dO
o= ()t
=——23i(1—{—@c5)1/2—{—_95_a2 22)

where, pB=recT3/K=15a2/9.

4. Calculated results of temperature distribution
along a graphite rod

As described in the previous section, the solution
of basic differential equation (2) (or (8)) under the
boundary condition (6) (or (9)) can be obtained in
the mathematically rigorous expressions. These in-
finite series are approximated by the finite series as
described in the followings. Taking n=0~6, the
equations (16), (17) and (18) are expanded;

£——0.667(1—60"%)4-0.0770.5(1—62)
0.0330,1%(1 —6 " 1)+0.0196,1%(1 —8 "7
—0.0140.2%(1 —6 1)+ 0.0096,35(1—6 "3)
—0.0076,%(1—6"2) 23)
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L—t=6,77 - @[1——0.083( @@c )5+o.034( gc )“’
—0.020( gp )15+0.014( gc )2"
—0.009( @C )25+o.oo7( gg >3°}
'

+o.034< o )m—o 020( g:’ )15
+o.014( Z:’ )2"—0 090( @:' )25
+0.007( g: )”J (24)

.= —0.667-+0.0776.2—0.0336,194+0.0190,%
3
—0.0146.20+0.0096.%4-0.6166."F  (25)

£w=—0.667+1.5596. _%—}—0.077605 —0.0336.1°
+0.0196,.1*—0.0146.2°--0.0096 %

—9.1 @{1-0.083( g” >5+0.034( g‘" )w

< c

@W 15 @w >20
_ 0.020< 2 ) +0.014< -

< 4

—0.009< g:’ )25+o.007( gf )3} (26)

Fig. 3 shows an example of the temperature dis-
tribution along a fine graphite rod using the above
relations, where the both ends are fixed 7,=3,800
°K (®y=1) and T,=300°K (6.,=300/3,800=0.08)
respectively. In the curve of ©.=0.3, for instance, the
distances ¢, and ¢. which correspond with points B
and C are computed from the equations (25) and (26).
Therefore, the curves A~B and B~C are determined
by relations (23) and (24). As is seen in the figure,
the temperature in case of small ©. changes almost
in the same manner with that of a semi-infinite case
(6.=0) in the short ranges of . While, the difference

1.0

08

08

0.2

Fig. 3 Axial temperature distribution under the boundary
condition of (6) or (9) (Physical properties are the
same with Fig. 2.)
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becomes larger in the longer ¢ and the temperature
varies almost linear in the vicinity of cooling terminal.
In case that the cooling terminal is vrey near to the
hot end, on the other hand, the temperature distribu-
tion is linear in the whole range as it was predicted by
the previous equation (14). It is evident from the
calculated results that the thermal field near the hot
end is not affected greatly by the existence of a cooling
terminal, if the another end of a graphite rod (d=
6 mmg) is forced-cooled in longer distances than 40
mm from the hot end.

5. Conclusion

Some mathematical studies were conducted to solve

a non-linear differential equation of heat conduction

(One dimentional heat flow) which includes a radiation

loss term. The results obtained are as follows;

‘(1) The fundamental equation has an analytical solu-
tion only under the boundary condition of @,=1
at €=0, and #=0 at £=oc0.

(2) When the both ends of a fine rod are fixed in their
temperatures respectively, rigorous solutions are

obtained by the integration of series, using a new
parameter &, which is a measure of the temperature
gradient or heat flux density at the cooling end.

(3) If O, is small enough compared with 1, the tempera-
ture in the vicinity of the hot end is hardly affected
by the existence of a cooling terminal. Namely,
the temperature near the hot end is reasonably
estimated by the analytical solution which is equal
to the solution in series at &,=0.

(4) When 6. is large, the temperature distribution along
a rod is linear like as a solution of one-dimensional
heat conduction without radiation loss in steady
state.

(5) Solution in infinite series were approximated by
finite series and the results were represented in case
of a graphite rod whose both ends were kept in con-
stant temperatures.
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