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Abstract
Accurate measurement of lung adenocarcinoma is crucial for determining treatment plan and predicting
prognosis. However, interobserver variability and display conditions can affect these measurements. We
compared tumor size measurements between radiologists and commercially available AI-based software using
preoperative CT images from 307 cases and evaluated their predictive value for lymph node metastasis,
disease-free survival, and overall survival. We concluded that while radiologist measurements showed inter-
observer variability, AI-based software provided accurate and reproducible prognostic indicators.
Purpose: To compare the variability of quantitative values from lung adenocarcinoma CT images independently
assessed by 2 radiologists and AI-based software under different display conditions, and to identify predictors of patho-
logical lymph node metastasis (LNM), disease-free survival (DFS), and overall survival (OS). Methods: Preoperative
CT images of 307 patients were displayed under 4 conditions: lung-1, lung-2, mediastinum-1, and mediastinum-2. Two
radiologists (R1, R2) measured total diameter (tD) and the longest solid diameter (sD) under each condition. The AI-
based software automatically detected lung nodules, providing tD, sD, total volume (tV), and solid volume (sV). Results:
All measurements by R1 and R2 with AI-based software were identical. Four out of the 8 measurements showed signif-
icant variation between R1 and R2. For LNM, multivariate logistic regression identified significant indicators including
sD at mediastinum-2 of R1, sD at mediastinum-1 and mediastinum-2 of R2, tV, and the proportion of sV to tV (sV/tV)
of AI-based software. For DFS, multivariate Cox regression identified sD at lung-1 of R1, the proportions of sD to tD at
lung-2 of R1, sD at lung-2 and mediastinum-1 of R2, tV, and sV/tV of AI-based software as significant. For OS, multi-
variate Cox regression identified sD at lung-1 and mediastinum-2 of R1, tD at lung-2 of R2, sD at mediastinum-1 of
R2, sV, and sV/tV of AI-based software as significant. Conclusion: Radiologists’ CT measurements were significant
predictors of LNM and prognosis, but variability existed among radiologists and display conditions. AI-based software
can provide accurate and reproducible indicators for predicting LNM and prognosis.

Clinical Lung Cancer, Vol. 26, No. 1, 58–71 © 2024 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Keywords: Artificial intelligence, Lung adenocarcinoma, Lymph node metastasis, Prognosis, Tumor measurement

Abbreviations: AI, artificial intelligence; CAD, computer-aided diagnosis; CT, computed tomography; GGN, ground-glass nodule; LNM, lymph node metastasis; DFS, disease-free
survival; OS, overall survival; ROC, receiver operating characteristic; sD, solid diameter; sV, solid volume; tD, total diameter; tV, total volume; aOR, adjusted odds ratio; aHR,
adjusted hazard ratio.

1Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
2Department of Artificial Intelligence in Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
3Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
4Department of Thoracic Surgery, Aichi Cancer Center, Nagoya, Japan
5Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
6Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
7Osaka University Institute for Radiation Science, Osaka University Graduate School of Medicine, Osaka, Japan

Submitted: Aug 24, 2024; Revised: Oct 28, 2024; Accepted: Oct 30, 2024; Epub: 7 November 2024

Address for correspondence: Masahiro Yanagawa, MD, PhD, Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871,
Japan
E-mail contact: m-yanagawa@radiol.med.osaka-u.ac.jp

58 Clinical Lung Cancer January 2025

1525-7304/$ - see front matter © 2024 The Author(s). Published by Elsevier Inc.This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cllc.2024.10.015

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cllc.2024.10.015&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:m-yanagawa@radiol.med.osaka-u.ac.jp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cllc.2024.10.015


Junya Sato et al
Introduction
According to the eighth edition of the TNM classification, the

size of a lung tumor is defined as the size of the pathological
invasiveness.1 The size of the solid component of the tumor on CT
images correlates closely with the size of the pathological invasive-
ness.2 The proportion of the solid component also reflects progno-
sis.3,4 Therefore, accurate measurement of the solid component
and overall size of a lung tumor on CT images is necessary for
staging and determining the appropriate treatment plan for the
patient.

To ensure consistency across various clinical settings, measure-
ment protocols should be standardized. The suggested conditions
for accurate measurement include: (1) using thin CT slices of 1
mm or less, (2) employing lung-window settings, (3) measuring
in centimeters to the first decimal place, and (4) measuring in the
transverse view.1 However, a consensus on measuring conditions is
lacking in clinical practice. Previous studies have reported interob-
server variability5,6 as well as differences in the measurement of solid
component size depending on image display conditions.7 These
variations can negatively impact surveillance recommendations and
prognostic determinations.

Recent advances in artificial intelligence (AI) have enabled
accurate measurement of tumor size and volume. Wang et al.7

reported that the concordance rate between the segmentation results
obtained with an AI-based model and by radiologists was compara-
ble to the inter-radiologist concordance rate, with a difference of
less than 2%. Ahn et al.8 showed that the measurements of tumor
size by an AI model had good agreement with the size of patho-
logical invasiveness. AI assessment is thus reproducible and objec-
tive, making it potentially effective for accurate prognostic evalu-
ation, particularly in preoperative imaging. Furthermore, AI-based
measurements quickly provide diameter and volume data without
burdening the clinical workflow, thus offering comprehensive infor-
mation on lung adenocarcinoma.

We hypothesized that, even when following the guidelines,
differences related to measurers and display conditions could lead
to inconsistencies that affect diagnosis and treatment decisions,
while AI-based measurements could provide more consistent results
across settings. The aims of this study were thus as follows:
(1) to compare variabilities in measurements of tumor diameter
made independently by 2 independent radiologists and the AI-
based software on CT images under various image display condi-
tions; and (2) to investigate the impact of these measurements
on the prediction of lymph node metastasis (LNM), disease-free
survival (DFS), and overall survival (OS) in lung adenocarcinoma
patients.

Methods
Study Design and Patients

This retrospective study was approved by all institutions’ inter-
nal ethics review boards and was conducted following the Decla-
ration of Helsinki. Informed consent was waived for the retro-
spective review of patient records and images. The original dataset
consisted of 484 patients who underwent CT prior to surgery at
Aichi Cancer Center Hospital from January 2014 to December
2017. Of these, 449 patients were considered for inclusion. The
inclusion criteria were as follows: (1) CT examination prior to
surgery, (2) no previous treatment for malignant tumors in the lungs
or any other organ, (3) CT images with slice thickness of 2 mm or
less, (4) Age 20 years or older. Of the 444 patients, 327 patients
were histopathologically diagnosed with adenocarcinoma. Of the
remaining 327 patients, 20 patients were excluded as their tumors
were unmeasurable by AI-based software. Finally, 307 patients
were included in this study. Patient selection is summarized in
Figure 1.

CT Protocols
CT protocols vary because different multidetector row CT

systems are involved: the scan mode was helical; tube voltage, 120
kVp; tube current, auto exposure control; and the scan field of
view (FOV), 350-400 mm. Target reconstruction of tumors was
performed with a 200-mm FOV in 253 cases.

Histopathological Evaluation
All histopathological specimens were stained with hematoxylin–

eosin and/or Elastica van Gieson and evaluated by 1 patholo-
gist according to the multidisciplinary adenocarcinoma criteria.9

The final histological diagnosis (adenocarcinoma in situ, minimally
invasive adenocarcinoma, or invasive adenocarcinoma) and patho-
logic T and N descriptors, according to the eighth TNM classifica-
tion, were recorded.1

Radiologists’ Measurements
All CT images were evaluated independently by 2 junior

radiology residents (J.S. and D.N.) without knowledge of the
patients’ diagnoses and outcomes. These images were displayed
using the following 4 conditions (window-width, window-level):
lung-1 (1200 HU, -700 HU), lung-2 (1500 HU, -600 HU),
mediastinum-1 (350 HU, 40 HU), and mediastinum-2 (1250
HU, 40 HU).10 Representative examples of the 4 conditions are
shown in Figure 2. The radiologists measured total diameter (tD)
and the longest solid diameter (sD) in lung-1 and lung-2 condi-
tions, and sD on mediastinum-1 and mediastinum-2 conditions
in the transverse view. From these, the following eight features
were finally generated: tD at lung-1, sD at lung-1, the propor-
tion of the solid diameter (sD/tD) at lung-1, tD at lung-2, sD
at lung-2, sD/tD at lung-2, sD at mediastinum-1, and sD at
mediastinum-2.

AI-Based Software Measurements
After the evaluation by the radiologists alone, a similar evalu-

ation was performed using AI-based software. Each radiologist
used the commercially available AI-based computer aided detec-
tion/diagnosis (CAD) system integrated with SYNAPSE SAI Viewer
V2.4 (FUJIFILM Corporation, Minato, Japan). This deep learning-
based system identifies candidate tumor regions (Figure 3A) and
automatically segments the total tumor and solid components
(Figure 3B). The AI-based CAD system measured the diameter,
area, and volume of the total tumor and of the solid compo-
nents. Consequently, the following 6 features were generated:
tD, sD, sD/tD, total volume (tV), solid volume (sV), and the
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Figure 1 Flowchart of patient selection.
Abbreviations: CT = computed tomography.

60
proportion of the solid volume (sV/tV). Automatic measure-
ment with the AI-based CAD system did not depend on image
display conditions. Radiologists were not permitted to change the
results of their own measurements after using the AI-based CAD
system.

Statistical Analysis
Interobserver agreement of each quantitative value was assessed

by 2 radiologists (J.S. and D.N.) using the Bland–Altman method.11

CT features in the radiologists and AI-based CAD system measure-
ment were evaluated to examine associations with LNM, DFS,
and OS. For each CT feature, the optimal cutoff values that
distinguished best between patients with and without LNM and
between patients who survived and died, were determined using
Clinical Lung Cancer January 2025
the empirical receiver operating characteristic (ROC) method.
All ROC analyses were univariate. Each variable’s optimal cutoff
value was identified separately. Subsequently, associations between
prognostic factors and binary features, as defined by the cutoff
values, were evaluated using univariate regression analyses with
and without adjustment for age, sex, and the Brinkman index.
Statistically significant parameters from the univariate analysis,
adjusted for age, sex, and the Brinkman index were included
in multivariable logistic regression and Cox proportional hazards
regression analyses to identify predictors of LNM and progno-
sis, respectively (stepwise method; P ≤ .05 or less was used for
entry into the model and P > .1 was selected for removal). DFS
and OS curves were generated by the Kaplan–Meier method,
with comparisons performed by using the log-rank test. These
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Figure 2 Four image display conditions in a 66-year-old male patient with the pathological diagnosis of invasive
adenocarcinoma with an invasive focus diameter of 1.5 cm. From left to right: lung-1, lung-2, mediastinum-1, and
mediastinum-2.

Figure 3 Automatic segmentation by AI-based software in a 76-year-old man with histopathologically confirmed invasive
adenocarcinoma with a pathological invasiveness size of 2.2 cm. The software automatically (A) identifies the tumor
region, and (B) measures its diameter and volume, including the total tumor and solid components. Radiologist
measurements: lung-1 (solid/total): R1 = 21.2/28.5 cm, R2 = 24.2/39.4 cm; lung-2: R1 = 21.4/29.8 cm,
R2 = 21.7/39.2 cm; mediastinum-1: R1 = 13.7/13.7 cm, R2 = 21.0/21.0 cm; mediastinum-2: R1 = 13.2/13.2 cm,
R2 = 20.8/20.8 cm. AI-based software measurements: 22.4/32.2 cm.
analyses were conducted separately for features identified by
each radiologist and by the AI-based CAD system. All statisti-
cal analyses were performed using commercially available software
(MedCalc Software; version 22.023-64 bit, Ostend, Belgium).
All P-values were 2-sided, and P-values < .05 were considered
significant.
Results
Clinical and Pathologic Characteristics

The final study population included 307 patients (mean age,
65.9 years; range 29-87 years) as shown in Table 1. Among them,
153 were men (mean age 66.7 years; range 29-84 years) and 154
were women (mean age 65.0; range 32-87 years). The 307 tumors
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Table 1 Patient Characteristics

Characteristic Value
Age 65.9 ± 10 (29-87)
Male sex 153 (50)
Lesion type at CT

pure GGN 36 (11.7)
part-solid GGN 107 (34.9)

solid 164 (53.4)
Histologic subtype

Adenocarcinoma in situ 13
Minimally invasive adenocarcinoma 38

Adenocarcinoma
Lepidic 27
Acinar 77

Papillary 95
Solid 41

Mucinous 7
solid with mucin 7
micropapilally 2

Pathological Invasiveness size (cm) 1.9 (0-8.5)
Interval from preoperative CT to surgery (d) 23 (1-159)
Pathologic T descriptor

Tis 13
Tmi 38
T1a 33
T1b 80
T1c 46
T2a 69
T2b 8
T3 18
T4 2

Data are n, n (%), means ± standard deviations, with range in parentheses.
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consisted of 36 ground-glass nodules (GGNs, 11.7%), 107 part-
solid GGNs (34.9%), and 164 solid nodules (53.4%). The median
time between preoperative CT and surgery was 23 days (range, 1-
159 days). At pathological evaluation, the mean invasiveness sizes
of the GGNs, part-solid GGNs, and solid nodules were 0.60 cm ±
0.84 (range, 0-3.7 cm), 1.45 cm ± 1.00 (range, 0-4.5 cm), and 2.48
mm ± 1.41 (range, 0-8.5 cm), respectively. Pathological T descrip-
tors included 13 pTis, 38 pTmi, 33 pT1a, 80 pT1b, 46 pT1c, 69
pT2a, 8 pT2b, 18 pT3, and 2 pT4 cases.

Interobserver Agreement for Each CT Feature
Nodule diameter measurements of the 2 radiologists is summa-

rized in Table 2. Among the eight measurements made without
the AI-based CAD system, 4 measurements (tD at lung-1, tD at
lung-2, sD at lung-2, sD at mediastinum-2) showed significant
variation between R1 and R2 on Bland–Altman plots (Fig. 4) (P
< .001, < .001, < .001, and = .002, respectively). In contrast,
all measurements generated by the AI-based CAD system were
identical.
Clinical Lung Cancer January 2025
CT Features’ Influence on LNM
Table 3 summarizes the relationship of LNM with CT measure-

ments by radiologists (R1 and R2) and the AI-based CAD system.
Univariable logistic regression analyses with and without adjustment
for age, sex, and the Brinkman index revealed that all features were of
significant use for predicting LNM. Multivariate logistic regression
analysis adjusted for age, sex, and the Brinkman index revealed the
following significant indicators of LNM: R1 sD at mediastinum-
2 (adjusted odds ratio [aOR] 4.32; 95% confidence interval [CI]:
1.22, 15.3; P = .024), R2 sD at mediastinum-1 (aOR 3.27; 95%
CI: 1.20, 8.93; P = .021) and sD at mediastinum-2 (aOR 4.51;
95% CI: 1.41, 14.4; P = .011), and AI tV (aOR 4.82; 95% CI:
2.41, 9.63; P < .001) and sV/tV (aOR 7.59; 95% CI: 2.82, 20.4; P
< .001). sD at mediastinum-1 of R1 (aOR 2.68; 95% CI: 0.87,
8.29; P = .086) was included in the model, but no statistically
significant association was found.

CT Features’ Influence on DFS
Table 4 summarizes the relationship of DFS with CT measure-

ments by radiologists (R1 and R2) and the AI-based CAD system.
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Table 2 Tumor Measurement in Radiologists and AI-Based Software

Radiologist measurement
conditions tD at lung-1

(cm)
sD at lung-1

(cm)
sD/tD at
lung-1

tD at lung-2
(cm)

sD at lung-2
(cm)

sD/tD at
lung-2

sD at
mediastinum-

1
(cm)

sD at
mediastinum-

2
(cm)

R1 2.53±1.25 2.03±2.03 0.75±0.57 2.50±1.26 1.94±1.47 0.74±0.39 1.70±1.44 1.90±1.45
R2 2.67±1.32 2.12±1.44 0.76±0.30 2.61±1.31 2.05±1.44 0.75±0.31 1.74±1.46 1.98±1.43
AI-based software
measurement
conditions tD (cm) sD (cm) sD/tD tV (cm3) sV (cm3) sV/tV
R1-AI 2.49±1.18 2.07±1.36 0.78±0.29 7.67±12.8 6.25±12.4 0.61±0.34
R2-AI 2.49±1.18 2.07±1.36 0.78±0.29 7.67±12.8 6.25±12.4 0.61±0.34

Data are means ± standard deviations.

Figure 4 Bland–Altman plots comparing 2 radiologists’ measurements, with X-axes showing the mean of their measurements
and Y-axes showing the differences between them. Shown are mean bias ± 1.96 standard deviation (SD), 95%
confidence intervals, and limits of agreement. (A) Total diameter (tD) at lung-1 measured is −1.4 cm ± 10.1, −2.0 to
-0.84 cm, and −11.5 to 8.7 cm, (B) tD at lung-2 measured is −1.1 cm ± 10.2, −1.6 to 0.51 cm, and −11.3 to 9.1 cm,
(C) solid diameter (sD) at lung-2 measured is −1.1 cm ± 10.2, −1.6 to -0.53 cm, and −10.8 to 8.7 cm, and (D) sD at
mediastinum-2 measured is −0.81 cm ± 9.0, −1.3 to -0.29 cm, and −9.8 to 8.2 cm.
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Table 3 Relationship of CT Findings in Radiologists and AI-Based Software With Lymph Node Metasitasis

CT Feature Univariable Analysis Univariable Analysis Adjusted for
Age, Sex, and Brinkman Index

Multivariable Analysis
Adjusted for Age, Sex, and

Brinkman Index
R1 Odds Ratio P Value Odds Ratio P Value Odds Ratio P Value
tD at lung-1

Negative (≤ 2.23, n = 154) 5.46 (2.61, 11.4) < .0001 7.04 (3.18, 15.6) < .0001
positive (> 2.23, n = 153)

sD at lung-1
negative (≤ 1.96, n = 181) 9.26 (4.40, 19.5) < .0001 10.4 (4.81, 22.4) < .0001
positive (> 1.96, n = 126)

sD/tD at lung-1
negative (≤ 0.81, n = 126) 5.76 (2.49, 13.3) < .0001 6.00 (2.56, 14.1) < .0001
positive (> 0.81, n = 181)

tD at lung-2
negative (≤ 2.22, n = 156) 5.67 (2.71, 11.9) < .0001 7.30 (3.30, 16.1) < .0001
positive (> 2.22, n = 151)

sD at lung-2
negative (≤ 2.06, n = 189) 8.25 (4.08, 16.7) < .0001 9.17 (4.41, 19.0) < .0001
positive (> 2.06, n = 118)

sD/tD at lung-2
negative (≤ 0.60, n = 101) 10.2 (3.08, 33.7) .0001 10.4 (3.11, 34.6) .0001

positive (> 0.60, n = 206)
sD at mediastinum-1

negative (≤ 1.77, n = 190) 8.44 (4.17, 17.1) < .0001 9.19 (4.45, 18.9) < .0001 2.68 (0.87, 8.29) .0858
positive (> 1.77, n = 117)

sD at mediastinum-2
negative (≤ 1.74, n = 170) 110.0 (4.49, 22.3) < .0001 10.4 (4.65, 23.4) < .0001 4.32 (1.22, 15.3) .0235
positive (> 1.74, n = 137)

R2 Odds ratio P Value Odds ratio P Value Odds ratio P Value
tD at lung-1

negative (≤ 2.42, n = 160) 5.90 (2.82, 12.3) < .0001 7.22 (3.29, 15.9) < .0001
positive (> 2.42, n = 147)

sD at lung-1
negative (≤ 1.98, n = 165) 9.03 (4.06, 20.1) < .0001 9.80 (4.32, 22.2) < .0001
positive (> 1.98, n = 142)

sD/tD at lung-1
negative (≤ 0.86, n = 150) 5.15 (2.46, 10.8) < .0001 5.27 (2.48, 11.2) < .0001
positive (> 0.86, n = 157)

tD at lung-2
negative (≤ 2.40, n = 163) 5.45 (2.67, 11.2) < .0001 6.51 (3.05, 13.9) < .0001
positive (> 2.40, n = 144)

sD at lung-2
negative (≤ 1.93, n = 168) 8.35 (3.87, 18.0) < .0001 8.82 (4.04, 19.3) < .0001
positive (> 1.93, n = 139)

sD/tD at lung-2
negative (≤ 0.92, n = 153) 4.76 (2.33, 9.72) < .0001 4.93 (2.36, 10.3) < .0001
positive (> 0.92, n = 154)

sD at mediastinum-1
negative (≤ 2.05, n = 206) 8.56 (4.33, 16.9) < .0001 9.57 (4.69, 19.5) < .0001 3.27 (1.20, 8.93) .021
positive (> 2.05, n = 101)

sD at mediastinum-2

(continued on next page)
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Table 3 (continued)

CT Feature Univariable Analysis Univariable Analysis Adjusted for
Age, Sex, and Brinkman Index

Multivariable Analysis
Adjusted for Age, Sex, and

Brinkman Index
R1 Odds Ratio P Value Odds Ratio P Value Odds Ratio P Value

negative (≤ 1.90, n = 173) 10.2 (4.58, 22.7) < .0001 11.1 (4.89, 25.4) < .0001 4.51 (1.41, 14.4) .0109
positive (> 1.90, n = 134)

AI-based software Odds ratio P Value Odds ratio P Value Odds ratio P Value
tD

negative (≤ 2.70, n = 196) 6.28 (3.23, 12.2) < .0001 7.75 (3.81, 15.8) < .0001
positive (> 2.70, n = 111)

sD
negative (≤ 2.21, n = 116) 7.44 (3.73, 14.8) < .0001 8.99 (4.32, 18.7) < .0001
positive (> 2.21, n = 191)

sD/tD
negative (≤ 0.91, n = 153) 6.83 (3.18, 14.7) < .0001 6.71 (3.10, 14.5) < .0001
positive (> 0.91, n = 154)

tV
negative (≤ 5.83, n = 213) 7.45 (3.86, 14.4) < .0001 9.07 (4.49, 18.3) < .0001 4.82 (2.41, 9.63) < .0001
positive (> 5.83, n = 94)

sV
negative (≤ 2.35, n = 181) 10.1 (4.66, 21.8) < .0001 11.6 (5.20, 25.8) < .0001
positive (> 2.35, n = 126)

sV/tV
negative (≤ 0.68, n = 140) 11.7 (4.47, 30.4) < .0001 11.8 (4.49, 31.1) < .0001 7.59 (2.82, 20.4) .0001
positive (> 0.68, n = 167)

Numbers in parentheses are the 95% limit of agreement.
Univariable logistic regression analyses with and without adjustment
for age, sex, and the Brinkman index revealed that all features were
of significant use for predicting DFS. Multivariate logistic regres-
sion analysis adjusted for age, sex, and the Brinkman index revealed
the following specific indicators of DFS: R1 sD at lung-1 (adjusted
hazard ratio [aHR] 3.93; 95% CI: 2.30, 6.71; P < .001) and sD/tD
in lung-2 (aHR 2.41; 95% CI: 1.35, 4.31; P = .0031), R2 sD
at lung-2 (aHR 2.76; 95% CI: 1.53, 4.98; P < .001) and sD in
mediastinum-1 (aHR 2.59; 95% CI: 1.54, 4.33; P < .001), and
AI tV (aHR 3.84; 95% CI: 2.17, 6.82; P < .001) and sV/tV (aHR
2.68; 95% CI: 1.68, 4.26; P < .001). Figure 5 shows that the 5-year
DFS rate for patients with tV of 2.54 cm3 or greater was 58.0% and
that of patients with sV/tV of 84% or greater was 53.2% (all P <

.001).

CT Features’ Influence on OS
Table 5 summarizes the relationship of OS with CT measure-

ments by radiologists (R1 and R2) and the AI-based CAD system.
Univariable logistic regression analyses with and without adjustment
for age, sex, and the Brinkman index revealed that all features were
of significant use for predicting OS. Multivariate logistic regression
analysis adjusted for age, sex, and the Brinkman index revealed the
following specific indicators of OS: R1 sD at lung-1 (aHR 3.79;
95% CI: 1.54, 9.33; P = .0037) and sD in mediastinum-2 (aHR
2.25; 95% CI: 1.07, 4.75; P = .033), R2 tD at lung-2 (aHR
3.71; 95% CI: 1.22, 11.3; P = .021) and sD in mediastinum-
1 (aHR 3.30; 95% CI: 1.70, 6.40; P < .001), and AI sV (aHR
3.54; 95% CI: 1.78, 7.01; P < .001) and sV/tV (aHR 2.81;
95% CI: 1.30, 6.11; P = .009). Figure 6 shows that the 5-year
OS rate for patients with sV of 7.03 cm3 or greater was 69.2%
and that of patients with sV/tV of 85% or greater was 77.7%
(all P < .001).

Discussion
In this study, radiologists measured the size of lung tumors

using CT images under different display conditions, with a view
to predicting LNM and prognosis. In addition to manual measure-
ments, we also used an AI-based CAD system and compared the
results. Four CT features significantly varied due to different image
display conditions and interobserver variability, which resulted in
differences in significant predictors of DFS and OS in multivariate
analysis. In contrast, the AI-based CAD system could predict LNM
using tV and sV/tV, DFS using tV and sV/tV, and OS using sV
and sV/tV, with complete reproducibility, regardless of image display
conditions or readers. Previous studies have shown that LNM was
associated with sD,12 tV,13 and sV/tV,14 and that prognosis was
associated with sD,15 tD,16 sD/tD,17 sV,18 tV,19 and sV/tV,14 consis-
tent with our findings. Our study is important because it supports
the association between CT features and outcomes found in previ-
ous research and highlights the high reproducibility of features
identified by AI.
Clinical Lung Cancer January 2025 65



Predicting Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma

Table 4 Relationship of CT Findings in Radiologists and AI-Based Software With Disease-Free Survival

CT Feature Univariable Analysis Univariable Analysis Adjusted for
Age, Sex, and Brinkman Index

Multivariable Analysis
Adjusted for Age, Sex, and

Brinkman Index
R1 Hazard ratio P Value Hazard ratio P Value Hazard ratio P Value
tD at lung-1

Negative (≤ 2.23, n = 154) 3.68 (2.27, 5.96) < .0001 3.43 (2.11, 5.57) < .0001
positive (> 2.23, n = 153)

sD at lung-1
negative (≤ 1.80, n = 169) 5.62 (3.14, 9.26) < .0001 5.48 (3.32, 9.02) < .0001 3.93 (2.30, 6.71) < .0001
positive (> 1.80, n = 138)

sD/tD at lung-1
negative (≤ 0.90, n = 134) 4.44 (2.58, 7.63) < .0001 4.10 (2.36, 7.10) < .0001
positive (> 0.90, n = 173)

tD at lung-2
negative (≤ 2.22, n = 156) 3.80 (2.35, 6.16) < .0001 3.60 (2.21, 5.85) < .0001
positive (> 2.22, n = 151)

sD at lung-2
negative (≤ 1.80, n = 171) 5.38 (3.29, 8.78) < .0001 5.18 (3.17, 8.47) < .0001
positive (> 1.80, n = 136)

sD/tD at lung-2
negative (≤ 0.95, n = 174) 4.38 (2.55, 7.53) < .0001 4.06 (2.34, 7.03) < .0001 2.41 (1.35, 4.31) .0031
positive (> 0.95, n = 133)

sD at mediastinum-1
negative (≤ 1.36, n = 154) 5.05 (3.01, 8.48) < .0001 4.76 (2.83, 8.00) < .0001
positive (> 1.36, n = 153)

sD at mediastinum-2
negative (≤ 1.81, n = 178) 4.54 (2.86, 7.22) < .0001 4.41 (2.78, 7.01) < .0001
positive (> 1.81, n = 129)

R2 Hazard ratio P Value Hazard ratio P Value Hazard ratio P Value
tD at lung-1

negative (≤ 2.49, n = 166) 3.64 (2.29, 5.78) < .0001 3.35 (2.11, 5.35) < .0001
positive (> 2.49, n = 141)

sD at lung-1
negative (≤ 1.98, n = 165) 4.53 (2.79, 7.33) < .0001 4.40 (2.71, 7.13) < .0001
positive (> 1.98, n = 142)

sD/tD at lung-1
negative (≤ 0.82, n = 143) 3.69 (2.24, 6.07) < .0001 3.50 (2.11, 5.79) < .0001
positive (> 0.82, n = 164)

tD at lung-2
negative (≤ 2.51, n = 168) 3.75 (2.36, 5.95) < .0001 3.42 (2.14, 5.45) < .0001
positive (> 2.51, n = 139)

sD at lung-2
negative (≤ 1.93, n = 168) 4.77 (2.95, 7.74) < .0001 4.66 (2.88, 7.56) < .0001 2.76 (1.53, 4.98) .0008
positive (> 1.93, n = 139)

sD/tD at lung-2
negative (≤ 0.92, n = 153) 3.53 (2.19, 5.67) < .0001 3.47 (2.13, 5.64) < .0001
positive (> 0.92, n = 154)

sD at mediastinum-1
negative (≤ 2.53, n = 237) 5.12 (3.37, 7.79) < .0001 4.67 (3.05, 7.14) < .0001 2.59 (1.54, 4.33) .0003
positive (> 2.53, n = 70)

(continued on next page)
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Table 4 (continued)

CT Feature Univariable Analysis Univariable Analysis Adjusted for
Age, Sex, and Brinkman Index

Multivariable Analysis
Adjusted for Age, Sex, and

Brinkman Index
R1 Hazard ratio P Value Hazard ratio P Value Hazard ratio P Value
sD at mediastinum-2

negative (≤ 1.90, n = 173) 4.11 (2.59, 6.53) < .0001 4.07 (2.56, 6.47) < .0001
positive (> 1.90, n = 134)

AI-based software Hazard ratio P Value Hazard ratio P Value Hazard ratio P Value
tD

negative (≤ 2.10, n = 145) 4.74 (2.79, 8.05) < .0001 4.44 (2.61, 7.55) < .0001
positive (> 2.10, n = 162)

sD
negative (≤ 2.21, n = 191) 4.38 (2.81, 6.83) < .0001 4.18 (2.67, 6.53) < .0001
positive (> 2.21, n = 116)

sD/tD
negative (≤ 0.91, n = 153) 3.74 (2.31, 6.06) < .0001 3.58 (2.20, 5.82) < .0001
positive (> 0.91, n = 154)

tV
negative (≤ 2.54, n = 139) 5.24 (3.00, 9.13) < .0001 4.98 (2.85, 8.70) < .0001 3.84 (2.17, 6.82) < .0001
positive (> 2.54, n = 168)

sV
negative (≤ 2.35, n = 181) 4.73 (2.97, 7.51) < .0001 4.42 (2.77, 7.04) < .0001
positive (> 2.35, n = 126)

sV/tV
negative (≤ 0.84, n = 188) 4.06 (2.61, 6.34) < .0001 3.87 (2.47, 6.05) < .0001 2.68 (1.68, 4.26) < .0001
positive (> 0.84, n = 119)

Numbers in parentheses are the 95% limit of agreement.
Evaluation of imaging findings is subject to considerable variabil-
ity. Quantitative evaluation is generally considered to be highly
objective and reproducible, but human measurements are subject
to interobserver and intraobserver variability and are influenced
by image display conditions and scan parameters. In this study,
some differences in significant variables were found in the multi-
variate analysis of CT features measured by R1 and R2. This
variability can reduce the accuracy and reproducibility of statisti-
cal results, thus negatively impacting the reliability of the study.
The lack of definitive image display conditions that can achieve
consensus in clinical practice for clinical staging could be addressed
by supporting quantitative measurements with an AI-based CAD
system.

One advantage of quantitative evaluation using AI-based CAD
systems is the ease of volumetric measurement. Previous studies
have shown that volume measurement is more accurate than diame-
ter measurement for diagnosing malignancy20 and for predicting
prognosis.21 The latest Fleischner Society lung nodule recommen-
dations and the Lung CT Screening Reporting and Data System
have also added volume measurement to the nodule assessment
criteria.22,23 In this study, volume-based features derived from AI
were significant predictors of LNM and prognosis. Since AI-based
CAD systems can automatically measure volume, without adding
to clinicians’ workload, volumetric measurement is likely to become
standard practice in future.
This study had several limitations. First, this retrospective study
may have included selection bias due to missing imaging or clini-
cal information for some patients. Additionally, we used a commer-
cially available AI for segmentation and measurement of tumor size
and volume, which could have included errors, such as misidentify-
ing other structures like blood vessels as tumors. Although AI can
measure tumor volume with accuracy comparable to that of physi-
cians,7,8 systems that incorporate physician feedback to improve
AI predictions are needed.24 Furthermore, this study used only
imaging information of the primary tumor. Previous reports have
suggested that lymph node measurements also impact outcome,25,26

indicating that incorporating information about lymph nodes and
surrounding structures with primary tumor data could improve
predictions. Lastly, the inclusion of slices thicker than 1 mm may
have impacted predictions of lymph node metastasis and prognosis.

In conclusion, LNM and prognosis of patients with lung adeno-
carcinoma can be predicted based on radiologists’ measurements of
tumor parameters on CT images, but this is a subjective method
that is also dependent on image display conditions. On the other
hand, AI-based CAD systems can predict LNM and prognosis with
complete reproducibility, regardless of image display conditions and
independent of human readers. These results have the potential to
provide a highly reproducible method for determining T descriptors
in lung adenocarcinoma and may contribute to treatment decision-
making and efficacy.
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Table 5 Relationship of CT Findings in Radiologists and AI-based Software With Overall Survival

CT Feature Univariable Analysis Univariable Analysis Adjusted for
Age, Sex, and Brinkman Index

Multivariable Analysis
Adjusted for Age, Sex, and

Brinkman Index
R1 Hazard Ratio P Value Hazard Ratio P Value Hazard Ratio P Value
tD at lung-1

negative (≤ 2.23, n = 154) 4.74 (2.19, 10.2) .0001 4.50 (2.07, 9.76) .0001
positive (> 2.23, n = 153)

sD at lung-1
negative (≤ 1.99, n = 184) 6.47 (3.10, 13.5) < .0001 6.21 (2.97, 13.0) < .0001 3.79 (1.54, 9.33) .0037
positive (> 1.99, n = 123)

sD/tD at lung-1
negative (≤ 0.83, n = 127) 4.94 (2.08, 11.7) .0003 4.21 (1.76, 10.1) .0013
positive (> 0.83, n = 180)

tD at lung-2
negative (≤ 2.17, n = 150) 5.27 (2.34, 11.9) .0001 5.24 (2.32, 11.8) .0001
positive (> 2.17, n = 157)

sD at lung-2
negative (≤ 1.95, n = 183) 6.37 (3.05, 13.3) < .0001 5.99 (2.86, 12.5) < .0001
positive (> 1.95, n = 124)

sD/tD at lung-2
negative (≤ 0.95, n = 133) 4.37 (1.94, 9.84) .0004 3.72 (1.64, 8.47) .0017
positive (> 0.95, n = 174)

sD at mediastinum-1
negative (≤ 2.12, n = 210) 5.12 (2.69, 9.72) < .0001 4.86 (2.55, 9.24) < .0001
positive (> 2.12, n = 97)

sD at mediastinum-2
negative (≤ 2.86, n = 240) 5.67 (3.08, 10.4) < .0001 5.10 (2.76, 9.42) < .0001 2.25 (1.07, 4.75) .0327
positive (> 2.86, n = 67)

R2 Hazard ratio P Value Hazard ratio P Value Hazard ratio P Value
tD at lung-1

negative (≤ 2.67, n = 184) 4.37 (2.24, 8.54) < .0001 3.93 (1.99, 7.75) .0001
positive (> 2.67, n = 123)

sD at lung-1
negative (≤ 2.83, n = 230) 5.42 (2.93, 10.1) < .0001 5.12 (2.75, 9.55) < .0001
positive (> 2.83, n = 77)

sD/tD at lung-1
negative (≤ 0.86, n = 150) 3.49 (1.71, 7.10) .0006 3.08 (1.49, 6.34) .0023
positive (> 0.86, n = 157)

tD at lung-2
negative (≤ 1.94, n = 119) 6.72 (2.40, 18.8) .0003 6.50 (2.32, 18.2) .0004 3.71 (1.22, 11.3) .0208
positive (> 1.94, n = 188)

sD at lung-2
negative (≤ 2.80, n = 236) 5.52 (2.99, 10.2) < .0001 5.08 (2.74, 9.43) < .0001
positive (> 2.80, n = 71)

sD/tD at lung-2
negative (≤ 0.92, n = 153) 3.62 (1.78, 7.38) .0004 3.23 (1.56, 6.67) .0016
positive (> 0.92, n = 154)

sD at mediastinum-1
negative (≤ 2.53, n = 237) 5.60 (3.04, 10.3) < .0001 5.18 (2.80, 9.58) < .0001 3.30 (1.70, 6.40) .0004
positive (> 2.53, n = 70)

sD at mediastinum-2

(continued on next page)
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Table 5 (continued)

CT Feature Univariable Analysis Univariable Analysis Adjusted for
Age, Sex, and Brinkman Index

Multivariable Analysis
Adjusted for Age, Sex, and

Brinkman Index
R1 Hazard Ratio P Value Hazard Ratio P Value Hazard Ratio P Value

negative (≤ 2.69, n = 232) 5.16 (2.80, 9.51) < .0001 4.78 (2.58, 8.85) < .0001
positive (> 2.69, n = 75)

AI-based software Hazard ratio P Value Hazard ratio P Value Hazard ratio P Value
tD

negative (≤ 3.24, n = 238) 5.67 (3.07, 10.5) < .0001 5.18 (2.78, 9.64) < .0001
positive (> 3.24, n = 69)

sD
negative (≤ 2.44, n = 212) 5.27 (2.77, 10.0) < .0001 5.04 (2.64, 9.59) < .0001
positive (> 2.44, n = 95)

sD/tD
negative (≤ 0.91, n = 153) 3.95 (1.89, 8.27) .0003 3.67 (1.74, 7.70) .0006
positive (> 0.91, n = 154)

tV
negative (≤ 8.34, n = 235) 5.39 (2.92, 9.95) < .0001 4.93 (2.65, 9.15) < .0001
positive (> 8.34, n = 72)

sV
negative (≤ 7.03, n = 242) 6.06 (3.28, 11.2) < .0001 5.50 (2.97, 10.2) < .0001 3.54 (1.78, 7.01) .0003
positive (> 7.03, n = 65)

sV/tV
negative (≤ 0.85, n = 196) 5.51 (2.77, 11.0) .0001 4.99 (2.49, 10.0) < .0001 2.81 (1.30, 6.11) .009
positive (> 0.85, n = 111)

Numbers in parentheses are the 95% limit of agreement.

Figure 5 Kaplan–Meier survival curves show that (A) patients with a total tumor volume (tV) >2.54 cm3 had a significantly lower
probability of disease-free survival (DFS) (P < .001) than did patients with a percentage of tV ≤2.54 cm3, and (B)
patients with the proportion of the solid component volume (sV/tV) >0.84 had a significantly lower probability of DFS
(P < .001) than did patients with percentage of sV/tV ≤0.84.
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Figure 6 Kaplan–Meier survival curves show that (A) patients with a solid tumor volume (sV) >7.03 cm3 had a significantly
lower probability of overall survival (OS) (P < .001) than did patients with a percentage of sV ≤7.03 cm3, and (B)
patients with the proportion of the solid component volume (sV/tV) >0.85 had a significantly lower probability of OS (P
< .001) than did patients with percentage of sV/tV ≤0.85.

•

•

•

70
Conclusion
Clinical Practice Points

Tumor measurements by human readers are affected by CT
display conditions.
AI-based CAD systems are unaffected by CT display conditions
and human readers.
AI-based CAD systems can predict LNM, DFS, and OS with
complete reproducibility.
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