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Abstract
In this paper we discuss theC1 well-posedness for second order hyperbolic

equationsPu D �2
t u � a(t, x) �2

xu D f with two independent variables (t, x). As-
suming that theC1 function a(t, x) � 0 verifies� p

t a(0, 0)¤ 0 with somep and that
the discriminant1(x) of a(t, x) vanishes of finite order atx D 0, we prove that the
Cauchy problem forP is C1 well-posed in a neighbourhood of the origin.

1. Introduction

In this paper we deal with theC1 well-posedness of the Cauchy problem for a
second order hyperbolic operator with two independent variables P D �2

t � a(t, x) �2
x ,

(t, x) 2 R2:

(1.1)

�
PuD �2

t u � a(t, x) �2
xu D f,

u(0, x) D u0(x), �tu(0, x) D u1(x)

near the origin ofR2, where we always assume thata(t, x) � 0. In [11] and [12],
assuming thata(t, x) is real analytic in (t, x), it is proved that the Cauchy problem
for P is C1 well-posed. On the other hand, in [4], the authors give a counterexample
involving a functiona(t) 2 C1([0, T ]), positive for t > 0, such that the Cauchy prob-
lem for P D �2

t � a(t) �2
x is not C1 well-posed. The main feature of thisa(t) is that

da(t)=dt changes sign infinitely many times whent # 0. There are many works trying
to extend theC1 well-posedness result in [11] without the analyticity assumptions on
a(t, x) (see for example, [1], [2], [3], [5], [8], [10], [13]).

In this paper we assume thata(t, x) is of classC1 in (t, x) and essentially a poly-
nomial in t and we discuss theC1 well-posedness question under this rather general
assumption. Ifa(0,0)¤ 0 then P is strictly hyperbolic and ifa(0,0)D �ta(0,0)D 0 but�2

t a(0, 0)¤ 0 then P is effectively hyperbolic at (0, 0) and hence the Cauchy problem
is C1 well-posed for any lower order term (see [7], [11]). Thus we may assume that
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a(0, 0)D �ta(0, 0)D �2
t a(0, 0)D 0 without restrictions as far as theC1 well-posedness

is concerned. We assume that there is ap 2 N, p � 3 such that

(1.2) � p
t a(0, 0)¤ 0.

Then applying the Malgrange preparation theorem we can write

(1.3) a(t, x) D e(t, x)(t p C a1(x)t p�1C � � � C ap(x))

wheree, a1, : : : , ap are of classC1 in a neighbourhood of the origin ande(0, 0)¤ 0.
Let 1(x) be the discriminant ofa(t, x)=e(t, x) as a polynomial int . We call1(x) the
discriminant ofa(t, x). We now assume that there isq 2 N such that

(1.4)

�
d

dx

�q1(0)¤ 0.

Then we have

Theorem 1.1. Assume(1.2) and (1.4). Then the Cauchy problem(1.1) is C1
well-posed in a neighbourhood of the origin.

One can easily generalize Theorem 1.1 a little bit as follows:

Theorem 1.10. Assume that bj (t, x), j D 1, : : : , r are functions of class C1 and
verify the conditions(1.2) and (1.4) with some pj , q j 2 N (the nonnegativity of bj (t,x)
is not assumed) and that a(t, x) D b1(t, x)m1 � � �br (t, x)mr where mj 2 N and Bj (t, x)D
b j (t, x)m j � 0 near the origin. Then the assertion ofTheorem 1.1holds.

In Section 2 we define a weighted energy and in Sections 3 and 4 we derive
a priori estimates. In Section 5 we prove Theorem 1.1. Finally in Sections 6, 7 and 8
we construct the weight functions.

2. Energy

Throughout this paper an indexx or t will denote respectively a space or time
derivative, e.g.ux D �xu and kn,t D �tkn. As usual, we setD D �x=i .

We prove Theorem 1.1 by deriving a priori estimates. Take�(x) 2 C1
0 (R) such

that �(x)D 1 in a neighbourhood of the origin;�(x)a(t,x) is then defined and of class
C1 in [�T, T ] � R.

Let us consider an energy

E(t, u) D 1X
nD0

e�ct A(t)n
Z

kn(t, x)[jun,t j2C �(x)a(t, x)j�xunj2C (n2C 1)junj2] dx
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wherec > 0, A(t) D ea�bt with a, b > 0 and

un D 1

n!
lognhDiu, h�i2 D �2C 1.

Here

hDisu D es loghDiu D 1X
nD0

sn

n!
lognhDiu

has the role of a partition of unity. Although (sn=n!)lognhDi does not localize the frequen-
cies� so much (but see Lemma 3.1 below), it has the advantage that��̀ ((sn=n!) lognh�i)
conserves the same form up to factors� i h�i� j . In order that this energy may work well to
derive a priori estimates, the weight functionskn(t, x) are required to verify some suitable
properties. For similar examples of energy see [8], [9] and [13]. Our main task in this
paper is then to construct a sequence of weight functionskn(t, x) for a(t, x) satisfying the
properties listed in the next proposition:

Proposition 2.1. Let N > 1 be a given constant and a(t, x) be a nonnegative
function of class C1 satisfying (1.2) and (1.4). One can find T> 0 and construct
a sequence of weight functions kn(t, x) defined on[�T, T ] � R verifying the follow-
ing properties:
1) kn(t, x) is a Lipschitz continuous function and

C12�C2n � kn(t, x) � 1.

2) kn,t (t, x) � �C3eC4n.
3) We have that

jkn,x(t, x)jp�(x)a(t, x) � C5(nC 1)kn(t, x).

4) We have that

kn,t (t, x) � �N
j�(x)at (t, x)j�(x)a(t, x)C 2�2n

kn(t, x)C C6(nC 1)kn(t, x).

5) knC1(t, x) � C7kn(t, x).

The proof of Proposition 2.1 will be given in Sections 6, 7 and8.
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3. Energy estimate

In what follows we write simplya(t, x) instead of�(x)a(t, x) and assume that
u 2 C2([�T, T ]I S(R)) verifies

PuD �2
t u � a(t, x) �2

xu D f .

Let us define

(3.1) u�,s, j D 2�n� D�C j

hDisC j
u and un,�,s, j D logn hDi

n!
u�,s, j .

With these definitions,u0,0,0D u and un D un,0,0,0. We introduce the energy

E(t, u) D 1X
nD0

pX
�D0

pCqX
sD0

1X
jD0

e�ct An(t)
Z

kn(t, x)[j�tun,�,s, j j2C a(t, x)j�xun,�,s, j j2
C (n2C 1)jun,�,s, j j2] dx

D 1X
nD0

pX
�D0

pCqX
sD0

1X
jD0

En(t, u�,s, j )

wherekn(t, x) is given by Proposition 2.1 (we will later determine the undefined quan-
tities of this expression, namelya, b in the termA(t), the coefficientc and the number
of terms of the sum, that depends onp, q 2 N).

Performing the derivative ofEn(t, u) with respect tot we have that

d

dt
En(t, u) D �(cC nb)En(t, u)

C e�ct An(t)
Z

kn,t (t, x)[jun,t j2C a(t, x)j�xunj2C (n2C 1)junj2] dx

C e�ct An(t)
Z

kn(t, x)2 Re(un,t tun,t ) dx

C e�ct An(t)
Z

kn(t, x)at (t, x)j�xunj2 dx

C e�ct An(t)
Z

kn(t, x)a(t, x)2 Re(�xunun,xt) dx

C (n2C 1)e�ct An(t)
Z

kn(t, x)2 Re(un,tun) dx

D �(cC nb)En(t, u)C I2(un)C I3(un)C I4(un)C I5(un)C I6(un).

We then begin studyingI6(un): note that

I6(un) � e�ct An(t)

�Z
kn(njun,t j2C n3junj2) dxC Z kn(jun,t j2C junj2) dx

�
,
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therefore it is clear thatI6(un) can be bounded byCnEn(t, u). Thus we have that

(3.2)
X

n,�,s, j

I6(un,�,s, j ) � C
X

n,�,s, j

nEn(t, u�,s, j )

where the sum is taken overn 2 N, 0� � � p, 0� s� pC q and j D 0, 1.
Next, let us considerI2(un) and I4(un) (the termsI3(un) and I5(un) will be esti-

mated together in the next section). Note that

(3.3) knat j�xunj2 � kn
jat j

aC 2�2n
aj�xunj2C kn

jat j
aC 2�2n

2�2nj�xunj2.

With a slight abuse of notation we will setAD A(0) in what follows.

Lemma 3.1. For every t2 [�T, T ] ( for a suitably small T) and every fixed s, j ,
if p and A are large enough we have that

X
n

An(t)
pX

�D0

Z
kn

jat j
aC 2�2n

2�2nj�xun,�,s, j j2 dx

�X
n

An(t)
pX

�D1

Z
kn

jat j
aC 2�2n

jun,�,s, j j2 dxC C
X

n

An(t)
Z

knjun,0,s, j j2 dx.

Proof. Let us denote bykuk the L2(R) norm of u(t, � ). Obviously

kn
jat j

aC 2�2n
2�2nj�xun,�,s, j j2 D kn

jat j
aC 2�2n

jun,�C1,s, j j2
if 0 � � < p. If � D p, noting thatjat j � C and kn � 1 by Proposition 2.1 (and fixing
s, j and settingw D u0,s, j , wn D un,0,s, j ) we have that

(3.4)

X
n

An(t)2�2n(pC1)
Z

kn
jat j

aC 2�2n
jD pC1wnj2 dx

� C1

X
n

An(t)2�2npkhDipC1wnk2

� C1

X
n

An(t)2�2np


X

m

(pC 1)m
logmCnhDi

m! n!
w


2

� C2

X
m,n

An(t)2�2np(mC 1)2(pC 1)2m

 logmCnhDi
m! n!

w
2

� C2

X
m,n

A(t)mCn2�2(mCn)p A(t)�m(mC 1)2

� 22mp22m(pC1)22(mCn)

 logmCnhDi
(mC n)!

w
2

.
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Set�DmCn; choosingp large enough, by Proposition 2.1 we can have thatk�22�(p�1)�
C3> 0. Observe that whatever the choice ofb may be, we can suppose thatA(t)� A=2
for t 2 [�T, T ] simply decreasingT ; on the other hand, we also chooseA large with
respect to 22 � 24pC2 � 2, so that (taking into account that

P1
mD0 1=2mD 2), the last line

in (3.4) can be bounded by

2C2

X
� A�2�2�(p�1)kw�k2 � C4

X
� A� Z k�jw�j2 dx.

This ends the proof of Lemma 3.1.

Recall now that by 4) of Proposition 2.1

(3.5) kn
jat j

aC 2�2n
� � 1

N
kn,t C C

N
(nC 1)kn.

By Lemma 3.1 and (3.3), (3.5) we see that (for every fixeds and j )X
n,� I4(un,�,s, j ) � � 1

N

X
n,� e�ct An(t)

Z
kn,t (aj�xun,�,s, j j2C jun,�,s, j j2) dx

C C
X
n,� nEn(u�,s, j ).

From 4) of Proposition 2.1 we have thatkn,t � C(nC 1)kn, thus, since 1� 1=N > 0,
we obtain that

(3.6)
X
n,� I4(un,�,s, j )CX

n,� I2(un,�,s, j ) � C
X
n,� nEn(u�,s, j ).

4. Energy estimate (continued)

We turn to I5(un). Note that

I5(un) D 2e�ct An(t)
Z

kna(t, x) Re(un,xun,xt) dx

D �2e�ct An(t)
Z

kn,xa(t, x) Re(un,xun,t ) dx

� 2e�ct An(t)
Z

knax(t, x) Re(un,xun,t ) dx

� 2e�ct An(t)
Z

kna(t, x) Re(un,xxun,t ) dx

D J1(un)C J2(un)C J3(un).

By 3) of Proposition 2.1 we have

(4.1) jJ1(un)j � Ce�ct An(t)
Z

nkn(jun,t j2C a(t, x)jun,xj2) dx � CnEn(u)
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and from the Glaeser inequality, applied toa � 0, it follows that

(4.2) jJ2(un)j � Ce�ct An(t)
Z

kn(jun,t j2C a(t, x)jun,xj2) dx � C En(u).

We still have to estimate

J3(un,�,s, j ) D �2e�ct An(t)
Z

kn(t, x)a(t, x) Re(�2
xun,�,s, j �tun,�,s, j ) dxI

but note that

(4.3)

I3(un,�,s, j )C J3(un,�,s, j )

D 2e�ct An(t)
Z

kn Re

��
logn hDi

n!

D�C j

hDisC j
, a

� �2
xu � cn,� �tun,�,s, j

�
dx

C 2e�ct An(t)
Z

kn(t, x) Re( fn,�,s, j �t Nun,�,s, j ) dx

wherecn,� D 2�n� and � D 0, 1, : : : , p, sD 0, 1, : : : , pC q, j D 0, 1 and fn,�,s, j is
defined as in (3.1).

We rewrite the commutator as

(4.4)

�
lognhDi

n!

D�C j

hDisC j
, a(t, x)

� �2
xun,�,s, j � cn,�

D X
1�l<pCqC2�s

(�i )l

l !
� l

xa8(l )�,s, j (D) �2
xu � cn,� C R(un,�,s, j )

where

8�,s, j (� ) D lognh�i
n!

��C j

h�isC j

and

R(un,�,s, j ) D �1

(m� 1)!

Z Z Z 1

0
ei x�8(m)�,s, j (�C �(� � �))

� (1� �)m�1(� � �)m Oa(t, � � �)�2 Ou(t, �)cn,� d� d� d�
with m D pC q C 2 � s. Here Oa(t, � ) denotes the Fourier transform ofa(t, x) with
respect tox.
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As a consequence, writingr D pC q, we see that

(4.5)

I3(un,�,s, j )C J3(un,�,s, j )

� e�ct 1

nC 1
An(t)

Z
kn

�����
X

1�l<m

(�i )l

l !
� l

xa8(l )�,s, j (D) �2
xucn,�

�����
2

dx

C e�ct(nC 1)An(t)
Z

knj�tun,�,s, j j2 dx

C e�ct 1

nC 1
An(t)

Z
knjR(un,�,s, j )j2 dx

C e�ct(nC 1)An(t)
Z

knj�tun,�,s, j j2 dx

C e�ct An(t)
Z

kn(t, x)j fn,�,s, j j2 dxC e�ct An(t)
Z

knj�tun,�,s, j j2 dx.

The second, fourth and sixth term are smaller thanCnEn(u�,s, j ) for someC > 0. We
keep the fifth one as it is and study the other two in the following two lemmas; we
start with the first term.

Lemma 4.1. We have that

e�ct
X

n,�,s, j

1

nC 1
An(t)

Z
kn

�����
X

1�l<m

(�i )l

l !
� l

xa8(l )�,s, j (D) �2
xucn,�

�����
2

dx

� C
X

n,�,s, j

(nC 1)En(u�,s, j ).

Proof. We writer D pC q and let n stay fixed for the moment. The left-hand
side can then be estimated by

(4.6) C(p, q)
X

��p,s�r, j

1

nC 1
An(t)

Z
kn

X
1�l<m

1

(l !)2

��� l
xa8(l )�,s, j (D) �2

xucn,���2 dx.

We first consider the term withl D 1 of this expression:

j�xa8(1)�,s, j (D) �2
xucn,� j

D �����xa

�
logn�1hDi
(n� 1)!

D�C jC1

hDisC jC2

C logn hDi
n!

�
(� C j )D�C j�1

hDisC j
� (sC j )

D�C jC1

hDisC jC2

���2
xucn,�

����
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� C
p

a

����� D�C jC2

hDisC jC2
�xun�1

����C (pC 1)

���� D�C j

hDisC j
�xun

����
C (sC 1)

���� D�C jC2

hDisC jC2
�xun

����
�

cn,�
� C1

p
a

����� D�C j

hDisC j
�xun�1

����cn�1,� C
���� D�C j

hDisC jC2
�xun�1

����cn�1,�
C ���� D�C j

hDisC j
�xun

����cn,� C
���� D�C j

hDisC jC2
�xun

����cn,�
�

.

Here we have usedD2 D hDi2 � 1 and

(4.7)
cn,�
cn0,� 0 � 1, n0 � n, � 0 � �.

Thus (4.6) withl D 1 can be estimated by

C
X

��p,s�r, j

1

nC 1
An(t)

Z
kn

�
a

���� D�C j

hDisC j
�xun�1cn�1,�

����
2

C a

���� D�C j

hDisC jC2
�xun�1cn�1,�

����
2C a

���� D�C j

hDisC j
�xuncn,�

����
2

C a

���� D�C j

hDisC jC2
�xuncn,�

����
2�

dx

� C
1

nC 1

X
��p,s�r, j

(En�1(u�,s, j )C En(u�,s, j ))

C C
1

nC 1

X
��p,rC1�s�rC2, j

(En�1(u�,s, j )C En(u�,s, j ))

becausekn � Ckn�1 by 5) of Proposition 2.1 andAn(t) � C A(t)n�1.
We next consider the terms withl � 2. Note that one can write

(4.8)

�
lognh�i

n!

��C j

h�isC j

�(l )�2 D min{l ,n}X
hD0

X
l1�h,l1Cl2Dl

l2��C2C jCl1

Ch,l1,l2
logn�hh�i
(n� h)!

��C2C jCl1�l2

h�isC jC2l1

for some constantsCh,l1,l2 whose absolute values are bounded by a constant depending
on p and q, but not onn. If 2 C j C l1 � l2 is even and nonnegative, then using�2 D h�i2 � 1 the right-hand side can be written as

(4.9)
min{l ,n}X

hD0

X
s�s0�sC2rC3

X
� 0��

1X
jD0

Ch,� 0,s0, j
logn�hh�i
(n� h)!

�� 0C j

h�is0C j
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(because 2C j C l1� l2 � j C 2l1 for l � 2) wherejCh,� 0,s0, j j is bounded by a constant
independent ofn. The same argument applied to the case in which 2C jCl1�l2 is odd
and nonnegative shows that the right-hand side can be written in the same form (4.9).
Then (4.6) withl � 2 can be bounded by

C(p, q)
X
��p, j

s�3rC3

min{rC1�s,n}X
hD0

1

nC 1
An(t)

Z
kn(t, x)

1X
jD0

���� D�C j

hDisC j
un�h

����
2

c2
n�h,� dx

because of (4.7). This is bounded by

C(p, q, A)
X

��p,s�3rC3, j

nX
hDn�r�1

1

hC 1
Eh(u�,s, j )

because we can supposeA(t) � 2A. We now need to deal with the terms withs> r :

X
��p,r<s�3rC3, j

1

nC 1
An(t)

Z
kn(t, x)

1X
jD0

���� D�C j

hDisC j
un

����
2

c2
n,� dx.

But sincekn � 1 by 1) of Proposition 2.1 and� � p, s � r D pC q, we have

X
n

1

nC 1
An(t)

Z
kn(t, x)

1X
jD0

���� D�C j

hDisC j
un

����
2

c2
n,� dx

� C
X

n

An(t)
Z jhDi�qunj2 dx � C

Z  X
n

An=2(t)h�i�q lognh�i
n!

!2j Ouj2 d�
� C

Z
(h�i�qCpA(t))2j Ouj2 d� � C

Z juj2 dx � C2

Z
k0(t, x)ju0j2 dx

providedq > p2A > pA(t).

It remains to estimate the third term of (4.5), the one containing jR(un,�,s, j )j2.

Lemma 4.2. We have that

(4.10)
X

n,�,s, j

1

nC 1
An
Z

knjR(un,�,s, j )j2 dx � C(p, q, A)
Z

k0(t, x)ju0j2 dx

for large q.
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Proof. Recall that the left-hand side of (4.10) is by definition

X
n,�,s, j

An(t)
Z

kn

����
Z

ei x��Z Z 1

0
8(m)�,s, j (�C �(� � �))

1

(m� 1)!
(1� �)m�1

� (� � �)m Oa(t, � � �)�2 Ou(t, �) d� d�� d� ����
2

c2
n,� dx

which by Parseval’s formula is bounded by

X
n,�,s, j

An(t)
Z ����
Z Z 1

0
8(m)�,s, j (�C �(� � �))

1

(m� 1)!
(1� �)m�1

� (� � �)m Oa(t, � � �)�2 Ou(t, �) d� d�����
2

d�
becausekn � 1 andcn,� � 1. From (4.9) it is enough to estimate terms of the form

C(A, p, q)
X

n

An(t)
Z ����
Z Z 1

0

lognh�C �(� � �)i
n!

(�C �(� � �))�1C j

h�C �(� � �)is1C j

� (� � �)m Oa(t, � � �)�2 Ou(t, �) d� d�����
2

d�
with

s1 � �1 � sCm� p D qC 2.

Applying the inequalityh�C�is � 2jsjh�ish�ijsj we see that this is bounded by (writingOu(�) for Ou(t, �) and Oa(�) for Oa(t, �))

C(A, p, q)
X

n

An
Z ����
Z Z 1

0

lognh�C �(� � �)i
n!

1h�C �(� � �)iqC2
d�

� j(� � �)m Oa(� � �)j j�2 Ou(�)j d� d�����
2

d�
� C

X
n

(32A)n
Z �Z h� � �imCqC2j Oa(� � �)j lognh�i

n!

1h�iq j Ou(�)j d��2

d�
C C

X
n

(32A)n
Z �Z h� � �imCqC2 lognh� � �i

n!
j Oa(� � �)j 1h�iq j Ou(�)j d��2

d�
C C

X
n

(32A)n
Z �

logn 2

n!

Z h� � �imCqC2 j Oa(� � �)j 1h�iq j Ou(�)j d��2

d�
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with C D 3C(A, p, q). By the Schwarz inequality the first integral is estimated by

C1(A, p, q)
X

n

An32n
Z �Z h� � �1imCqC2j Oa(t, � � �1)j d�1

� Z h� � �imCqC2j Oa(t, � � �)j j Oun(�)j2h�i2q
d�� d�

� C1(A, p, q)

�Z h�1imCqC2j Oa(t, �1)j d�1

�2 X
n

An32n
Z j Oun(�)j2h�i2q

d�
� C2(A, p, q)

Z  X
n

An=23n j Oun(�)jh�iq
!2

d�
� C2(A, p, q)

Z ��h�i3pA�qj Ou(�)j��2d�
� C2(A, p, q)

Z j Ou(�)j2 d� � C3(A, p, q)
Z

k0(t, x)ju0j2 dx.

Here we choose firstA large and thenq so thatq > 3
p

A.
The second term is bounded by

C4(A, p, q)
X

n

An32n

�Z h�1imCqC2 lognh�1i
n!

j Oa(t, �1)j d�1

�2 Z j Ou(�)j2h�i2q
d�

� C5(A, p, q)

 X
n

An=23n
Z h�1imCqC2 lognh�1i

n!
j Oa(t, �1)j d�1

!2 Z j Ou(�)j2d�
� C6(A, p, q)

�Z h�1imCqC2C3
p

Aj Oa(t, �1)j d�1

�2 Z j Ou(�)j2 d�
� C7(A, p, q)

Z j Ou(�)j2 d�.

The last term can be estimated similarly and so we end the proof of Lemma 4.2.

From (4.1), (4.2), (4.5), Lemma 4.1 and Lemma 4.2 it follows that

(4.11)
X

n,�,s, j

{I3(un,�,s, j )C I5(un,�,s, j )} � C
X

n,�,s, j

nEn(u�,s, j )C [ f (t)]2

where

[ f (t)]2 D e�ct
X

n,�,s, j

An(t)
Z

kn(t, x)

���� logn hDi
n!

D�C j

hDisC j
f (t, x)2�n�����

2

dx.
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5. Proof of Theorem 1.1

Summing up the estimates (3.2), (3.6) and (4.11) we have that

d

dt
E(t, u) � [ f (t)]2

and hence

(5.1) E(t, u) � E(t0, u)C Z t

t0

[ f (s)]2 ds

for �T � t0 � t � T . Let us denote bykukr the standard norm in the Sobolev space
H r (R). Then we have

Proposition 5.1. There is r1 2 N such that for any r2 2 R we can find C such that

kut (t)k2r2
C ku(t)k2r2

� C

�kut (t0)k2r1Cr2
C ku(t0)k2r1Cr2C1C

Z t

t0

k f (s, � )k2r1Cr2
ds

�

for any �T � t0 � t � T and for u2 C2([�T, T ]I S(R)) verifying PuD f .

Proof. It is clear that

[u(t)]2 � e�ctc0

Z ju(t, x)j2 dx D c0e�ctkuk2
becausek0(t, x) � c0 > 0 by 1) of Proposition 2.1 (the notation [� ] is defined at the
end of last section). This together with (5.1) shows that

(5.2) kut (t)k2C ku(t)k2 � C

�
E(t0, u)C Z t

t0

[ f (s)]2 ds

�
.

On the other hand we see that

[u(t)]2 � 2e�ct
X
n,�,s

An(t)kunk2��s � C1e�ct
X

n

An(t)kunk2p
� C1e�ct

Z h�i2pj Ouj2
 X

n

A(t)n=2 lognh�i
n!

!2

d�
� C1e�ct

Z h�i2pC2
p

A(t)j Ouj2 d� � e�ctkuk2r1
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with r1 D pCp2A(0) because we can supposeA(t) � 2A(0) for �T � t � T . Simi-
larly, we have that

e�ct
X

n,�,s, j

An(t)
Z

kn(t, x)a(t, x)

���� D�C j

hDisC j
�xun(t, x)2�n� ����

2

dx

� 2e�ct
X
n,�,s

An(t)kunk2��sC1 � C2e�ct
X

n

An(t)kunk2pC1

� C2e�ctkuk2r1C1.

Taking (5.1) and (5.2) into account we get that

(5.3) kut (t)k2C ku(t)k2 � C3

�kut (t0)k2r1
C ku(t0)k2r1C1C

Z t

t0

k f (s)k2r1
ds

�
.

Repeating the same arguments as in Sections 3 and 4 for

un,�, ,s, j D 2�n� lognhDi
n!

D�CC j

hDisC j
u

with  D 0, 1, : : : , r2, we obtain the desired result.

Proposition 5.2. There is r1 2 N such that for any r2 2 R one can find C such that

kut (t)k2r2
C ku(t)k2r2

� C

�kut (t0)k2r1Cr2
C ku(t0)k2r1Cr2C1C

Z t

t0

k f (s, � )k2r1Cr2
ds

�

for any �T � t0 � t � T and for any u2 C2([�T, T ]I S(R)) satisfying

P�u D �2
t u � a(t, x) �2

xu � 2ax(t, x) �xu � axx(t, x)u D f .

Proof. To check the proposition it suffices to estimate

(5.4) F(un) D 2e�ct An(t)
Z

kn(t, x) Re

�
logn hDi

n!
(2ax �xuC axxu) � un,t

�
dx.

Since

logn hDi
n!

(2ax �xuC axxu)

D 2ax�xun C axxun C 2

�
logn hDi

n!
, ax

� �xuC � logn hDi
n!

, axx

�
u

repeating the same arguments as in Section 4 we get thatX
n,�,s, j

F(un,�,s, j ) � C
X

n,�,s, j

En(u�,s, j ) W
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this proves the desired assertion.

By Propositions 5.1 and 5.2, we can apply standard argumentsof functional ana-
lysis to conclude Theorem 1.1 (see, for example, Section 23.2 in [6]).

To check Theorem 1.10 we first note that ifk jn(t, x), n 2 N are weight functions
for B j (t, x) � 0 verifying Proposition 2.1 then

kn(t, x) D rY
jD1

k jn(t, x), n 2 N
are weight functions for

Qr
jD1 B j (t, x) verifying Proposition 2.1. Thus to show The-

orem 1.10 we can assume thatr D 1. Write mD m1 and B1(t, x) D b(t, x)m. Note that
if m is odd and henceb(t, x) � 0 near the origin then the proof is obvious because
the weight functions forb(t, x) given in Proposition 2.1 are also weight functions for
b(t, x)m. Let m be even and henceb(t, x)m D [b(t, x)2]m=2. Repeating the same argu-
ments as in Sections 6 and 7 with minor changes such as

km,t0(x0)(t, x) D exp

�
N
Z

Im(x)\[t0(x0),t ]

jbt (s, x)jjb(s, x)j ds

�

for t > t0(x0) and km,t0(x0)(t, x) D 1 if t � t0(x0) with Im(x) D {s j 2�m � jb(t, x)j �
2�mC2} we obtain the required weight functions forb(t, x)2 which is also the required
weight functions for [b(t, x)2]m=2.

6. Construction of the weight functions

To prove Proposition 2.1 it turns out that the notation is simpler if we construct
the reciprocal functions 1=kn(t, x); we will denote them again bykn and list in the
proposition below the analogous properties that they should enjoy.

Proposition 6.1. Let N> 0 be a given constant. Then there is T> 0, a sequence
of weight functions kn(t,x) 2W1,1((�T,T)�R) and some positive constants C1, : : : ,C8

(all depending on N except C6) such that
1) 1� kn(t, x) � C1eC2n,
2) 0� �tkn(t, x) � C3eC4n,
3) in a neighbourhood of the origin we have

j�xkn(t, x)jpa(t, x) � C5nkn(t, x),

4) in a neighbourhood of the origin we have

�tkn(t, x)

kn(t, x)
� N

C6

jat (t, x)j
a(t, x)C 2�2n

� C7n,
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5) kn�1 � C8kn.

Proof. The proof is fairly long: we need several steps and we will finish it in the
last section. Recall that one can write

a(t, x) D e(t, x)(t p C a1(x)t p�1C � � � C ap(x))

in a neighbourhoodU of the origin and that, changing the scale of thet coordinate if
necessary and using Glaeser’s inequality, we may assume that, in U , 0� a(t,x) � 1 and

j�x

p
a(t, x)j � L D 1

320(pC 1)
.

Let � be a positive number. Since the functions

a(t, x) � �, a(t, x) � 16�
are regular int , we can write also them as a non-zero function multiplied by aWeierstrass
polynomial in a neighbourhood of (0, 0). Let11(x, �) be the discriminant ofa(t, x) � �
and12(x, �) the discriminant ofa(t, x)� 16�. We observe that up to maybe changingT
the equationsa(t, x)� � D 0, a(t, x)� 16� D 0, t C T D 0 andt � T D 0 have mutually
distinct solutions int for small x and� > 0.

Let 1(x, �) D 11(x, �)12(x, �); since1(x, 0) vanishes of order 2q at x D 0 by
hypothesis (1.4) we can write, ford sufficiently small,

1(x, �) D c(x, �)(x2q C c1(�)x2q�1C � � � C c2q(�))
for jxj < d and j�j < �0. For � > 0 fixed (� < �0), 1( � , �) has at most 2q real zeros
for jxj < d:

x1(�) � x2(�) � � � � � xq1�1(�)
whereq1 � 1 is the number of real zeros, inx, of 1(x, �) and depends on�. Taking�0 > 0 and Æ > 0 (Æ � d) small we may assume that�d C Æ < x1(�) and xq1�1(�) <
d � Æ for j�j < �0.

Let us call JÆ the interval (�dC Æ, d� Æ); we can assume thatU D [�T, T ] � JÆ.
We now divide the intervalJÆ into q1 subintervalsA j (�) D (x j�1(�), x j (�)), j D

1, : : : , q1, where x0(�) D �d C Æ, xq1(�) D d � Æ. For x 2 A j (�) we can definep j

real functions

�T D t j 1(x, �) < � � � < t j p j (x, �) D T

which are the roots int of

(a(t, x) � �)(a(t, x) � 16�)(t C T)(t � T)
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contained in the interval [�T, T ] and are continuous inx 2 A j (�). In generalp j de-
pends on j and �; nevertheless, we always have 2� p j � 2pC 2. We will at times
make the dependence on� implicit to simplify the notation.

Let us fix an integerm and put � D 2�2m. We suppose that 2�2m < �0, that is
m > m0; later we will deal with the casem � m0. We choose oneA j (2�2m) and one
of the functionst j l (x, 2�2m) defined on it and denote it byt0(x, 2�2m) (or t0(x)) for
the time being, to avoid clumsiness (we will need to revert tothe usual notation from
Lemma 6.2 on). Note that eithert0(x, 2�2m) D �T , or a(t0(x, 2�2m), x) D 2�2m or
a(t0(x, 2�2m), x) D 2�2mC4 in A j (2�2m). Define bt0(t, x) by

bt0(t, x) Dpa(t0(x), x)

if t � t0(x) and

bt0(t, x) Dpa(t0(x), x)C Z t

t0(x)
j�s

p
a(s, x)j ds

if t > t0(x). Note thatbt0(t, x) is nondecreasing int and bt0(t, x) � pa(t, x) for t >
t0(x). Define

Qh D (h2�m � 2�m�1, h2�mC 2�m�1)

for h 2 Z. We choosexh 2 Qh \ A j (2�2m) (if this set is not empty) and setx0h D
xh C 2�m. For m large, 2�m < Æ and xh 2 A j (2�2m) implies x0h 2 (�d, d) (here xh and
x0h depend onj ).

Let us put

�h,t0(t, x) D ��4� jx � xhj
bt0(t, xh)

� _ 0

� ^ 1

and define

(6.1) km,t0(x0)(t, x) D exp

�
N
Z

Im(x)\[t0(x0),t ]

jat (s, x)j
a(s, x)

ds

�

if t > t0(x0) and km,t0(x0)(t, x) D 1 if t � t0(x0). Here N is a positive number,x0 2
A j (2�2m) and

Im(x) D {s j 2�2m � a(s, x) � 2�2mC4}.

We now set

Qkm,t0(t, x) D sup
h

[km,t0(xh)(t, xh)km,t0(xh)(t, x0h)�h,t0(t, x)] _ 1

where the supremum is taken over allh such thatQh \ A j (2�2m) ¤ ; (therefore it

is indeed a maximum over a finite set). Products of functionsQkm,t0(t, x) as t0 varies
among all the possible choices will be factors in the desiredweight functionkn(t, x).
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Lemma 6.1. We have
1) 1� Qkm,t0(t, x) � exp[2N(pC 1) log 24],
2) �t Qkm,t0(t, x) � 0,
3) �t Qkm,t0(t, x) � C92m Qkm,t0(t, x),
4) j�x Qkm,t0(t, x)jpa(t, x) � 2 exp[2N(pC 1) log 24] Qkm,t0(t, x).

Proof. Sincea(t, x) is a polynomial int of degreep, 1) is easily checked. From

(6.2) �tkm,t0(xh)(t, xh) � 0, �tkm,t0(xh)(t, x0h) � 0, �t�h,t0(t, x) � 0

it follows that �t Qkm,t0(t, x) � 0.
To prove 3) note that

�tkm,t0(xh)(t, xh) � N
jat j
a

km,t0(xh)(t, xh) � NC2mkm,t0(xh)(t, xh),

�tkm,t0(xh)(t, x0h) � N
jat j
a

km,t0(xh)(t, x0h) � NC2mkm,t0(xh)(t, x0h),

�t�h,t0 � jx � xhj
bt0(t, xh)

j�tbt0(t, xh)j
bt0(t, xh)

� 4
C

2�m
D 4C2m.

Thus we see that

�t [km,t0(xh)(t, xh)km,t0(xh)(t, x0h)�h,t0(t, x)]

� 2NC2m[km,t0(xh)(t, xh)km,t0(xh)(t, x0h)�h,t0(t, x)]

C 4C2m exp[2N(pC 1) log 24]

� {2NC2mC 4C2m exp[2N(pC 1) log 24]} Qkm,t0(t, x)

which shows that

�t Qkm,t0(t, x) � C92m Qkm,t0(t, x).

We turn to assertion 4). IfQkm,t0(t, x) D 1 then �x Qkm,t0 D 0 and hence the assertion
clearly holds. If Qkm,t0(t, x) > 1, let the supremum in the definition ofQkm,t0 be attained
for a certain indexNh. Then it is clear that we havet > t0(xNh) and� Nh,t0(t, x) > 0. Thusjx � xNhj � 4bt0(t, xNh), so that

jpa(t, x) �pa(t, xNh)j � 1

4
jx � xNhj � bt0(t, xNh)

and hence p
a(t, x) �pa(t, xNh)C bt0(t, xNh) � 2bt0(t, xNh)
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becausebt0(t, x) � pa(t, x) for t > t0(x). Now we have that

j�x� Nh,t0(t, x)jpa(t, x) � pa(t, x)

bt0(t, xNh)
� 2

so that

j�x Qkm,t0(t, x)jpa(t, x) � 2 exp[2N(pC 1) log 24]

� 2 exp[2N(pC 1) log 24] Qkm,t0(t, x)

and hence 4).

Lemma 6.2. Let (t, x) 2 U be a point such that x2 A j (2�2m), t j l (x, 2�2m) < t <
t j lC1(x, 2�2m) and 2�2mC1 � a(t, x) � 2�2mC3. If

Qkm,t j l (t, x) D �km,t j l (xNh)(t, xNh) � km,t j l (xNh)
�
t, x0Nh� � � Nh,t j l

(t, x)
�

(that is, the supremum in the definition ofQkm,t j l is attained at indexNh), then jx� xNhj �
160(pC 1)=9 � 2�m.

Proof. We consider the intervalQi that containsx. Let xi 2 Qi \ A j (2�2m):jx � xi j � 2�m and x0i D xi C 2�m (it may happen thatx0i � A j (2�2m)). For y between
x and xi we havejpa(t, y) �pa(t, x)j � 2�m�2 so that

2�2m < a(t, y) < 2�2mC4

and t j l (y, 2�2m) < t < t j lC1(y, 2�2m). So we see that

(6.3) 2�2m < a(t, xi ) < 2�2mC4.

Supposekm,t j l (xi )(t,xi )D 1: it follows thatat (s,xi )D 0 for all s such thatt j l (xi ,2�2m) <
s< t , so that

a(t, xi ) D a(t j l (xi ), xi ) D 2�2m or 2�2mC4

which contradicts (6.3). Thus we havekm,t j l (xi )(t, xi ) > 1 and hence also

km,t j l (xi )(t, xi )km,t j l (xi )(t, x0i ) > 1.

Since

�i ,t j l (t, x) � ��4� 2�m

bt j l (t, xi )

� _ 0

� ^ 1D 1

becausebt j l (t, xi ) � pa(t j l (xi ), xi ) � 2�m, we see that

Qkm,t j l (t, x) D sup
h

[km,t j l (xh)(t, xh)km,t j l (xh)(t, x0h)�h,t j l (t, x)] > 1.
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Assume now that when the index isNh the supremum is attained. Then

jx � xNhj � 4bt j l (t, xNh)

and t > t j l (xNh) (since km,t j l (xNh)(t, xNh)km,t j l (xNh)
�
t, x0Nh� > 1). Consider the smallest valueNt

such that q
a(Nt , xNh) D sup

t j l (xNh)�r�t

p
a(r, xNh)I

noting thatbt j l (t, xNh) is nondecreasing int , it is easy to see that

q
a(Nt , xNh) � bt j l (t, xNh) � (pC 1)

q
a(Nt , xNh).

We first consider the case in whicht j l (x) < Nt (� t < t j lC1(x)). We observe that

p
a(Nt , x) D �2�m

with � between 1 and 4; then���qa(Nt , xNh) � �2�m
��� � Ljx � xNhj � 4Lbt j l (t, xNh)

� 4L(pC 1)
q

a(Nt , xNh) � 1

10

q
a(Nt , xNh).

We obtain that (10=11)�2�m �qa(Nt , xNh) � (10=9)�2�m and hence that

jx � xNhj � 4(pC 1)
10

9
�2�m.

We consider now the other case, i.e. whent j l (x) � Nt . Sincet j l (xNh) � Nt andt j l (x) � Nt ,
there exists some� betweenx and xNh such thatt j l (� ) D Nt and hence

p
a(Nt , � ) D 2�m or

p
a(Nt , � ) D 2�mC2.

Noting that ���qa(Nt , xNh) �pa(Nt , � )
��� � Lj� � xNhj � 4Lbt j l (t, xNh)

� 4L(pC 1)
q

a(Nt , xNh) � 1

10

q
a(Nt , xNh)

we conclude as before that

10

11
�2�m � qa(Nt , xNh) � 10

9
�2�m, jx � xNhj � 4(pC 1)

10

9
�2�m

where� D 1 or 4. Thus we havejx�xNhj � (160=9)�(pC1)2�m which ends the proof.
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Lemma 6.3. Let (t, x) 2 U be a point such that

2�2mC1 � a(t, x) � 2�2mC3 W
there exist j and l such that

�t Qkm,t j l � N

C11

jat (t, x)j
a(t, x)

Qkm,t j l � C12Qkm,t j l .

Proof. We choosej , l such that

x 2 A j (2
�2m), t j l (x, 2�2m) < t < t j lC1(x, 2�2m).

Applying Lemma 6.2 and keeping the same notations, we have that

jpa(t, xNh) �pa(t, x)j � LjxNh � xj � 1

18
� 2�m

so that 2�2m < a(t,xNh)< 2�2mC4. The same inequality holds fora
�
t,x0Nh�. This shows that

t 2 Im(xNh) \ Im
�
x0Nh�.

Then we have that

�t
�
km,t j l (xNh)(t, xNh)km,t j l (xNh)

�
t, x0Nh��� Nh,t j l

(t, x) � N

" jat (t, xNh)j
a(t, xNh)

C
��at
�
t, x0Nh���

a
�
t, x0Nh�

# Qkm,t j l (t, x).

Note that by Taylor’s formula

at (t, x) D at (t, xNh)C atx(t, xNh)(x � xNh)C R2(x � xNh),

at
�
t, x0Nh� D at (t, xNh)C atx(t, xNh)2�mC R2(2�m)

where R2 is the remainder of second order, which proves that

jat (t, x)j � jat (t, xNh)j C 160

9
� (pC 1)

�jat (t, xNh)j C ��at
�
t, x0Nh����C C102

�2m

� �160

9
� (pC 1)C 1

�jat (t, xNh)j C 160

9
� (pC 1)

��at
�
t, x0Nh���C C102

�2m.

Thus one has that

jat (t, x)j
a(t, x)

� �160

9
� (pC 1)C 1

� jat (t, xNh)j
a(t, x)

C
��at
�
t, x0Nh���

a(t, x)

!
C C10

� C11

 jat (t, xNh)j
a(t, xNh)

C
��at
�
t, x0Nh���

a
�
t, x0Nh�

!
C C10

whereC11D 16((160=9) � (pC 1)C 1). These prove that

�t Qkm,t j l (t, x) � N

C11

jat (t, x)j
a(t, x)

Qkm,t j l (t, x) � C10

C11
N Qkm,t j l (t, x)

which is the desired assertion.
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7. Construction of the weight functions (continued)

We now construct the second kind of factorQk0n,t0(t, x) which appears in the weight
functions kn(t, x). The construction is largely analogous to what was done above for
factors of the first kind.

Let � be a positive number. Since the function

a(t, x) � 16�
is regular int , then we can write it as a non-zero function multiplied by a Weierstrass
polynomial in a neighbourhood of (0,0). Let1(x,�) be the discriminant. Since1(x, 0)
vanishes of orderq at x D 0, from the assumption (1.4) we can write

1(x, �) D c(x, �)(xq C c1(�)xq�1C � � � C cq(�))
for jxj < d and j�j < �0. For � > 0 fixed (� < �0), 1( � , �) has at mostq real zeros
for jxj < d;

x1(�) � x2(�) � � � � � xq1�1(�).
As in Section 6, we may assume that�dCÆ < x1(�), xq1�1(�) < d�Æ for j�j < �0. We
divide the intervalJ 0Æ D (�d C Æ, d � Æ) into q1 subintervalsA0

j (�) D (x j�1(�), x j (�)),
where x0(�) D �dC Æ, xq1(�) D d � Æ. For x 2 A0

j (�) we can definep j real functions
(0� p j � pC 2)

�T D t j 1(x, �) < � � � < t j p j (x, �) D T

which are the roots of

(a(t, x) � 16�)(t C T)(t � T) D 0

contained in the interval [�T, T ] and are continuous inx 2 A0
j (�).

Let us fix an integern and put� D 2�2n. Take A0
j (2

�2n) and call t0(x, 2�2n) one

of the functions defined on it. Note that eithert0 D �T or a(t0(x, 2�2n), x) D 2�2nC4

in A0
j (2

�2n). Define b0t0(t, x) by

b0t0(t, x) Dpa(t0(x), x)C 2�n

if t > t0(x) and

b0t0(t, x) Dpa(t0(x), x)C Z t

t0(x)
j�s

p
a(s, x)j dsC 2�n

if t > t0(x). Note thatb0t0(t, x) is nondecreasing int and b0t0(t, x) � pa(t, x)C 2�n for
t > t0(x). We then define

Qh D (h2�n � 2�n�1, h2�n C 2�n�1)
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for h 2 Z; we choosexh 2 Qh \ A0
j (2

�2n) (if this set is not empty) and setx0h D
xh C 2�n. For n large, xh 2 A0

j (2
�2n) implies x0h 2 (�d, d). Put

�0h,t0(t, x) D ��4� jx � xhj
b0t0(t, xh)

� _ 0

� ^ 1

and define (sincex0 2 A0
j (2

�2n)) k0n,t0(x0)(t, x) D 1 if t � t0(x0) and

k0n,t0(x0)(t, x) D exp

�
N
Z

I 0n(x)\[t0(x0),t ]

jat (s, x)j
2�2n

ds

�

if t > t0(x0). HereN is the positive constant given in the definition (6.1) ofkm,t0(x0)(t,x) and

I 0n(x) D {s j a(s, x) � 2�2nC4}.

We now defineQk0n,t0(t, x) by

Qk0n,t0(t, x) D sup
h

[k0n,t0(xh)(t, xh)k0n,t0(xh)(t, x0h)�0h,t0(t, x)] _ 1

where the supremum is taken over allh such thatQh \ A0
j (2

�2n) ¤ ;.
This Qk0n,t0(t, x) enjoys analogous properties asQkm,t0(t, x) listed in Lemma 6.1.

Lemma 7.1. We have
1) 1� Qk0n,t0(t, x) � exp[2N(pC 1)24],

2) �t Qk0n,t0(t, x) � 0,

3) �t Qk0n,t0(t, x) � C12n Qk0n,t0(t, x),

4) j�x Qk0n,t0(t, x)jpa(t, x) � 2 exp[2N(pC 1)24] Qk0n,t0(t, x).

Proof. To check 2) it is enough to observe that

(7.1) �tk
0
n,t0(xh)(t, xh) � 0, �tk

0
n,t0(xh)(t, x0h) � 0, �t�0h,t0(t, x) � 0.

To see 3) note that

�tk
0
n,t0(xh)(t, xh) � N

jat j
2�2n

k0n,t0(xh)(t, xh) � NC22nk0n,t0(xh)(t, xh),

�tk
0
n,t0(xh)(t, x0h) � N

jat j
2�2n

k0n,t0(xh)(t, x0h) � NC22nk0n,t0(xh)(t, x0h).
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On the other hand we have that

�t�0h,t0 � jx � xhj
b0t0(t, xh)

j�tb0t0(t, xh)j
b0t0(t, xh)

� 4
C3

2�n
D 4C32n

and hence that

�t [k
0
n,t0(xh)(t, xh)k0n,t0(xh)(t, x0h)�0h,t0(t, x)]

� 2NC22n[k0n,t0(xh)(t, xh)k0n,t0(xh)(t, x0h)�0h,t0(t, x)]

C 4C32n exp[2N(pC 1)24]

� {2NC22n C 4C32n exp[2N(pC 1)24]} Qk0n,t0(t, x)

which implies that

�t Qk0n,t0(t, x) � C42n Qk0n,t0(t, x).

We turn to the proof of 4). IfQk0n,t0(t, x)D 1 then�x Qk0n,t0 D 0 and nothing is to be proved.

Assume that this is not the case. LetNh be an index such that the supremum in the defin-
ition of Qk0n,t0 is attained for that index. We havek0n,t0(xNh)(t, xNh)k0n,t0(xNh)

�
t, x0Nh��0Nh,t0

(t, x) > 1,

t > t0(xNh) and�0Nh,t0
(t, x) > 0. We have thusjx � xNhj � 4b0t0(t, xNh), so that

jpa(t, x) �pa(t, xNh)j � 1

4
jx � xNhj � b0t0(t, xNh)

and hence p
a(t, x) �pa(t, xNh)C b0t0(t, xNh) � 2b0t0(t, xNh).

From this it follows that

j�x�0Nh,t0
(t, x)jpa(t, x) � pa(t, x)

b0t0(t, xNh)
� 2

so that

j�x Qk0n,t0(t, x)jpa(t, x) � 2 exp[2N(pC 1)24] � 2 exp[2N(pC 1)24] Qk0n,t0(t, x)

which shows 4).

Lemma 7.2. Let (t, x) be in [�T, T ] � J 0Æ be a point such that a(t, x) � 2�2nC3,
x 2 A0

j (2
�2n) and tj l (x, 2�2n) < t < t j lC1(x, 2�2n). If the supremum of

k0n,t j l (xh)(t, xh) � k0n,t j l (xh)(t, x0h) � �h,t j l (t, x)

on the set of indices h such that Qh \ A0
j (2

�2n) ¤ ; is attained for indexNh, thenjx � xNhj � (200(pC 1)=9) � 2�n.
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Proof. We follow the proof of Lemma 6.2. We consider the interval Qi that con-
tains x. Let xi 2 Qi \ A0

j (2
�2n): jx � xi j � 2�n and x0i D xi C 2�n (x0i may not belong

to A0
j (2

�2n)). For y betweenx and xi we havejpa(t, y) �pa(t, x)j � 2�n�2 so that

a(t, y) < 2�2nC4

and t j l (y, 2�2n) < t < t j lC1(y, 2�2n). So we see that

a(t, xi ) < 2�2nC4.

If k0n,t j l (xi )
(t, xi ) D 1 it follows that at (s, xi ) D 0 for t j l (xi , 2�2n) < s< t so that

a(t, xi ) D a(t j l (xi ), xi ) D 2�2nC4

which is a contradiction. Thus we have thatk0n,t j l (xi )
(t, xi ) > 1 and hence

k0n,t j l (xi )(t, xi ) � k0n,t j l (xi )(t, x0i ) > 1.

Note that

�0i ,t j l
(t, x) � ��4� 2�n

b0t j l
(t, xi )

� _ 0

� ^ 1D 1

sinceb0t j l
(t, xi ) � 2�n. So we see that

sup
h

[k0n,t j l (xh)(t, xh)k0n,t j l (xh)(t, x0h)�0h,t j l
(t, x)] > 1.

Suppose that the supremum is attained for a certain indexNh. Then

jx � xNhj � 4b0t j l
(t, xNh)

and t > t j l (xNh) (sincek0n,t j l (xNh)(t,xNh)k0n,t j l (xNh)

�
t,x0Nh�> 1). Consider the first valueNt at which

q
a(Nt , xNh) D sup

t j l (xNh)�r�t

p
a(r, xNh)

then we see as before that

q
a(Nt , xNh)C 2�n � b0t j l

(t, xNh) � (pC 1)

�q
a(Nt , xNh)C 2�n

�
.

We first treat the case in whicht j l (x) < Nt (� t < t j lC1(x)). Note that

p
a(Nt , x)C 2�n D �2�n
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with � between 1 and 5. Thus one has���qa(Nt , xNh)C 2�n � �2�n
��� � Ljx � xNhj � 4Lb0t j l

(t, xNh)

� 4L(pC 1)
�q

a(Nt , xNh)C 2�n
� � 1

10

�q
a(Nt , xNh)C 2�n

�
.

Then (10=11)�2�n �pa(Nt , xNh)C 2�n � (10=9)�2�n and hence

jx � xNhj � 4(pC 1)
10

9
�2�n.

We turn to the other case, i.e., ift j l (x) � Nt . Sincet j l (xNh) � Nt and t j l (x) � Nt there exists� betweenx and xNh such thatt j l (� ) D Nt . That is

p
a(Nt , � ) D 2�nC2

and then���qa(Nt , xNh)C 2�n �pa(Nt , � ) � 2�n
��� � Lj� � xNhj � 4Lb0t j l

(t, xNh)

� 4L(pC 1)
�q

a(Nt , xNh)C 2�n
�

� 1

10

�q
a(Nt , xNh)C 2�n

�
.

We conclude as before that

10

11
�2�n �qa(Nt , xNh)C 2�n � 10

9
�2�n, jx � xNhj � 4(pC 1)

10

9
�2�n

where� D 5. This givesjx � xNhj � (200=9) � (pC 1)2�n and hence the assertion.

Lemma 7.3. Let (t, x) 2 [�T, T ] � J 0Æ with

a(t, x) � 2�2nC3 W
there exists j, l such that

�t Qk0n,t j l
(t, x) � N

C6

jat (t, x)j
a(t, x)C 2�2n

Qk0n,t j l
(t, x) � C7 Qk0n,t j l

(t, x).

Proof. We choosej and l so thatx 2 A0
j (2

�2n) and t j l (x,2�2n)< t < t j lC1(x,2�2n).

By Lemma 7.2 (using againNh for a maximal index) we have that

jpa(t, xNh) �pa(t, x)j � LjxNh � xj � 5

72
� 2�n
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so thata(t, xNh) < 2�2nC4. We have the same inequality fora
�
t, x0Nh� and hence

t 2 I 0n(xNh) \ I 0n�x0Nh�.
Therefore we have

�t [k
0
n,t j l (xNh)(t, xNh)k0n,t j l (xNh)

�
t, x0Nh�]�0Nh,t j l

(t, x)

� N

" jat (t, xNh)j
2�2n

C
��at
�
t, x0Nh���

2�2n

# Qk0m,t j l
(t, x).

Note that again by Taylor’s formula

at (t, x) D at (t, xNh)C atx(t, xNh)(x � xNh)C R2(x � xNh),

at
�
t, x0Nh� D at (t, xNh)C atx(t, xNh)2�n C R2(2�n).

From this we get

jat (t, x)j � jat (t, xNh)j C 200

9
� (pC 1)

�jat (t, xNh)j C ��at
�
t, x0Nh����C C52�2n

� �200

9
� (pC 1)C 1

�jat (t, xNh)j C 200

9
� (pC 1)

��at
�
t, x0Nh���C C52�2n

so that

jat (t, x)j
a(t, x)C 2�2n

� �200

9
� (pC 1)C 1

� jat (t, xNh)j
a(t, x)C 2�2n

C jat
�
t, x0Nh�j

a(t, x)C 2�2n

!
C C5

� C6

 jat (t, xNh)j
2�2n

C
��at
�
t, x0Nh���

2�2n

!
C C5

whereC6 D ((200=9) � (pC 1)C 1). Thus we conclude

�t Qk0n,t j l
(t, x) � N

C6

jat (t, x)j
a(t, x)C 2�2n

Qk0n,t j l
(t, x) � C5

C6
N Qk0n,tl (t, x)

and so Lemma 7.3 is proved.

8. Proof of Proposition 6.1

Let n 2 N be such thatn � m0C 1. We set

Qkm DY
j ,l

Qkm,t j l , mD m0, m0C 1, : : : , n� 1

and Qk0n DY
j ,l

Qk0n,t j l



672 F. COLOMBINI , T. NISHITANI , N. ORRÙ AND L. PERNAZZA

where the product is taken overj D 1, : : : , q1, l D 0, 1, : : : , p j . For 0� m� m0 � 1

we chooseQkm D 1 and for 0� n � m0 we also chooseQk0n D 1. We finally define

kn(t, x) D Qk1 � Qk2 � � � � � Qkn�1 � Qk0n.

Then properties 1)–4) follow from Lemmas 6.1, 6.3, 7.1, 7.3.We now check 5). Since

kn�1 D Qk1 Qk2 � � � Qkn�2 Qk0n�1,

kn D Qk1 Qk2 � � � Qkn�1 Qk0n
hence

kn�1

kn
D Qk0n�1Qkn�1 Qk0n .

Here note thatQkn�1 � 1 since Qkn�1 D Q
j ,l
Qkm,t j l and Qkm,t j l (t, x) � 1 for any possible

value of j and l . Similarly we haveQk0n � 1. On the other hand we have that

Qk0n�1 DY
j ,l

Qk0m,t j l
� exp[2N(2pC 2)24(pC 2)(qC 1)] W

in fact there are at most (pC 2)(qC 1) functions in the product. This indeed proves

kn�1

kn
� C.
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