

Title	Finite groups whose abelian subgroups have consecutive orders
Author(s)	Chigira, Naoki
Citation	Osaka Journal of Mathematics. 1998, 35(2), p. 439–445
Version Type	VoR
URL	https://doi.org/10.18910/10027
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

FINITE GROUPS WHOSE ABELIAN SUBGROUPS HAVE CONSECUTIVE ORDERS

NAOKI CHIGIRA

(Received January 20, 1997)

1. Introduction

Let G be a finite group and n be a positive integer. A group G is called an OC_n group if every element of G has order less than or equal to n and for each positive integer $m \le n$ there exists an element of G of order m. B. H. Neumann [8] determined all OC_3 groups and R. Brandl and W. Shi [1] classified all OC_n groups. In recent years a number of papers have dealt with the question of characterizing groups G by the set of all orders of elements in G. See [1], [2] or [10].

Now we will consider the order of abelian subgroups of G instead of the order of elements of G. A group G is called an OA_n group if the order of any abelian subgroup of G is less than or equal to n and for any positive integer $m \leq n$ there exists an abelian subgroup of G of order m. For example, any abelian subgroup of the alternating group A_5 on 5 letters is isomorphic to one of the groups $\{1, Z_2, Z_3, Z_2 \times Z_2, Z_5\}$ where Z_m is a cyclic group of order m. Thus the alternating group A_5 is an OA_5 group. In this paper we will classify all OA_n groups applying the results of [6] and [14] which are proved by using the classification of finite simple groups.

Theorem. Let G be an OA_n group. Then $n \le 6$ and G is isomorphic to one of the symmetric groups 1, S_2 , S_3 , S_4 , S_5 or the alternating groups A_4 , A_5 .

There are only seven isomorphism classes of OA_n groups although there are infinitely many isomorphism classes of OC_n groups.

2. Preliminaries

The prime graph $\Gamma(G)$ of G is a graph whose vertex set is the set of primes dividing |G| and distinct two primes p and q are joined by an edge if there exists an element of G of order pq. Let $\nu(\Gamma(G))$ be the number of connected components of $\Gamma(G)$ and in the case where |G| is even, let π_1 be the connected component containing 2. For any integer m, put $\pi(m)$ the set of all primes dividing m.

A finite group G is called a 2-Frobenius group if it has a chain $1 \subset H \subset K \subset G$

of normal subgroups, where K is a Frobenius group with Frobenius kernel H and G/H is a Frobenius group with Frobenius kernel K/H. A 2-Frobenius group is always solvable.

Theorem (Gruenberg-Kegel [7], [14]). If $\nu(\Gamma(G)) \ge 2$, then one of the following holds.

- (1) G is a Frobenius group or a 2-Frobenius group.
- (2) G has normal subgroups N and G₀ with N ⊂ G₀ such that N is a nilpotent π₁-group, G₀/N is a simple group and G/G₀ is a solvable π₁-group. Especially if G is solvable, then ν(Γ(G)) ≤ 2.

The following theorem is well known.

Theorem (Bertrand's postulate [5, p.82]). For any real number $t \ge 1$, there exists a prime p such that t .

Let G be an OA_n group. Note that if $n \ge 2$, then |G| is even and thus π_1 is not empty. The following lemma is fundamental.

Lemma 1. Let G be an OA_n group and p be a prime.

- (1) p divides |G| if and only if $p \le n$.
- (2) p^2 divides |G| if and only if $p^2 \leq n$.
- (3) If $\sqrt{n} , then a Sylow p-subgroup of G is cyclic of order p.$
- (4) Suppose that p is an odd prime. Then $p \le n/2$ if and only if $p \in \pi_1$.
- (5) If $n/2 , then <math>\{p\}$ forms a connected component of $\Gamma(G)$ and a Sylow *p*-subgroup is cyclic of order *p*.
- (6) Suppose that p is the largest prime dividing |G|. Then n/2 .
- (7) $\nu(\Gamma(G)) \ge 2 \text{ if } n \ge 3.$

Proof. (1) If |G| is divisible by p, then there exists a cyclic subgroup of order p. Then we have $p \le n$. Conversely, if $p \le n$ then there exists an abelian subgroup of order p in G by the definition of OA_n groups. This yields that p divides |G|.

(2) Since a group of order p^2 is abelian, we have the result by using similar arguments in the proof of (1).

(3) If $\sqrt{n} , G does not have an abelian subgroup of order <math>p^2$ since $n < p^2$. This yields that a Sylow p-subgroup of G is cyclic of order p.

(4) If $p \le n/2$, there exists an abelian subgroup of order 2p by the definition of OA_n groups. Hence $p \in \pi_1$. Conversely, if $p \in \pi_1$, there exists a prime $q \in \pi_1$ such that G has an element of order pq, that is, G has an abelian subgroup of order pq. Since G is an OA_n group, $pq \le n$. Since $2p \le pq$, we have $p \le n/2$.

(5) If there exists a prime q such that G has an abelian subgroup of order pq, then

440

 $pq \leq n$ because G is an OA_n group. We have $2p \leq pq \leq n$, a contradiction. Hence $\{p\}$ is a connected component of $\Gamma(G)$ and a Sylow p-subgroup is cyclic of order p. (6) By Bertrand's postulate, there exists a prime r such that $n/2 < r \leq n$. We see that r divides |G| by (1). Since p is the largest prime dividing |G|, we have $r \leq p$. This yields that n/2 .

(7) Because there is a prime r such that $n/2 < r \le n$ by Bertrand's postulate, $\nu(\Gamma(G)) \ge 2$ if $n \ge 3$.

Proposition 1. If $n \ge 47$, then $\sharp\{p : prime | n/2 .$

Proof. See [1, p.395]

Theorem (Williams [14], liyori-Yamaki [6]). For any finite group G, $\nu(\Gamma(G)) \leq 6$.

As a corollary, we have the following:

Corollary 1. If G is an OA_n group, then $n \leq 46$.

Proof. Suppose that $n \ge 47$. Then Lemma 1 (5) and Proposition 1 imply that $\nu(\Gamma(G)) \ge 7$. This contradicts the theorem of Williams and Iiyori-Yamaki.

3. The Proof of the Main Theorem

Proposition 2. Let G be a solvable OA_n group. Then $G \simeq 1$, Z_2 , S_3 , A_4 or S_4 .

Proof. By Gruenberg-Kegel's theorem, if G is solvable then $\nu(\Gamma(G)) \leq 2$. If $n \neq 1, 2, 3, 4, 6, 10$, then there exist primes p and q such that n/2 (See[1, p.396, TABLE I]). Then $\nu(\Gamma(G)) \geq 3$ by Lemma 1 (4). This is a contradiction. If n = 10, there exists a Hall $\{3, 5, 7\}$ -subgroup H of G because G is solvable. Then $\nu(\Gamma(H)) = 3$. This is a contradiction. If n = 6, then $|G| = 2^a \cdot 3 \cdot 5$ for some integer a. A Hall $\{3,5\}$ -subgroup H is cyclic of order 15, a contradiction. Hence $n \leq 4$. If $\nu(\Gamma(G)) = 1$, then $G \simeq Z_2$. If $\nu(\Gamma(G)) = 2$, again by Gruenberg-Kegel's theorem, G is a Frobenius group or a 2-Frobenius group. If G is Frobenius, then its Frobenius kernel N must be isomorphic to $Z_2 \times Z_2$ or Z_3 . Then we have $G \simeq A_4$ or S_3 . If G is 2-Frobenius, there exist normal subgroups K and H such that K is a Frobenius group with Frobenius kernel H and G/H is a Frobenius group with Frobenius kernel K/H. Then $H \simeq Z_2 \times Z_2$ or Z_3 . Since K/H is a Frobenius kernel of G/Hand it is also isomorphic to a Frobenius complement of K, K/H must be a cyclic subgroup of odd order. This yields that $H \simeq Z_2 \times Z_2$ and $K/H \simeq Z_3$. This implies that $G \simeq S_4$.

Lemma 2. Let G be a nonsolvable OA_n group. Then G is not a Frobenius group.

Proof. By Lemma 1 (7), we see $\nu(\Gamma(G)) \ge 2$. Suppose that G = NH is a nonsolvable Frobenius group with Frobenius kernel N and Frobenius complement H. Then H has a subgroup $H_0 \simeq SL(2,5) \times M$ with $(H : H_0) \le 2$, where M is a group in which every Sylow subgroup is cyclic and |M| is not divisible by 2, 3 and 5 (See [9, p.204]). Let p be the largest prime dividing |G|. Since $p \notin \pi_1$ by Lemma 1, p does not divide |H|. Therefore p divides |N|. If |N| is divisible by a prime $q \neq p$, N has an abelian subgroup of order $pq \ge 2p > n$ because N is nilpotent. This is a contradiction. Hence N is a p-group and $N \simeq Z_p$ by Lemma 1. Since $|N| - 1 \ge |H|$, we have $p \ge 121$. This contradicts Corollary 1 and completes the proof.

Lemma 3. Let G be a nonsolvable OA_n group. Then F(G) = 1, where F(G) is the Fitting subgroup of G.

Proof. By Lemma 1 (7), we see $\nu(\Gamma(G)) \geq 2$. By Gruenberg-Kegel's theorem, G has normal subgroups N and G_0 with $N \subset G_0$ such that N is a nilpotent π_1 group, G_0/N is a simple group and G/G_0 is a solvable π_1 -group since G is not a Frobenius group by Lemma 2. We see that N = F(G). Suppose that $N \neq 1$. Let N_0 be a minimal normal subgroup of G_0 . Then N_0 is an elementary abelian p-group for some $p \in \pi_1$. Let q be the largest prime dividing |G|. Then we see that $q \ge 5$, $n/2 < q \le n$ and q divides $|G_0|$ by Gruenberg-Kegel's theorem. By Lemma 1 (5), $\{q\}$ is a connected component of $\Gamma(G)$ and a Sylow q-subgroup is cyclic of order q. Then N_0Q is a Frobenius group for some $Q \in Syl_q(G)$ since $C_{N_0}(x) = 1$ for any $x \in Q - \{1\}$. Hence q divides $|N_0| - 1$. If p is odd, then $|N_0| - 1$ is even. We have $q \leq (|N_0|-1)/2 \leq (n-1)/2 < n/2$, a contradiction. Hence we have p = 2. Then $|N_0| = 2, 4, 8, 16$ or 32 by Corollary 1. If $|N_0| = 32$, then q = 31. In this case, G has an abelian subgroup H of order 29 since $32 \le n$. Since H can not act on N fixed point freely, N_0H has an element of order 58 > 46, a contradiction. If $|N_0| = 16$, then q = 5 because $q \ge 5$. In this case, G has an abelian subgroup H of order 13 since $16 \le n$. This contradicts the choice of q. If $|N_0| = 2$ or 4, then $q \le |N_0| - 1 \le 3$, a contradiction. If $|N_0| = 8$ then q = 7. Since q = 7 is the largest prime dividing G and G has an abelian subgroup N_0 of order 8, we have $8 \le n < 11$. Furthermore we have $5 \in \pi_1$, since a Sylow 5-subgroup of G does not act on N_0 fixed point freely. This implies that n = 10. In this case, $C_{G_0}(N_0)$ is a 2 group. In fact, if $C_{G_0}(N_0)$ has an element x of odd prime order, then $N_0(x)$ is an abelian subgroup whose order is more than 24. This is a contradiction. Since G_0 has a nonsolvable simple factor and $G_0/C_{G_0}(N_0)$ is isomorphic to a subgroup of GL(3,2), $G_0/C_{G_0}(N_0) \simeq GL(3,2)$ and $N \simeq C_{G_0}(N_0)$. We see that 5 does not divide |G| since orders of Aut(GL(3,2))and $C_{G_0}(N_0)$ are not divisible by 5. This is a contradiction. This completes the proof.

The above lemma implies that if G is a nonsolvable OA_n group, then there exists a simple group G_0 such that $G_0 \subseteq G \subseteq Aut(G_0)$. We will use this notation in the following propositions.

Proposition 3. Let G be a nonsolvable OA_n group.

- (1)If G_0 is an alternating group A_m on m letters, then m = 5. Conversely, A_5 is an OA_5 group and S_5 is an OA_6 group.
- (2) G_0 is not a sporadic simple group.

(1) If $G_0 \simeq A_m$, $\nu(\Gamma(G_0)) \le 3$ by [14]. Hence $2 \le \nu(\Gamma(G)) \le 3$. Proof. This yields that $5 \le n \le 16$, $n \ne 13$ by counting the number of primes p with $n/2 . (See Lemma 1 (5) and [1, p.396, TABLE I].) If <math>G_0 \simeq A_5$, then n < 7 since 7 does not divide $|Aut(G_0)|$. Clearly A_5 is an OA_5 group and S_5 is an OA_6 group. If $G_0 \simeq A_6$, then n < 7. On the other hand, A_6 has an abelian subgroup of order 9. This is a contradiction. If $G_0 \simeq A_7$ or A_8 , then n < 11. But $G_0 \supseteq A_7 \supset \langle (1,2)(3,4), (1,3)(2,4) \rangle \times \langle (5,6,7) \rangle$ which is abelian of order 12. If $G_0 \supseteq A_9$, then $A_9 \supset \langle (1,2)(3,4), (1,3)(2,4) \rangle \times \langle (5,6,7,8,9) \rangle$ which is abelian of order 20. This is a contradiction since $n \leq 16$. (2) See $\lceil 4 \rceil$.

Let G be a nonsolvable OA_n group and G_0 a simple group of **Proposition 4.** Lie type over the field of q elements. Then $G_0 \simeq A_1(4)$.

Suppose that $\nu(\Gamma(G_0)) \geq 4$. By the classification of the prime graph Proof. components of finite simple groups, $G_0 \simeq E_8(q)$, $A_2(4)$, ${}^2B_2(q)$ or ${}^2E_6(2)$ (See [6, p.337, TABLE III] and [14, p.492, TABLE Ie]). The groups $A_2(4)$, ${}^2E_6(2)$ and their automorphism groups are not OA_n groups (See [4]). If $G_0 \simeq E_8(q)$, G_0 has a maximal torus of order $q^8 - q^4 + 1 \ge 2^8 - 2^4 + 1 > 46$, a contradiction (See [3]). Clearly $G_0 \not\simeq {}^2B_2(8)$ and $G_0 \not\simeq {}^2B_2(32)$ (See [4]). If $G_0 \simeq {}^2B_2(q)$ where $q = 2^{2m+1}$ and $m \ge 3$, then G_0 has a maximal torus of order $q + \sqrt{2q} + 1 \ge 2^7 + 2^4 + 1 > 46$, a contradiction (See [12]). Suppose that $\nu(\Gamma(G_0)) = 3$. This implies that $\nu(\Gamma(G)) \leq 3$ and therefore $5 \le n \le 16$, $n \ne 13$ (See [1, p.396, TABLE I]). If the characteristic is more than or equal to 5, then q is a prime because q divides $|G_0|$ and $n \leq 16$. Since q^2 does not divide $|G_0|$, $G_0 \simeq A_1(q)$. Clearly $G_0 \not\simeq A_1(7)$, $A_1(11)$, and $A_1(13)$ (See [4]). We have $G_0 \simeq A_1(5) \simeq A_5$. Suppose now that the characteristic is 3. If $n \leq 8$, in a similar way, we have $G_0 \simeq A_1(3)$, which is not simple. If $n \ge 9$, then G_0 is isomorphic to one of groups in [14, p.492, TABLE Id], that is, $G_0 \simeq A_1(q) \ (q \equiv 1 \ (4)), \ A_1(q) \ (q \equiv -1 \ (4)), \ E_7(3), \ G_2(q) \ (q \equiv 0 \ (3)), \ ^2G_2(q)$ $(q = 3^{2m+1}, m \ge 1)$, or ${}^{2}D_{p}(3)$ $(p = 2^{n}+1, n \ge 2)$. Clearly $G_{0} \not\simeq E_{7}(3)$ (See [14]). If

 $G_0 \simeq A_1(q)$, then we have q = 3 or 9 since a Sylow q-subgroup of G_0 is abelian and $n \leq 16$. Since G_0 is simple, $G \not\simeq A_1(3)$ and we see $G_0 \not\simeq A_1(9) \simeq A_6$ by Proposition 3. Clearly $G_0 \not\simeq G_2(3)$ (See [4]). If $G_0 \simeq G_2(q)$ $(q \equiv 0(3))$ and $q \ge 3^2$ then G_0 has a maximal torus of order $q^2 + q + 1 \ge 3^4 + 3^2 + 1 > 16$, a contradiction (See [3]). If $G_0 \simeq {}^2G_2(q) \ (q = 3^{2m+1}, \ m \ge 1), G_0$ has a maximal torus of order $q + \sqrt{3q} + 1 > 16$, a contradiction (See [13]). If $G_0 \simeq {}^2D_p(3)$ $(p = 2^n + 1 \text{ is a prime}, n \ge 2)$, then G_0 has a maximal torus of order $(3^p + 1)/4 > 16$, a contradiction (See [12] or [14]). Suppose now that the characteristic is 2. Then $G_0 \simeq A_1(q), A_2(2), {}^2A_5(2), E_7(2),$ ${}^{2}F_{4}(q)$ or $F_{4}(q)$ by [6, p.336, TABLE II]. Clearly $G_{0} \neq A_{2}(2), {}^{2}A_{5}(2), E_{7}(2), A_{1}(8)$ and $A_1(16)$ (See [4]). If $G_0 \simeq A_1(q)$, we have $q \le 16$ since a Sylow 2-subgroup of G_0 is abelian. We have $G_0 \simeq A_1(4) \simeq A_5$ (See [4]). If $G_0 \simeq {}^2F_4(q)$ $(q = 2^{2m+1}, m \ge 1)$, then G_0 has a maximal torus of order $q^2 + \sqrt{2q^3} + q + \sqrt{2q} + 1 > 16$, a contradiction (See [11]). Clearly $G_0 \not\simeq F_4(2)$ (See [4]). If $G_0 \simeq F_4(q)$, then G_0 has a maximal torus of order $q^4 + 1 > 16$, a contradiction (See [3]). This completes the case where $\nu(\Gamma(G_0)) = 3$. Suppose that $\nu(\Gamma(G_0)) = 2$. Then n = 6 or 10 (See [1, p.396, TABLE I]). If the characteristic is more than or equal to 5, we have $G_0 \simeq A_1(q)$, a contradiction since $\nu(\Gamma(A_1(q))) = 3$. We have that the characteristic is 2 or 3. Suppose now that the characteristic is 3. By an argument similar to that in the case where $\nu(\Gamma(G_0)) = 3$, we see n = 10. Notice that G_0 has prime graph components $\pi_1 = \{2, 3, 5\}$ and $\{7\}$. And G_0 is isomorphic to one of groups in [14, p.490, TABLE Ib, p.491, TABLE Ic] whose characteristic is 3. We see that there exist no groups satisfying our condition in this case. Suppose now that the characteristic is 2. Then n = 6 and the connected components are $\pi_1 = \{2, 3\}$ and $\{5\}$ or n = 10 and the connected components are $\pi_1 = \{2, 3, 5\}$ and $\{7\}$. And G_0 is isomorphic to one of groups in [6, p.336, TABLE Ia, Ib]. We see that only ${}^{2}A_{3}(2)$ has the connected components $\pi_1 = \{2,3\}$ and $\{5\}$. However we see $G_0 \not\simeq {}^2A_3(2)$ by [4]. Also we see that only $A_3(2)$, $C_3(2)$ and $D_4(2)$ have the connected components $\pi_1 = \{2, 3, 5\}$ and {7}. However we see that $G_0 \not\simeq A_3(2)$, $C_3(2)$ and $D_4(2)$ by [4]. This yields that there exist no groups satisfying our conditions in this case. This completes the proof.

Proof of Theorem. Straightforward from Propositions 2, 3 and 4.

References

- [1] R. Brandl and W. Shi: *Finite groups whose element orders are consecutive integers*, J. Algebra, **143** (1991), 388-400.
- [2] R. Brandl and W. Shi: The characterization of PSL(2,q) by its element orders, J. Algebra, **163** (1994), 109–114.
- [3] R. Carter: Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59.

FINITE GROUPS

- [4] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [5] L.K. Hua: Introduction to Number Theory, Springer-Verlag, Berlin Heidelberg, 1982.
- [6] N. Iiyori and H. Yamaki: Prime graph components of the simple groups of Lie type over the field of even characteristic, J. Algebra, 155 (1993), 335–343; Corrigendum, ibid. 181 (1996), 659.
- [7] N. liyori and H. Yamaki: A problem of Frobenius, Canad. Math. Soc. Conf. Proc. 14 (1993), 237–244.
- [8] B.H. Neumann: Groups whose elements have bounded orders, J. London Math. Soc. 12 (1937), 195-198.
- [9] D.S. Passman: Permutation Groups, Benjamin, New York, 1968.
- [10] C.E. Praeger and W. Shi: A characterization of some alternating and symmetric groups, Comm. Algebra, 22 (1994), 1507–1530.
- K. Shinoda: The conjugacy classes of the finite Ree groups of type (F₄), J. Fac. Sci. Univ. Tokyo, 22 (1975), 133-159.
- [12] T.A. Springer and R. Steinberg: Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [13] H.N. Ward: On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89.
- [14] J.S. Williams: Prime graph components of finite groups, J. Algebra, 69 (1981), 487-513.

Department of Mathematical Sciences Muroran Institute of Technology Hokkaido 050, Japan e-mail: chigira@muroran-it.ac.jp