

Title	Supplement to my paper ``The theory of construction of finite semigroups II''
Author(s)	Tamura, Takayuki
Citation	Osaka Mathematical Journal. 1957, 9(2), p. 235-237
Version Type	VoR
URL	https://doi.org/10.18910/10028
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

*Supplement to my Paper
 “The Theory of Construction of Finite Semigroups II”*

By Takayuki TAMURA

When a finite semilattice $T = \{\tau_0, \tau_1, \dots, \tau_{n-1}\}$ and a system of finite semigroups S_τ ($\tau \in T$) are arbitrarily given, there exists a composition S of S_τ by T . (See [1], 3 or §8, p. 30) Let τ_{n-1} be a minimal element of T , and we may regard T as a composition of a semilattice $T_0 = \{\tau_0, \dots, \tau_{n-2}\}$ and $\{\tau_{n-1}\}$ i.e. $T = (T_0, \gamma, \tau_{n-1})$. (cf. [1] §8, p. 28) We use the successive method in construction of S . More precisely, the composition of S_τ ($\tau \in T$) by T is constructed as a composition $S_0 = \sum_{\tau \in T_0} S_\tau$ and $S_{\tau_{n-1}}$. (cf. Theorem 24 in [1]) The following problem was proposed as an unsolved one in the previous paper [1], 3 of §8.

Can we adopt as S_0 an arbitrary composition of S_τ ($\tau \in T_0$) by T_0 when we construct S ? This means a question whether there are Φ_0 ($\subset \Phi$) and Ψ_0 ($\subset \Psi$) fulfilling (8.4.1), (8.4.2) and (8.4.3) for any composition S_0 of S_τ by T_0 .

In the present short note, this question is denied, giving a simple counter example in the following manner.

Let $T = (T_0, \gamma, \tau_5) = \{\tau_i ; 0 \leq i \leq 5\}$ be a semilattice of order 6 with multiplication defined by the following diagram.

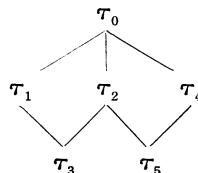


Fig. 1

where $T_0 = \{\tau_i ; 0 \leq i \leq 4\}$ and $\gamma = \begin{pmatrix} \tau_0 & \tau_1 & \tau_2 & \tau_3 & \tau_4 \\ \tau_0 & \tau_0 & \tau_2 & \tau_2 & \tau_4 \end{pmatrix}$.

S_{τ_i} ($0 \leq i \leq 5$) are defined as

$$S_{\tau_0} = \{a, b\} \quad \text{with} \quad a^2 = ba = a, \quad ba = b^2 = b,$$

$$S_{\tau_1} = \{c\}, \quad S_{\tau_2} = \{d\}, \quad S_{\tau_3} = \{e\}, \quad S_{\tau_4} = \{f\}, \quad S_{\tau_5} = \{g\}.$$

Let σ be the mapping $\begin{pmatrix} a & b & c & d & e & f & g \\ \tau_0 & \tau_0 & \tau_1 & \tau_2 & \tau_3 & \tau_4 & \tau_5 \end{pmatrix}$. Consider a composition S_0 of S_{τ_i} ($0 \leq i \leq 4$) by T_0 with the following multiplication.

$$\begin{array}{c|cccccc} & a & b & c & d & e & f \\ \hline a & a & b & b & b & a & a \\ b & a & b & b & b & b & a \\ c & a & b & c & b & c & a \\ d & a & b & b & d & d & a \\ e & a & b & c & d & e & a \\ f & a & b & b & b & a & f \end{array}$$

Since $S_0' = \{a, b, c, d, e\}$ was obtained as 1079₅ in [2] and S_0 is a composition of S_0' and $\{f\}$, S_0 is seen to be a semigroup by testing the conditions of §1 in [1].

In order to get a composition S of S_0 and $\{g\}$ such that S is a composition of S_{τ_i} ($0 \leq i \leq 5$) by T , we must find a right translation φ of S_0 such that $\sigma\varphi = \gamma\sigma$ i.e.

$$\begin{aligned} \varphi(a), \varphi(b), \text{ and } \varphi(c) & \text{ are } a \text{ or } b, \\ \varphi(d) = \varphi(e) & = d, \quad \varphi(f) = f. \end{aligned}$$

To tell the truth, there is no such φ . Because, if there is a right translation φ , then

$$\begin{aligned} \varphi(a) & = \varphi(af) = a\varphi(f) = af = a, \\ \text{while} \quad \varphi(a) & = \varphi(ae) = a\varphi(e) = ad = b. \end{aligned}$$

Consequently there is no composition S of S_0 and $\{g\}$ which is, at the same time, a composition of S_{τ_i} ($0 \leq i \leq 5$) by T .

As seen in [2], any semilattice of order at most 5 is either a lattice or a semilattice having a minimal element τ_4 which is covered by only one element; and hence, for the minimal element τ_4 , the question is affirmed. Furthermore, if T is a semilattice of order 6 except one having the type of Fig. 1, then the question is affirmed for a suitable minimal element. For, we obtain easily that a semilattice of order 6, whose every minimal element is covered by two elements at least, is nothing but a semilattice having the type of Fig. 1.

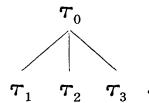
We notice, however, that there is a minimal element for which the question is denied even if T is of order 5.

For example, let S_0 be a semigroup with multiplication

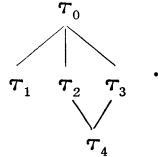
a	a	b	c	d	e
a	a	b	a	b	
b	a	b	b	a	b
c	a	b	c	a	b
d	a	b	a	d	b
e	a	b	b	a	e

(1027₅ in [2])

which is a composition of $S_{\tau_0} = \{a, b\}$, $S_{\tau_1} = \{c\}$, $S_{\tau_2} = \{d\}$, and $S_{\tau_3} = \{e\}$ by the semilattice T_0 :



Let T be a semilattice with diagram



There is no composition of S_0 and $S_{\tau_4} = \{f\}$ which is a composition of S_{τ_i} ($0 \leq i \leq 4$) by T at the same time. Because we find no right translation φ of S_0 which satisfies

$$\varphi(c) = a \text{ or } b, \quad \varphi(d) = d, \quad \varphi(e) = e.$$

Generally it is suggested that the nature of the question depends not only on T but also on the structure of each S_τ , S_0 and S_1 . We shall take up the more precise study of this problem again after the structure of finite s-indecomposable semigroups is clarified.

(Received September 25, 1957)

References

- [1] T. TAMURA: The theory of construction of finite semigroups (Compositions of semigroups, and finite s-decomposable semigroups), Osaka Math. J. **9**, 1-42 (1957).
- [2] _____: All semigroups of order at most 5, J. of Gakugei, Tokushima Univ. **6**, 19-39 (1955).

