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Abstract
Basic concepts and theoretical foundations of broken symmetry (BS) and post BS methods for strongly correlated electron 
systems (SCES) such as electron-transfer (ET) diradical, multi-center polyradicals with spin frustration are described sys-
tematically to elucidate structures, bonding and reactivity of the high-valent transition metal oxo bonds in metalloenzymes: 
photosystem II (PSII) and cytochrome c oxidase (CcO). BS hybrid DFT (HDFT) and DLPNO coupled-cluster (CC) SD(T0) 
computations are performed to elucidate electronic and spin states of CaMn4Ox cluster in the key step for oxygen evolution, 
namely S4 [S3 with Mn(IV) = O + Tyr161-O radical] state of PSII and PM [Fe(IV) = O + HO-Cu(II) + Tyr161-O radical] step 
for oxygen reduction in CcO. The cycle of water oxidation catalyzed by the CaMn4Ox cluster in PSII and the cycle of oxygen 
reduction catalyzed by the CuA-Fea-Fea3-CuB cluster in CcO are examined on the theoretical grounds, elucidating similar 
concerted and/or stepwise proton transfer coupled electron transfer (PT-ET) processes for the four-electron oxidation in 
PSII and four-electron reduction in CcO. Interplay between theory and experiments have revealed that three electrons in the 
metal sites and one electron in tyrosine radical site are characteristic for PT-ET in these biological redox reaction systems, 
indicating no necessity of harmful Mn(V) = O and Fe(V) = O bonds with strong oxyl-radical character. Implications of the 
computational results are discussed in relation to design of artificial systems consisted of earth abundant transition metals 
for water oxidation.
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1  Introduction

Oxygen evolution reaction (OER) and oxygen reduction 
reaction (ORR) are fundamental processes in chemical and 
biological systems. Water oxidation in photosystem II (PSII) 
[1, 2] is one of OERs, which is a first step for biological 
photon to chemical energy conversion for oxygenic life on 
the earth. PSII for water oxidation is a large protein complex 
embedded in the thylakoid membranes of cyanobacteria, 
algae, and plants, and is the only known biological system 
that has the unique capability of utilizing visible light for 
the oxidation of water molecule into molecular oxygen as 
shown in Eq. (1) [1, 2]. However, direct water oxidation 
is not feasible by visible light. Therefore, the conversion 
of the light energy into chemical energy is catalyzed with 
the CaMn4Ox cluster in oxygen evolving complex (OEC) of 
PSII as follows.

Electrons and protons generated by this reaction are trans-
ported by the aid of plastoquinone (PQ) within the thylakoid 
membrane in PSII. The Eq. (1) is often re-written by using 
PQ and protons in the stroma and lumen.

Therefore, PSII is often referred to as a water-plastoqui-
none oxidoreductase in photosynthesis [1, 2]. Molecular 
oxygen (O2) is a high-energy compound produced by water 
oxidation, which is essential for sustaining the oxygenic life 
via respiration and for the formation of ozone layer, which 
protects life from UV radiation damage on the earth [1].

The electrons and protons generated in Eq.  (1) are 
transferred through a series of protein complexes in the 
cytochrome (Cyt) b6f and photosystem I (PSI), and they are 
finally used for the reduction of NADP+ into NADPH in 
Eq. (3) and for formation of adenosine triphosphate (ATP) 
from adenosine diphosphate (ADP) and phosphate (Pi) in the 
photo-phosphorylation in Eq. (4) [1, 2]:

NADPH and ATP provide the reducing power and energy 
for the reduction of CO2 into carbohydrates in the dark reac-
tion of the native photosynthesis [1, 2]. Conversion reac-
tion of CO2 into carbohydrates is referred to as the Calvin-
Benson-Bassham (CBB) cycle [1] in the photosynthesis as

(1)
2H2O + 4h� +

(

CaMn4Ox
)

→ O2 + 4e− + 4H+
lumen +

(

CaMn4Ox
)

(2)2H2O + 2PQ + 4H+
stroma

→ O2 + 2PQH2 + 4H+
lumen

(3)2NADP+ + 4e− + 2H+
stroma

→ 2NADPH

(4)3ADP + 3Pi + 6H+
lumen

→ 3ATP + 6H+
stroma

where 6 ATP molecules are used for the recycle of this CO2 
fixation process. Thus, total photon energies obtained by 
the series (Z)-scheme of the PSI and PSII are converted into 
chemical energy of carbohydrates through the CBB cycle in 
the photosynthesis.

Cellular respiration [1, 3, 4] is regarded as the reverse 
process in the oxygenic photosynthesis. Carbohydrate 
formed in Eq. (5a) is transformed into chemical energy of 
ATP for oxygenic life on the earth through the oxidative 
phosphorylation as follows.

where 38 is the maximum number for generation of ATP 
molecules in glycolysis. The key steps involved in the res-
piration are the oxygen reduction reaction (ORR) and the 
proton pump catalyzed by the complex IV of mitochondria, 
cytochrome c oxidase (CcO) [3, 4]. The molecular oxygen 
reduction into water molecules by four electrons in the CcO 
of the respiratory system (mitochondria) is just regarded as 
the reverse reaction in Eq. (1). According to Wikström [3], 
the O–O bond energy obtained from four photons in Eq. (1) 
is used as driving force for transfer of four protons from 
N-side (higher pH compartment) to P-side (lower pH com-
partment) for ATP formation as shown in Eq. (6).

CcO is consisted of the four sites (CuA (Cu2S2), hemea, 
hemea3, CuB) and Mg2+, which are responding to the cata-
lytic site (Mn2, Mn3, Mn4, Mn1, and Ca) for water oxidation 
in OEC of PSII as illustrated in Fig. 1, where these active 
sites are embedded in protein matrices. Mechanistic simi-
larities are expected between oxygen evolution in OEC and 
oxygen reduction in CcO from events of concerted or step-
wise proton and electron transfers in Eqs. (1)–(6), although 
the structural constructions are different between them as 
shown in Fig. 1. Tri-copper cluster (MCO) in Fig. 1c [5, 6] 
also undergoes four-electron reduction of molecular oxy-
gen into water molecule coupled with mono-oxygenation 
of substrates such as methane. Solomon et al. [5, 6] have 
pointed out the similarity between CcO (CuA (Cu2S2), 
hemea, hemea3, CuB) and MCO (T1-Cu, T2-Cu, Cu T3 pair). 
Thus, the metal-clusters play crucial catalytic roles for redox 
processes, indicating the necessity of theoretical models and 
computational procedures for treating one-electron processes 
coupled with proton transfer (see supplementary section 
SVI).

(5a)
6CO2+ 12NADPH + 18ATP → 6C6H12O6

+ 12NADP+ + 18ADP + 18Pi

(5b)
C6H12O6 + 6O2 + 38ADP + 38Pi → 6CO2 + 6H2O + 38ATP

(6)

4Fe(II)(Cyt c) + 8H+
lumen(P) + O2 + (CcO) → 2H2O

+ 4H+
stroma(N) + 4Fe(III)(Cyt c) + (CcO)
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Three dimensional (3D) structures of the above metal-
loenzymes are crucial for elucidation and understanding of 
their biological functions. X-ray diffraction (XRD) analysis 
of PSII from Synechococcus elongatus was initiated in 2001 
[7]. High-resolution (HR) XRD structures of the CaMn4Ox 
cluster in PSII [8] and formal MgCu2Fe2 cluster in CcO [9] 
have been elucidated, providing structural foundations for 
investigation of the catalytic cycles of four electron oxida-
tion–reduction processes. The exchange-coupled site of 
Mn4-X-Mn1 site in CaMn4Ox catalyzes the oxidation of two 
water molecules (X = (H2O OH2) into molecular oxygen 
(X = [O = O]). On the other hand, the exchange-coupled sites 
of Fea3-X-CuB in CcO and T3 pair in MCO are regarded as 
the reduction site of molecular oxygen (X = [O = O]) into 
two water molecules (X = (H2O OH2). The thermodynamics 
of the conversion of water molecules to molecular oxygen 
in aqueous solution (pH = 7) requires four photons (4hν) as 
the energy source for the oxidation reaction as shown in 
Eq. (1) [1, 2]. On the other hand, the reverse downhill poten-
tial for oxygen reduction to water molecules by CcO is used 
as the driving force for proton-pumping reactions for ATP 
synthesis as shown in Eq. (6) [3, 4, 10, 11]. Judging from 
Eqs. (1)–(6), electron transfer (ET), proton transfer (PT), 
and PT coupled ET (PT-ET) processes play important roles 
for the elementary steps in PSII and CcO. Theoretically, the 
broken-symmetry (BS) and post BS methods are applicable 
to redox reactions responding to one electron processes in 
chemistry and biology.

Hoganson et  al. [12] and other groups [13–16] have 
pointed out the similarity between the four electron 

processes in PSII and CcO. They have proposed that both 
Tyr161-O radical in PSII and Tyr244-O radical in CcO play 
important roles for four successive electron transfers in 
water oxidation and oxygen reduction, respectively. How-
ever, these proposals have not been conclusive because of 
lack of reliable geometric information of the intermediates 
in PSII. Recently, SFX-XFEL experiments [17–19] have pro-
vided structural information of the intermediates in the cata-
lytic reactions in the oxygen evolution in PSII and oxygen 
reduction in CcO, providing the structural foundations for 
theoretical investigations of the mechanisms of these reac-
tions. Over past decades, we have performed BS HDFT and 
coupled cluster (CC) single, double (SD) with perturbative 
triple (T) computations based on the natural orbital (UNO) 
of HDFT as trials, elucidating the structure, bonding, and 
reactivity of the CaMn4Ox cluster in PSII. Recent extensive 
reviews [3, 4] have summarized significant information on 
the structure, bonding, and reactivity of CcO, elucidating 
possible intermediates structures for the oxygen reduction. 
Therefore, the accumulated information for water oxidation 
in PSII and oxygen reduction in CcO has provided a chance 
to obtain deep insight of front and back relationship in these 
four electron redox reactions.

In this paper, we first describe basic concepts and theo-
retical foundations of BS DFT [20–25] and CC methods 
[26–31] for strongly correlated electron systems (SCES) 
such as CaMn4Ox in PSII and CuA-Fea-Fea3-CuB in CcO, 
for which four degrees of freedom, spin, charge, orbital, and 
dynamical nuclear motion, play important roles for deter-
mination of their structure, bonding, and reactivity. The 
concept of instability in chemical bonds [20, 23–25] and 
resulting BS solutions followed by the post BS procedures 
such as configuration interaction (CI) and CC are applied to 
molecular orbital descriptions of homolytic diradicals [32], 
electron transfer (ET) diradicals [33], and complex radical 
systems such as triangle metal clusters with spin frustration 
[34, 35] in sections II. Analytic solutions of two-electron 
two-orbitals [2e, 2o] and three-electron three-orbitals [3e, 
3o] based on the Hubbard model [36] and DFT computa-
tional results for Mn3O4 clusters are given to elucidate spin 
frustrations in the supplementary section (see SII).

The BS methods are extended to the PT-ET processes 
for examination of one electron transfer (OET) redox 
reaction in section III. BS computations are performed to 
elucidate characteristic changes of the CaMn4Ox cluster 
in the S0–S3 states of the Kok cycle [37] for water oxida-
tion in section IV. BS computations based on a large-scale 
quantum–mechanical (QM) model for the catalytic site for 
water oxidation in PSII are performed for the early S4 state, 
namely [S3 plus tyrosine 161 radical] state in section V. 
Large-scale QM computations for the catalytic site of CcO 
are also performed to elucidate structure and bonding of 
the so-called key PM intermediate in section VI. Similarity 

Fig. 1   Schematic illustrations of multi-nuclear cluster catalysts for 
a photosystem II (PSII) [1, 2], b cytochrome c oxidase [3, 4], and c 
multicopper oxidase (MCO) [5, 6]. PSII catalyzes water oxidation 
into molecular oxygen. The CcO catalyzes the four-electron reduction 
of molecular oxygen to water. The MCO with Cu(II)3 similar to the 
Fe2-CuB site of CcO (with T1) can catalyze methane oxidation
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of the oxidation–reduction processes in PSII and CcO are 
examined based on these theoretical results in section VII, 
indicating that total of three electrons in the metal clusters 
and one electron in tyrosine radical are indeed operative in 
both PSII and CcO although the environmental amino acid 
residues for them are different [20]. Implications of the pre-
sent results are discussed in relation to design of artificial 
water oxidation and oxygen reduction systems in the con-
cluding section VIII.

2 � Basic concepts of broken symmetry (BS) 
and post BS methods for oxygenation 
reactions

2.1 � Instability in chemical bonds and emergence 
of the oxyl‑radical character for photocatalysis

Band models have been used for understanding and explana-
tion of water oxidation in artificial photosynthesis. In this 
paper, broken symmetry (BS) real-space models are used 
for theoretical investigations of redox reactions. Fundamen-
tal concepts and physical foundations of the BS and post 
BS methods are described to elucidate scope and reliabil-
ity of these methods for strongly correlated electron sys-
tems (SCES) (see details in the supplementary section SI) 
[38–51]. The HOMO–LUMO energy gap is important for 
BS model of chemical bond. For example, molecular oxygen 
(O = O) in Eq. (1) is in the triplet (↑O = O↑) ground state 
[32] because of the zero HOMO–LUMO energy gap and 
Hund rule. Water oxidation in Eq. (1) indicates the genera-
tion of triplet molecular oxygen from closed-shell 2H2O via 
spin catalysis of the CaMn4Ox cluster, indicating spin con-
cept for open-shell species.

Triplet instability condition for bifurcation of the closed-
shell orbital into two open-shell orbitals is important for 
understanding of singlet diradical. We first proposed the 
HOMO–LUMO mixing procedure [32] to obtain the broken-
symmetry (BS) orbitals, which are mainly localized on the 
left- and right-radical sites, respectively. Several chemical 
indices such as diradical character are derived for elucidation 
of structure and bonding of active oxygens and oxy-radicals 
in photochemical reactions. Some of chemical indices are 
commonly defined for BS and post BS methods as shown 
in SI.

BS theoretical models were applied to photocatalysis 
reactions discovered in 1970s–1980s [52–55]. The tita-
nium-oxo bond was regarded as an ionic bond Ti(IV)-
O2− responsible for nucleophilic reactions [56, 57]. On 
the other hand, photoexcitation entails conversion from 
Ti(IV)-O2− into ↑•Ti(III)-O1−•↓ with the oxyl-radical 
character responsible for radical reactions [57]. Photo-
induced oxyl-radical site, undergoes the oxygenation 

reactions, providing, for example, peroxide (HOOH) 
which is often converted into singlet diradical HO•↑…
↓•OH described by BS model [57]. BS methods have been 
successfully used for theoretical investigations of radical 
reactions by active oxygen (atomic oxygen (•O•), sin-
glet molecular oxygen (↑O = O↓)) [58] and oxyradicals 
(•OOH, •OH) generated in photocatalysis [52–58]. Here, 
BS methods [32, 57, 58] are extended to theoretical inves-
tigations of multi-center polyradicals generated in PSII 
and CcO.

2.2 � Instability in metal‑oxo bonds 
of the oxyl‑radical character for radical coupling 
reaction

The oxyl-radical character of the high-valent (HV) transi-
tion-metal oxo bonds (M = O) is a key concept for under-
standing of radical reactions of these species [59–61]. In 
1979, Groves et al. [59] discovered the oxyl-radical reactiv-
ity (•M–O•) of the HV M = O bonds, which is very impor-
tant for understanding of rebound mechanism for mono-
oxygenation and radical coupling (RC) mechanism for the 
O–O bond formation. In early 1980s, we have performed 
BS MO computations [62] to explain the radical reactiv-
ity [59] of the HV 3d M = O bonds for which the energy 
gap between the dπ-pπ bonding (HOMO) and dπ-pπ* anti-
bonding (LUMO) orbitals is usually small in contrast to HV 
4d (5d) transition metal-oxo species [62]. For example, the 
HOMO–LUMO energy gap given by Δε = εLUMO − εHOMO is 
zero for the iron-oxo bond Fe(IV) = O, indicating the triplet 
ground state, (↑Fe(IV) = O↑) [58, 62], which is generated in 
the PM state of CcO [3, 4] under discussion (see later). Simi-
larly, the HOMO–LUMO gap becomes often smaller than 
the on-site electron repulsion integral (U) in the case of HV 
3d M = O bonds, indicating the triplet instability condition 
[23–25] which induces the HOMO–LUMO mixing [32] to 
give the BS orbitals mainly localized on the M and O site 
respectively as shown in Fig. 2 [62]. The nearly localized 
electron (spin) on the oxygen site [62] may be regarded as 
the singly occupied MO (SOMO)-electron responding to 
radical reactions such as radical coupling (RC) reaction [59].

Past decades, the oxyl-radical character of the HV 3d 
M = O bonds [62] have been a guiding principle for under-
standing and explanation of their chemical reaction pathways 
[59–61, 63]. This spin-polarized state is often expressed as 
•M–O• in chemistry, where • means a local spin. The RC 
mechanism for water oxidation is feasible for the oxyl-radi-
cal sites as shown in Eq. (7a). On the other hand, acid–base 
(AB) ionic mechanism is feasible for 4(5)d-metal oxo bonds 
in Eq. (7b).
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Many experimental investigations have been performed 
for the above processes. From the theoretical site, careful 
examinations are crucial for evaluation of the oxyl-radical 
character in Eq. (7a).

Over past decades, hybrid DFT (HDFT) methods [64] 
consisted of the mixing of the exchange terms by the 
Kohn–Sham DFT and Hartree–Fock solutions have been 
employed for theoretical investigations. However, the oxyl-
radical character [62, 63] is variable with the weight of the 
Hartree–Fock exchange term (w) in the HDFT models [64]. 
Therefore, the w-values have been assumed to be variable 
in the 10–20% range [65] in many papers. Relative ener-
gies among several intermediates in the Si state for the Kok 
cycle for water oxidation are also variable with w [63, 66], 
indicating a semi-theoretical nature of HDFT for strongly 
correlated electron systems (SCES) such as CaMn4Ox in 
PSII [1, 2] and MgCu2Fe2 in CcO [3, 4]. Thus, beyond 
HDFT computations have been inevitable to examine scope 
and reliability of HDFT results for SCES [67]. To this end, 
coupled-cluster (CC) single, double (SD) and perturbation 
triple (T) excitation method [29, 30] using domain-based 
pair natural orbitals (DLPNO) [68, 69] is employed as a 
practical beyond DFT method. We have developed practical 
and efficient procedures for applications of time-consuming 

(7a)
∙M-O ∙ + ∙ O-M∙ → ∙M-O − O-M ∙ (M = Mn, Fe, Cu, …)

(7b)
M =O + H2O (OH−) + B(base)

→ M-OOH + BH+(M = Ru, Ir, …).

DLPNO-CCSD(T0) methods to QM cluster models in the 
S0–S3 states of for OEC of PSII [70–72]. The comparison 
between HDFT and DLPNO-CCSD(T0) results in turn has 
provided a reasonable w value for SCES under examina-
tions [70–72]. In this paper, DLPNO-CCSD(T0) compu-
tations based on an extended QM (283 atoms) model are 
performed for possible intermediates in the early S4 state, 
namely [S3 + Tyr-O radical] state to elucidate the mechanism 
of water oxidation in the Kok cycle of OEC of PSII.

2.3 � Extension of BS models for multi‑center 
systems with spin frustration

Recently, the multi-center transition-metal clusters in Fig. 1 
have attracted great interest for four-electron redox reactions, 
indicating the revival of the spin frustration phenomena [73, 
74]. Nocera group [75] have investigated the triangular and 
kagome clusters of the copper Cu(II) ions for water oxida-
tion. Solomon group [5, 6] have investigated the Cu(II)3 clus-
ters for oxygen reduction in MCO as illustrated in Fig. 1c. 
Two antiferromagnetic (AF) and one ferromagnetic (F) spin 
pairs are formed in the low-spin collinear (up or down) spin 
model of the Cu(II)3 cluster as illustrated in Fig. 3, provid-
ing three different spin alignments with the same energy: 
this is often referred to spin frustration. On the other hand, 
three F spin pairs are formed in the one high-spin (↑-↑-↑) 
configuration, whereas three AF spin pairs are feasible in the 
three non-collinear spin alignments as shown in Fig. 3. Thus, 
metal oxides with spin frustrations have been investigated 
in both material science [73, 74] and biological science [5, 
6, 75]. Particularly, the geometric deformation from regular 
triangle or cubane structure with spin frustration into cor-
responding distorted structure via the Jahn–Teller (JT) effect 
of Cu(II) and Mn(III) ions is one of the key concepts for 
theoretical understanding of high reactivity of the distorted 
chair structure of the OEC of PSII. Early theoretical investi-
gations [76, 77, 79–85] on the spin frustration systems [78] 
are given in the supplementary materials (SI).

The key concept for the spin frustration system is a 
quantum resonance among three collinear or noncollinear 
spin structures as illustrated in Fig. 3, providing resonat-
ing valence bond (RVB) [73] and resonating BS (RBS) [85] 
states. The collinear spin structures are expressed with the 
conventional UHF BS model. On the other hand, the non-
collinear spin structures are given by general Hartree–Fock 
(GHF) solution with two component spinors, namely general 
spin orbitals (GSO) [80, 81]. From Fig. 3b, approximate 
spin projection (AP) GHF [67, 76, 85] provides the similar 
potential curve to that of Res GHF CI, indicating its reli-
ability for theoretical investigation of spin-frustrated systems 
such as the triangular cluster in Fig. 1c. In fact, the CaMn3O4 
cluster in the London model for PSII [83] was found to be 
a typical example of the spin frustration systems [84] (see 

Fig. 2   a The closed shell metal-oxo bond M = O with the large 
HOMO–LUMO gap of 4d (5d) transition metals in the periodic table. 
b The HOMO–LUMO mixing occurs if the gap becomes smaller than 
the electron–electron repulsion term, entailing the broken-symmetry 
(BS) orbitals localized on the 3d transition metal (M) and O sites, 
respectively [62]. The localized orbital on the O site is responsible for 
the oxyl-radical reactivity [63]
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SI.9). On the other hand, the CaMn4O5 cluster discovered 
by Umena et al. [8] has exhibited a distorted chair struc-
ture without spin frustration [86, 87] via the JT effect of the 
Mn(III) ion with high chemical reactivity. The collinear spin 
model is here applied to elucidate structure and bonding of 
the CaMn4Ox cluster in the S4 state.

2.4 � Post BS computations by using the natural 
orbitals (UNO) of BS solutions

BS and post BS approaches to SCES starting from the 
stability analysis [31–35] are now handy and practical for 
investigation of metalloenzymes such as PSII, CcO, MCO, 
etc. However, dynamical correlations effect is crucial for 
examination of scope and applicability of the BS HDFT 
and RBS models for multi-nuclear systems in Fig. 1. To 
this end, UCCSD(T) and GCCSD(T) [30, 31] are nec-
essary for inclusion of dynamical correlations within 
the single reference approximation as shown in Fig. 4. 
However, these computations are hardly possible for the 
CaMn4Ox cluster in OEC of PSII. An approximate ver-
sion of the CC approach, DLPNO-CCSD(T0), has been 
used for practical reasons in this paper. Resonating CC 
method are also desirable for spin frustration systems as 
shown in simple model systems [85]. The multi-reference 
(MR) CI [88–90] and CC using the natural orbital (UNO) 
of the BS solutions [31, 35, 90] have been proposed for 
inclusion of dynamical correlations as illustrated in Fig. 4. 
Recently, the Mukherjee-type MRCC computations [91, 
92] have been performed for binuclear copper complexes 
to elucidate scope and applicability of the HDFT oxides. 
We expect similar successful results for UNO MR CC 
computations of the CaMn4Ox cluster. However, those are 
impossible at the moment in our computer system. Future 

UNO quantum computations (QC) [21, 93] are desirable 
for quantitative investigations of complexes systems with 
large UNO CAS space. In this paper, the interplay between 
DLPNO-CCSD(T0) and spectroscopic results is employed 
as a feasible and practical procedure (see the supplemen-
tary materials in SI and SV).

3 � Proton coupled electron transfer 
processes in PSII and CcO

3.1 � Broken symmetry solutions for electron 
transfer reactions

In the preceding section II, BS and post BS methods have 
been applied for homolytic radical systems, for example in 
Eq. (7a). However, redox reactions involving one electron 
transfers (ET) [33] often take place in biological systems. In 
fact, SFX XFEL [19] and Fourier transform infrared (FTIR) 
experiments [95] have elucidated proton-transfer coupled 
electron transfer (PT-ET) processes in water oxidation in 
OEC of PSII and oxygen reduction in CcO. PT-ET processes 
have been investigated by the Marcus theory [94], Here, 
alternately, BS models [33, 62] for one ET processes are 
extended to PT-ET reactions in PSII and CcO. The energy 
gap between HOMO of electron donor (D) and LUMO of 
electron acceptor (A) embedded in protein matrix often 
becomes small, indicating formation of an electron transfer 
(ET) diradical [D+•…A−•] [33] by thermal and/or photo-
chemical excitation.

In this section, the BS model is newly extended to ET 
diradical reaction. To this end, the ET parameter is defined 
by the difference of the Coulomb integrals (α) of the D-A 

Fig. 3   a Collinear and non-collinear spin structures by axial (one 
dimensional) spin density wave (SDW) and helical (two dimensional) 
SDW (HSDW) solutions, where red and blue arrows indicate up (↑) 
and down (↓) spin, respectively by the collinear treatment and green 

arrows indicate the spin structures by the non-collinear treatment (see 
details in SI.10), b potential curves for the triangle H3 radical with 
spin frustration by GHF, UHF, AP-UHF, AP-GHF, Res-UHF-CI, and 
Res-GHF-CI methods [74, 80, 82, 84, 85]
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pair in the case of the Hubbard [36] and Hartree–Fock mod-
els [62] (see SI.1) as

where difference between the ionization potential (Ip) of D 
and electron affinity (Ea) of A is also used for the numera-
tor in Eq. (8). The ET (redox) parameter (y) becomes small 
than 1.0, indicating the instability condition which entails 
the orbital bifurcation for the up and down spins as follows:

where �D and �A are the HOMO of donor (D) and LUMO 
of acceptor (A), respectively, and two θ1 and θ2 parameters 
become necessary to describe the orbital bifurcations in the 
ET reactions. From Eqs. (9a) and (9b), the BS solutions for 
ET processes are given by

where 1ΦG , 1ΦDET , 1ΦOET , and 3ΦOET denote the ground 
closed-shell configuration; �+

i
 = �−

i
 = �D ; ||�D�↑�D�↓

|| , the 
two ET closed-configuration ||

|
�∗
A
�↑�

∗
A
�↓
||
|
 , singlet and triplet 
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)
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=
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cos2�1cos2�2 − sin2�1sin2�2
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+
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cos2�1sin2�2 − sin2�1cos2�2
]1ΦDET

+
√

2cos�2sin�21ΦOET −
√

2cos�1sin�13ΦOET

one ET diradical configurations consisted of the linear com-
binations of the one ET configurations of ||

|
�D�↑�

∗
A
�↓
|
|
|
 and 

|
|
|
�D�↓�

∗
A
�↑
|
|
|
 , respectively.

The ground state configuration with no ET diradical char-
acter is obtained by setting θ1 = θ2 = 0 which is responsible 
for the initial closed-shell state (DA); �+

i
 = �−

i
  = �D ; 1ΦG = 

|
|�D�↑�D�↓

|
| . On the other hand, the up and down spin orbit-

als are given by �+
i

 = �∗
A
 and �−

i
 = �D under the assumption 

of θ1 = θ2 = π/4, indicating the complete mixing state of sin-
glet and triplet ET diradical configurations; 1(D+•A−•) and 
3(D+•A−•).

The up and down spin orbitals are given by �+
i

 = �∗
A
 and 

�−
i

 = �∗
A
 under the assumption of θ1 = π and θ2 = π/2, indicat-

ing the two ET closed-configuration 1ΦDET = ||
|
�∗
A
�↑�

∗
A
�↓
||
|
 . The 

wave-functions for the special configurations; 
(D2A0) → (D+1•A1−) → (D++A2−) are easily obtained by 
Eqs. (9a) and (9b), suggesting the constructions of trial orbitals 
for BS computations for more general cases with variable 
covalent (x) and redox (y) parameters in biological systems 
[62]. Thus, BS models can describe both one and two electron 
transfer processes under the single Slater determinant 
approximation.

However, singlet BS solutions involve the triplet configu-
ration as shown in Eqs. (10) and (11). Therefore, quantum 
resonance between them is necessary, providing the resonating 
BS (RBS) solutions, which are responsible for pure singlet and 
triplet ET diradical states as follows:

where N denotes the normalizing factor. The singlet RBS 
state given by 1ΦRBS(+) is similar to a partial ET state of the 
Mulliken’s charge transfer (CT) theory [96]. On the other 
hand, the 1ΦRBS(+) state with large ET configuration is simi-
lar to the one ET state of Marcus ET theory [94]. The RBS 
model can trace variations of the weight of the one ET con-
figuration along the ET reaction. In fact, the RBS states for 
the complete one ET structure in Eqs. (11a) and (11b) are 
given as

(11a)
�
�
�
�+
i
�−
i

�
�
�
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1
√
2

�
1ΦOET −

3ΦOET

�
, (�1 = �2 = π∕4)

(11b)

�
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�
�−
i
�+
i

�
�
�
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1
√
2

�
1ΦOET +

3ΦOET

�
, (�1 = 3π∕4 and �2 = π∕4)

(12a)

1ΦRBS(+) = N
{[

cos2�1cos2�2 − sin2�1sin2�2
]1ΦG

+
[

cos2�1sin2�2 − sin2�1cos2�2
]1ΦDET

+
√

2cos�2sin�21ΦOET

}

(12b)3ΦRBS(−) = N
√
2cos�1sin�1

3ΦOET

Fig. 4   Computational schemes for strongly correlated electron sys-
tems (SCES) [31, 35]. As a first step, broken symmetry (BS) com-
putations are performed to elucidate the ground electronic and spin 
structures of SCES. Beyond BS calculations such as MR CI (CC) 
using the natural orbitals (UNO) or localized natural orbitals (ULO) 
of the BS solutions are performed for both ground and excited states 
of SCES. Scope and reliability of the BS computational results are 
examined by beyond BS computations
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The energy gap between the singlet and triplet ET diradi-
cal state is given by 2JDA because the Heisenberg model [20] 
is applicable in the region (see SIII).

The above BS models for one ET processes are effec-
tive to investigate the nature of the chemical bonds of the 
Fe-OO bond in CcO. Triplet molecular oxygen (3O = O) is 
inserted into the Fe(II) site in the initial state (A) of the 
oxygen reduction in CcO, providing the triplet–triplet (T-T) 
exchange coupled total singlet configuration; 1[3Fe(II)…
3O = O] (see Fig. 11). One ET reaction occurs at the next 
step (A’), giving the ET diradical configuration involving 
superoxide anion radical; 1[2Fe(III)…2O = O−]. Formation 
of the oxygen dianion is feasible in CcO by one ET from 
Cu(I) to the cluster; 1[2Fe(III)-1O-O2−-2Cu(II)], which is the 
singlet diradical consisted of doublet Fe(III) and Cu(II) ions 
via the super-exchange coupling through oxygen dianion. 
Thus, BS model developed here is applied for theoretical 
modeling of the early redox reactions in CcO (see later).

3.2 � Proton transfer coupled electron transfer 
reactions

The above BS ET model is extended to PT-ET process 
involving proton transfer to afford OOH bond in oxygen 
reduction in CcO. Proton-coupled redox reaction is a clas-
sic concept [97–101]. The proton- transfer (PT) process in 
biology is formally regarded as an ionic process as shown 
in Eq. (14a), where D = M(X)-OH2 and A = [O = M(Y)]. On 
the other hand, the one ET process is formally regarded as 
a valence variation process as shown in Eq. (14b). The one 
ET process in Eq. (14b) is traced with the BS MO model 
as shown in the preceding section III.1. The proton trans-
fer after the one electron transfer is also feasible as illus-
trated in Eq. (14c). Therefore, several cases are conceivable 
for coupled processes of PT and ET; (1) ET before PT, (2) 
PT before ET, and (3) the concerted proton transfer (PT) 
coupled electron transfer (ET) process (PT-ET) as shown 
in Eq. (14d). Figure 5 illustrates the PT-ET processes for 
Mn-oxo bonds.
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(14a)M(X)-OH2 + O = M(Y) → M(X)-OH + HO-M(Y)

(14b)
M(X)-OH2 + O = M(Y) → M(X + 1)-OH2 + O = M(Y − 1)

(14c)
M(X + 1)-OH2 + O = M(Y − 1) → M(X + 1)-OH + HO-M(Y − 1)

Recent time-resolved (TR) SFX XFEL [17, 18] and FTIR 
[95] experiments have elucidated possible PT and ET pro-
cesses in the water oxidation in OEC of PII. PT-ET models 
in Eq. (14) are applied to investigate possible roles of tyros-
ine radical in the oxygen evolution reaction of PSII and the 
oxygen reduction reaction of CcO [19] in Eq. (15) (see later)

4 � Applications of BS and post BS models 
to the CaMn4Ox cluster in OEC of PSII

4.1 � Structures and bonding of the CaMn4O5 cluster 
in PSII by XRD, XFEL, and EPR

Basic concepts and BS computational methods in sections 
II and III are applied to elucidate structure and bonding of 
the CaMn4Ox cluster in PSII. To this end, 3D geometric 
structures of PSII by XRD and SFX XFEL are indispensable 
for construction of reliable structural models for theoretical 
investigations. However, the experimental structures often 
suffered non-negligible experimental uncertainty at available 
resolutions (1.9–2.1 Å) [8, 17, 18]. Therefore, theoretical 
computations are expected to refine the geometric structures 
of the CaMn4Ox cluster by XRD [8] and XFEL [17, 18], 
which are crucial for successive investigations of electronic 
and spin structures of the OEC of PSII [20]. Indeed, BS and 
post BS (CC) methods in combinations with spectroscopic 
methods are effective for elucidation of structure and bond-
ing of the CaMn4Ox clusters in OEC of PSII [1].

The magnetism and chemical bond are guiding prin-
ciple for investigation of 3d transition metal complexes 
[102–108]. The manganese ions in the CaMn4Ox clusters 

(14d)

M(X)-OH2 + O =M(Y) → M(X + �)-OH
…H…O = M(Y − �)
→ M(X + 1)-OH + HO-M(Y − 1)

(15)1[3Fe(IV) = O…HO-2Cu(II)…2
⋅ O-Tyr161]

Fig. 5   Proton-transfer (PT) coupled one electron transfer (ET) reac-
tion between the manganese oxo bond and manganese-water to pro-
vide manganese hydroxide bonds. Activation barrier for each process 
is highly dependent on reaction conditions
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are assumed to be Mn(III) and/or Mn(IV) for OEC of PSII 
under the high-oxidation scenario based on the X-ray spec-
troscopy [109]. The manganese ions are found to be in the 
local high-spin states with weak ligand fields [104], Mn(III) 
with Sa = 4/2 and Mn(IV) with Sb = 3/2, embedded in the 
protein field of OEC. Judging from the spin populations by 
BS computations, the Heisenberg models [102] with the 
orbital-averaged effective exchange integrals (Jab) [62, 106, 
107] are also found to be applicable to investigate available 
magnetic properties of the CaMn4Ox clusters, which accord 
with the observed results by EPR [108] (see supplementary 
section SII).

In 2004, XRD experiment at the 3.5 Å XRD resolution 
[83] elucidated the triangular (non-collinear) spin state of 
the London model. However, the regular cubane structure 
[83] was relaxed into the distorted chair structure with the 
collinear spin state at the 1.9 Å XRD resolution [8] because 
of the JT effect of the Mn(III) ion. Therefore, eight spin 
structures were available for four site spin models under 
the axial (collinear) spin approximation [86], providing one 
total highest (HS) spin configuration, four total intermedi-
ates spin configurations and three total low-spin configura-
tions as illustrated in Fig. S6(a) [86, 87]. Full geometry opti-
mizations of these configurations revealed the most stable 
configuration, for which the Jab values were determined by 
using total energies of the BS solutions with different spin 
structures [86, 87]. The Jab values obtained indicated good 
coincidence with the observed values by EPR [108]. Here, 
the interplay between BS theory and EPR is extended to 
investigations of possible intermediates in the S4 state of 
the Kok cycle [37].

4.2 � Charge and orbital degrees of freedom 
for the CaMn4O5 cluster in PSII

The valence states of the Mn ions are important for eluci-
dation of the mechanism of water oxidation in PSII. His-
torically, the low- and high-oxidation scenario have been 
proposed for the valence structures of CaMn4Ox cluster, 
providing Ca(II)Mn(III)4O5 and Ca(II)Mn(III)2Mn(IV)2O5, 
respectively, in the dark stable state in the Kok cycle. The 
latter high-oxidation scenario was accord with the experi-
mental results by XAS, EXAFS, and others [109, 110]. 
Theoretically, six different valence structures are available 
for the latter scenario as shown in Fig. S6(b) [86]. Therefore, 
total 8 × 6 (= 48) spin-valence configurations are feasible for 
the dark stable S1 structure of CaMn4O5 cluster as illustrated 
in Fig. S6(c) [86]. Total energies of these configurations 
were effective to elucidate the ground valence structure in 
the S1 state, which is compatible with the EXAFS results 
[110]. Interplay between BS theory and EXAFS was useful 
for elucidations of stable valence configurations in the S2 
and S3 states [87, 111] (see supplementary material). BS 

computations further revealed subtle geometry changes of 
the CaMn4O5 cluster by the JT effects (orbital degree of free-
dom) of the Mn(III) ion. Here, the BS methods are applied 
to elucidate the spin-valence-orbital configurations of the S4 
intermediates in the Kok cycle.

4.3 � Proton shift degrees of freedom 
for the CaMn4O5 cluster in PSII

Early XRD structures [7, 83, 112] at 3.0–3.8 Å resolution 
provided positions of Mn ions but no information of posi-
tions of oxygen atoms in OEC of PSII. In 2011, Umena 
et al. [8] have discovered the high-resolution (HR) XRD 
structure of CaMn4O5 cluster at 1.9 Å resolution, elucidating 
the “distorted-chair like” structure of the CaMn4O5 cluster 
and positions of oxygen atoms within the CaMn4O5 cluster 
and those of water molecules around the CaMn4O5 cluster. 
However, hydrogen atoms were invisible by HR XRD [8]. 
Therefore, full geometry optimizations of the OM models 
adding hydrogen atoms for OEC by HR XRD [8] were nec-
essary to obtain the refined structure in the S1 state [86, 87].

First of all, we have performed the HDFT computations 
for the Ca(II)Mn(III)2Mn(IV)2O5(H2O)4 cluster with six 
amino acid residues with the negative charge and neutral 
histidine ligand (His332) [86, 87]. Therefore, total positive 
charge for the model of 1 is 16 (= 2 + 3 × 2 + 4 × 2) and total 
negative charge is − 16 (= − 2 × 5 +  − 1 × 6) in the S1 state. 
Our model is often referred to as the 4H model for the S1 
state in contradiction to the 3H model [108]. The spin popu-
lations were about 4.0 for all the Mn ions under the assump-
tion of the HR XRD structure [8], indicating the internal 
reduction of two Mn(IV) ions into two Mn(III) ions. The 
total negative spin densities were found to be about 2.0 [86, 
87], indicating the partial charge transfer from the oxygen 
dianions to the two Mn(IV) sites because of the elongated 
Mn(IV)-O2− distances (the experimental uncertainty is about 
0.16 Å for HR XRD [8]).

We have performed the full geometry optimization [86, 
87] of the cluster to refine the geometrical parameters 
revealed by HR XRD [8]. The spin populations for the 
optimized geometry were about 4.0, 3.0, 3.0, and 4.0 for 
Mn1, Mn2, Mn3, and Mn4, respectively, indicating the Ca(II)
Mn(III)2 Mn(IV)2O5 (H2O)4 valence state which accord with 
the high-oxidation scenario for the CaMn4O5 cluster. This 
valence state is usually abbreviated as (3443) responding to 
the valence states of the Mn ions. The optimized Mn–Mn, 
Mn–O distances were also consistent with the EXAFS 
results [109, 110]. The full geometry optimizations by BS 
HDFT [87] were useful for elucidating the refined HR XRD 
structure, which was later found to be consistent with the 
damage free structure by the serial femtosecond crystal-
lography (SFX) using the X-ray free electron laser (XFEL) 
[114]. The full geometry optimizations also elucidated 
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positions of H atoms and H–O distances for the parent S1 
structure, for which the HR XRD [8] and SFX XFEL [114] 
provided no information.

Protonation state of the oxygen dianions in the CaMn4O5 
cluster is a moot point in the XRD structure [8]. We further 
performed full geometry optimizations of several proton-
shifted geometrical isomers with the (3443) parent valence 
state from the coordinated water molecule (W2 or W1) to 
the oxygen dianion sites such as O(5) or O(4) sites [87]. To 
this end, the sites of the CaMn4O5 cluster were denoted as X 
(= O(5)), Y (= W2), Z (= W1), U (= O(4)), and W (= O(6)) as 
shown in Fig. 6 [87]. The oxidation states of water molecules 
are also denoted as O2− (= a), OH− (= b), and H2O (= c). 
According to the above notations, the parent S1 structure is 
denoted as S1acca where X = U = O2− and W2 = W1 = H2O 
and no water insertion of W in the S1 state [87]. The proton-
shifted S1 structures are similarly expressed as S1abcb where 
X = O2−, Y = U = OH−, and W2 = H2O, and S1bbca where 
U = O2−, X = Y = OH−, and W2 = H2O. The hydrogen atoms 
are invisible by HR XRD [8] and SFX XFEL [114] at about 
1.9–2.0 Å resolution, indicating no experimental informa-
tion for discrimination among the S1 isomers. Future high-
resolution cryo-EM experiments are expected to provide 
reliable information to examine geometrical parameters for 
the proton-shifted isomers S1bbca and/or S1abcb.

4.4 � Theoretical predictions of possible structures 
in the S0, S2, and S3 states

Water oxidations in OEC of PSII proceed through five 
steps Si (i = 0–4) in the Kok cycle [37] (see Fig. Fig. S8). 
The S1 structure observed by HR XRD [8] corresponds to 
the dark stable state for the catalytic cycle of water oxida-
tion. The refined distorted chair S1 structure by full geome-
try optimization [87] in Fig. S9 was found to be reasonable 
as compared with available geometric parameters by the 
EXAFS [109]. Judging from the reasonable S1 structure 
[87], the full geometry optimizations by HDFT were con-
sidered to be reliable for theoretical predictions of possible 
geometric structures in the Si (i = 0, 2, 3) states of OEC of 

PSII. We indeed performed full geometry optimizations 
of possible geometric structures in the Si (i = 0–3) states 
of the Kok cycle just after the discovery of the HR XRD 
structure [8] (see supplementary results in Fig. S7) [87].

Early predicted S0, S1, S2, and S3 structures in Fig. S7 
[21, 70–72, 87] were found to be compatible with recent 
SFX XFEL results [116–119], indicating that full geome-
try optimizations by HDFT are reliable enough for search-
ing reasonable geometries of possible intermediates in the 
Kok cycle. Refinements of the early geometric structures 
[87] by HDFT have been performed assuming several 
extended QM models [70–72] and QM/MM models [113, 
115]. The computational results are now consistent with 
the observed results for the S1, S2 and S3 states by the SFX 
XFEL experiments [17–19, 116–118]. Thus, BS (HDFT) 
[87] and DLPNO-CCSD(T0) [70–72] methods are reli-
able for theoretical investigations of the redox reactions 
involving one electron transfer (ET) and proton transfer 
(PT) in the Kok cycle for water oxidation. After whole 
examinations of possible intermediates in the S1, S2, and 
S3 states, full geometry optimizations by HDFT are reli-
able for investigations of possible geometric structures. 
On the other hand, DLPNO-CCSD(T0) computations are 
essential for elucidation of relative energies between them. 
We can now perform HDFT and DLPNO-CC computa-
tions to elucidate the structure and bonding of possible 
intermediates in the final S4 state.

5 � Structure and bonding of the S3 plus Tyr‑O 
radical configuration

5.1 � SFX XFEL results after the third flash

Recent SFX XFEL experiments [17, 18, 116–119] have 
elucidated that the one-electron transfer (OET) from 
Tyr161-OH to the cation radical of P680 takes place in 
the range of 50–100 μs after the third flash for the OEC of 
PSII, providing the cation radical of the Tyr161-OH which 
undergoes the proton transfer to N-site of His190 to form 

Fig. 6   The notations of the 
active sites of CaMn4Ox cluster 
in the Kok cycle for water oxi-
dation in PSII are given as fol-
lows; X = O(5), Y = W2, Z = W1, 
U = O(4), and W = inserted water 
molecule (WINT). The oxidation 
states of water molecules are 
denoted as a = O2−, b = OH−, 
and c = H2O
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the Tyr161-O• radical and H+His190. Available experi-
ments [1] have elucidated that the mutation of His190 with 
others entails the stop of water oxidation, implying the 
participation of His190 as a base (B) for proton acceptor. 
Therefore, the initial PT and ET process is regarded as the 
concerted PCET in Sect. 3.

According to the SFX XFEL results [116–118], the suc-
cessive proton release from the [CaMn4-Tyr161-O• core] 
to lumen occurs in the range of 250–500 μs before the 
one electron transfer from CaMn4-core to Tyr-161 radical; 
this ET process occurs in the long range of 500–1200 μs. 
Interestingly, the release of molecular oxygen was found to 
start after 1200 μs of the third flash [118]. This indicates 
an interesting possibility that the O–O bond formation in 
OEC of PSII is feasible without the one ET to Tyr161-O 
radical for formal formation of the Mn(V) = O site as in 
the case of no formation of Fe(V) = O in CcO [3–5] (see 
later). These experimental results have elucidated multi-
step reactions [95, 116–118] in the lag phase before the 
O–O bond formation, indicating the necessity of HDFT 
computations to elucidate possible structures in the early 
S4 state for water oxidation.

5.2 � Full geometry optimizations of the [S3 + Tyr‑O•] 
based on an extended QM model

Recent SFX XFEL results [116–118] have suggested 
participation of tyrosine161 residue for the O–O bond 
formation. However, tyrosine161 was not included in 
our previous QM models (73, 103, 227 atoms) used for 
geometry optimizations of the S1, S2, and S3 structures, 
indicating that the QM models were insufficient for struc-
ture determination of the early S4 state; [S3 + Tyr161-O• 
radical]. Therefore, a large QM (283 atoms) is newly con-
structed based on the previous QM models including key 
amino acid residues and water molecules as illustrated 
in Fig. 7. Full geometry optimizations of the [S3 + Tyr-
O•] intermediates based on the large QM model (283 
atoms) are newly performed by UB3LYP-D2 method 
with def2-TZVP basis in the COSMO environment. Fig-
ure 8 illustrates the optimized geometries of the inter-
mediate structures; (a) [S3abca(R)-OHglu + Tyr-O•], (b) 
[S3acca(R)-Oxo + Tyr-O•], (c) [S3acca(R)-Oxyl + Tyr-O•], 
and (d) [S3acca(R)-Peroxide + Tyr-O•]. 

From Fig. 8a and d, the optimized Mn1-Mn2, Mn2-Mn3, 
Mn3-Mn4, Mn1-Mn3, and Mn1-Mn4 distances for 
[S3abca(R)-OHglu + Tyr-O•] are 2.79 (2.76), 2.86 (2.81), 2.75 
(2.92), 3.57 (3.32), and 5.37 (5.19) Å, respectively, where 
the corresponding distances for [S3abca(R)-Peroxide + Tyr-
O•] are given in parentheses. The above Mn–Mn distances 
observed for the early S4 state by SFX XFEL [118] are 2.77, 
2.86, 2.75, 3.33, and 5.06 Å, respectively, which accord with 

those of the optimized values for by UB3LYP-D2 procedure, 
indicating the reliability of the geometry optimizations at 
the DFT plus dispersion (D2) level of theory. The Mn3-Mn4 
distance is elongated by 0.17 Å after the O(5)-O(6) bond for-
mation, whereas the Mn1-Mn3 distance is shortened by 0.25 
Å, indicating the characteristic geometric changes.

Before the peroxide formation, two different intermedi-
ates, [S3acca(R)-Oxo + Tyr-O•] and [S3acca(R)-Oxyl + Tyr-
O•] are formed via proton transfer from O(6)H to W2 (= OH) 
as shown in Fig. 8c and d. The five Mn–Mn distances for 
the former (latter) intermediates are 2.80 (2.78), 2.83 (2.82), 
2.75 (2.82), 3.49 (3.38), and 5.30 (5.24) Å. The Mn–Mn 
distances observed for A-monomer in the S4 structure at 250 
μs by SFX XFEL [118] are 2.86, 2.86, 2.75, 3.41, and 5.14 
Å, respectively, which accord with those of the optimized 
values of the Mn-Oxo intermediate for by UB3LYP-D2.

The optimized Mn1-O(6), Mn4-O(5) and O(5)-O(6) distances 
for [S3abca(R)-OHglu + Tyr-O•] are 1.81 (2.15), 1.81 (2.26), 
and 2.54 (1.42) Å, respectively, where the correspond-
ing distances for [S3acca(R)-Peroxide + Tyr-O•] are given 
in parentheses. The Mn1-O(6) and Mn4-O(5) distances for 
[S3abca(R)-OHglu + Tyr-O•] are about 1.8 Å, which accord 
with the Mn(IV)-O distance without the JT elongation. On 
the other hand, these distances for [S3acca(R)-Peroxide + Tyr-
O•] are about 2.2–2.3 Å, indicating the JT elongation of the 
Mn(III) ion. The O(5)-O(6) distance is shortened by 1.12 Å 
with the O(5)-O(6) bond formation. The resulted O(5)-O(6) is 
compatible with that of peroxide (1.46 Å). Therefore, the 
valence states of the four Mn ions are (4444) and (3443) 
for the S3abca-OHglu and S3acca-Peroxide, respectively. PT-ET 
process for [S3acca(R)-Peroxide (3443) + Tyr-O•] provides 
the [S4abca(R)-Peroxide (4443) + Tyr-OH] before the O2 

Fig. 7   An extended QM model (283 atoms) for geometry optimiza-
tion by UB3LYP-D2 method. Tyr161 and His190 are newly included 
in the QM model to examine their participation of water oxidation in 
the S4 state
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evolution [113, 118]. The Ca-O(5) and Ca-O(6) distances for 
the Mn-Peroxide are 2.34 and 3.05 Å, respectively, indicat-
ing the space for the next water insertion at the O(5) site in 
oxygen evolution [113].

The optimized Mn1-O(6), Mn4-O(5), and O(5)-O(6) dis-
tances for [S3acca(R)-Oxo (Oxyl) + Tyr-O•] are 1.68 (1.72), 
1.79 (2.10), and 2.48 (2.04) Å, respectively. The Mn1-O(6) 
distance for [S3acca(R)-Oxo + Tyr-O•] is shorter than 1.7 Å, 
which accord with the Mn(IV) = O distance without the JT 
effect. The Ca-O(6) distance is 2.38 Å, indicating the strong 
coordination effect of the O(6) site of Mn1 = O(6) double 
bond. The Mn1-O(6) and Ca-O(6) distances for Mn-Oxyl 
intermediates are 1.72 and 2.46 Å, respectively, indicating 
the large reduction of the oxyl-radical character with the 
Ca-coordination. The O(5)-O(6) distance for the Mn-Oxo 
intermediate is about 2.5 Å, whereas it becomes about 2.0 
Å coincide with the SFX-XFEL result [116–119], indicating 
no O–O bond formation.

The O–O• distance between Tyr-O• and W4 (W7) was 
calculated to be 2.7 (2.8), indicating the strong hydro-
gen bond which fixes the harmful radical site of Tyr161. 
The W7, W6, W5, and W3 form the four-membered ring, 
which is linked with Cl1 channel (W2-W9-W8-Asp61-…) 
through the hydrogen bond between W5 and W2 as shown 
in Fig. 8 [20]. The ring is also linked with O1-channel via 

the hydrogen bond network W3-W4-W10-…). Therefore, 
the large QM model (283 atoms) works well for geometry 
optimizations of the hydrogen bond networks around the 
CaMn4Ox cluster in the early S4 state.

5.3 � Comparison between the relative energy 
by DFT and CC

The optimized geometries of the [S3 + Tyr-O• (H+-His190)] 
configurations are reliable enough for the one-point calcula-
tions by UB3LYP/def2-TZVPP computation for elucidation 
of the relative energies among the possible S3 intermediates. 
However, post BS-DFT, namely one-point UHF CCSD(T) 
computation in Fig. 3 [31, 35] is still difficult in our com-
puter system because very long time CPU is necessary for 
the systems. Therefore, we have employed its practical and 
efficient approximate version, namely UCCSD(T) method 
using DLPNO developed by Neese’s group [68, 69]. To 
this end, we have used the DLPNO consisted of the local-
ized natural orbitals (LNO) obtained by the natural orbital 
(NO) analysis of the UB3LYP solutions [70–72]. Here, the 
DLPNO (LNO) CCSD(T0) method with def2-TZVPP basis 
in COSMO environment are performed for the four opti-
mized geometries in Fig. 8.

Fig. 8   The optimized geom-
etries of the S3 + Tyr161-
O• radical intermedi-
ates by the UB3LYP-D2 
method; a Mn-hydroxide: 
[S3abca(R)-OH + Tyr161-
O•], b Mn-Oxo: 
[S3abca(R)-Oxo + Tyr161-
O•], c Mn-Oxyl: 
[S3abca(R)-Oxyl + Tyr161-
O•], and d Mn-Peroxide: 
[S3abca(R)-Peroxide + Tyr161-
O•]



2145Photochemical & Photobiological Sciences (2024) 23:2133–2155	

The relative energies between Mn-OH and Mn-Peroxide 
with Tyr161-O radical are about 16.9, 16.1, and 10.1 kcal/
mol, respectively, by UB3LYP, UB3LYP-D2, and DLPNO-
CCSD(T0) methods, respectively. DLPNO-CCSD(T0) 
method predicts the formation of the O–O bond even in the 
[Mn-Peroxide + Tyr161-O radical] state. The energy differ-
ences between Mn-OH and Mn-Oxo(Oxyl) are 7.9 (5.3), 9.8 
(13.8), and 4.3 (13.0) kcal/mol, respectively, by above three 
computational methods. Interestingly, UB3LYP predicts the 
greater stability of the [Mn-Oxyl + Tyr-O radical] state than 
[Mn-Oxo + Tyr-O radical] state. On the other hand, DLPNO-
CCSD(T0) predicts the reverse tendency. The relative energy 
is consistent with the geometric information by SFX-XFEL 
[118]. This indicates a possible reaction pathway in the S4 
state: Mn(IV)-OH → proton transfer → Mn(IV)-Oxo → Mn-
Peroxide even during the living state of the Tyr161-O radi-
cal, namely formal (5444) valence state; Mn(V) = O bond 
or •Mn(IV)-O• is not necessary for the O–O bond forma-
tion. DLPNO-CCSD(T0) and UB3LYP results provide quite 
different conclusions in the S4 step as illustrated in Fig. 10 
(see later). Interestingly, this tendency is also consistent with 
recent conclusion for the oxygen reduction by CcO, where 
Fe(V) = O is not necessary because of the participation of 
Tyr244-O• radical as shown in Fig. 11 (see later) [3, 4].

6 � Structure and bonding of the PM 
intermediate in the CcO system

6.1 � Oxygen reduction mechanism revealed for CcO 
by recent investigations

Over past decades, the oxygen reduction processes in 
cytochrome c oxidase (CcO) have been investigated exten-
sively [4, 5, 9, 16, 19, 120–136], indicating several key inter-
mediates denoted as A, P, F, O, E, etc. as shown in Fig. 11: 
A state is the initial oxygen-inserted state into the Fe(II)..
Cu(I) site [9]; P is the O–O bond dissociation step involving 
Fe(IV) = O bond [9]. The XRD experiments elucidated the 
3D structures of CcO [123, 124]. DFT computations [127, 
129] were performed for Fe–O-O-Cu and Fe-OOH-Cu in 
CcO based on the XRD results [9, 123]. Many investigations 
have been performed on the structure, bonding and reactiv-
ity of CcO [9, 16, 19, 120–136]. Here, the subject for this 
paper is limited to possible roles of Tyr-244 for the oxygen 
reduction reaction in CcO.

Blomberg [133] performed extensive UB3LYP-D3 com-
putations [131] to elucidate relative energies of A, P, F, O, 
and E states, providing the potential energy diagrams for the 
oxygen reduction reaction in CcO. From the computational 
results, the most oxidized state is concluded to be the PM 
state given in Eq. (15) consisted of Fe(IV) = O and Tyr-O 
radical instead of Fe(V) = O proposed in early papers [9]. 

The Fe(IV) = O bond in CcO was already detected by time-
resolved Raman spectroscopy [121, 122, 126]. Participation 
of Tyr244 to the O–O bond dissociation was also suggested 
on the experimental grounds [9, 125]. Recently, Jose et al. 
[132] performed the magnetic circular dichroism (MCD) 
experiments for PM state, supporting the participation of 
Tyr244-O radical. Thus, the early proposals [9] have been 
supported by recent extensive investigations [134–136], pro-
viding reliable information to examine similarity between 
reaction cycles in CcO and PSII under investigation.

6.2 � Electronic structure of the PM intermediate 
in the CcO system

As an extension of previous work on CcO [127, 129], full 
geometry optimization of the large QM model for the PM 
state has been performed to elucidate its structure and bond-
ing as shown in Fig. 9. The optimized Fe(IV)-Cu(II) distance 
was 4.33 Å. The optimized Fe(IV) = Oa and Cu(II)-Ob bond 
lengths were 1.64 and 1.91 Å, respectively, which compat-
ible with SFX XFEL results [135, 136]. The Oa-Ob distance 
was 2.80 Å, indicating the hydrogen bond; Oa…H-Ob. On 
the other hand, the O–O distance between O-radical site of 
Tyr244 and HO-group of chlorophyll was 2.71 Å, indicat-
ing the strong hydrogen bonding to fix the harmful oxygen-
radical site.

Spin density (SD) populations for the PM state are 
obtained at the optimized geometry. The SD populations are 

Fig. 9   The optimized geometry of the quantum mechanical QM 
model (288 atoms) for the PM configuration of cytochrome c oxidase 
(CcO) with UB3LYP-D2 method with def2-TZVP basis method
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1.386 and 0.695 for Fe and O sites for Fe(IV) = O, respec-
tively, indicating triplet ground state. They are − 0.168 
and − 0.613 for O and Cu sites for HO-Cu(II), respectively, 
indicating partial spin delocalization. Total spin densities 
are − 0.917 for Tyr244-O radical and − 0.097 for porphy-
rin ligand, respectively. Therefore, the spin structure PM 
structure is given by the up-up-down-down configuration, 
indicating the total singlet ground state, which accord 
with the MCD experimental results [132]: ↑Fe(IV) = O↑…
HO-Cu(II)↓…↓O-Tyr244. Thus, BS computational results 
for the CcO model in Fig. 12 provide fundamental infor-
mation for examination of two sides of the coin relation 
between oxygen evolution in PSII and oxygen reduction in 
CcO.

7 � Discussions

7.1 � Reaction cycle for water reduction 
in cytochrome c oxidase

Experimental evidence [116–118] for the S3 to S0 transi-
tion though transient [S4] state for oxygen evolution is 
not conclusive yet although our theoretical computations 
provide the most probable reaction pathway as illustrated 
in Fig. 10, where the notation of B is used for a base site 
for proton trapping in the S1 to S2 transition without pro-
ton release. On the other hand, spectroscopic and compu-
tational results [3, 4, 9, 16, 19, 120–136] for the reaction 
intermediates in oxygen reduction in cytochrome c oxidase 
(CcO) are available. As shown in Fig. 1, CcO is consisted 
of four redox-active transition metal ions (CuA, Fea, Fea3, 
and CuB). CcO catalyzes reverse reaction of water oxidation 
in Eq. (1), namely reduction of molecular oxygen into two 
water molecules: O2 + 4H+  + 4e−  → 2H2O [3, 4, 9, 16, 19, 
120–136]. Therefore, formal reverse analogy [20] is conceiv-
able between PSII [1, 2] and CcO [3, 4] from the viewpoint 

Fig. 10   Possible intermediates structures for the Kok cycle for water 
oxidation on the basis of the computational results by the DLPNO 
CCSD(T0) methods. Tyr-O radical participates the O–O bond forma-
tion via the PCET process from S3abca(R)-OH to S3acca(R)-Peroxide. 
Proton assumed to be not released in the S1 to S2 transition, indicating 
the proton-trapping by a base (B) site near CaMn4O5 cluster. How-
ever, the present QM model is still insufficient for examination of the 
BH+ site, indicating the necessity of more extended QM models for 
the purpose

Fig. 11   Possible intermediates for reduction processes of molecular 
oxygen into water molecule in the cytochrome c oxidase (CcO) on 
the basis of available experimental and computational results [9, 16, 
19, 120, 121–136]. The O–O bond heterolysis via PCET from A” to 
PM becomes feasible with the participation of Tyr244-O radical. Four 
protons are transferred from the N-site to the P-site in the oxygen 
reduction process in CcO
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of the functional behaviors although the constructions of the 
reaction sites are different between them.

Judging from available experimental results, Heme Fea3 
and CuB sites of CcO for oxygen reduction are regarded as 
the Mn4(a) and Mn1(d) sites of PSII for water oxidation as 
shown in Fig. 1. Similarly, Tyr244 and His240 of CcO in 
Fig. 11 are regarded as Tyr161 and His190 of PSII, exhibit-
ing an important proton-coupled electron transfer (PCET) 
reaction via a water molecule coupled with Tyr244 [9, 16, 
19, 120–136]. Three proton insertion pathways, K-, D-, 
and H-pathways [4], have been proposed for CcO, whereas 
three proton release pathways: path I (Cl1-channel), path II 
(YZ-channel), and path III (O4-channel), have been proposed 
for PSII as shown in Fig. 8 [20]. The oxygen insertion and 
water release pathways are also proposed for CcO. On the 
other hand, oxygen release and water input pathways are pro-
posed for PSII [20, 87, 113, 115]. Thus, CcO and PSII have 
biomolecular systems structures for oxygen (four electron) 
reduction and water (four electron) oxidation, respectively.

7.2 � Possible roles of Tyr244 of CcO and Tyr161 
of PSII

The most plausible cycle of oxygen reduction in CcO is con-
ceivable on the basis of available results [9, 16, 19, 120–136] 
as illustrated in Fig. 11. The initial state (Reactant state; R) 
of the oxygen reduction in CcO is expressed by Eq. (16).

where the R state corresponds to S0’ in the Kok cycle for 
water oxidation which is the S0 state: S0nullbca (no oxygen at 
the X site) formed after release of molecular oxygen before 
second water insertion to afford the S0 state (S0bbca) in the 
Kok cycle for water oxidation in Fig. 11. Molecular oxygen 
is inserted into the resting (R)-state, providing the A state 
of CcO, which is an exchange coupled state between Fe(II) 
and O2 as in the case of myoglobin [1, 2]. The A’ state with 

(16)R ∶ Fe(II)a3 …Cu(I)B + Tyr244-OH

superoxide anion [127] is formed by the one electron trans-
fer (OET) from Fe(II)a3 to O–O. Further OET from Cu(I)B 
to the O–O anion provides the A’’ state with oxygen dian-
ion, namely peroxide formation, on the theoretical ground 
[127–129]. Spectroscopic results have not been obtained for 
the A’’ state of CcO in Fig. 11.

The A state is in turn regarded as the final S4f state before 
O2 release, S4abca-molecular oxygen (O2) with the (3433) 
valence state in the Kok cycle for water oxidation in PSII. 
The A’ state in Fig. 11 is regarded as the intermediate; 
S4abca-superoxide anion (O2

−) with the (3443) valence state 
in Fig. 10. The A’’ state in Fig. 11 is regarded as the S4 
state after peroxide bond formation; S4abca-peroxide with the 
(4443) valence state. Thus, one to one correspondence is 
feasible for A of CcO in Fig. 11 and S4 for PSII in Fig. 10.

(17a)A ∶ Fe(II)a3O-O…Cu(I)B + Tyr244-OH

(18a)A� ∶ Fe(III)a3-OO ∙ …Cu(I)B + Tyr244-OH

(19a)A�� ∶ Fe(III)a3-O-O
2−-Cu(II)B + Tyr244-OH

(17b)

S4abca(R)-O2(3433):
[Mn(III)4Mn(III)3 − ∙O-O ∙Mn(III)1] + Tyr161-OH

(18b)
S4bcca(R)-O2 anion (3443)
:[Mn(III)4Mn(IV)3-O-O ∙Mn(III)1] + Tyr161-OH

(19b)
S4bcca(R)-O2 dianion (4443):
[Mn(III)4Mn(IV)3-O-O-Mn(III)1] + Tyr161-OH

Fig. 12   The formal correspondence between the oxygen evolution 
from two waters in PSII and the oxygen reduction of molecular oxy-
gen into two waters in CcO. Tyrosine 161 and 244 play important 
roles in these four-electron oxidation and reduction processes in PSII 

and CcO, respectively, indicating no formation of the high-valent 
Mn(V) = O and Fe(V) = O bonds. The notations of the intermediates 
are given in Figs. 10 and 11
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The next step is the O–O bond fission by the protonation 
of the oxygen dianion, suggesting the protonated hydroper-
oxide anion coordinated to [Fe(III)a3-OOH Cu(II)-Tyr244-
O−] [16, 127–129, 131] namely putative A’’’ state which has 
not been observed by experiments. On the other hand, the 
iron oxo Fe(IV) = O bond has been observed by the Raman 
spectroscopy in the next PM stage [121, 122, 126], support-
ing the participation of Tyr244 anion for the O–O bond 
heterolysis; namely [Fe(IV) = O HO-Cu(II) Tyr244-O•] 
in Eq. (21a). Thus, the formation of [Fe(V)a3 = O]3+ bond 
is not necessary if the Tyr244-O• radical is participated 
for the O-OH dissociation reaction as shown in Eq. (20a). 
Recent interplay between HDFT computation and MCD 
experiment [132] has also confirmed the participation of 
tyrosine-radical.

The one ET to PM provides the reduced configuration 
PR in Eq. (23a) (see Fig. 11). Proton addition to PR provide 
water molecule, which is released to provide the F interme-
diate in CcO in Eq. (24a). The proton-coupled electron trans-
fer (PC-ET) to the intermediate F provides the intermediate 
O in Eq. (25a). Further, PC-ET reaction to the intermediate 
O provides water molecule which is released to recover the 
initial R state in Eq. (16).

The spectroscopic and computational results for the O–O 
bond fission in CcO provide significant information for the 
reverse O–O bond formation for water oxidation in PSII. The 
PM stage in Eq. (21a) corresponds to the S3 state with (4444) 
and Tyrosine radical [S3abca(R)-OH + Tyr161-O•] formed (see 
Fig. 8a) in the third flash in OEC of PSII. On the other hand, 
the PM’ stage in Eq. (22a) corresponds to the S4abca(R)-OH 
with (4445) state after one electron transfer to Tyr-O• radi-
cal to form formal Mn(V) = O bond in Eq.  (22b) where 
Tyr-O− is recovered to Tyr-OH via back PT from H+His190 
in OEC of PSII. The nucleophilic attack of OH anion to 
Mn(V) = O provides the Mn(III)-OOH bond as illustrated in 

(20a)A��� ∶ Fe(III)a3-O-OH…Cu(II)B + Tyr244-O−

(21a)PM ∶ [Fe(IV)a3 = O2+−HO-Cu(II)B] + Tyr244-O∙]

(22a)P�
M
∶ [Fe(V)a3 = O3+−HO-Cu(II)B] + Tyr244-OH

(23a)PR ∶ [Fe(IV)a3 = O2+−HO-Cu(II)B] + Tyr244-O−

(24a)F ∶
[
Fe(IV)a3 = O2+Cu(II)B

]
+ Tyr244-O−

(25a)O ∶
[
Fe(III)a3-OH

1+Cu(II)B
]
+ Tyr244-O−

(26a)E ∶
[
Fe(III)a3OH

1+Cu(I)B
]
+ Tyr244-OH

Eq. (23b). On the other hand, the one ET to Tyr-O• radical 
in (23b) provides the S3bcca-OH in Eq. (24b) (see Fig. 6), 
and the successive proton transfer to S3bcca-OH provides 
water molecule which is released to give the S2abca state in 
Eq. (25b). The PC-ET reaction to S2abca state in Eq. (23b) 
affords the S1bbca state in Eq. (26b). Further PC-ET reac-
tion to S1bbca state provides S0bcca state in Eq. (26b), which 
is formally converted into S0nullcca state with the release of 
water molecule in Eq. (27).

Four electron reduction of molecular oxygen to two water 
molecules occurs by using two electrons from Fe(II)a3, one 
electron from Cu(I)A and one electron from Tyr244 in the 
Tyr244-radical assisted O–O dissociation of CcO. Proton-
coupled electron-transfer (PC-ET) processes play impor-
tant roles as illustrated in Fig. 5, indicating no formation 
of high-valent Fe(V) = O bond. On the other hand, four-
electron oxidation of two water molecules into molecular 
oxygen occurs by using three electrons from CaMn4Ox 
cluster and one electron from Tyr161-OH. As illustrated in 
Fig. 5 [20], the PC-ET processes indicate no formation of 
high-valent Mn(V) = O bond. Thus, one-to-one correspond-
ences are found to be operative in oxygen reduction in CcO 
and oxygen evolution in PSII. Four photon energies (4hv) 

(20b)

S3abca(R)-OOH(3444)
: [Mn(III)4Mn(IV)3-O-OH…Mn(IV)1] + Tyr161-OH

(21b)

S3bcca(R)(4444) + Tyr-O∙
:
[

Mn(IV)4Mn(IV)3 = O HO-Mn(IV)1
]

+ Tyr161-O∙

(22b)

S4bcca(R)(4445) + Tyrosine
: [Mn(V)4Mn(IV)3 = OHO-Mn(IV)1] + Tyr161-OH

(23b)

S3bcca(R)(4444) + Tyr − OH
: [Mn(IV)4Mn(IV)3 = OHO-Mn(IV)1] + Tyr161-OH

(24b)
S2bcca(R)(3444) + Tyr − OH
:
[

Mn(IV)4Mn(IV)3 = OMn(III)1
]

+ Tyr161-OH

(25b)
S1bbca(R)(3443) + Tyr-OH
:
[

Mn(III)4Mn(IV)3-OHMn(III)1
]

+ Tyr161-OH

(26b)
S0bcca(R)(3433) + Tyr-OH
:
[

Mn(III)4Mn(III)3-OHMn(III)1
]

+ Tyr161-OH

(27)
S0bcca(R)(3433) + Tyr-OH:
[

Mn(III)4Mn(III)3Mn(III)1
]

+ Tyr161-OH
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are required for the up-hill reactions for water oxidations to 
molecular oxygen in Fig. 10. On the other hand, downhill 
reactions of molecular oxygen to water molecules in CcO 
provides driving forces for four proton releases from N-side 
to P-side as shown in Fig. 11, and four protons in P-side are 
used to afford ATP from ADP. Finally, we have depicted 
whole analogy [12–16] between water oxidation on PSII and 
oxygen reduction in CcO in Fig. 12.

7.3 � Bio‑inspired artificial systems

Elucidation of the mechanism of natural water oxidation in 
PSII is expected to provide guiding principles for design 
and construction of bio-inspired artificial systems for water 
oxidation [20, 84]. According to the reaction cycles in 
Figs. 10, 11, 12, tyrosine group play an important role for 
water oxidation in PSII and oxygen reduction in CcO. Wada 
et al. [137] has already achieved the water oxidation with the 
bio-inspired artificial Ru-oxo species with electron accep-
tor ligands, indicating the participation of phenoxy radical, 
quinone, etc. for the O–O bond formation [137, 138]. The 
iso-spin analogy [138] between the CaMn4Ox cluster and the 
artificial Ru catalyst [137] has been also elucidated based 
on the spin Hamiltonian model. The HDFT computations 
[139] have elucidated the detailed mechanism of water oxi-
dation with participation of quinone ligand in the Ru cata-
lysts [137].

Very recently, Kumagai et al. [140] have investigated the 
water oxidation with the Ru catalyst ligated with phenol 
group. Their detailed experiments have provided reliable 
information that the phenoxy radical participates in the O–O 
bond formation for water oxidation in contradiction to the 
conventional acid–base (AB) mechanism in Eq. (7b) and 
radical coupling (RC) mechanism in Eq. (7a). They have 
pointed out that their results are consistent with the phe-
noxy-radical participated mechanism, for example proton 
coupled electron transfer (PCET) [141] or the non-adiabatic 
(NA) one-ET mechanism for water oxidation [142]. Thus, 
similar mechanisms can be expected for water oxidation by 
3d transition metal oxo systems with radical ligands [143, 
144].

8 � Concluding remark

In this paper, fundamental concepts and computational pro-
cedures for broken-symmetry (BS) and post BS methods 
are summarized for theoretical modeling and designs of 
photo-induced bio-inspired catalysts for oxygen evolution 
reaction (OER) and oxygen reduction reaction (ORR). The 
PT and ET processes in water oxidation in PSII and oxygen 

reduction in CcO were examined in detail with synergetic 
combinations of available experimental results such as time-
resolved SFX XFEL experiments [17, 18, 116–119] and 
recent computational results involving DLPNO-CCSD(T0) 
computational results, elucidating the quantum similarity 
between these reactions. Three electrons in metal sites and 
one electron in tyrosine radical site were found to be opera-
tive in four electron oxidation–reduction processes in these 
enzymes in Fig. 1, indicating plausible conclusion of no for-
mation of the high valent Mn(V) = O and Fe(V) = O because 
of the PC-ET processes with hydrogen bonds networks 
including tyrosine. Available time-resolved SFX-XFEL for 
the S3 → [S4] → S0 transition in OEC of PSII [116–118] were 
consistent with such a new picture in biological systems in 
contrast to artificial systems without such environmental 
effects.

Elucidation of the possible mechanism of natural water 
oxidation in Fig. 10 [20, 118] provides guiding principle for 
design and construction of artificial water oxidation cata-
lysts for which ligated organic radical(s) participates in the 
O–O bond formation. Very recently, the Ru catalyst ligated 
with phenoxy radical [140] has been found to undergo the 
water oxidation where the ligated radical also participates 
in the O–O bond formation. Four holes necessary for water 
oxidation into molecular oxygen are stored in both metal 
sites and organic radical site(s) in these artificial systems 
without large over-potentials [137–140]. Present theoretical 
analysis is expected to provide bio-inspired guiding principle 
for developments of earth-abundant artificial systems with 
photo-induced four holes for water oxidation [143–145].
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