
Title
¹³C-metabolic flux analysis of respiratory chain
disrupted strain ΔndhF1 of Synechocystis sp.
PCC 6803

Author(s) Wada, Keisuke; Toya, Yoshihiro; Matsuda, Fumio
et al.

Citation Applied Biochemistry and Biotechnology. 2025

Version Type VoR

URL https://hdl.handle.net/11094/100323

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Vol.:(0123456789)

Applied Biochemistry and Biotechnology
https://doi.org/10.1007/s12010-024-05138-4

ORIGINAL ARTICLE

13C‑metabolic flux analysis of respiratory chain disrupted 
strain ΔndhF1 of Synechocystis sp. PCC 6803

Keisuke Wada1,2   · Yoshihiro Toya1   · Fumio Matsuda1   · Hiroshi Shimizu1 

Accepted: 24 December 2024 
© The Author(s) 2025

Abstract
Cyanobacteria are advantageous hosts for industrial applications toward achieving sustain-
able society due to their unique and superior properties such as atmospheric CO2 fixation via 
photosynthesis. However, cyanobacterial productivities tend to be weak compared to hetero-
trophic microbes. To enhance them, it is necessary to understand the fundamental metabolic 
mechanisms unique to cyanobacteria. In cyanobacteria, NADPH and ATP regenerated by lin-
ear and cyclic electron transfers using light energy are consumed by CO2 fixation in a central 
metabolic pathway. The previous study demonstrated that the strain deleted a part of respira-
tory chain complex (ΔndhF1) perturbed NADPH levels and photosynthetic activity in Syn-
echocystis sp. PCC 6803. It is expected that disruption of ndhF1 would result in a decrease 
in the function of cyclic electron transfer, which controls the ATP/NAD(P)H production ratio 
properly. In this study, we evaluated the effects of ndhF1 deletion on central metabolism 
and photosynthesis by 13C-metabolic flux analysis. As results of culturing the control and 
ΔndhF1 strains in a medium containing [1,2-13C] glucose and estimating the flux distribu-
tion, CO2 fixation rate by RuBisCO was decreased to be less than half in the ΔndhF1 strain. 
In addition, the regeneration rate of NAD(P)H and ATP by the photosystem, which can be 
estimated from the flux distribution, also decreased to be less than half in the ΔndhF1 strain, 
whereas no significant difference was observed in ATP/NAD(P)H production ratio between 
the control and the ΔndhF1 strains. Our result suggests that the ratio of utilization of cyclic 
electron transfer is not reduced in the ΔndhF1 strain unexpectedly.
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Abbreviations
G6P	� Glucose 6-phosphate
F6P	� Fructose 6-phosphate
GAP	� Glyceraldehyde 3-phosphate
DHAP	� Dihydroxyacetone phosphate
RU5P	� Ribulose 5-phosphate
X5P	� Xylulose 5-phosphate
R5P	� Ribose 5-phosphate
S7P	� Sedoheptulose 7-phosphate
E4P	� Erythrose 4-phosphate
RUBP	� Ribulose 1,5-phosphate
3PG	� 3-Phosphoglycerate
PEP	� Phosphoenolpyruvate
PYR	� Pyruvate
ACCOA	� Acetyl-CoA
ICIT	� Isocitrate
AKG	� α-Ketoglutarate
SUC	� Succinate
MAL	� Malate
OAA	� Oxaloacetate

Introduction

Since cyanobacteria can grow using light energy and atmospheric CO2, it is attracting attention 
as a host for producing chemicals from CO2 toward achieving a sustainable society [1]. Cyano-
bacteria possess several advantageous properties for industrial applications: (i) atmospheric 
CO2 fixation as a sole carbon source by RuBisCO, (ii) low contamination risks due to quick 
growth on simple media, and (iii) higher photosynthetic efficiency than land plant [2]. Previous 
studies successfully produced various valuable compounds, including polyhydroxyalkanoates 
[3], alcohols [4, 5], carbohydrates [6–8], organic acids [9, 10], and isoprene derivatives [11–13], 
using genetically engineered cyanobacterial strains. However, productivities tend to be weak 
compared to other microbes that can utilize higher energy contents such as sugars and oils. To 
enhance the cyanobacterial productions, it is necessary to understand the cyanobacteria-specific 
functional connection between photosystem producing the energy required to fix CO2 and cen-
tral metabolic pathway responsible for the conversion from the CO2 to the target products.

In case of cyanobacterial photosynthesis, the photosystem produces NADPH and ATP, 
which are used in a sequence of reactions involving CO2 fixation by the RuBisCO, as known 
as Calvin-Benson-Bessham (CBB) cycle. The relationship between linear electron transfer 
(LET) and cyclic electron transfer (CET), which are typical electron flows in photosystems 
[14], and the CBB cycle is shown in Fig. 1. In the LET, electrons extracted from water in 
photosystem II (PSII) are transferred to NADP+ via plastoquinone (PQ) followed by the 
cytochrome b6f complex (Cyt b6f), plastocyanin (PC), and photosystem I (PSI). Transhydro-
genase (TH) converts NADPH with NAD+ to NADP+ with NADH and vice versa. The LET 
produces NADPH and ATP in a molar ratio 2:2.57, whereas the molar ratio of NADPH and 
ATP consumed in the CBB cycle is 2:3. To address this ATP shortage in the LET, cyanobac-
teria utilize another electron transfer system, CET. The CET produce ATP without NADPH 
production by transferring electron from ferredoxin (Fd) to PQ for reacting to fluctuating 
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environmental conditions [15, 16]. One of the electron acceptors in CET is NAD(P)H-dehy-
drogenase I (NDH-1) as respiratory chain complex. Toyoshima et al. revealed that NDH-1 
was utilized under favorable growth conditions [17]. Battchikova et al. revealed that deletion 
of ndhS, which constitutes a new subunit of NDH-1, triggered reduction of growth rate and 
CET activity mediated by the NDH-1 [18]. These results suggest that the NDH-1 is a pivotal 
electron acceptor in CET. Hence, it is considered that NDH-1 dysfunction can perturb the 
link between photosystem and central metabolic pathway via NAD(P)H.

According to updated-Fluorome summarizing the chlorophyll fluorescence of 750 gene-
disruptant from Synechocystis sp. PCC 6803, the strain disrupted ndhF1 encoding NAD(P)
H-quinone oxidoreductase subunit 5 in NDH-1 (ΔndhF1) showed the largest change in the 
Kautsky curve [19]. Although it has been shown that the photosynthetic activity estimated 
from chlorophyll fluorescence in mutants with defective respiration, including the ΔndhF1 
strain, may be increased [20], the NADPH accumulated in the dark [21]. Since deletion 
of genes regarding NDH-1 resulted in the accumulation of excess NAD(P)H available for 
biosynthesis of target products, NDH-1 dysfunction may be effective for productions of 
valuable compounds in cyanobacteria. In facts, deletion of ndhF1 in engineered-cyano-
bacterial strains triggered increase of the production of ethanol and 1,3-propandiol, which 
consumed NAD(P)H for biosynthesis, via expansion of NAD(P)H sink [22, 23]. Therefore, 
it is expected that the analysis of the ΔndhF1 strain without producing the NAD(P)H-con-
suming chemical productions is useful for understanding the fundamental metabolism of 
cyanobacteria about NAD(P)H perturbation.
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Fig. 1   Relationship between photosystem and central metabolic pathway in cyanobacteria connected by 
NAD(P)H and ATP. In linear electron transfer, electrons extracted from water in photosystem II (PSII) are 
transferred to photosystem I (PSI) via cytochrome (Cyt b6f) and used for NAD(P)H regeneration. ATP is 
also regenerated using protons (H+) pumped out during the electron transfer process. In cyclic electron 
transfer, electrons from ferredoxin (Fd) or NAD(P)H are transferred to plastoquinone (PQ), thereby regen-
erating ATP without regenerating NAD(P)H. Transhydrogenase (TH) easily converted electron transfer 
between NADH and NADPH. CO2 is fixed by RuBisCO in central metabolic pathway using NAD(P)H and 
ATP produced by the photosystem
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Although the regenerative fluxes of NAPDH and ATP by photosystem cannot be measured 
directly, the balance between regeneration and consumption rates of them in cyanobacteria is 
maintained homeostasis by the photosystem and central metabolism. Therefore, by determin-
ing the regeneration and consumption rates of them by the central metabolic pathway, it is pos-
sible to estimate those by photosynthesis. 13C-metabolic flux analysis (13C-MFA) is a method 
that accurately predicts the flux distribution of metabolic pathway, including the CO2 fixation 
rate, using isotope labeling information [24]. One of the insights from 13C-MFA is an estima-
tion of the intracellular state based on cumulation of the regeneration and consumption rates 
of NAD(P)H and ATP accompanying metabolic reactions [15, 25]. In this study, we aimed to 
investigate how the metabolic state changes in the ΔndhF1 strain by 13C-MFA. We cultivated 
the ΔndhF1 strain in medium containing glucose and carbonate, estimated the flux distribu-
tion on the central metabolic pathway during the exponential growth phase, and evaluated the 
effects of NDH-1 dysfunction on the overall metabolism of cyanobacteria.

Materials and Methods

Bacterial Strains and Culture Condition

The glucose-tolerant strain of Synechocystis sp. PCC 6803 (Ctrl) and its derivative strain 
lacking ndhF1 (slr0844) encoding NAD(P)H-quinone oxidoreductase subunit 5 (ΔndhF1) 
[20] used in this study were kindly gifted by Prof. Kintake Sonoike. Both strains were 
grown on modified BG-11 (1.5  g L−1 NaNO3, 0.027  g L−1 CaCl2·12H2O, 4.5  mg L−1 
FeCl2·4H2O, 1.2 mg L−1 NH4Cl, 1 mg L−1 EDTA-2Na, 31 mg L−1 K2HPO4, 75 mg L−1 
MgSO4·7H2O, 2.9 mg L−1 H3BO4, 1.8 mg L−1 MnCl2·4H2O, 0.22 mg L−1 ZnSO4·7H2O, 
0.39 mg L−1 Na2MoO4·2H2O, 79 μg L−1 CuSO4·5H2O, and 49 μg L−1 CoCl2·6H2O, and 
4.8 g L−1 HEPES–KOH (pH 7.5)). Cultures were performed four biological replicates. The 
solid medium contained 15 g L−1 agar. 0.02 g L−1 erythromycin, 0.9 g L−1 (5 mM) [1,2-
13C] glucose, and 4.2 g L−1 (50 mM) NaHCO3 were added whenever necessary. [1,2-13C] 
glucose was purchased from Cambridge Isotope Laboratories (Andover, MA, USA). The 
intensity of the light illumination was measured with a photometer LI-250A (LI-COR Inc.; 
Lincoln, NE, USA) containing a quantum sensor LI-190SA (LI-COR Inc.).

For pre-culture, both strains were cultured in 20  mL of BG-11 medium containing 
NaHCO3 in 100-mL Erlenmeyer flasks under fluorescent light flux of 100 μmol  m−2  s−1 
light at 30℃. Cell growth was monitored by measuring optical density at 730 nm (OD730) 
with the UVmini-1240 system (Shimadzu; Kyoto, Japan). When OD730 ≈ 1, pre-cul-
tures were inoculated in 100  mL of BG-11 medium containing [1,2-13C] glucose and 
NaHCO3 in 500-mL Erlenmeyer flask as the main culture under fluorescent light flux of 
50 μmol m−2 s−1 light with an initial OD730 of 0.05.

Measurements of Dry Cell Weight, Extracellular Glucose, Intracellular Chlorophyll, 
and Whole Cell Absorption Spectra

To calculate the coefficient of dry cell weight (DCW) per L per OD730, 25 mL culture 
broth were filtered with OD730 ≈ 1 using 0.2 μm pore size Omnipore filter disks (Merck 
KGaA; Darmstadt, Germany). The cells on filter were washed with 0.9% NaCl, dried 
at 70℃. The dried cells were weighed together with the filter. To exclude the weight of 
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filter, 25 mL culture broth without microbes was processed in a same procedure and the 
result was set as a control.

To measure glucose concentrations in culture broth, culture broth was collected every 
time points and its supernatant was filtrated using a 0.45-μm pore size Millex HV filter 
(Merck KGaA). The glucose concentrations in filtrates were measured with an enzy-
matic electrode sensor BF-5 (Oji Scientific Instruments; Hyogo, Japan).

To measure intracellular chlorophyll concentration, 2 mL culture broth was collected 
with OD730 ≈ 2 and extracted chlorophyll with methanol according to the previous study 
[26, 27]. Extracted chlorophyll was measured using a Synergy HTX (BioTek; Winooski, 
VT, USA) at 665 and 750 nm wavelengths.

To measure whole cell absorption spectra, culture broth with OD730 ≈ 2 was measured at 
room temperature with 1-nm increments using a spectrophotometer DU800 (Beckman Coulter; 
Fullerton, CA, USA). Absorption spectra were normalized to turbidity measured at 750 nm.

GC/MS for Labeling Pattern of Proteinogenic Amino Acids

The method extraction and analysis of proteinogenic amino acid basically followed the pre-
vious study [28]. Ten mL of quadruplicate culture of the control and the engineered strains 
were taken from the flask, centrifuged at 7000 × g for 5 min at 4℃, and hydrolyzed in 6 mol 
L−1 HCl at 105℃ for 18 h. The resulting proteinogenic amino acids were derivatized with 
N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide containing tert-butyldimethylchlo-
rosilane in acetonitrile at 105℃ for 1 h and then analyzed using a gas chromatograph—mass 
spectrometer (GC–MS; 7890A, 5975C; Agilent Technologies; Santa Clara, USA) equipped 
with a DB-5MS + DG column (Agilent Technologies). The analytical conditions used are 
described elsewhere [29]. The data obtained from GC–MS were corrected by reduction of the 
natural abundance ratio of C, H, O, N, and Si isotopes according to the previous study [30].

13C‑Metabolic Flux Analysis

13C-MFA was performed using in-house software OpenMebius [31], which is based on the 
elementary metabolite units framework [32] in MATLAB (MathWorks Inc.; Natick, MA, 
USA). The biomass composition of Synechocystis sp. PCC 6803 described in previous 
study [33], and specific growth rates measured in this study were employed for estimating 
biomass synthesis fluxes for each strain. The metabolic pathway model of Synechocystis 
sp. PCC 6803 comprised 40 reactions containing CBB cycle, oxidative pentose-phosphate 
pathway, glycolysis, anaplerotic reaction, Krebs cycle, and glyoxylate shunt (Supplemen-
tary Table 1). Metabolic fluxes were estimated by minimizing the residual sum of squares 
between the experimentally measured and model predicted 13C-enrichment using the 
fmincon optimization solver in the MATLAB toolbox. The standard deviation of measured 
13C-enrichment was set to 0.01 [28]. The specific rates of growth and glucose consump-
tion were used as measurable fluxes. The optimizing function is described as

MinimizeRSS =

n
∑

i=1

(

MIDmeasured
i

−MIDsimulated
i

SDi

)2

+

m
∑

j=1

(

rmeasured
j

− rsimulated
j

SDj

)2
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where n and m represent the number of amino acids and measurable fluxes used for flux 
estimation, respectively; MIDmeasured

i
 and MIDsimulated

i
 represent the mass isotopomer distri-

bution (MID) of i-th measured and estimated amino acids, respectively; SDi and SDj rep-
resent the SD of j-th measured MID and measured fluxes, respectively; and rmeasured

j
 and 

rsimulated
j

 are j-th measured and estimated fluxes, respectively.

Results

Phenotypical Profiles

The ndhF1 encodes NAD(P)H-quinone oxidoreductase chain 5, which forms proton motive 
force as respiratory electron transfer using NAD(P)H as a reducing power. Ogawa et al. con-
structed a mutant strain, ΔndhF1, and revealed that the dysfunction of NDH-1, which is the 
main electron acceptor in CET, resulted in significant alteration in photosynthetic activity 
[20]. To evaluate in detail the alterations in central metabolism in response to the alterations 
in phenotypes caused by ndhF1 disruption, we used the Ctrl and ΔndhF1 strains in this study.

The Ctrl and ΔndhF1 strains were cultured in modified BG-11 medium containing [1,2-13C] 
glucose and NaHCO3 as carbon sources under fluorescent lights with 50 μmol m−2 s−1 light. 
The growth characteristics are shown in Fig. 2. The specific rates of growth and glucose con-
sumption at exponential growth phase (Ctrl; 30–37 h, ΔndhF1; 48–58 h) and chlorophyll con-
tents at a sampling point for 13C-MFA (Ctrl; 37 h, ΔndhF1; 58 h) were summarized in Table 1.

Regarding the growth profiles, the ΔndhF1 strain required additional time to reach the 
same OD730 compared to the Ctrl strain (Fig. 2A). This phenotype was a typical in NDH-1 
deficient strain and consisted with the results in the previous studies [18, 34, 35]. Regarding 
the glucose consumption profiles, the slow-growing ΔndhF1 strain consumed glucose more 
slowly than the Ctrl strain (Fig. 2B). Cells of the ΔndhF1 strain were paler green than those 
of the Ctrl strain (Fig. 2C), implying decrease of chlorophyll contents in cells. The chlorophyll 
content in the ΔndhF1 strain was certainly decreased to 35% (= 5.72/16.31) of that in the Ctrl 
strain (Table 1). The results of UV–VIS absorbance spectra of whole intact cells showed that 
the peak height of phycocyanin (620 nm) per chlorophyll α (680 nm) for the ΔndhF1 strain 
was smaller than for the Ctrl strain (Supplementary Fig. 1). This phenomenon, which may be 
caused by glucose, was more dramatic than previous study [20]. It is expected that the photo-
synthetic activity of the ΔndhF1 strain was weaker than that of the Ctrl strain. In fact, the spe-
cific rates of glucose consumption and growth of the ΔndhF1 strain were also reduced to 68% 
(= 0.21/0.31) and 44% (= 0.04/0.09) of the Ctrl strain, respectively (Table 1). These results 
suggest that cellular activities, including energy production and CO2 fixation, were decreased 
in the ΔndhF1 strain by NDH-1 dysfunction.

Analyses for 13C‑Labelling Pattern in Proteinogenic Amino Acids

Proteinogenic amino acids contained in cells of the Ctrl and ΔndhF1 strains in exponential 
growth phase (OD730 ≈ 1) were analyzed using a GC–MS to obtain raw MID. Noise derived 
from natural isotopes contained in raw MID was removed.

A scatter plot of MIDs of the Ctrl and ΔndhF1 strains is shown in Fig. 3A. Some MIDs 
were plotted off a diagonal, indicating that the proteinogenic amino acid labeling pattern 
changes between strains. To examine this in more detail, we calculated the proportion of 
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13C-labeled carbon atom (13C-enrichment) among the backbone carbon atoms of each amino 
acid (Fig. 3B). For all amino acids, the 13C-enrichment in the ΔndhF1 strain was greater 
than that in the Ctrl strain. To increase the 13C-labeled cellular component in the ΔndhF1 
strain, it is necessary to incorporate more 13C-labeled carbon from glucose into the cellular 
components than carbon from unlabeled CO2 fixed by the RuBisCO, etc. It was expected 
that the CO2 fixation rate of the ΔndhF1 strain was lower than that of the Ctrl strain.

Flux Distribution of Central Metabolic Pathway

13C-MFA was performed using the MID of proteinogenic amino acids and the specific rates 
shown in Table 1. A flux distribution that can explain both the actual MID and specific 
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Fig. 2   Phenotypical profiles of the Ctrl (white) and ΔndhF1 (red) strains grown in modified BG-11 contain-
ing [1,2-13C] glucose under fluorescent light with 50 μmol m−2 s−1 (mean ± SD, N = 4). A Growth profiles. 
Arrows indicate a sampling point for 13C-MFA. B Glucose consumption profiles. C Culture broth at a sam-
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Table 1   Growth characteristics of the Ctrl and ΔndhF1 strains

Specific growth and glucose consumption rates were calculated in exponential growth phase with OD730 ≈ 
2 (Ctrl; 30–37 h, ΔndhF1; 48–51 h). Data shown are mean ± SD (N = 4)

Strain Specific growth rate
(h−1)

Specific glucose consump-
tion rate
(mmol gDCW−1 h−1)

Chlorophyll contents
(mg gDCW−1)

Ctrl 0.090 ± 0.006 0.232 ± 0.037 16.31 ± 0.47
ΔndhF1 0.044 ± 0.002 0.210 ± 0.022 5.72 ± 0.29
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rates was estimated by optimization calculations. The metabolic flux (mmol gDCW−1 h−1) 
calculated as the best-fit value for each reaction is shown in Fig. 4. The measured and esti-
mated MID values are shown in Supplementary Table 2. Since metabolic model has 20 
degrees of freedom and the MID and specific rates used for optimization have 122 degrees 
of freedom, the threshold for the chi-squared test is 126.5. The residual sum of squares of 
the MID calculated from the estimated flux distribution and the measured MID for the Ctrl 
and ΔndhF1 strains were 90.3 and 124.6. Since the residual sum of squares value of the 
both strains passed the chi-squared test, the estimated flux distribution can be regarded as 
statistically identical to the actual flux distribution.

The rate of CO2 fixation by RuBisCO in the Ctrl strain was comparable to that in the 
previous study [36], demonstrating the validity of the results of this analysis. The CO2 fixa-
tion rate in the ΔndhF1 strain was reduced to 40% (= 0.78/1.95) of that in the Ctrl strain, 
which was also consistent with the results expected from the phenotypical profile and 
MID. Accompanied with the decrease of CO2 fixation rate, the fluxes of the entire path-
ways also decreased in the ΔndhF1 strain. However, almost no difference was observed 
in the flux ratio at the branch points of the metabolic pathway; 76% (= 2.96/(1.95×2)) and 
69% (= 1.07/(0.78×2)) of rates of CO2 fixation by RuBisCO redistributed to CBB cycle in 
the Ctrl and ΔndhF1 strains, respectively. The fluxes to the pentose-phosphate pathway of 
the Ctrl and ΔndhF1 strains were 0.06 and 0.05 mmol gDCW−1 h−1, respectively, indicat-
ing that NADPH regeneration by pentose-phosphate pathway was small at least during the 
exponential growth phase even under glucose presence conditions.

Estimation of Photosynthetic Activities from Cofactor Balance Revealed by 13C‑MFA

Fluxes on photosystem cannot measure directly. However, it is considered that the mass 
balance of coenzymes, including NADPH and ATP, are satisfied in whole cell level to 
maintain homeostasis in a pseudo-steady state such as the exponential growth phase. In 
cyanobacteria, NADPH and ATP were produced by central metabolic pathway, but also by 
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photosystem. It is expected that the imbalance between regeneration and consumption of 
the coenzymes by central metabolic pathway were compensated by photosystem. There-
fore, it is possible to indirectly estimate the fluxes of the photosystem by calculating the 
imbalance of coenzymes between regeneration and consumption by the central metabolism 
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[15, 25]. It was assumed that there was no distinction between NADH and NADPH due to 
the presence of TH in this study.

Since the ndhF1 encodes a subunit of NDH-1 complex, it is inferred that the contribu-
tion of CET is reduced in the ΔndhF1 strain. If the ratio of CET to LET decreased, ATP 
regeneration relative to NAD(P)H regeneration by the photosystem also should decreased. 
Therefore, we evaluated the regeneration rates of NAD(P)H and ATP by the photosystem 
for the Ctrl and ΔndhF1 strains based on flux distribution.

Fluxes related to regeneration and consumption of NAD(P)H and ATP were cumu-
lated (Fig. 5). In both strains, consumption of both NAD(P)H and ATP exceeded regen-
eration. The regeneration fluxes of NAD(P)H and ATP by photosystem estimated from the 
gap between regeneration and consumption in NAD(P)H and ATP by central metabolic 
pathway in the Ctrl strain were 4.85 and 8.56 mmol gDCW−1  h−1, whereas those in the 
ΔndhF1 strain were 2.00 and 3.64  mmol gDCW−1  h−1, respectively. These results sug-
gest that NADPH and ATP in both strains produced almost exclusively by photosystems. 
NADPH derived from NADH regenerated by pyruvate dehydrogenase (PYR → ACCOA) 
per total NADPH regeneration in the Ctrl and ΔndhF1 strain were 7% (= 0.42/6.08) and 
9% (= 0.22/2.54), respectively, suggesting contribution of NADH was quite low for source 
of reducing power than NADPH. The estimated regeneration fluxes of both coenzymes 
also decreased in the ΔndhF1 strain, but the reduction ratios were 41% (= 2.00/4.85) and 
43% (= 3.64/8.56), indicating that there was almost no difference between both strains. If 
CET utilization ratio increase, ATP/NAD(P)H production ratio also increase since ATP 
is produced without NADPH production. However, the ATP/NAD(P)H production ratio 
of the Ctrl and ΔndhF1 strain were 1.77 (= 8.56/4.85) and 1.82 (= 3.64/2.00), respec-
tively, suggesting that there was no obvious difference between both strains, too. Yama-
moto et al. demonstrated that the ATP/NAD(P)H production ratio reflected the utilization 
ratio of CET/LET ratio [15]. These results suggest that the utilization ratio of CET remains 
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Fig. 5   The total NAD(P)H (A) and ATP (B) regeneration/consumption rates estimated from best-fit values 
of absolute metabolic fluxes in the Ctrl and ΔndhF1 strains. The lacking NADPH and ATP regeneration 
fluxes (arrows) should be equilibrated by photosynthesis
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unchanged under dysfunction of NDH-1 which contribute as a major electron acceptor in 
CET.

Discussion

In this study, we evaluated metabolic states of the ΔndhF1 and Ctrl strains by 13C-MFA. 
The specific rates of growth and glucose consumption, and contents of photosynthetic pig-
ments in the ΔndhF1 were decreased compared to the Ctrl strain (Fig.  2, Table 1, Sup-
plementary Fig.  1). Accompanied with the reduction of them, the CO2 fixation rate by 
RuBisCO in the ΔndhF1 also decreased compared to the Ctrl strain, whereas no obvi-
ous change of flux ratio at the branch points in metabolic pathway was observed (Fig. 4). 
Although the total specific NAD(P)H and ATP regeneration/consumption rates were 
decreased in the ΔndhF1, regenerative NAD(P)H/ATP ratio by photosynthesis was compa-
rable between the Ctrl and ΔndhF1 strains (Fig. 5). The previous study demonstrated that 
the change of ATP/NAD(P)H production ratio reflected utilization ratio of CET/LET ratio 
[15]. These results suggest that the total photosynthetic activities estimated from 13C-MFA 
decrease under NDH-1 dysfunction, but the utilization ratio of CET remains unchanged 
against expectations.

Despite the disruption of ndhF1, which constituted a main electron acceptor NDH-1 
in CET, no obvious change was observed in the utilization ratio of CET. The fact that 
the CET utilization ratio was stably maintained may indicate that this level of CET utili-
zation ratio was necessary under the culture conditions used in this study. According to 
the previous study [15], the CET/LET ration in Synechocystis sp. PCC 6803 under mixo-
trophic condition under 3 kinds of single wavelength lights was estimated to 0.2–2.2. Of 
these, the growth rate, flux distribution, and ATP/NADPH ratio in this study were mid-
dle level between R630 and R680, which have CET/LET rations of 0.2–0.5 and 0.5–1.0, 
respectively. Hence, it is expected that CET/LET rations of 0.2–0.5 were required for 
growth of Synechocystis sp. PCC 6803 under mixotrophic conditions. Since CET is a 
pivotal system to produce ATP without NADPH regeneration for responding flexibly to 
changing environments, there are some alternative pathways [37]. NAD(P)H dehydro-
genase II (NDH-2) is a one of the candidates for alternative electron acceptors. NDH-2, 
unlike NDH-1, reduces PQ without formation of proton gradient during the electron 
transfer via itself [38]. Although the efficiency of ATP production via the oxidation 
of NAD(P)H by NDH-2 is smaller than that by NDH-1, its function may be advanta-
geous under NAD(P)H-rich conditions such as ndhF1 deletion, since excess NAD(P)
H can be consumed without futile ATP production. Although a few reports showed the 
functionality of NDH-2 in Synechocystis sp. PCC 6803 [39, 40], these were insufficient 
to estimate the degree of contribution to CET by NDH-2. Another candidate for elec-
tron acceptors in CET is a proton gradient regulation 5 (PGR5) coupled with PGR5-
like photosynthetic phenotype 1 (PGRL1). PGR5/PGRL1 transfers electron from Fd 
to PQ directly or indirectly [41]. The previous studies reported that their analogs were 
found in Synechocystis sp. PCC 6803 genome and stimulated CET as electron accep-
tors [42, 43]. However, the CET efficiency using alternative electron acceptors seemed 
to be much lower than that using NDH-1, since parameters related to cyanobacterial 
growth decreased across the board in this study, especially photosynthetic pigments. PC 
localizes in phycobilisome for harvesting light energy, while chlorophyll localizes in 
PSII and PSI for transferring light energy. Since these pigments contributes to efficient 
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photosynthetic activities, decrease of these pigments should be effective to avoid pro-
duction of the excess NAD(P)H in absence of ndhF1 in exchange for well-growth.

As shown in the previous studies for enhancing productivities of target products which 
required NAD(P)H for biosynthesis, it is certainly a great idea in which ndhF1 disrup-
tion for making excess available NAD(P)H pool in engineered-cyanobacterial strains [22, 
23]. However, this study revealed that ndhF1 disruption also triggered some unfavorable 
decreases in cyanobacterial metabolism, including growth rate, photosynthetic pigment 
contents, and CO2 fixation rate. It may be caused by the excess NAD(P)H pool. One 
solution is to consume excess NAD(P)H accumulated by the disruption of ndhF1 to an 
appropriate level by enhancing the productions of target compounds requiring NAD(P)
H for their biosynthesis using genetic engineering techniques. Although this strategy is 
expected to improve cyanobacterial growth to some extent, the carbon shortage will limit 
whole cyanobacterial metabolism because of current state that ca. 70% of CO2 fixation 
rate must be redistributed into the CBB cycle to maintain the current CO2 fixation rate. 
Hence, most important improvement for cyanobacterial metabolism is enhancement of 
efficiency of CO2 fixation by RuBisCO via CBB cycle. Although it is a challenging issue, 
success for improvement will open up a new frontier for cyanobacterial production.
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