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Abstract
How can we estimate the result size for a given query on complex spatial objects like poly-
gons? Estimating a query’s result size, also known as the cardinality estimation, plays a
significant role in query scheduling and optimization.Accurate and fast cardinality estimation
substantially improves query efficiency. Existing compatible solutions, mainly histogram-
based, deal with polygons as their minimal bounding rectangles for easier processing, which
leads to inaccurate estimation. To address this issue, we present PolyCard, a learned cardi-
nality estimator for intersection queries on spatial polygons. We successfully apply learning
techniques to spatial polygons with variable sizes. PolyCard has the following properties.
(i) Accurate: PolyCard improves 30% accuracy compared with existing solutions, (ii) Fast:
PolyCard takes only 4 microseconds for an estimation, and (iii) Stable: PolyCard is robust
against datasets and queries of different cardinalities. Our experiments on four real-world
datasets of millions of polygons demonstrate the efficiency and effectiveness of PolyCard.

Keywords Cardinality estimation · Query optimization · Spatial polygon · Machine learning

1 Introduction

Spatial applications, such as mobile maps and geographical information systems (GIS), play
a significant role in current society (Amagata & Hara, 2019, 2016, 2017; Hori et al., 2023;
Pandey et al., 2021; Amagata et al., 2022; Aji et al., 2012; Hayashida et al., 2018; Nishio
et al., 2022; Ji et al., 2024). These applications require many spatial objects like polygons
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and efficient techniques that process such spatial objects (Bouros &Mamoulis, 2019; Sasaki,
2021). Many spatial objects in real-world applications are represented as polygons. For
example, in map applications, districts, rivers, and parks are represented as spatial polygons
(or a set of polygons), and this article focuses on spatial polygons. One of the fundamental
operations employed in these applications is intersection query, which, given a query and a
set of spatial polygons, finds all spatial polygons intersecting with the query in the dataset.
As shown in Fig. 1, this query supports (i) finding all districts crossed by a high-risk river
during heavy rainfall1 and (ii) looking for parks located within a specific region using a map
application (Jacox & Samet, 2007; Mamoulis et al., 2004). These examples trivially clarify
the importance of intersection queries.

Low response time for queries is an essential requirement for application users. Database
management systems (DBMS) usually use a cost-based query optimizer to generate the most
efficient query plan and to achieve low query latency. The query optimization heavily relies
on good estimates of the cardinality of query results (Shekelyan et al., 2021; Ji et al., 2022;
Shi et al., 2023). Therefore, to process intersection queries on spatial polygons efficiently,
we need an estimator that estimates the cardinality of a given intersection query with high
accuracy.

1.1 Motivation and challenge

Existing cardinality estimation methods for polygons typically rely on histograms built on
the minimum bounding rectangles (MBRs) of polygons (Leis et al., 2015). They estimate the
cardinality of a given query’s result based on the statistics derived from the histograms.Unfor-
tunately, these methods have two drawbacks: (1) They approximate polygons by their MBRs,
which makes the estimation essentially inaccurate. (2) They cannot maintain stable perfor-
mance for different datasets and queries. For example, the estimation time of histogram-based
methods is highly dependent on the number of buckets accessed. Some methods designed
to optimize spatial intersection searches/joins can also be used for cardinality estimation
(Bouros & Mamoulis, 2019). RI (Georgiadis & Mamoulis, 2023) provides efficient approx-
imations for polygons, particularly for the spatial intersection join cases. However, RI is too
slow to estimate the cardinality of a single intersection query’s result.

In recent years, learned cardinality estimation methods have been proposed to provide
efficient estimations for relational database systems (Dutt et al., 2019; Yang et al., 2019;
Wang et al., 2020, 2021b). They have shown great advantages compared with traditional
histogram-basedmethods.Most of them adopt deep neural networks and train these networks
in a supervised manner. However, they cannot be used for spatial polygons. Each polygon is
represented by a set of two-dimensional coordinates. The number of coordinates is variable,
e.g., from three to hundreds in real-world spatial datasets (Eldawy & Mokbel, 2015). The
variable length input is not allowed for neural networks. The most common solution to this
issue is padding all the input data with zeros (Hashemi, 2019). Considering the possible sizes
of polygons, the zero padding greatly increases the computation cost for both training and
estimation. Low latency is always required for the cardinality estimation problem because
the cardinality estimation is frequently called in a database system.

Moreover, collecting high-quality training data is always challenging for learned cardi-
nality estimators (Kipf et al., 2019; Kwon et al., 2022) because the skewed distribution of
polygons in real-world polygon datasets makes obtaining sufficient training data difficult.
One may come up with randomly generating query (training) polygons to address this issue.

1 These districts are from https://geoshape.ex.nii.ac.jp/.
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Fig. 1 Examples of intersection queries. (a) Find districts in a city (red polygons) crossed by the bottom river
(the blue polygon). The results are denoted by the red polygons with slashes. (b) List parks (green polygons
with slashes) located in the specified district (the red polygon)

This is, however, not appropriate because the shape and the number of vertices of polygons
are not fixed. Furthermore, the cardinality distribution of randomly generated queries has a
long tail. The distribution with a long tail makes convergence of the training of the network
difficult (Yosinski et al., 2015).

As can be seen above, existing techniques are not appropriate for cardinality estimation
of intersection queries on polygons, despite the importance of efficiently supporting this
task. Motivated by this fact, we devise an efficient and accurate cardinality estimator for
intersection queries on polygons. Due to the potentially high accuracy, this article considers
a machine learning (ML) approach. Recall that simply employing a ML approach is not
feasible, so we overcome the following main challenges.

• Variable input size: Neural networks need to be compatible with input polygons of vari-
able sizes.

• Training data generation: The high-quality and sufficient training data is desired for a
learning method.

• Fast estimation: The estimation time should be at least competitive with light-weight
methods, e.g., histogram-based ones, and be quite fast (e.g., microsec-order).

1.2 Contribution

In this article, we propose a learned cardinality estimation method for polygons, providing
fast and accurate estimations for spatial intersection queries.We summarize our contributions
below.

(i) PolyCard We propose PolyCard, the first learned cardinality estimator for intersection
queries on polygons. The main idea behind PolyCard is to make polygons of variable sizes
compatible with neural networks and provide substantial estimation performance derived
from learning techniques. We propose an adaptive sampling method to transform polygon
data to a fixed size, which considers the spatial distribution of the coordinates belonging to a
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polygon. The differences between polygons are well preserved even after the transformation.
The transformed polygons can be processed efficiently after normalization and sent into a
specifically designed neural network. This technique yields the final estimation to be fast and
accurate.

(ii) Training data generation PolyCard is a supervised estimator, so its performance depends
on trainingdata (i.e., trainingqueries).Wepropose a trainingdata generator to provide training
data distributed over the data space and covering different cardinalities. The distribution of
polygons is naturally skewed. The long tail distribution of true cardinalities corresponding
to randomly generated training queries heavily burdens the training process. We guarantee
an even cardinality distribution of training data by a sampling strategy.

(iii) Experiments We conduct experiments on four real-world datasets. Our results demon-
strate that PolyCard outperforms state-of-the-art cardinality estimation methods and can
maintain stable performances on different datasets. Figure 2 shows the overview of our
results: PolygCard is very fast and has a better trade-off between speed and accuracy (q-
error) than the competitors.

1.3 Roadmap

The rest of this article is organized as follows. We present the preliminary information in
Section 2. We elaborate on PolyCard in Section 3. We report our experimental results in
Section 4, and Section 5 concludes this article.

2 Preliminary

In this section, we define our problem and review related works. Table 1 gives the main
symbols we use in this article.

2.1 Definition

Let D denote a set of polygons. A polygon is a typical spatial object type.We use P to denote
a polygon, and it is defined as:

Definition 1 (Polygon) P is represented by a list of vertices, i.e., P = [p1, p2, ..., pm].
Each of its vertices p is represented by the two-dimensional coordinates, i.e., p = (x, y).

Fig. 2 Accuracy (represented by the 50th q-error) vs. estimation time on Sports dataset
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Table 1 Overview of symbols
frequently used in this article

Symbol Description

D Polygon dataset

P Polygon in a dataset D

p Vertex in a polygon P

Q Intersection query

card(Q) True cardinality of Q

̂card(Q) Estimated cardinality of Q

There is an edge (or a line segment) between consecutive vertices pi and pi+1 (pm and p1
are also consecutive vertices).

That is, a polygon is a two-dimensional shape closed by its edges. Notice that each polygon
can have a different number of vertices.

This article considers intersection queries on polygons, and we define this type of query
and its cardinality below. (Recall that Fig. 1 illustrates some examples of intersection queries.)

Definition 2 (Polygon Intersection) Polygon A is intersected with polygon B if one of
the following cases is met:

• Any pair of edges 〈eai , ebj 〉 intersects, where eai is an edge of A and ebj is an edge of B.
• A (B) is fully contained in B (A).

The polygon intersection is first tested using the MBRs of two polygons. If MBRs do not
overlap, the two polygons do not intersect. Otherwise, a line segment intersection test is used
to check if any pairs of line segments (edges) are intersected (Rigaux et al., 2001; Liu &
Puri, 2020). If no pairs of line segments intersect, a point-in-polygon test can determine if
one polygon is fully contained within the other (Heckbert, 2013).

Definition 3 (Cardinality of Intersection query) Given a dataset D and an intersec-
tion query Q represented by a query polygon q , the intersection query Q returns all polygons
in D that intersect with q . The cardinality of Q is the output size of Q, i.e., the number of
polygons in D that intersect with Q. We use card(Q) to denote the cardinality of Q.

The notion of selectivity is close to cardinality and represented as card(Q)
N , where N is the

size of the dataset.
It takes O(m logm) time to test if two polygons are intersected and O(Nm logm) time

for an intersection query, wherem is the number of vertices in a polygon and N is the number
of polygons in D. We address the cardinality estimation problem to help further accelerate
query processing in this article. We use ̂card(Q) to denote an estimated cardinality of Q.
We aim at fast and accurate estimation.

2.2 Related works

Histogram-based cardinality estimation.Histogram-based cardinality estimationmethods
are the most widely used in relational database systems like PostgreSQL (Leis et al., 2015;
Woltmann et al., 2021). These database systems build histograms on relational tables as
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the statistics. Estimators for rectangle queries have also been developed for spatial cases
(Derthick et al., 1999; Belussi et al., 2004).

CDHistogram addresses this problem by maintaining four sub-histograms corresponding
to the four vertices of a rectangle (Jin et al., 2000). A bucket in a sub-histogram stores
the number of corresponding vertices falling in the bucket. This design can avoid duplicate
counts of rectangles spanning several buckets. Histogram-based methods can be used for
our task by approximating polygons with their MBRs. Our experimental results confirm that
this approximation hurts estimation accuracy. In addition, the accuracy of histogram-based
methods is severely dependent on the bucketing resolution and the data distribution.

Spatial joins and related query optimization have been widely studied (Bouros &Mamoulis,
2019; Belussi et al., 2004; Vu et al., 2021; Xie et al., 2016; Taniguchi et al., 2022a, b). They
mainly focus on how to execute complex spatial queries and select the most efficient join
algorithms.Note that they have not answered how to estimate the cardinality of an intersection
query.

RI (Georgiadis &Mamoulis, 2023), which focuses on efficient approximation of polygons
for spatial joins, can be used for cardinality estimation. However, our evaluation in Fig. 2
finds it too slow to be used as a cardinality estimator. RI is designed for precise approximation
of polygons and can provide an estimation near the true cardinality. However, it incurs nearly
the same time cost of query execution, which is meaningless under the cardinality estimation
context. (Note that cardinality estimation is conducted before query execution.)

Spatial intersection query has been widely studied for a long time (Bentley & Ottmann,
1979; Shamos & Hoey, 1976; Greiner & Hormann, 1998). The intersection of two polygons
is determined by finding a pair of line segments intersecting with each other, where each
segment belongs to a different polygon. Recent works (Frye & McKenney, 2022; Liu &
Puri, 2020; Puri et al., 2013) mainly focus on accelerating intersection query processing
by parallelization. These techniques are not available for our problem, because running an
intersection query to estimate its result size is meaningless. Our problem is useful for making
an efficient execution schedule of many intersection queries.

Learned cardinality estimation has shown remarkable improvements compared with tra-
ditional histogram-based methods (Wang et al., 2021b; Kipf et al., 2019; Hasan et al., 2020;
Hu et al., 2022; Li et al., 2022). They can be categorized into data-driven methods (e.g., Yang
et al., 2019; Meng et al., 2022) and query-driven methods(e.g., Han et al., 2021; Wang et al.,
2021a).

Data-driven methods usually learn the data distribution using deep neural networks.
Autoregressive models (Hasan et al., 2020; Yang et al., 2020) can approximate the joint
distribution in a conditional manner and estimate the cardinality without any independent
assumptions. However, data-driven methods cannot easily approximate the distribution of
polygons because polygons have variable lengths and complex structures.

Query-driven methods are built on training queries and map training queries to the cor-
responding true cardinalities. The query-driven style is suitable for our task because it can
ignore the complex data distribution of polygons, so PolyCard also takes this approach. Exist-
ing methods accept common data types in relational database systems, like integers, floats,
and strings. These data have fixed sizes or can be easily encoded to a fixed size, whereas
polygons do not have this observation. As mentioned in Section 2, the number of polygon
vertices is variable and can be large. It is not trivial to transform polygons to a fixed size
efficiently. Thus, existing learned cardinality estimators cannot deal with the polygon case.
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3 PolyCard

3.1 Main idea

PolyCard is a learned cardinality estimator designed for intersection queries on polygons.
We first solve the challenge of designing a learned model for polygons with variable-sized
vertices. To map variable-sized vertices to fixed-sized ones, zero padding is the most direct
solution and can make all polygons the same size as the maximal one. However, it increases
the computation cost of NN, resulting in inefficiency. To transform polygons to a fixed size
without having this inefficiency issue, we develop an adaptive sampling method. The idea
behind the adaptive sampling is twofold. First, sampling can adjust the size freely. Second,
adaptive sampling, which considers the spatial distribution of vertices, can well preserve the
shapes of polygons even with smaller sizes of vertices.

Standard deep neural networks, such as convolutional neural networks (CNN), multi-layer
perceptrons (MLPs), and autoregressivemodels, have been used for the cardinality estimation
problem on the other data formats (Yang et al., 2019; Kipf et al., 2019; Negi et al., 2023;
Sun et al., 2021). Inspired by these existing works, we build our neural network (NN) based
on a combination of MLPs. Its structure helps achieve accurate estimation within several
microseconds according to our evaluation, see Fig. 2.

Recall our discussion in Section 1.1: we want to train a NNwith query polygons of evenly
distributed cardinalities. (Training queries with more evenly distributed cardinalities can help
reduce high-percentile errors.) Generating polygons from scratch is challenging, complex,
and laborious, due to the variable number of vertices (Zhu et al., 1996) and complex and
various polygon shapes. To overcome this challenge, we come up with the idea of using
real-world datasets as sources of polygons. Specifically, we generate new (synthetic) query
polygons based on real polygons from these datasets, with modifications such as shifting.
Additionally, the cardinality distribution of the overall generated training data can be skewed
and interfere with the convergence of model training, which makes the training a challenging
task. We tackle this challenge by using a down-sampling strategy and achieve a uniform
cardinality distribution for well model training. We develop a training data generator based
on the above ideas.

3.2 Overview

Figure 3 shows the framework of PolyCard. For model training, we use our training data
generator to obtain sufficient training queries and their true cardinalities. We featurize the
training queries into dataset vectors andpolygonvectors. Specifically,we represent the dataset
information by one-hot vectors. Polygons are also represented as fixed-sized normalized
vectors. A NN is trained with these vectors and the true cardinalities. After the training, we
use the NN for cardinality estimation. Given a query, we featurize it into two vectors in the
same way as the training. These two vectors are entered into the NN, and its output is ̂card .

3.3 Training data generator

Our training data generator aims at two goals: (i) generating sufficient polygon queries
and (ii) obtaining training data with evenly distributed cardinalities. Because polygons have
variable sizes and vertices distribution, generating a polygon from scratch is not a good
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Fig. 3 Framework of PolyCard. Training: Our training data generator is used to obtain sufficient training
queries and their true cardinalities (left-top part). We featurize the training queries into dataset vectors and
polygon vectors (middle part), that is, we represent the dataset information by one-hot vectors, whereas
polygons are repressed as fixed-sized normalized vectors. The NN is trained with these vectors and the true
cardinalities (right-top part). Cardinality estimation: Given a query input, we featurize it into two vectors in
the same way as the training (middle part). We then use the trained NN to obtain ̂card

idea. We choose polygons from real-world datasets. Our generator chooses polygons from
datasets randomly and performs transformations, i.e., shifting, reflection, and perturbation,
to generate polygons serving as training queries, as shown in Fig. 4. To obtain a shifted
version of a polygon P , we apply the same modifications to all coordinates of its vertices in
each dimension. For the reflection, we randomly select a vertex of P and reflect all the other
vertices vertically. To obtain a perturbation edition of a polygon P , we add a random small
value to each coordinate of each vertex of P .

The distribution of polygons is naturally skewed (Macke et al., 2018). This observation
makes the cardinality distribution of randomly generated queries have a long tail, as shown
in Fig. 5(a). As discussed in Section 1.1, this distribution makes convergence of the training
hard. Our generator helps obtain training data with evenly distributed cardinalities in two
steps. First, generate new query polygons and compute their true cardinalities. Second, our
generator guarantees the training datawith an even cardinality distribution by down-sampling
from the overall generated training data. To achieve this,we generate the cardinality histogram
of training data. If the distribution shown in the histogram is skewed, the generator selects
small portions of training data from buckets containing more data than the average. With our

Fig. 4 Generation of polygons.
We perform shifting, reflection,
and perturbation on polygons
from real-world datasets
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Fig. 5 Histogram of cardinalities of training queries on Sports dataset

Algorithm 1 Polygon- Transformation
Input: P (a polygon represented by an array of m vertices) and n (the number of vertices of the

transformed polygon)
Output: P ′ (the transformed polygon)

1 P ′ ← ∅, interval ← m/n, count ← 0
2 if n < m then
3 zone_ f lag ← False
4 foreach i ∈ [1, n] do
5 cur_zone ← Get- Zone(P[i]) // P[i] is the i-th vertex in P
6 count ← count + 1
7 if zone_ f lag[cur_zone] = False then
8 P ′ ← P ′ ∪ {P[i]}
9 count ← count − interval

10 zone_ f lag[cur_zone] ← True
11 else
12 if count ≥ interval then
13 P ′ ← P ′ ∪ {P[i]}
14 count ← count − interval

15 else
16 foreach i ∈ [1,m] do
17 count ← count + 1
18 num_vertices ← Floor(count/interval)
19 if num_vertices = 1 then
20 P ′ ← P ′ ∪ {P[i]}
21 count ← count − interval
22 else
23 if num_vertices ≥ 2 then
24 P ′ ← P ′ ∪ {Interpolation(P[i − 1], P[i], num_vertices)}
25 count ← count − interval × num_vertices

generator, we can always obtain training data with the cardinality distribution like the one
shown in Fig. 5(b).

3.4 Polygon transformation

The polygon transformation aims at transforming polygons with variable-sized vertices to a
fixed sizem, which makes polygons compatible for feeding into our NNmodel. Algorithm 1
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shows the details of the transformation. Let m be the number of vertices of a polygon P . We
want to transform P to a similar polygon with n vertices.

If n < m, we run an adaptive sampling that considers the distribution of vertices. We
first compute the MBR of the original polygon and divide the MBR into four equal-sized
zones according to the midpoints of the four edges of the MBR (line 5). Then, we perform a
uniform-like sampling by scanning the vertices sequentially. During the scan, we guarantee
that at least one vertex is sampled in each zone intersecting with the polygon. To achieve
this, we locate the zone to which each vertex P[i] belongs. If no sample belongs to the zone,
we sample P[i] (line 7).

If m ≥ n, we adopt a uniform interpolation method for the transformation2. We sequen-
tially scan the vertices and calculate the number of new vertices to be inserted between two
vertices by interpolation (line 18). If the number of new vertices equals one, we simply treat
the current vertex as a new vertex (lines 19–21). If the number of new vertices is larger
than one, we interpolate the coordinates of two consecutive vertices and obtain the required
number of new vertices with interpolated coordinates (lines 23–25). The transformation costs
O(max(m, n)) time.

In Fig. 6a, suppose that we transform the polygon to a fixed size of five vertices. Only two
vertices fall into the left-bottom zone, and they are far away from the other vertices. If we run a
standard random sampling, they are probably not sampled. Our adaptive sampling guarantees
every zonewhere the vertices exit is covered. Thus, the transformation can preserve the shapes
of polygons well. As shown in Fig. 6b, the shape of the transformed polygon is very similar
to that of the original polygon.

3.5 Featurization

As shown in Fig. 3, the input data fed into theNNconsists of two kinds of vectors, respectively
representing the dataset information and the polygon. We featurize an input query into two
vectors, a dataset vector and a polygon vector, to better represent the input and help the
training converge.

The dataset vector represents which dataset is being queried. We use a one-hot vector
of the length M , where M is the total number of datasets used as sources. For this vector,
when the i-th dataset is accessed by a query, its corresponding dimension is one and the other
dimensions are zero.

To featurize the query polygon, we first perform the transformation discussed in
Section 3.4. Then we normalize the coordinates of vertices to avoid numerical instability.
We construct the polygon vector by concatenating all coordinates of the polygon.

3.6 Model

For our NN, we employ MLPs, because they can approximate functions well and yield fast
inferences (Collobert & Bengio, 2004; Mo et al., 2023). Each MLP is composed of two fully
connected layers, each accompanied by a ReLU activation function:

MLP(x) = max(0,max(0, xW1 + b1)W2 + b2), (1)

2 Considering the estimation efficiency, n should be smaller than m for most polygons because a large n will
increase the size of the NN and the computation cost for estimation.
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Fig. 6 Our polygon transformation. (a) The polygon is represented by vertices and edges connecting the
vertices. The outside rectangle is the MBR of the polygon. The orange dashed line separates the MBR into
four equal-sized zones referring to the four corners of the MBR. Given the fixed size of five vertices for
transformation, we sample the orange vertices. (b) The transformed polygon

where x represents the input vector whereas W1, W2, b1, and b2 are learned parameters.
The ReLU function is represented by max(0, x). We use one MLP for polygon vectors and
another for dataset vectors. The outputs of the two MLPs are concatenated and then fed into
the output MLP.

For the output MLP, we replace the final ReLU function with a sigmoid function, which
is a common choice as the activation function for the output layer. Compared with the other
NNs, the main advantage of our design is the computation speed. For example, the fully
connected layer consumes much less computation time compared with the convolutional
layer (widely used in various NNs).

Since PolyCard is a supervised estimator, we pre-compute the true cardinality of each
training query polygon. Notice that the cardinality has a wide range of possible values. For
training, we perform the logarithmization and normalization on the cardinality to compress
the range and reduce the impact of extreme values on model training (Yu & Spiliopoulos,
2023). To get ̂card for a query, we perform the reversion of the logarithmization and the
normalization on the output of the NN.

3.7 Training and estimation

Figure 3 shows the training and estimation flow of PolyCard. We take the following steps for
the training: (i) generate training data by the generator, which contains the training queries
and corresponding true cardinalities and (ii) train the NN with the training data. We use the
q-error as our loss function, which is widely used for the cardinality estimation problem (Sun
et al., 2021; Wu & Cong, 2021):

q-error =
max

(
̂card, card

)

min
(

̂card, card
) .
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To estimate the cardinality of a given query, we featurize this query into a dataset vector
and a polygon vector. After feeding the featurized vectors into the NN, we obtain ̂card
as discussed in Section 3.6. The estimation time is dependent only on the NN structure.
Therefore, the estimation of PolyCard is stably fast for datasets of different sizes and queries
of different selectivities.

4 Experimental evaluation

This section reports our experiment results and investigates the following questions:

• Is PolyCard accurate, fast, and stable?
• How good is PolyCard compared with competitors?
• Are the challenges mentioned in Section 1.1 severe problems for the cardinality estima-
tion? How much does PolyCard benefit from solving those challenges?

• How much does PolyCard benefit from solving those challenges?

4.1 Setup

4.1.1 Dataset

Weused four real-world datasets widely used in spatial data processingworks3 (Georgiadis&
Mamoulis, 2023; Eldawy &Mokbel, 2015). They contain polygons representing the bound-
aries of various types of objects. Table 2 shows the information of the datasets.

4.1.2 Queries

We prepared one thousand randomly generated queries based on real-world polygons. We
guaranteed that they have a wide cardinality distribution from one to tens of thousands.

4.1.3 Evaluatedmethods

We evaluated the following methods in this article.

• PolyCard: is our proposed method4 The size of transformed polygons is set to ten by
default. (The impact of different sizes is discussed in Section 4.3.) PolyCard is trained
on a GPU.

• PostgreSQL5: refers to the cardinality estimation method used in PostgreSQL 16. It
estimates the cardinality based on the statistics of the datasets including histograms.
PostgreSQL does not provide the exact estimation time, so we used the planning time to
represent its estimation time instead.

• CDHistogram (Jin et al., 2000): is one of the most representative histogram-based meth-
ods designed for spatial objects. It originally supports only rectangles. We extended it to

3 https://spatialhadoop.cs.umn.edu/datasets.html
4 Source code is available at: https://github.com/ji-yuchen/PolyCard..
5 https://www.postgresql.org/docs/current/row-estimation-examples.html
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Table 2 Statistics of datasets

Name Cemetery Sports Parks Buildings

Size (million) 0.19 1.8 10 115

Average #vertices per polygon 10.3 11.3 35.5 7.0

support polygons by using MBRs. The bucket size of CDHistogram on each dimension
was set to 10,000 by default.

• RI (Georgiadis &Mamoulis, 2023): is a state-of-the-art approximation method for inter-
section joins on polygons. We employed its upper-bounding technique to estimate the
cardinality of a given query’s result.

4.1.4 Evaluated criteria

We used the q-error to measure the accuracy of each method, see Section 3.7. For estimation
time, we report the average time to compute ̂card(R).

4.1.5 Environment

All experiments were conducted on a server with an Intel Xeon Gold 6254 CPU, a NVIDIA
Quadro RTX 8000 GPU, and 768GB RAM. The OS was Ubuntu 22.04.4 LTS. PolyCard was
implemented in Python with PyTorch. We implemented CDHistogram in C++. For RI, we
used the C++ source code provided by the authors.

4.2 Overall performance

4.2.1 Estimation time

Figure 7 shows the estimation time of each method. PolyCard is the fastest method on
all datasets except the Cemetery case. Furthermore, PolyCard provides a stable estimation
time, i.e., its estimation time is not dependent on dataset size, which is desirable for large

Fig. 7 Estimation time
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Table 3 Accuracy evaluation results

Datasets Methods 25th q-error 50th q-error 75th q-error 95th q-error 99th q-error

Cemetery PolyCard 1.2 1.45 1.91 3.22 5.3

PostgreSQL 1.0 1.85 2.33 5.0 7.0

CDHistogram 1.6 2.25 3.26 6.0 8.0

Sports PolyCard 1.32 1.85 3.26 9.34 26.78

PostgreSQL 1.71 3.15 7.0 23.0 47.08

CDHistogram 1.54 2.69 5.0 15.5 38.0

Parks PolyCard 1.29 1.79 3.03 8.86 19.73

PostgreSQL 1.46 2.35 4.5 18.69 90.26

CDHistogram 2.47 3.43 5.31 13.0 30.02

Buildings PolyCard 1.72 2.99 7.19 37.47 126.36

PostgreSQL 7.74 28.85 75.68 333.05 1192.32

CDHistogram 2.11 3.48 6.48 52.84 367.18

Bold shows the winner

datasets. On the other hand, CDHistogram becomes slower as the dataset size grows, and
PostgreSQL is usually slower than CDHistogram. The estimation time of RI is much longer
than the othermethods and is longer than even the execution time of queries (normally several
milliseconds)6. It is trivial that RI is not suitable for the estimation task. We therefore did not
evaluate RI in the remaining experiments.

4.2.2 Accuracy

Table 3 shows the accuracy evaluation results. Overall, PolyCard achieves smaller errors than
PostgreSQL and CDHistogram. When considering high percentile errors (i.e., 95th and 99th
q-errors), which are of great concern for the cardinality estimation task, PolyCard beats the
competitors on all datasets. PostgreSQL has the largest high percentile errors on all datasets
except the Cemetery case. These large errors lead to a high risk of generating inefficient
query plans.

4.3 Detailed analysis

4.3.1 How good is our polygon transformation?

We compare the sizes of input data obtained by the proposed polygon transformation solution
(Section 3.4) with zero padding to confirm that zero padding is not a feasible approach.
(Recall that zero padding is to fix the size of all polygons to the maximum one by adding
zero.) Figure 8 observes that zero padding incurs too large data (more than 150GB) for NN

6 The construction of RI on Buildings took more than several hours, so we omit its result.
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Fig. 8 Sizes of the input data for the NN achieved by the proposed polygon transformation and zero padding

training (i.e., tens of thousands of dimensions for each polygon). It is much larger than GPU
RAM, and zero padding makes the training NN infeasible.

Furthermore, we compare our adaptive sampling transformation with uniform sampling
andMBR approximation. Trivially, if method A provides a transformed polygon with a better
similarity thanmethod B, method A yields less error. Figure 9 shows the advantage of adaptive
sampling. This result demonstrates that our polygon transformation is of high quality and
helps achieve better accuracy.

4.3.2 Impact of reduced polygon size

Figure 10 shows the accuracy results corresponding to different sizes of transformed poly-
gons. The accuracy can be greatly improved (specifically high percentile errors) when the
size increases from 4 to 10. Considering the average number of vertices per polygon shown
in 2, large sizes like 25 cannot further improve the performance. On the other side, large
sizes increase the storage and computation costs. A grid-based search can help find the most
suitable size for each dataset. Here, the choice of size = 10 is sufficient for our evaluation.

Fig. 9 Accuracy comparison of the proposed adaptive sampling, uniform sampling, and MBR approximation
for polygon transformation
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Fig. 10 Impact of sizes of transformed polygons on the accuracy

4.3.3 How good is our training data generator?

Figure 11 shows two convergence curves of PolyCard; one is generated by our proposed gen-
erator and the other is the random one discussed in Section 3.3.We can observe that PolyCard
meets difficulty in convergence (at a small loss) when trained on randomly generated datasets.
As discussed in Section 3.3, the cardinality distribution of randomly generated queries has
a long tail. It makes convergence of the training hard. In the case of Cemetery, we found
that more than sixty percent of queries in the randomly generated training queries have zero
cardinality. As a result, the training loss shown in Fig. 11(a) fails to decrease and becomes
a stubborn constant. Furthermore, as shown in Fig. 12(a), the trained model achieves poor
estimation accuracy. Our training data generator solves this problem by generating training
data with more evenly distributed cardinalities.

Figure 12 shows the estimation errors of PolyCard after the above training. The q-errors of
PolyCard trained on randomly generated queries are much larger. The above results clearly
show that our training data generator helps the training converge and achieve reasonable
accuracy.

5 Conclusion

We presented PolyCard, which addressed the cardinality estimation problem of intersection
queries on polygons. The main idea is twofold: (i) making learning models compatible
with variable-sized polygons by applying adaptive sampling transformation on polygons and
(ii) acquiring sufficient training data with evenly distributed cardinalities by a training data
generator. Our experimental results show that our PolyCard has the following advantages
compared with other competitors: (i) PolyCard improves 30% accuracy in comparison to
other methods, (ii) PolyCard costs only 4 microseconds for a single estimation, and (iii)
PolyCard is effective on datasets of different sizes and has low high percentile q-errors.

Fig. 11 Convergence of training
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Fig. 12 The proposed training data generator helps achieve good accuracy: the estimation errors of PolyCard
trained on the datasets generated by the generator and the random generation
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