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Identification of dequalinium as a 
potent inhibitor of human organic 
cation transporter 2 by machine 
learning based QSAR model
Fumihiro Yamane1, Kenji Ikemura2, Masayoshi Kondo1, Manami Ueno1 & Masahiro Okuda2

Human organic cation transporter 2 (hOCT2/SLC22A2) is a key drug transporter that facilitates the 
transport of endogenous and exogenous organic cations. Because hOCT2 is responsible for the 
development of adverse effects caused by platinum-based anti-cancer agents, drugs with OCT2 
inhibitory effects may serve as prophylactic agents against the toxicity of platinum-based anti-cancer 
agents. In the present study, we established a machine learning-based quantitative structure–activity 
relationship (QSAR) model for hOCT2 inhibitors based on the public ChEMBL database and explored 
novel hOCT2 inhibitors among the FDA-approved drugs. Using our QSAR model, we identified 162 
candidate hOCT2 inhibitors among the FDA-approved drugs registered in the DrugBank database. 
After manual selection and in vitro assays, we found that dequalinium, a quaternary ammonium 
cation antimicrobial agent, is a potent hOCT2 inhibitor (IC50 = 88.16 ± 7.14 nM). Moreover, dequalinium 
inhibited hOCT2-mediated transport of platinum anti-cancer agents (cisplatin and oxaliplatin) in a 
concentration-dependent manner. Our study is the first to demonstrate the construction of a novel 
machine learning-based QSAR model for hOCT2 inhibitors and identify a novel hOCT2 inhibitor among 
FDA-approved drugs using this model.

Keywords Dequalinium, Drug repositioning, Machine learning, Organic cation transporter 2, Quantitative 
structure-activity relationship

Drug transporters, which have been identified and characterized in various human organs, are involved in drug 
disposition, response, and toxicity1. Organic cation transporter 2 (OCT2/SLC22A2) is a key transporter that 
facilitates the transport of various endogenous and exogenous organic cations2,3. As OCT2 transports platinum 
anti-cancer agents such as cisplatin and oxaliplatin into the kidney4, inner ear cochlea5, and dorsal root ganglion6, 
OCT2 is closely related to the development of adverse effects of platinum anti-cancer agents.

The single-nucleotide polymorphism rs316019 in hOCT2, which adversely affects the function of hOCT2, 
is inversely correlated with cisplatin-induced nephrotoxicity/ototoxicity (CIN/CIO)7. In Oct2 knockout mice, 
CIN/CIO5 and oxaliplatin-induced peripheral neuropathy (OIPN)8 were not observed. In addition, cimetidine, 
a typical OCT2 inhibitor, reduces CIN/CIO and OIPN in mice at concentrations much higher than the clinical 
dose5. Our previous studies demonstrated that proton pump inhibitors (PPIs) have off-target OCT2 inhibitory 
effects and that CIN/CIO and OIPN were suppressed by treatment with PPIs at a clinical dose9–13. Therefore, 
drugs that inhibit OCT2 may serve as prophylactic agents against CIN/CIO and OIPN.

The quantitative structure–activity relationship (QSAR) is a popular tool for identifying the relationship 
between chemical structure and biological activity14. Recently, novel QSAR applications have developed rapidly 
owing to the remarkable advancements in artificial intelligence techniques, including machine learning and 
the development of molecular databases15. In particular, machine learning techniques are attracting attention 
as promising tools for QSAR modeling16, and machine learning-based QSAR models have been applied to 
drug repositioning, advancement of precision medicine, and drug discovery17. In the pharmacokinetic field, 
QSAR models of various drug transporters, including organic anion transporting polypeptide 1B1 (SLCO1B1), 
P-glycoprotein (ABCB1), and breast cancer resistance protein (ABCG2), have been developed18–20. The QSAR 
model of hOCT2 in flavonoids has been reported21. However, little information is available regarding the QSAR 
model of hOCT2 inhibitors in FDA-approved drugs.
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In the present study, we explored novel hOCT2 inhibitors among FDA-approved drugs using a machine 
learning-based QSAR model.

Results
Establishment and evaluation of the QSAR model for hOCT2 inhibitors
Following the procedure described in the Materials and Methods section, we established a machine learning-
based QSAR model for hOCT2 inhibitors based on the ChEMBL database. Our established model (Python 
files) is shown in Supplementary Information 1. The performance evaluation of the QSAR model for hOCT2 
inhibitors is summarized in Table 1. If the accuracy, precision, recall, and F1 score of the QSAR model are close 
to 1, it means that the QSAR model is good. The loss function is a measure of how well a model predicts an 
expected outcome. A loss function close to 0 means a good QSAR model. As shown in Table 1, the accuracy, 
precision, recall, F1 score, and loss function of the proposed QSAR model were 0.87, 0.93, 0.87, 0.89, and 0.54, 
respectively. These results suggest that the QSAR model constructed in this study is highly predictive.

Screening of hOCT2 inhibitors from DrugBank database
We predicted the hOCT2 inhibitory activity of 11,281 compounds extracted from the DrugBank database using 
the QSAR model. The predicted values are listed in Supplementary Information 2. As shown in Supplementary 
Information 2, 1,232 compounds had a predicted value of ≥ 0.95. Among them, 162 were FDA-approved drugs. 
Table 2 shows the classification of the 162 compounds using Anatomical Therapeutic Chemical (ATC) code. 
Among the 162 compounds, drugs such as antineoplastic, antibacterial, antiviral, and antifungal agents, which 
are clinically unlikely to be used in combination with cisplatin, were excluded from the list of candidate hOCT2 
inhibitors. Finally, we selected 15 compounds [hydroxocobalamin (predicted value: 0.999), methylcobalamin 
(0.999), cyanocobalamin (0.991), pemirolast (0.976), epinastine (0.971), riboflavin (0.969), famotidine (0.969), 
folic acid (0.965), FAD (0.961), rebamipide (0.960), tizanidine (0.960), dequalinium (0.955), flavoxate (0.953), 
ketotifen (0.952), and cromoglicate sodium (0.950)] as candidate hOCT2 inhibitors.

Validation on hOCT2 inhibitory effect of the candidate compounds
To assess whether the 15 candidate compounds inhibit hOCT2-mediated transport of ASP+, the uptake of 
ASP+ (5 µM) was measured in the absence or presence of cimetidine (a typical hOCT2 inhibitor, 1 mM) or the 
candidate compounds (1 and 10 µM). The hOCT2-mediated transport of ASP+ was determined by subtracting 
the uptake in HEK vector cells from that in HEK-hOCT2 cells. Figure  1 shows the inhibitory effect of the 
15 candidate compounds and cimetidine on hOCT2-mediated transport of ASP+. First, we confirmed the 
functionality of HEK293 cells expressing hOCT2 using cimetidine (an OCT2 inhibitor). As shown in Fig. 1, the 

Classification by ATC code Number of drugs

Antineoplastic and immunomodulating agents 29

Nervous system 17

Blood and blood forming organs 13

Alimentary tract and metabolism 12

Cardiovascular system 12

Antiinfectives for systemic use 11

Genito urinary system and sex hormones 9

Respiratory system 9

Dermatologicals 6

Musculo-skeletal system 6

Sensory organs 4

Systemic hormonal preparations, Excl. sex hormones and insulins 2

Antiparasitic products, insecticides and repellents 2

Various 7

Do not have ATC code 23

Table 2. Classification of the 162 drugs (predicted value ≥ 0.95) by ATC code.

 

Parameters Values

Accuracy 0.87

Precision 0.93

Recall 0.87

F1 score 0.89

Loss function 0.54

Table 1. The performance status of the QSAR model for hOCT2 inhibitors.
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hOCT2-mediated transport of ASP+ was potently inhibited by cimetidine (1 mM). This finding indicates the 
activity and specificity of hOCT2 in HEK-hOCT2 cells. Next, we examined the inhibitory effect of 15 candidate 
compounds (1 and 10 µM) for hOCT2-mediated transport of ASP+. At a concentration of 1 µM (Fig. 1a), the 
inhibitory effect of 14 compounds excluding dequalinium for hOCT2 was not observed. At a concentration of 
10 µM (Fig. 1b), high inhibitory activities (≥ 50%) for hOCT2 were observed in 4 compounds (dequalinium, 
epinastine, ketotifen, and tizanidine). In addition, the apparent IC50 values of dequalinium, which had the most 
potent inhibitory effect on hOCT2, were calculated from the inhibition plots (Fig.  2). The apparent IC50 of 
dequalinium against ASP+ transport via hOCT2 was 88.16 ± 7.14 nM.

Inhibitory effect of dequalinium for hOCT2-mediated transport of cisplatin and oxaliplatin
To assess whether dequalinium inhibits hOCT2-mediated transport of cisplatin and oxaliplatin, the uptake of 
cisplatin and oxaliplatin (10 µM) was measured for 15 min in the absence or presence of various concentrations 
of dequalinium in HEK-vector and HEK-hOCT2 cells (Fig. 3a, b). Dequalinium inhibited the hOCT2-mediated 
transport of cisplatin and oxaliplatin in a concentration-dependent manner. The apparent IC50 of dequalinium 
against transport of cisplatin and oxaliplatin via hOCT2 was 18.81 ± 9.93 nM and 11.37 ± 5.32 nM, respectively.

Discussion
To date, no QSAR model for hOCT2 inhibitors has been established. To the best of our knowledge, this is the 
first study in which a machine learning-based QSAR model for hOCT2 inhibitors was constructed. In addition, 
we found that dequalinium is a potent hOCT2 inhibitor among the FDA-approved drugs using the machine 
learning-based QSAR model.

A previous study explored hOCT2 inhibitors among a library of 910 prescription drugs and drug-like 
compounds22. In general, screening through high-throughput assays requires significant capital investment 
and the preparation of extensive compound libraries, which are costly and time-consuming. Furthermore, the 
number of compounds that can be screened heavily depends on library size and is consequently limited for 
analysis. In contrast, using an available dataset of compounds with known biological activities and calculating 
their molecular descriptors, a QSAR model can be constructed using standard statistical methods. By applying 
a QSAR model to a large-scale dataset, as demonstrated in this study, novel compounds were identified. 
Therefore, screening using QSAR models is a powerful tool in drug discovery research. Kido et al.22 identified 
six compounds (disopyramide, dipyridamole, imipramine, tacrine, orphenadrine, and ondansetron) as clinical 
hOCT2 inhibitors among 910 compounds. As shown in Supplementary Information 2, our QSAR model 
recognized these compounds as hOCT2 inhibitors. These findings suggest that the QSAR model constructed in 
this study is highly valid.

Dequalinium is a quaternary ammonium cation antimicrobial agent used to treat common infections of the 
mouth and throat, as well as vaginal candidiasis23. Dequalinium targets various proteins and has antibacterial, 
antiviral, antifungal, antiparasitic, and anticancer properties23. However, the inhibitory effect of dequalinium 
on hOCT2 remains unclear. As shown in Fig. 2, the apparent IC50 value of dequalinium against ASP+ transport 

Fig. 1. Inhibition of candidate compounds against hOCT2-mediated transport of ASP+. HEK-hOCT2 or 
HEK-vector cells were incubated at 37ºC for 5 min with ASP+ (5 µM, pH 7.4) in the absence or presence of 
cimetidine (a typical OCT2 inhibitor, 1 mM) or candidate compounds at a concentration of 1 µM (a) and 10 
µM (b). The hOCT2-mediated transport of ASP+ was determined by subtracting the uptake in HEK-vector 
cells from that in HEK-hOCT2 cells. The hOCT2-mediated transport of ASP+ after treatment of control 
(vehicle) was set at 100%. Each column represents the mean ± S.E. of three independent experiments using 
three monolayers.
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via hOCT2 was 88.16 ± 7.14 nM. Because the apparent IC50 value of cimetidine, a typical OCT2 inhibitor, was 
reported to be approximately 26 µM24, we assumed that dequalinium has a considerable potent inhibitory effect 
against hOCT2. Interestingly, dequalinium potently inhibited the hOCT2-mediated transport of platinum 
anti-cancer agents (cisplatin and oxaliplatin) (Fig. 3), indicating that dequalinium could modulate the hOCT2-
mediated disposition of cisplatin and oxaliplatin. While dequalinium is generally well tolerated and considered 
safe at therapeutic doses, it exhibits neurotoxicity with an IC50 value of 0.46 µM in cultured cerebellar granule 
neurons25. Furthermore, high doses of dequalinium caused drug-induced hepatic and renal injuries in mice26. 
Thus, dequalinium is likely safe when administered at low concentrations that inhibit hOCT2 without inducing 
toxicity. In contrast, we could not assess whether dequalinium exhibited an inhibitory effect on hOCT2 at 
clinical concentrations because no information is available regarding the pharmacokinetics and/or the plasma 
concentration of dequalinium in humans. Further studies are required to assess the prophylactic effects of 
dequalinium on CIN/CIO and OIPN.

In addition to dequalinium, the 50% inhibitory effects for hOCT2 were observed in three compounds, 
epinastine, ketotifen, and tizanidine, at a concentration of 10 µM (Fig. 1b). When we conducted the inhibition 
study of the 15 candidate compounds at a concentration of 1 µM, the inhibitory effect of 14 compounds excluding 
dequalinium for hOCT2 was not observed (Fig. 1a). Because the maximum unbound plasma concentrations of 
epinastine, ketotifen, and tizanidine were estimated to be less than 1 µM, it is unlikely that these 3 compounds 
inhibit hOCT2 activity at clinical concentrations. In addition, the 11 other compounds excluding dequalinium, 
epinastine, ketotifen, and tizanidine did not exhibit any inhibitory effect against hOCT2 at a concentration of 
10 µM (Fig. 1b). In the present study, the compounds with an inhibition constant of ≤ 100 µM for hOCT2 were 

Fig. 2. Inhibition of dequalinium against hOCT2-mediated transport of ASP+. HEK-hOCT2 or HEK-vector 
cells were incubated at 37 ºC for 5 min with ASP+ (5 µM, pH 7.4) in the presence of various concentrations 
of dequalinium. The hOCT2-mediated transport of ASP+ was determined by subtracting the uptake in HEK 
vector cells from that in HEK-hOCT2 cells. Each point represents the mean ± S.E. of three independent 
experiments using three monolayers. When the standard errors of the means were small, they were contained 
within the symbols. The apparent IC50 values were calculated by fitting the data to a sigmoidal dose-response 
regression curve.
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defined as compounds with an inhibitory effect against hOCT2 in the training data of our QSAR models. It is 
conceivable that the inhibitory effect on hOCT2 may have been validated using these compounds at higher 
concentrations. However, we did not conduct the experiments at concentrations exceeding the clinical level 
because our aim was to identify clinically applicable compounds.

In contrast, among the 15 tested candidate compounds, the IC50 values of famotidine (36.1 µM) and 
epinastine (4.3 µM) were registered in the ChEMBL database and included in the training data of our QSAR 
model. As shown in Fig.  1b, the 50% inhibitory effects for hOCT2 were observed in epinastine but not 
famotidine at a concentration of 10 µM. Thus, these findings suggest that our QSAR model has high prediction 
accuracy. However, our QSAR model was limited. Our QSAR could not predict the hOCT2 inhibitory activity of 
compounds whose Morgan fingerprints could not be calculated from the DrugBank database. Because various 
methods can be employed for calculating Morgan fingerprints, molecular descriptors, and machine learning, it 
is possible to construct better QSAR models by combining these methods.

Several OCT2 inhibitors simultaneously inhibit multidrug and toxin extrusion 1 (MATE1/SLC47A1) and 
MATE2-K/SLC47A227 whereas tubular secretion of cisplatin was mediated mainly by hMATE1 and slightly 
by hMATE2-K28,29. Since hMATE2-K is specifically expressed in the kidney30, it plays a minimal role in the 
development of OIPN. Therefore, we focused on hMATE1 activity and assessed the inhibitory effects of 
dequalinium (100 nM) on ASP+ transport in HEK-hMATE1 cells. As shown in Supplementary Fig. 1, no inhibitory 
effect of dequalinium on hMATE1 was observed. When we conducted the uptake study of dequalinium in HEK-
hOCT2 and HEK-vector cells, no significant differences were observed in uptake of dequalinium between the 
two cell lines (Supplementary Fig. 2). As dequalinium is not transported into the cells via hOCT2, it may not be 
concentrated in the cells. It is likely that dequalinium has little inhibitory effect on hMATE1 activity. Moreover, 
the inhibitory effect of dequalinium (100 nM) on the hOCT1-mediated transport of ASP was not observed. 
(Supplementary Fig. 3). Thus, these findings suggested that dequalinium specifically inhibits hOCT2 activity.

In conclusion, our study is the first to construct a novel machine learning-based QSAR model for hOCT2 
inhibitors. We identified a novel hOCT2 inhibitor among FDA-approved drugs using this model. Thus, screening 
using machine learning-based QSAR models can serve as a powerful tool in drug repositioning research.

Materials and methods
Materials
The following compounds were purchased commercially from the following sources: 4-(4-(dimethylamino)
styryl)-N-methylpyridinium iodide (ASP+, Oakwood Chemical, Inc, SC, USA), epinastine hydrochloride, 
flavoxate hydrochloride, ketotifen fumarate, pemirolast potassium, tizanidine hydrochloride, riboflavin (Tokyo 
Chemical Industry, Tokyo, Japan), cimetidine, cisplatin, cyanocobalamin, flavin adenine dinucleotide disodium 
salt n-hydrate (FAD), folic acid, hydroxocobalamin acetate, methylcobalamin, sodium cromoglicate (FUJIFILM 
Wako Pure Chemical, Osaka, Japan), famotidine (Sigma Chemical Co. St. Louis, MO, USA), oxaliplatin (LC 
Laboratories, Woburn, MA, USA), and dequalinium chloride (Cayman Chemical Company, MI, USA). All 
other chemicals used were of the highest available purity.

Fig. 3. Inhibition of dequalinium against hOCT2-mediated transport of cisplatin (a) and oxaliplatin (b). 
HEK-hOCT2 or HEK-vector cells were incubated at 37ºC for 15 min with cisplatin or oxaliplatin (10 µM, pH 
7.4) in the presence of various concentrations of dequalinium. Each point represents the mean ± S.E. of three 
independent experiments using three monolayers. When the standard errors of the means were small, they 
were contained within the symbols. The apparent IC50 values were calculated by fitting the data to a sigmoidal 
dose-response regression curve.
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Quantitative structure-activity relationship (QSAR) modeling and screening
Dataset acquisition and curation
We identified 74 compounds with IC50 and Ki values against hOCT2 (ChEMBL ID: CHEMBL1743122) 
from the ChEMBL database (https://www.ebi.ac.uk/chembl/). For the compounds with multiple IC50 or Ki 
values, the average value was used as the inhibition constant. The information of 74 compounds are listed in 
Supplementary Information 3. Based on the ASCII-encoded SMILES representing the molecular structure, 
the Morgan fingerprint (2048-bit, radius = 3) and molecular descriptors were calculated using RDkit  (   h    t t p  s :  / 
/  g i t  h u b .  c  o m /  r  d k  i  t / r d k i t / r e l e a s e s / t a g / R e l e a s e _ 2 0 1 6 _ 0 9 _ 4     ) and Mordred software31, respectively. Compounds 
with an inhibition constant of ≤ 100 µM were defined as compounds with an inhibitory effect against hOCT2. 
Features within the Morgan fingerprints that exhibited a low correlation with the inhibitory effect on hOCT2 
were excluded using a filtering method. Next, the Morgan fingerprint and molecular descriptors were calculated 
for 11,281 compounds registered in the DrugBank database32 using the method described above. If the features 
of the molecular descriptors could not be calculated for the compounds in both the ChEMBL and DrugBank 
databases, these features were not utilized for the analysis. Each feature was standardized as an average of 0 and 
a standard deviation of 1.

Development of QSAR model for hOCT2 inhibitors and screening of hOCT2 inhibitors from the DrugBank 
database
The Morgan fingerprints, molecular descriptors, and presence or absence of hOCT2 inhibition of the 74 
compounds extracted from ChEMBL were utilized as training data, and the Morgan fingerprints and molecular 
descriptors of the 11,281 compounds extracted from DrugBank served as prediction data. A QSAR model for 
hOCT2 inhibitors was constructed using Keras (https://keras.io/), which is one of the neural network libraries. 
The hyperparameters of the neural network were estimated using Optuna (https://github.com/pfnet/optuna). 
After oversampling the training data using ADASYN33, the best parameters were determined by 5-fold cross-
validation, which were utilized for the final model. The model was evaluated using the following parameters: 
accuracy, precision, recall, F1 score, and loss function. The accuracy, precision, recall, and F1 score were 
calculated using the following formulas. Loss function was calculated using model.evaluate(), which is a Keras 
module. Python™ (Jupyter Notebook) was used to construct the QSAR model and calculate the predicted values 
for the compounds in DrugBank.

Accuracy = (T P + T N)/(T P + T N + F P + F N)
P recision = T P/(T P + F P )
Recall = T P/(T P + F N)
F 1 score = (2P recision × Recall)/(P recision + Recall)
T P : T rue P ositive, T N : T rue Negative, F P : F alse P ositive, F N : F alse Negative

Cell culture
The human embryonic kidney cell line HEK293 (American Type Culture Collection, CRL-1573) stably expressing 
hOCT1, hOCT2, hMATE1, or mock transfectants was kindly provided by Dr. Atsushi Yonezawa (Department 
of Pharmacy, Kyoto University Hospital, Japan) and cultured as described previously34. The HEK-hOCT2 and 
HEK-vector cells were used between passages 82 and 90. Cells were maintained at 37 °C in a humidified 5% CO2 
atmosphere.

Validation on hOCT2 inhibitory effect of candidate compounds
HEK-hOCT2 and HEK-vector cells (1.0 × 106 cells/dish) were seeded in 3.5-cm dishes with Dulbecco’s modified 
Eagle’s medium (WAKO Pure Chemical) supplemented with 10% fetal bovine serum. Cell monolayers formed 
after 48  h of culture were used for the uptake studies. Cellular uptake of ASP+, which is a well-established 
substrate of OCT222, was determined using monolayer cultures of HEK-hOCT2 and HEK-vector cells at 37 °C. 
The incubation medium was 145 mM NaCl, 3 mM KCl, 1 mM CaCl2, 0.5 mM MgCl2, 5 mM D-glucose, and 
5 mM HEPES (pH 7.4). HEK-hOCT2 and HEK-vector cells were incubated for 5 min with 5 µM ASP+ in the 
absence or presence of cimetidine (a typical OCT2 inhibitor, 1 mM) and the candidate compounds (1 and 
10 µM). Furthermore, an inhibition experiment was conducted in the absence or presence of the candidate 
compound with the greatest inhibitory effect, and the apparent IC50 values were generated from curve fits using 
GraphPad Prism version 8.4.3 (GraphPad Software Inc., San Diego, CA, USA). The apparent IC50 values were 
calculated from the inhibition plots according to the equation : V = Vbottom + (Vtop – Vbottom)/[1 + (log I/IC50)n] 
by nonlinear least square regression analysis, where V is the transport velocity, Vbottom is the transport velocity at 
the highest concentration of inhibitor, Vtop is the transport velocity without inhibitor, Iis the concentration of the 
inhibitor, and n is the Hill coefficient. To evaluate the accumulation of ASP+ in the cells, the cells were solubilized 
in 5% sodium dodecyl sulfate solution and the fluorescence of ASP+ was measured using a fluorescence 
spectrophotometer (SH-9000lab, CORONA, Ibaraki, Japan) at 485 nm excitation/607 nm emission. The protein 
contents of the solubilized cells were measured using a BCA protein assay kit (Thermo Fisher Scientific, Waltham, 
MA, USA) with bovine serum albumin as a standard. The hOCT2-mediated transport of ASP+ was determined 
by subtracting the uptake in HEK-vector cells from that in HEK-hOCT2 cells.

Inhibitory effect of dequalinium for hOCT2-mediated transport of cisplatin and oxaliplatin
Cisplatin and oxaliplatin uptake studies were conducted according to the method described for ASP+. The 
cells were incubated with 10 µM cisplatin and oxaliplatin for 15 min in the presence or absence of 100 nM 
dequalinium. After the inhibition experiments, the cellular pellet was suspended in 1 mL of ultrapure water 
to obtain a homogeneous cell suspension. The aliquots were solubilized in 0.5 N NaOH. The remaining cell 
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suspension was mineralized with 70% HNO3 and then completely dried at 100℃. The platinum content was 
determined by inductively coupled plasma mass spectrometry using an Agilent7700 series (Agilent Technologies, 
Santa Clara, CA, USA). The instrument settings were optimized to obtain the maximum sensitivity of platinum. 
Dry platinum-containing material was dissolved in 1 mL of 5% HNO3 with 0.1 ng/mL thallium, which was used 
as an internal standard. The most abundant platinum and thallium isotopes were observed at m/z 195 and 205, 
respectively.

Statistical analyses
The experimental data are expressed as the mean ± standard error (S.E.). Statistical comparisons between the two 
groups were performed using an unpaired t-test in GraphPad Prism version 8.4.3. Differences were considered 
statistically significant at p < 0.05.

Data availability
All data generated or analyzed during this study are included in this published article and its Supplementary 
Information files.

Received: 7 August 2024; Accepted: 8 November 2024
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