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ABSTRACT
In a previous study [H. Shintaku et al., Sensors and Actuators A: Physical 158 (2010): 183–192], an artificially developed auditory 
sensor device showed a frequency selectivity in the range from 6.6 to 19.8 kHz in air and from 1.4 to 4.9 kHz in liquid. Furthermore, 
the sensor succeeded in obtaining auditory brain-stem responses in deafened guinea pigs [T. Inaoka et al., Proceedings of the 
National Academy of Sciences of the United States of America 108 (2011): 18390–18395]. Since then, several research groups have 
developed piezoelectric auditory devices that have the capability of acoustic/electric conversion. However, the piezoelectric de-
vices are required to be optimally designed with respect to the frequency range in liquids. In the present study, focusing on the 
trapezoidal shape of the piezoelectric membrane, the vibration characteristics are numerically and experimentally investigated. In 
the numerical analysis, solving a three-dimensional fluid-structure interaction problem, resonant frequencies of the trapezoidal 
membrane are evaluated. Herein, Young's modulus of the membrane, which is made of polyvinylidene difluoride and is different 
from that of bulk, is properly determined to reproduce the experimental results measured in air. Using the modified elastic mod-
ulus for the membrane, the vibration modes and resonant frequencies in liquid are in good agreement with experimental results. 
It is also found that the resonant characteristics of the artificial basilar membrane for guinea pigs are quantitatively reproduced, 
considering the fluid–structure interaction. The present numerical method predicts experimental results and is available to im-
prove the frequency selectivity of the piezoelectric membranes for artificial cochlear devices.

1   |   Introduction

Hearing is one of the most important senses for good communi-
cation in human society. Therefore, congenital or aging deafness 
will cause a serious decline in the quality of life. Sensorineural 
hearing loss mainly caused by cochlear disease is the most se-
rious, although there may be various reasons for hearing loss 
[1–3]. The acoustic/electric conversion mechanism of mamma-
lian ears has been mostly clarified [4]. The ear mainly consists 
of three parts, such as the external, middle, and inner ears. A 
sound that propagates through the air is first transmitted to a 
compressive wave on the eardrum by the external ear and the 
ear canal. The middle ear, which consists of three small bones, 

the malleus, incus, and stapes, transmits the eardrum vibration 
to the oval window of the cochlea. Herein, we especially focus 
on the function of the cochlea, which consists of three layers 
filled with lymphatic liquids: the scala vestibuli, scala media, 
and scala tympani. A vibration of the oval window induces peri-
lymph liquid motion in the scala vestibuli and is compensated 
by the round window at the end of the scala tympani that is 
connected to the former at the apex of the cochlea. The scala 
media, which is filled with the endolymph liquid, is separated 
from the scala vestibuli by Reissner's membrane and from the 
scala tympani by the basilar membrane. The mechanosensi-
tive hair cells are embedded in the organ of Corti on the basilar 
membrane. This suggests that a pressure difference between the 
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top and bottom surfaces of the basilar membrane induces the 
vibration and lets the mechanosensitive hair cells stimulate the 
auditory nerves [2, 5, 6]. A sound frequency ranging from 20 to 
20,000 Hz can be identified by the basilar membrane because of 
the tapered shape, which has 500-μm apical and 100-μm basal 
widths and a 3-mm length [5, 7]. The outer hair cells amplify the 
amplitude, and the inner hair cell transduces the mechanical vi-
bration to an electrical signal [4].

To remedy sensorineural deafness, the cochlear function is re-
quired to be recovered. Artificially developed cochlear devices 
have already been commercialized [8–10]. On the other hand, 
there are some problems that remain to be improved. Recently, 
piezoelectric artificial basilar membranes, which spontaneously 
generate electric voltages to directly stimulate auditory nerves, 
have been developed for the practical use of fully implantable 
artificial cochlea. A few research groups experimentally suc-
ceeded in obtaining electrically evoked auditory brain-stem 
responses in deafened guinea pigs by using the next-generation 
artificial cochlear device [1, 3]. Shintaku et  al. [11, 12] and 
Tanujaya et  al. [13, 14] applied a polyvinylidene difluoride 
(PVDF) membrane for the artificial basilar membrane, which 
was a flexible piezoelectric film that was nontoxic to the human 
body. The trapezoidal shape of the membrane works as an ana-
log spectrum analyzer that performs the Fourier transform [15], 
and the electrodes integrated on the membrane can immediately 
stimulate auditory nerves [11, 16]. Lee et  al. [17] fabricated a 
piezoelectric thin film of Pb[ZrxTi1−x]O3 (PZT) and used the film 
to mimic the cochlear basilar membrane. They also reported 
that the frequency selectivity could be realized by designing a 
trapezoidal shape. Jung et al. [18, 19] also demonstrated that a 
multichannel acoustic membrane achieved frequency selectivity 
and worked as an acoustic sensor for an artificial cochlear de-
vice. Jang et al. [20, 21] and Kim et al. [22] fabricated AlN thin 
films that had piezoelectric responses to sound pressures and 
developed a micro-electro-mechanical device for the artificial 
cochlea. Reconstruction of the audio input from the artificial 
cochlear model was also conducted [23]. Malherbe et  al. [24] 
developed a three-dimensional implanted cochlear model from 
standard CT scan data and investigated potential distributions 
and neural excitation patterns. Successively, a novel procedure 
to design optimal electrode configurations for cochlear implants 
was proposed [25]. Furthermore, a three-dimensional finite ele-
ment model was applied to simulate the effect of endolymphatic 
hydrops in the basilar membrane on hearing loss [26]. Saremi 
and Stenfelt [27] revealed the availability of biophysical models 
to simulate noise-induced hair cell pathologies. Recently, we 

succeeded in developing a prototype device that mimicked the 
amplification function of outer hair cells [28, 29]. Furthermore, 
the artificial auditory membrane is required to be sensitive to 
the human audible frequency range from 20 to 20,000 Hz. To 
achieve such a requirement, the dimensions and materials of the 
membrane have to be finely tuned.

In the present study, we develop a computational model to an-
alyze the resonant frequency of trapezoidal PVDF membranes 
in lymphatic liquids. The resonant frequency of PVDF mem-
branes is numerically evaluated using a three-dimensional 
finite element method (FEM). Based on the conventional 
theoretical models [5, 6, 30–32], it is confirmed that the am-
plitude of the vibration presents the maximum peak at the 
resonant position that shifts to the basal side with increasing 
frequency. This result agrees with a traveling wave with a res-
onance proposed by Lighthill [6], where a liquid also has an 
important role in reducing the high frequency of rigid bodies 
because of the damping and inertia. In the three-dimensional 
model, the physical properties of specific thin films are suit-
ably extrapolated from the bulk values. We also conduct ex-
periments to clarify the resonant frequency and its selectivity 
of the trapezoidal PVDF membrane in liquid, where the mem-
brane displacement induced by the inverse piezoelectric effect 
is measured with a laser Doppler vibrometer (LDV). In our 
previous studies, Shintaku et  al. [11] reported the frequency 
selectivity of trapezoidal PVDF membranes ranging from 6.6 
to 19.8 kHz in air and from 1.4 to 4.9 kHz in silicone oil, and 
Inaoka et al. [1] detected the resonant frequency of artificial 
basilar membranes made of PVDF trifluoroethylene (PVDF-
TrFE) implanted in a guinea pig as 3 and 9 kHz, as summa-
rized in Table  1. Recently, we also reported the resonant 
characteristics of the strip array of PVDF membranes fixed 
across a trapezoidal through hole, which had a frequency se-
lectivity in the range from 8.7 to 21.8 kHz in air and from 2.6 
to 6.1 kHz in silicone oil. It was clarified that the detectable 
frequency window was apparently shifted lower in liquid. On 
the other hand, the effects of the fluid-structure interaction on 
the resonant frequency have remained to be clarified. In this 
study, the numerical analysis above is found to well reproduce 
the experimental results. Herein, we focus on the vibrations 
of elastic bodies because PVDF membranes usually show lin-
ear elasticity. Although the nonlinear properties of the basilar 
membrane are known to be an important issue in the auditory 
mechanism, the unique functions of inner and outer hair cells 
are complex challenges in the future. It is expected that the 
present results shed light on the establishment of a numerical 

TABLE 1    |    Resonant frequencies of piezoelectric membranes developed for the artificial basilar membrane.

Shape Material Fluid Membrane thickness (μm)
Resonant 

frequency (kHz)

Trapezoidal [11] PVDF Air 40 6.6 (min) 19.8 (Max)

Trapezoidal [11] PVDF Silicone oil 40 1.4 (min) 4.9 (max)

Curved [1] PVDF-TrFE Lymphatic liquid 3 3 (min) 9 (2nd)

Trapezoidal beam array [15] PVDF Air 28 8.7 (min) 21.8 (max)

Trapezoidal beam array [15] PVDF Silicone oil 28 2.6 (min) 6.1 (max)
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procedure for the optimal design of the piezoelectric auditory 
membrane that is required to achieve human-audible-range 
resonant frequencies.

2   |   Materials and Methods

2.1   |   Vibration Analysis of Basilar Membrane 
in Liquid

In this section, a mathematical model is developed to analyze 
the vibration characteristics of a trapezoidal membrane in liquid, 
which is a magnified model of the human cochlea, the coiled 
shape of which is stretched to clarify its function as a spectrum 
analyzer. Membrane vibration modes in the air may be simply 
evaluated by solving a Helmholtz equation of elastic body. On the 
other hand, in the cochlea, vibrations of the basilar membrane, 
which are confined between the scala media and the scala tym-
pani, are induced by pressure fluctuations between both liquid 
layers. As shown in previous reports [2, 5, 6], it was suggested 
that the propagation of sound pressure in the perilymph liquid 
causes a weak pressure difference that triggers a vibration of the 
membrane. A sound pressure applied on the trapezoidal basilar 
membrane induces a traveling wave that is localized at a reso-
nant point. Although several methods for the vibration analysis 
of the peculiar membrane were developed [2, 5, 6], the Wentzel–
Kramers–Brillouin (WKB) approximation had a great contribu-
tion to deepen the understanding of the frequency selectivity of 
the basilar membrane [11, 33, 34]. In the present study, further-
more, we propose a computational procedure to quantitatively 
evaluate the resonant frequency of the trapezoidal PVDF mem-
brane exposed to pressure fluctuations in liquids. In such a con-
dition, vibrations should be formulated based on the interaction 
between the elastic membrane and perilymph liquid, assuming 
that the artificial basilar membrane will be placed in the scala 
tympani filled with the perilymph liquid [1].

2.1.1   |   Vibration of an Elastic Basilar Membrane

In a three-dimensional space, the vibration of a basilar mem-
brane is expressed by the constitutive equation of an elastic 
body, as follows [35]:

where �m is the density of the elastic body; � i(x, y, z, t), (i = x, y, z) 
is the displacement in the i-axis, �i(x, y, z, t) is the tensile stress in 
each principal axis; and � ij(x, y, z, t), ({i, j} = {x, y, z}) is the shear 
stress on the ij-plane. According to the relation between stress 
and strain for isotropic media, �i and � ij are given by [36]

where �ij are the strain tensors, E and � are, respectively, Young's 
modulus and Poisson's ratio which are unique for isotropic 
materials.

2.1.2   |   Sound Pressure Propagation in Liquid

Herein, we assume that liquid flows are confined in a nar-
row space, like a perilymph liquid in the cochlea, and that 
the viscous term is more dominant than the inertial term, 
which is a low-Reynolds-number condition. In such a situ-
ation, the pressure P, liquid density �f, and flow velocity u 
fluctuate near an equilibrium state. The pressure P consists 
of the fluctuation �p and the background pressure p such that 
P = p + �p. The density �f fluctuates ��f near the bulk density 
�f, such that �f = �f + ��f. The flow velocity u(x, y, z, t) equili-
brated is changed by the external forces. Removing the neg-
ligibly small values, the mass conservation law is expressed 
as follows:

In general, the perturbation ��f is zero or negligible within a 
short time average, and then Equation  (7) satisfies ∇ ⋅ u = 0, 
where the liquid behaves as an incompressible flow. Assuming 
low-Reynolds-number conditions, in which liquids are con-
strained in irrotational motions, the liquid motion is expressed 
by linearized Navier–Stokes equations, as follows:

where � is the viscosity of the liquid, Ṽ  is a constant expressed 
with an empirical factor defined as the bulk viscosity coefficient 
�b [35], such that

According to the conventional theory [6], the adiabatic (isoen-
tropic) condition is maintained in the cochlea, and then the pres-
sure depends only on the density:
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where c0 is the speed of sound in the liquid. This kind of con-
dition was also applied to problems of beam vibrations in vis-
cous liquids [32, 37]. Taking the divergence of Equation  (8) 
and removing u using Equations (7) and (10), we obtain

where � = �∕�f is the kinematic viscosity. Equation  (11) ex-
presses pressure wave propagation in liquid.

2.1.3   |   Boundary Conditions of the Fluid–Structure 
Interaction

For the vibration mode analysis of a membrane in liquid, we 
need to set a boundary condition to consider the fluid–struc-
ture interaction. When a minute vibration occurs, �p(x, y, z, t) 
is simply replaced by �p�(x, y, z)exp(i�t) with an angular fre-
quency �. In the computational domain, an artificial basilar 
membrane contacts a fluid at the top and bottom surfaces, S1 
and S2, respectively, and then both media oscillate, contacting 
at the interfaces. In such a situation, both boundaries have to 
satisfy

where n is the surface normal vector and � is the displacement 
vector. Here, �p and � =

(

� x, � y, � z
)T are treated as complex 

functions, and, finally, the real parts only have physical mean-
ing. The mathematical model described above is numerically 
solved using FEM methods implemented in commercial soft-
ware [38]. Details of the other boundary conditions are dis-
cussed in the following sections, focusing on vibrations in air 
and liquid.

2.2   |   Experimental Methods

Herein, we experimentally measure the vibration characteristics 
of a trapezoidal-shaped PVDF membrane for the artificial co-
chlea. Figure 1a shows a stainless steel plate fixed with screws 
in a liquid chamber, which has a width of 88 mm, a length of 
133 mm, and a height of 27 mm, and the position can be adjusted 
with a motorized xy stage (SGSP26-150/SGSP20-35, Sigmakoki 
Co. Ltd., Tokyo, Japan). As shown in Figure  1b, a trapezoidal 
through hole is made in the stainless steel plate, which has an 
upper base of 2 mm, a lower base of 4 mm, and a height of 30 mm 
in the same dimension as a previous study [11]. This is a magni-
fied straight model of two and a half turns of a basilar membrane 
in the human cochlea. A rectangular-shaped PVDF membrane 
(2-1003702-7, TE Connectivity Ltd., Schaffhausen, Switzerland), 
which has a 25-mm width, a 60-mm length, and a 52-μm thick-
ness, is fixed along the edge of a through hole using double-
side adhesive tape. Both surfaces of the PVDF membrane are 
coated with copper–nickel alloy thin films for electrodes, and 
the laminated film is totally 52 μm thick. The dimension and as-
sembly of the experimental device are also schematically shown 
in Figure  1c,d. An ac electric potential is supplied to a PVDF 
membrane via an electroconductive adhesive tape touched to a 
lead terminal, which is connected to a bipolar power amplifier 
(HSA4014, NF Corp., Yokohama, Japan) to apply an ac electric 
potential difference of Vin = V0sin(2�ft) with an amplitude of V0 
and a frequency of f , where the other terminal is grounded. The 
electrically polarized membrane is deformed due to the inverse 
piezoelectric effect and results in vibrations by the applied ac 
electric potential. A displacement in the z direction is measured 
with a laser Doppler vibrometer  (LDV) (AT3600, Graphtec 
Corp., Yokohama, Japan). The focal point of an irradiated laser 
beam of 633 nm in wavelength is adjusted with the xy stage by 
monitoring a view camera. The electric power supply and the 
displacement measurement are controlled using a data acquisi-
tion (DAQ) system, which consists of a power supply (NI PXIe-
1082, National Instruments Corp., Austin, USA), a controller 

(11)
�2�p

�t2
− �ṼΔ

��p

�t
− c20Δ�p = 0

(12)
1

�f

(

1 + i�
�Ṽ

c2
0

)

n ⋅ ∇�p = n ⋅

�2�

�t2
on S1 and S2

FIGURE 1    |    (a) Photograph of the entire view of the experimental device in which a piezoelectric PVDF membrane coated with copper–nickel thin 
films adheres at the back of a stainless steel plate, which is fixed in a liquid chamber. An AC electric potential is applied to the bottom surface of the 
piezoelectric membrane that is connected to a lead terminal via an electroconductive adhesive tape. (b) A trapezoidal through hole in a stainless steel 
plate to maintain a fixed boundary condition of the PVDF membrane, which is the same dimension as the artificial basilar membrane as introduced 
in a previous study [11]. (c) Schematic view of the experimental apparatus and (d) stacks of each element.
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(NI PXIe-8840, National Instruments Corp., Austin, USA), an 
analog output module (NI PXIe-6738, National Instruments 
Corp., Austin, USA), and a sound and vibration module (NI 
PXIe-4492, National Instruments Corp., Austin, USA). The en-
tire experimental system is schematically shown in Figure 2. In 
the present study, an electric potential of 0.2 V peak-to-peak is 
applied by an electric power supply in the DAQ system and is 
amplified 10 times by the amplifier. The membrane vibration is 
measured at the center of the minor axis, i.e., y = 0mm, along 
the x-axis. The motorized xy stage shifts the membrane position 
to the focal point of the laser beam. The sampling frequency and 
sampling time are set to 105 Hz and 0.1 s, respectively. Measured 
displacements are immediately translated to the Fourier spec-
tra, and the resonant frequency is analyzed.

3   |   Results and Discussion

First, the present computational methods, mesh size and accu-
racy, were verified, considering simple problems about a forced 
oscillation of an elastic beam in a vacuum and that of water in 
a square duct. Numerical details and results of these problems 
are presented in Appendix. As a result, the computational er-
rors were less than 1% compared to the theoretical estimations. 
The mesh size for the FEM analysis was determined to be fine 
and the numerical results maintained three significant figures. 

Second, the vibration mode of a trapezoidal PVDF membrane 
that was placed in a vacuum was analyzed. Based on the vali-
dations above, the resonant frequency of the PVDF membrane 
for the artificial basilar membrane was quantitatively evaluated, 
considering fluid–structure interactions. The vibration charac-
teristics in the air, silicone oil, and Ringer's solution were com-
pared between the computational and experimental results. 
Finally, the resonant characteristics of the artificial basilar mem-
brane for guinea pigs [1] were numerically analyzed.

3.1   |   Resonant Frequency Analysis of Trapezoidal 
PVDF Membranes

In a previous study [1, 11], we performed experiments of res-
onant frequency analysis of trapezoidal PVDF membranes 
that were fixed on a stainless steel plate. It was suggested that 
the trapezoidal shape that modeled the basilar membrane 
in the cochlea was important to geometrically separate the 
resonant frequencies on a single membrane. Using a trape-
zoidal PVDF membrane having a thickness of 40 μm, the res-
onant frequency was varied from 6.6 to 19.8 kHz in air [11]. 
To construct the theoretical model and numerical methods, 
herein, we performed FEM analysis of a trapezoidal PVDF 
membrane. As shown in Figure 3, the resonant frequency of 
a trapezoidal-shape elastic body, whose side walls were fixed, 
was numerically evaluated using the aforementioned proce-
dures. The upper and lower bases of the trapezoid were set 
to 2 and 4 mm, respectively, and the longitudinal length was 
30 mm. The thickness of the membrane was set to w = 52�m, 
which was the membrane used in the experiment of the pres-
ent study [11]. According to the physical properties of anisotro-
pic PVDF [38–41], the density and elasticity were respectively 
set to �m = 1.78 × 103 kgm−3 and

(13)E =

⎛
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⎜
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GPaFIGURE 2    |    Schematic diagram of the experimental system. An elec-
tric potential is 10 times amplified and applied to a PVDF membrane 
to induce a vibration that is measured by a laser Doppler vibrometer 
(LDV). The electric power supply, displacement measurement, and mo-
torized stage are controlled by using a data acquisition (DAQ) system.
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Young's modulus and Poisson's ratio of PVDF were determined 
as E = 2.4 GPa and � = 0.35 from previously reported experimen-
tal results [39, 40], respectively. The linear relation between the 
stress and strain was defined as

Boundary conditions were

A pressure difference of p0sin(2�ft) was applied to the top sur-
face (ABCD) relative to the bottom surface (EFGH).

First, we computed the eigenfrequency of the fixed membrane 
for p0 = 0 Pa. Figure  4 shows the amplitude distributions of 
some eigenmodes. Figure  4a shows the result from the first 
eigenfrequency of 5.47 kHz, where the maximum amplitude 
appeared near the lower base of the trapezoidal membrane. 
At the second frequency of 6.25 kHz, as shown in Figure 4b, 
the maximum amplitude point shifted to the upper base side, 
where a node appeared along the x-axis. Figure 4c shows the 
third mode, where three peaks appeared along the x-axis and 
the maximum one was near the upper base. With increasing 
applied frequency, the maximum amplitude point moved from 
the lower base to the upper base ends. Figure 4d shows a re-
sult from an eigenfrequency of 16.8 kHz, where the maximum 
peak approached the upper base the most. That is, this shape 
of the membrane distinguished the eigenfrequency from 5.47 
to 16.8 kHz by the maximum amplitude points. The number 

of peaks that translocate with the eigenfrequency indicates 
the frequency resolution of the membrane. In addition, the 
amplitude distributions were extracted along the x-axis at 
y = z = 0mm for applied frequencies from 5 to 17 kHz with an 
interval of 0.1 kHz. For the forced oscillations, by sweeping 
the applied frequency with an amplitude of p0 = 2.0 × 10−4 Pa 
(20 dB SPL), the resonant frequencies were numerically deter-
mined at the maximum amplitudes. Figure 5 shows an ampli-
tude map as functions of the x position and applied frequency. 
Normalizing the amplitude distributions along the x-axis by 
the maximum values for each frequency, the waveforms could 
be compared between various frequencies. As a result, it was 
found that the maximum amplitude peaks were on a curve 
that was proportional to 1∕L2, which corresponded to the the-
oretical form expressed by Equation  (A5) in the Appendix. 
Resulting from Equation  (A5) and E = 12 GPa in accordance 
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FIGURE 4    |    The numerical result of amplitude distributions for some typical eigenfrequencies of the trapezoidal PVDF membrane: (a) 5.47, (b) 
6.25, (c) 6.97, and (d) 16.8 kHz.
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with Equation (13), a fixed end beam of length L theoretically 
shows f = 4.38 × 10−2 ∕L2Hz. In the numerical result, the 
maximum amplitude peaks were on a curve of f = C∕L2 with 
L = x∕15 + 2mm, where C was a fitting parameter that resulted 
in C = 8.28 × 10−2m2 s−1. It is indicated that the eigenfrequency 
resulting from the trapezoidal-shape membrane is analogous 
to the assembly of individually separated single beams of 
length L(x). A difference in the numerator between the numer-
ical result and the theoretical model is caused by the different 
morphologies and disagreement of Young's modulus between 
the bulk and thin film. Vibrations along the y-axis seem to be 
sufficiently decoupled from the x-axis, and therefore, the reso-
nant frequencies are successfully analyzed based on separated 
single beams. As reported in previous studies [11, 34], this is a 
reason that WKB approximations were successfully applied to 
the vibration analysis of the basilar membranes.

3.2   |   Experimental Measurement of Resonant 
Frequencies in Air

Using the experimental apparatus shown in Figure  1, vibration 
characteristics of a trapezoidal membrane were measured in air. 
Figure 6 shows experimentally observed resonant frequencies pre-
sented in the same manner as Figure 5. It was previously found that 
the amplitudes measured with the LDV system had 5% errors [28] 
and that the standard deviation of the amplitude peak positions 
was within 10%. The present experimental result showed a simi-
lar trend to the numerical result, in which the maximum ampli-
tude distribution was represented by Equation (A5) in Appendix. 
The maximum amplitude peaks were on a similar curve shown in 
Figure 5 with a coefficient of C = 8.46 × 10−2m2 s−1. It was found 
that the frequencies from 5 to 17 kHz were identified along the 
longitudinal direction in the membrane of 30 mm in length. The 
experimental result showed reasonable agreement with the nu-
merical model shown in Figure 5. On the other hand, the distribu-
tion of the peaks along the fitted curve appeared to be coarser in 
the experimental result than in the numerical result. The number 
of peaks in the experimental result was about half that compared 
to the numerical result. It was suggested the numerical model pre-
dicted the fine structure in the actual system that might be clarified 
by higher resolution measurements in the future.

3.3   |   Resonant Frequencies of the Trapezoidal 
PVDF Membrane in Liquid

Next, vibrations of the basilar membrane were generated in 
liquid, and the resonant frequencies were measured using the 
experimental setup in Figure 1. In the theoretical model, vibra-
tions of the basilar membrane are expressed by Equation (1), 
which is coupled with sound pressure in liquid, as expressed by 
Equation (11). Boundary conditions are schematically explained 
in Figure 7. We set

(18)
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FIGURE 6    |    Experimental result of normalized amplitude distribu-
tion measured in air along the x-axis at y = z = 0mm as functions of x 
and frequency in the same manner as Figure 5. The maximum amplitude 
peaks are fit by f = C∕L2 kHz (solid line), where C = 8.46 × 10−2m2 s−1 
and L = x∕15 + 2mm.
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Furthermore, the interface between the membrane and the 
liquid was always contacted during vibrations, satisfying the 
boundary condition of Equation (12) on ABCD and EFGH. To in-
vestigate the resonant frequency in air, physical properties were 
set to �f = 1.20kgm−3, � = 1.81 × 10−5 Pa ⋅ s, �b = 0Pa ⋅ s, and 
c0 = 340ms−1. The computational domains were filled with air. 
For the PVDF membrane, we set �m = 1.78 × 103 kgm−3 and E 
as given by Equation (13). For p0 = 2.0 × 10−4 Pa (20 dB SPL), the 
resonant frequencies were obtained between 4.14 and 15.0 kHz. 
On the other hand, previously reported experimental results, 
measured in air, were between 6.6 and 19.8 kHz [11]. The differ-
ence between the present numerical result and the experimental 
data is caused by the physical properties based on the bulk ma-
terial. To adjust the numerical data to the experimental data, we 
propose to modify the elasticity tensor as follows:

where each component is normalized by the (1,1) element of 
the elasticity tensor in Equation (13), 3.8 GPa, and parameter-
ized by the multiplier E′. Varying E′, the first-resonant fre-
quency was evaluated and we obtained Figure 8. It was found 
that the resonant frequency of the first mode, f1, was propor-
tional to 

√

E′, which reflected the theoretical model expressed 
by Equation (A5) in Appendix, where we defined E′ as the ef-
fective elastic modulus. In this curve, the resonance occurred 
between 6.49 and 20.0 kHz, when we set E� = 8.5GPa, as 
shown in Figure 9a. On the other hand, the amplitude tended 
to be extremely small as a result of fluid–structure interaction 
in the limitation of a linearized small-amplitude model. 
Hereafter, we develop an argument focusing on the frequency 
selectivity and the amplitude maximum position. For 
E� = 8.5GPa, this system was simulated in a liquid. Considering 
a silicone oil, physical properties were set to 
�f = 8.73 × 102 kgm−3, � = 1.75 × 10−3 Pa ⋅ s, �b = 2.50�Pa ⋅ s, 
and c0 = 931ms−1, where the bulk viscosity coefficient �b was 
treated as an empirical parameter. Although the �b of silicone 
oil has not yet been determined in experiments, we referred to 
water and other liquids in the literature [42]. Physical proper-
ties of some fluids used in this study are summarized in 
Table  2. Resulting from the computations, we obtained the 
first-resonant frequency at f1 = 1.26kHz, which was drasti-
cally reduced compared with that in air, as shown in 
Figure 9(b). This value is in quantitative agreement with the 
experimental value of 1.4 kHz [11]. The longitudinally highest 
resonance was found at 5.36 kHz, which was also in 
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TABLE 2    |    Physical properties used in the FEM analysis for liquid–
structure interactions.

Air Silicone oil Ringer's solution

�f
(

kgm−3
)

1.20 8.73 × 102 1.05 × 103

c0
(

ms−1
)

340 931 1480

� (Pa ⋅ s) 1.81 × 10−5 1.75 × 10−3 1.02 × 10−3

�b ∕� 0 2.50 2.79
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reasonable agreement with the experimental value of 4.9 kHz 
[11]. In the presence of standing waves in the membrane, a 
difference in the mass density of fluids was more effective on 
the resonant frequency than the viscosity. It was confirmed 
that the resonant frequency depended on the density of fluids, 
but was not seriously changed by the viscosity, although the 
details of numerical results were omitted here. In such a 
small-amplitude vibration, the shear stress caused by the vis-
cosity and the velocity distribution might not work on the 
membrane surfaces. In experiments, the determination of the 
highest resonant frequency seemed to be difficult because the 
amplitude distribution tended to be small with increasing an 
applied frequency for a constant sound pressure level, and the 
maximum peaks appeared near the upper base of the trape-
zoid. This was a possible reason why the experimental value 
of the highest resonant frequency became lower than the nu-
merical result. As a result, the present method demonstrated 
that specific materials, having a Young's modulus different 
from the bulk, were adjusted with experimental data mea-
sured in air once, and then the vibration in liquid could be 
simulated and reproduce the experimental results. Thus, this 
method is expected to be available to predict experimental re-
sults obtained from various liquids. Herein, we measured the 
resonant frequency of the trapezoidal membrane immersed in 
Ringer's solution that was an electrolyte solution, the pH and 
osmotic pressure of which were prepared to be the same as the 
lymphatic liquid in the human body. We also performed a nu-
merical analysis in which the physical properties of Ringer's 
solution were set to �f = 1.05 × 103 kgm−3, � = 1.02 × 10−3 Pa ⋅ s

, �b = 2.79�Pa ⋅ s, and c0 = 1480ms−1, where �b was reasonably 
determined from the value of water [42]. The trapezoidal 
membrane was fixed between the liquid layers of w1 = 6mm in 
thickness, which was determined from the actual thickness 
used in the experimental system. As mentioned above, the 
thickness of the membrane was w = 52�m, which was equiva-
lent to that in the present experiment. Figure  10 shows the 
numerically evaluated amplitude distributions to the applied 
frequency of f = 1.00, 2.00, 3.00, and 4.00 kHz. This result sug-
gested that the amplitude distribution might not show the fre-
quency selectivity to the off-resonance frequencies, because 

the amplitude maximum position did not necessarily appear 
at the leading position of the peak series. In this case, reso-
nant frequencies appeared near 2.00 and 3.00 kHz as 2.05 and 
3.09 kHz, respectively, and then the maximum peaks were at 
the leading position. On the other hand, the frequencies of 
f = 1.00 and 4.00 kHz were far from the resonance, and there-
fore, peaks appeared near the lower base end. The amplitude 
map resulting from the experiment and the numerical analy-
sis is compared in Figure 11. In both cases, it was found that 
the resonant frequencies were distinguished by the membrane 
in the range from 0.5 to 4 kHz. As shown in Figure 11a, the 
maximum amplitude peaks tended to appear along a curve 
proportional to L−5∕2, which was different from the case in the 
air. In a previous study, Lim et al. [33] suggested that the res-
onant frequency of a boundary-fixed beam in liquids could be 
expressed as �2 =

D22

�f

(

�

L

)5

, where � was the angular fre-

quency and D22 was the corresponding membrane stiffness. In 
the theoretical framework, the L dependency on the resonant 
frequency might become stronger than that in air due to the 
inertia of liquids as mentioned above. On the other hand, the 
trapezoidal shape caused to induce some amplitude peaks in 
addition to the maximum one. In the experimental result, as 
shown in Figure 11b, this trend was also observed, especially 
in the range from x = 10 to 30 mm. The amplitude tended to 
broadly distribute along the x-axis and also appeared near the 
lower base of the trapezoid due to off-resonance, as indicated 
in Figure  10. It was clarified that the amplitude at small L 
tended to be suppressed in liquid with increasing the resonant 
frequency. That is, the frequency selectivity of the trapezoidal 
membrane was degraded in Ringer's solution. This trend was 
similar in both experimental and numerical results. It is sug-
gested that the frequency selectivity of the membrane is con-
strained in liquid compared with in air. A difference in the 
resonant frequency between the air and liquids depends on 
their physical properties and eigenfrequencies. According to 
Equation (A12) in Appendix, the eigenfrequencies of silicone 
oil and Ringer's solution are 2.7 and 4.4 times larger than that 
of the air, respectively, where the eigenfrequency of the air is 
28.3 kHz for L = 6mm (or 5.67 kHz for L = 30mm). In the 

FIGURE 10    |    Numerical result of amplitude distributions of 1.00, 2.00, 3.00, and 4.00 kHz, calculated in Ringer's solution for E� = 8.5GPa by ap-
plying a 20 dB pressure difference on the membrane surface.
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fluid–structure interaction, the trapezoidal membrane tends 
to be the most resonant with the air, among the three type 
fluids. On the other hand, Ringer's solution, the eigenfrequen-
cies of which are far from those of the membrane, rather 
works to suppress the vibration as a damper. For practical ap-
plications, the artificial cochlea will be used in lymphatic liq-
uids like a Ringer's solution, and the present device need to be 
improved to realize the wide-range frequency selectivity. 
Frequency matching between the membrane and liquid in the 
fluid–structure interaction is important to extract preferable 
functions for the artificial cochlea. In a recent study [28], a 
control system to amplify the most prominent peaks, sup-
pressing others, has been tested. It is expected that the present 
system will be improved by applying the amplification of the 
amplitude of leading positions corresponding to the resonant 
frequencies.

3.4   |   Resonant Frequency Analysis of Artificial 
Basilar Membrane of Guinea Pig

In a previous study [1], a mimic of the basilar membrane of a 
guinea pig was fabricated using photolithography and reac-
tive ion etching. An artificial membrane made of PVDF-TrFE, 
which was designed for the basilar membrane of the guinea 
pig, as shown in Figure 12a, was measured. In this study, the 
resonant characteristics of the artificial membrane were in-
vestigated considering the fluid–structure interaction in the 
FEM analysis. Figure 12b shows an illustration of the numer-
ical model, whose dimension reproduces the artificial basilar 
membrane of the guinea pig in Figure  12a. The thickness of 
the PVDF membrane was set to 3 μm, which was estimated 
in the experiment [1]. In the previous result, the resonant 
frequency was determined at 3 and 9 kHz for the first- and 

FIGURE 12    |    (a) Illustration of the experimental device of the artificial basilar membrane for guinea pig cochlea, which was made of a PVDF-TrFE 
membrane fixed on the silicon frame, as described in the literature [1]. (b) Numerical model of the present FEM analysis for the resonant frequency 
analysis of PVDF membrane that has the same dimension as the experimental device shown in (a).
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second-resonance, respectively, using the artificial membrane 
implanted in a guinea pig cochlea. Although these frequencies 

coincided with the resonance of the basilar membrane of the 
guinea pig, the mechanism has not yet been clarified. Here, 
it was assumed that the elasticity of PVDF-TrFE could be lin-
early scaled by that of PVDF. The curved shape of the PVDF 
membrane that mimics the basilar membrane of the guinea 
pig was much smaller than the former trapezoidal mem-
brane. In the numerical model, the resonant frequency of this 
shape was evaluated in air and Ringer's solution, considering 
the fluid–structure interaction with similar boundary condi-
tions for the case of the trapezoidal membrane (Equations 12 
and 18–20). An oscillating pressure difference of 20 dB SPL 
was applied in the normal direction on the top surface of the 
membrane. Based on the elasticity tensor of bulk PVDF repre-
sented by Equation (13), the resonant frequency in the air was 
determined as 85.1 kHz that was much larger than the corre-
sponding experimental data of 37 kHz previously measured 
(unpublished data). The elasticity tensor was scaled by a co-
efficient of E� = 0.72GPa in Equation (21) that reproduced the 
experimental result of 37 kHz in air. Numerical results of the 
first- and second-resonant frequencies of the PVDF membrane 
for guinea pig cochlea are shown in Figure  13. For the com-
putational conditions, two situations were examined, in which 
the PVDF membrane was partly or fully immersed in Ringer's 
solution. It was clear that the resonant frequencies were re-
duced in viscous liquids. The dependency of the membrane 

thickness on the resonant frequency was also investigated. 
Both the first- and second-resonant frequencies showed lin-
earity for the membrane thickness between 2 and 4 μm. The 
resonant frequencies were proportional to the membrane thick-
ness. This result was reasonable compared with the theoretical 
model of an elastic beam whose ends were fixed, as described 
in Appendix  A, where the fraction of the second momentum 
of the area to the cross-section was proportional to the square 
of the thickness, and the frequency was proportional to the 
square root of it. In Figure 13, typical values of 3 and 9 kHz for 
the first- and second-resonant frequencies [1] were also indi-
cated by dashed lines, respectively. Some of the computational 
results appeared near the experimental data, although they did 
not fully agree with the frequency of 3 and 9 kHz. Especially 
for a membrane of 2.5 μm thick fully immersed in Ringer's 
solution, the first-resonant frequency was at 5.66 kHz and the 
second mode appeared at 8.99 kHz which was the closest to the 
experimental value. Figure  14 shows amplitude distributions 
of the membranes of 2.0, 2.5, and 3.0 μm thick fully immersed 
in Ringer's solution, resulting from the computations for the 
forced oscillations by applying an acoustic pressure difference 
of 20 dB SPL with the frequencies of 3 and 9 kHz. It was found 
that each membrane showed the aspect of the first mode to the 
frequency of 3 kHz. For the applied frequency of 9 kHz, ampli-
tude distributions varied with the membrane thickness. The 
membrane of 2.0 μm thick showed three peaks in which the 
amplitude was the largest at the central peak. The aspect of the 
third-mode oscillation seemed to appear because the second-
resonant frequency of the 2.0 μm thick membrane was 6.47 kHz 
that was lower than 9 kHz. The membrane of 2.5 μm thick 
whose second-resonant frequency was 8.99 kHz prominently 
responded to the applied frequency. There were two peaks and 
the largest one shifted to the narrower end of the curved shape 
compared with the first mode. On the other hand, the second-
mode vibration was not excited in the membrane of 3.0 μm 
thick, which was evaluated as 11.75 kHz. In a previous experi-
ment [1], it was suggested that the resonant frequencies of 3 and 
9 kHz were induced by the resonance of the basilar membrane 
of a guinea pig cochlea and that the artificial piezoelectric 
membrane also well responded to the vibration of the basilar 
membrane. The present result from the 2.5 μm thick membrane 
was in reasonable agreement with the previous experiment [1], 
although the membrane thickness might be a little bit underes-
timated compared with the experimental evaluation of 3 μm.

In addition to the resonant characteristics of the trapezoidal 
PVDF membrane, the artificial basilar membrane for guinea pigs 
could reproduce experimental results based on the FEM analy-
sis considering the fluid–structure interaction. Consequently, 
quantitative evaluations remaining in previous studies were 
proceeded in this study.

On the other hand, the present model assumed a small limit 
of amplitude, and therefore, the quantitative evaluations were 
limited to the resonant frequencies. The amplitude was possi-
bly discussed with respect to qualitative evaluations, such as 
vibration modes and displacement distributions. For the quan-
titative discussion about the amplitude, nonlinear models of 
self-excited vibration in continuum media are required and 
may enable us to represent the nonlinear functions of cochlear 
implants [27, 29, 43].

FIGURE 13    |    Numerical results of the first- and second-resonant 
frequencies as a function of the PVDF membrane thickness, resulting 
from the fluid–structure interaction, where “Air/Liq.” and “Liq./Liq.” 
in the legend mean that the membrane was placed between the air and 
Ringer's solution (open square and open circle) and between Ringer's 
solutions (closed square and closed circle), respectively. The first- and 
second-resonant frequencies of 3 and 9 kHz experimentally measured 
[1] are also shown by dashed lines, respectively.
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4   |   Conclusions

In the present study, focusing on the resonant characteristics of 
the basilar membrane for the artificial cochlea, the frequency se-
lectivity of a trapezoidal piezoelectric membrane that mimicked 
guinea pig cochlea was numerically investigated compared to 
the experimental results [1, 11]. Owing to the tapered shapes, os-
cillating pressure differences externally applied were separately 
sensed at different positions along the membrane. Considering 
the fluid–structure interaction, details in the frequency selectiv-
ity of the PVDF membranes in liquid were clarified as follows:

	 i.	 The resonant frequency range sensed by the trapezoidal 
PVDF membrane in the air was clearly decreased in liquid, 
which quantitatively reproduced the experimental results.

	 ii.	 In the numerical analysis considering the fluid–structure 
interaction, scaled Young's modulus adjusted to experi-
mentally measured resonant frequencies in the air could 
well reproduce the resonant characteristics of the mem-
branes in liquid. It was suggested that frequency matching 
between the membrane and liquids in the fluid–structure 
interaction systems had a possibility to extend the fre-
quency selectivity available for the development of the arti-
ficial cochlea.

	iii.	 According to the proposed method, resonant frequencies 
of the artificial piezoelectric membrane for guinea pig co-
chlea, observed at 3 and 9 kHz in the animal test, were also 
reproduced.

Consequently, the present numerical procedure will effectively 
contribute to optimize the resonant characteristics of the ar-
tificial basilar membrane in various liquids. This will be an 

important technique for the development of artificial micro-
electromechanical devices in which the physical properties of 
materials are different from the bulk and unknown in specific 
situations.
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Appendix A

A.1   |   Validation of the Numerical Analysis

Before carrying out vibration mode analysis of a trapezoidal PVDF 
membrane in liquid, the numerical accuracy is verified for the elastic 
body motion. As shown in Figure A1, an aluminum beam that has a 
square cross-section of 1 × 1mm2 and a length of 100 mm is fixed at both 
ends. A uniform oscillating pressure difference of p0sin(2�ft) was ap-
plied on a plane of ABCD in the z direction, where p0 was a constant 
that proportionally affected the amplitude, and f  was the externally 
applied frequency. Considering the physical properties of aluminum, 
we set �m = 2.70 × 103 kgm−3, E = 70.0GPa, and � = 0.33. The boundary 
conditions were set to

where the resonant frequency was evaluated by solving Equation (1). 
As a result, the first-resonant frequency was f1 = 523.8Hz. On the other 
hand, in the theoretical model, the first-resonant frequency of the both-
end fixed beam is given as follows:

where L is the beam length, A is the cross-section area, and J is the 
second momentum of area. Referring to the physical properties of alu-
minum, the theoretical resonant frequency results in f1t = 523.3Hz. 
The difference between the numerical and theoretical results is 0.13%, 
which is quite small, and both of the results are in good agreement.

A.2   |   Sound Pressure Propagation in Liquid

Next, the computational accuracy of sound pressure propagation 
in a water tube is evaluated. As shown in Figure  A2, water is in a 
square cross-section duct. The physical properties of water were set 
to �f = 1.00 × 103 kgm−3, c0 = 1.48 × 103ms−1, and � = 1.0 × 10−3 Pa ⋅ s. 
Here, we adjusted the value of �b = 2.79� that was required to reproduce 
the eigen frequency of the water tube and was reasonably determined 
compared with previously reported data [42]. The importance of liquid 
bulk viscosity for vibration problems was reported in the literature [32, 
37]. Considering a vibration state, �p(x, y, z, t) = �p�(x, y, z)exp(i�t) is 
substituted in Equation (11), where � and �p� are the angular frequency 
and its amplitude, respectively. Then, Equation (11) is transformed as 
follows: [42]

where

Boundary conditions are set to

(A1)�z = p0sin(2�ft) on ABCD

(A2)
�� z

�z
= 0 on GHEF

(A3)
�� y

�y
= 0 on BFGC and DHEA

(A4)� x = � y = � z = 0 on AEFB and CGHD

(A5)f1t =
22.37

2�L2

√

EJ

�mA

(A6)c2cΔ
2�p� − �2�p� = 0

(A7)c2c = c20

(

1 + i�
�Ṽ

c2
0

)

FIGURE A2    |    Schematic illustration of water in a square duct, which has a 1 × 1mm2 and a length of 100 mm, fixed at both ends of AEFB and 
CGHD.
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where Equation (A6) is numerically solved, and the first-resonant fre-
quency is obtained as f1 = 7.40 × 103Hz. To verify this numerical result, 
we theoretically analyze Equation (A6) for the one-dimensional prob-
lem in the x-axis. The boundary conditions of the duct of length L are 
set to

where the analytical solution is obtained, and the first-resonant fre-
quency results in

Substituting the physical properties of water and the length of 
L = 100mm in Equation (A12), we obtain f1t = 7.4 × 103Hz. This value 
is in good agreement with the aforementioned numerical result.

As mentioned above, vibrations of elastic bodies and sound pressures in 
water were numerically analyzed with high accuracy. Based on these 
results, the resonant frequency of PVDF basilar membranes is evalu-
ated in the main text.

(A8)�p� = 0 on AEFB and CGHD

(A9)
��p�
�y

= 0 on BFGC and DHEA

(A10)
��p�
�z

= 0 on ABCD and GFEH

(A11)�p(0, t) = �p(L, t) = 0

(A12)f1t =
1

2L
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−
1

4
Ṽ
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