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Abstract

This paper investigates distributed online optimization in a networked multiagent sys-
tem, where each agent has its own private objective and constraint functions that vary
over time. In many real-world scenarios, computing the gradient of the cost function can
be challenging, especially when agents have limited computational capabilities. Moreover,
communication delays are common in practical networked systems due to various fac-
tors. This paper considers a unified framework for distributed online optimization that can
handle bandit feedback and communication delays feedback simultaneously. A distributed
primal-dual algorithm is proposed that utilizes bandit feedback, in which the agents esti-
mate the gradients of their objective and constraint functions by sampling the function
values. An enlarged network model that incorporates the delayed information exchanged
among the agents is introduced. Through theoretical analysis, it is shown that the proposed
algorithm achieves sublinear upper bounds on both the dynamic regret and the constraint
violation despite communication delays.

1 INTRODUCTION

Distributed optimization has gained significant attention in
recent years as a framework for controlling and optimiz-
ing large-scale networked systems [1]. The agents’ goal is to
collectively find a solution that optimizes the overall system per-
formance rather than just optimizing their individual objectives.
One of the most widely studied approaches is consensus-based
optimization [2]. In this approach, agents iteratively share infor-
mation with their neighbours in the communication network to
reach a consensus on the decision variables that optimize the
global objective function.

While much research has been done on developing dis-
tributed algorithms for off-line optimization, where a local
cost function does not change over time, practical situa-
tions often involve dynamic environments with a time-varying
local cost function. Online optimization is a framework that
addresses such dynamic settings, aiming to minimize a perfor-
mance metric called a regret [3]. Many research articles have
explored various directions to tackle the challenges of dis-
tributed online optimization. One line of research focuses on
developing distributed methods that can handle directed com-
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munication networks [4, 5]. The influence of noisy gradient
information has also been studied [6, 7], where a high-
probability bound on the regret was analysed. Several research
articles have investigated distributed approaches that incorpo-
rate shared constraints such as primal-dual methods [8] and
augmented Lagrangian frameworks [9, 10]. Furthermore, in
real-world networks, communication bandwidth can impact the
performance of distributed algorithms. Researchers have con-
sidered distributed approaches that consider communication
constraints such as quantization of exchanged information [11]
and event-triggered communication schemes [12, 13].

In distributed online optimization, many algorithms assume
that the gradient of the cost function can be easily computed.
However, this assumption may not always be practical, par-
ticularly when agents have limited computational resources.
To address scenarios with limited gradient information, one
approach is the use of bandit feedback algorithms, also known
as zeroth-order algorithms. Bandit feedback is crucial in dis-
tributed optimization for several reasons. First, it enables the
optimization of black-box functions. This is particularly impor-
tant in real-world applications, where the exact form of the
objective function may not be known or may be too complex
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to model explicitly. Second, bandit feedback optimization can
be more computationally efficient than methods requiring exact
gradient computations, as it relies only on the values of the cost
and constraint functions at each iteration. This makes it well-
suited for resource-constrained environments, such as wireless
sensor networks or mobile devices. One class of these algo-
rithms approximates gradients using a single function evaluation
[14], while multi-point bandit feedback algorithms estimate gra-
dients through multiple function evaluations [15, 16]. The latter
approach allows for more accurate gradient estimates compared
to single-point methods.

Communication delays are another significant challenge in
distributed optimization. In real-world networked systems, the
exchange of information is often subject to delays arising
from various factors. Nedić and Ozdaglar analysed the con-
vergence properties of these algorithms in the presence of
delays [17]. The authors have shown that delays can slow down
the convergence rate and require additional assumptions and
modifications to the algorithms to ensure convergence. Recent
studies have made significant progress in consensus control
with delayed feedback. Lin and Ren proposed a consensus algo-
rithm in multiagent systems with communication delays [18].
Zhang et al. studied continuous-time multiagent systems with
both communication noise and delays [19]. Wei et al. consid-
ered a model predictive control approach under the conditions
of input constraints and bounded time-varying communica-
tion delays [20]. The distributed optimization problem with
communication delays have also been studied in [21–24]. How-
ever, most existing methods assume that agents have access
to full gradient information, which may not always hold in
practical applications.

To address these challenges, we propose a distributed online
optimization algorithm incorporating bandit feedback and com-
munication delays. The proposed algorithm is based on a
distributed primal-dual approach and utilizes two-point ban-
dit feedback to estimate gradients without perfect information.
Through theoretical analysis, we prove that the proposed algo-
rithm achieves sublinear dynamic regret and constraint violation
despite uncertainties from bandit feedback and communica-
tion delays. Previous research on distributed bandit feedback
algorithms has studied scenarios where gradient information is
unavailable [4, 25, 26]. However, the impact of communication
delays is not considered in these research articles. While the dis-
tributed online optimization methods with the delayed gradient
information have been investigated [27], these approaches do
not consider delays in communication between agents. Several
research articles have addressed the effects of communication
delays on the convergence of online distributed algorithms
[28, 29]. However, these methods assume perfect gradient
information and cannot be applied in the bandit settings.

Compared to the existing methods, the proposed method
offers several advantages.

∙ The proposed method can address both the bandit feed-
back and the communication delay feedback in a distributed
multiagent system. The bandit feedback is particularly advan-

tageous in scenarios where the cost and constraint functions
are complex or their gradients are difficult to compute. Com-
munication delays are also a critical issue in many real-world
networks, often arising from factors such as network con-
gestion, limited bandwidth, and physical distance between
agents. While existing methods usually tackle these issues sep-
arately, the proposed algorithm integrates them into a unified
framework.

∙ The proposed algorithm incorporates a distributed primal-
dual method with two-point bandit feedback. This approach
enables each agent to appropriately estimate gradients with-
out relying on exact gradient information. To address com-
munication delays, we consider an enlarged graph approach,
where virtual agents are introduced to the original graph to
handle the delayed information. These virtual agents store
and forward the delayed information to the appropriate
agents. By incorporating these virtual agents, the proposed
method can deal with the situation where each agent receives
the information with communication delays.

The paper is organized as follows. Section 2 introduces
the problem formulation of the online optimization and the
bandit feedback. Section 3 proposes a distributed online primal-
dual algorithm in the presence of communication delays.
Section 4 shows the analysis of the regret bound of the pro-
posed algorithm. Section 5 illustrates the numerical examples
of the proposed algorithm. Finally, Section 6 gives concluding
remarks.

2 PROBLEM FORMULATION

2.1 Notations

The sets of n-dimensional real vectors and real vectors with
non-negative components are represented by ℝn and ℝn

+,
respectively. The set of non-negative integers is represented
by ℕ. The symbols 0 and 1 stand for vectors of appropriate
dimensions with all elements equal to 0 and 1, respectively. We
use In to represent the n × n identity matrix. Vector inequali-
ties are interpreted componentwise. The Euclidean norm and
the 𝓁1-norm of a vector are represented by ‖ ⋅ ‖ and ‖ ⋅ ‖1,
respectively. For a matrix A, [A]i j represents its (i, j )th ele-
ment. Similarly, for a vector x, [x]i represents its ith element.
For functions h1 ∶ ℝ → ℝ and h2 ∶ ℝ → ℝ+, h1 = O+(h2) if|h1(x )| ≤ C1h2(x ) for some positive constant C1 and sufficiently
large x ∈ ℝ. Similarly, h1 = O(h2) means that h1(x ) ≤ C2h2(x )
for some positive constant C2 and sufficiently large x ∈ ℝ.
The n-dimensional closed unit ball and the unit sphere are
represented by 𝔹n = {x ∈ ℝn ∣ ‖x‖ ≤ 1} and 𝕊n = {x ∈ ℝn ∣‖x‖ = 1}, respectively. For a closed convex set 𝒮 ⊂ ℝn, the
projection of a vector x ∈ ℝn onto 𝒮 is defined as Π𝒮 (x ) =
arg miny∈𝒮 ‖x − y‖. As a property of the projection operator,
we have

‖Π𝒮 (x ) −Π𝒮 (y)‖ ≤ ‖x − y‖, ∀x, y ∈ ℝn. (1)
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We use [z]+ to represent the componentwise projection of a
vector z ∈ ℝn onto the non-negative orthant ℝn

+. Finally, 𝔼u[⋅]
represents the expected value with respect to the random vari-
able u. However, we omit the random variable u if it is clear from
the context.

2.2 Multiagent system

We consider a multiagent system with N agents whose net-
work is represented by a time-varying directed graph k =
(ℐ,ℰk ), where ℐ = {1, 2, … ,N } is the set of the agents, ℰk

is the set of edges at iteration k ∈ 𝒦, and 𝒦 = {1, 2, … , T }.
An edge ( j , i ) ∈ ℰk represents that agent j transmits informa-
tion to agent i at iteration k. If any agent can be reached by
a directed path from any other agent in the graph, the graph
is said to be strongly connected. A sequence of communica-
tion graphs 1,2, … is uniformly strongly connected if there

exists a positive integer B such that ℰB (s) =
⋃sB

𝓁=(s−1)B+1 ℰ𝓁

is strongly connected for every s ∈ ℕ ⧵ {0}. The weight matrix
Q(k) = [q

(k)
i j ] ∈ ℝN×N consists of the edge weights q

(k)
i j that has

a positive value if ( j , i ) ∈ ℰk, and q
(k)
i j = 0 for ( j , i ) ∉ ℰk. In

this paper, the following assumption about the connectivity of
the communication graph is made:

Assumption 1. The sequence of the communication graphs
{k}k∈𝒦 is uniformly strongly connected. Moreover, the weight
matrix Q(k) corresponding to k is column stochastic for

all k ∈ 𝒦 such that q
(k)
i j ≥ p for all ( j , i ) ∈ ℰk and k ∈ 𝒦,

and q
(k)
ii > p for all i ∈ ℐ and k ∈ 𝒦, where p is a positive

constant.

This assumption ensures that information can propagate
through the network over time, which is crucial for convergence
in distributed optimization [2].

Each agent i in the system has an associated local cost func-
tion fi,k ∶ 𝒳i → ℝ and a local constraint function gi,k ∶ 𝒳i →
ℝm at iteration k, where 𝒳i ⊂ ℝni is the feasible region of the
decision variable for agent i.

Assumption 2. For any i ∈ ℐ and k ∈ 𝒦, fi,k and gi,k are con-
vex. Moreover, the local constraint set 𝒳i is bounded, closed,
and convex.

Assumption 2 on the convexity of the cost and constraint
functions, and the boundedness of the constraint sets is a funda-
mental assumption in convex optimization literature [8]. From
Assumption 2, several important properties can be derived.
First, due to the boundedness of the local constraint set, ‖xi‖ ≤
Bx holds for all xi ∈ 𝒳i and i ∈ ℐ, where Bx is a positive con-
stant. Moreover, we have ‖gi,k(xi )‖ ≤ Bg and ‖Dgi,k

(xi )‖ ≤ Cg

for all xi ∈ 𝒳i , i ∈ ℐ, and k ∈ 𝒦, where Bg and Cg are pos-
itive constants, and Dgi,k

(xi ) ∈ ℝni×ni is the Jacobian of gi,k at
xi ∈ 𝒳i .

2.3 Constrained online optimization

We consider the global cost function Fk(x ) =
∑

i∈ℐ
fi,k(xi )

and the global constraint function Gk(x ) =
∑

i∈ℐ
gi,k(xi ),

where xi ∈ 𝒳i is the decision variable of agent i, x =
[x⊤

1 , x
⊤
2 , … , x⊤

N
]⊤ ∈ 𝒳, 𝒳 ⊂ ℝn is the concatenation of the

local constraint sets of N agents, and n =
∑

i∈ℐ
ni .

The multiagent system collaboratively solves the following
online optimization problem with inequality constraints at each
iteration:

minimize
x∈𝒳

∑
k∈𝒦

Fk(x ) (2a)

subject to
∑

k∈𝒦

Gk(x ) ≤ 0. (2b)

The optimization problem (2) is a general formulation that
covers a wide range of constrained distributed online optimiza-
tion problems. For example, the optimization problem (2) can
be applied to resource allocation problems as discussed in [8],
where the objective is to optimally allocate limited resources
among multiple agents in a dynamic environment. Other exam-
ples include online linear regression [30] and online model
predictive control problems [31].

The Lagrangian function for the optimization problem (2) is
defined as

∑
k∈𝒦

Hk(x, 𝜌), where 𝜌 ∈ ℝm
+ is a dual variable,

Hk(x, 𝜌) =
∑
i∈ℐ

Hi,k(xi , 𝜌) = Fk(x ) + 𝜌⊤Gk(x ), (3)

and Hi,k(xi , 𝜌) = fi,k(xi ) + 𝜌⊤gi,k(xi ). Then, the dual problem
of Equation (2) is given by

max
𝜌∈ℝm

+

∑
k∈𝒦

rk(𝜌), (4)

where rk(𝜌) = minx∈𝒴k
Hk(x, 𝜌) and 𝒴k = {x ∈ 𝒳 ∣ Gk(x ) ≤

0}.
We consider the following Slater’s condition:

Assumption 3. For any k ∈ 𝒦, there exists x̌ in the relative
interior of 𝒳 such that Gk(x̌ ) < 0.

Assumption 3 is a classical assumption in constrained
optimization that guarantees strong duality [32].

2.4 Bandit feedback

In the bandit setting, the true gradient values of the cost and
constraint functions are unavailable. Instead, each agent i can
only observe the cost function value and constraint function
value. Specifically, each agent samples the cost and constraint
functions at two points close to its current decision to approx-
imate the local gradient. To this end, we utilize a smoothing
approximation and two-point bandit feedback.
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We here consider a function 𝜑 ∶ 𝕂 → ℝm , where 𝕂 ⊂ ℝn.
We consider the following assumption:

Assumption 4.

1. There exist positive constants 𝜁min and 𝜁max such that
𝜁min𝔹

n ⊂ 𝕂 ⊂ 𝜁max𝔹
n.

2. 𝜑 is convex and Lipschitz continuous on 𝕂.
3. For any x ∈ 𝕂, there exists B𝜑 > 0 such that ‖𝜑(x )‖ ≤ B𝜑.

Assumption 4 regarding the convexity and Lipschitz con-
tinuity of the smoothed functions ensures that the gradient
estimates obtained through bandit feedback are well-behaved,
which is critical for the convergence analysis of zeroth-order
optimization algorithms [14].

In this paper, we consider a smoothed function �̃� of a
function 𝜑 as follows:

�̃�(x ) = 𝔼v∈𝔹n [𝜑(x + 𝛿𝜑v)], (5)

where 𝛿𝜑 ∈
(
0, 𝜁min𝜉

]
is a smoothing parameter and 𝜉 ∈ (0, 1)

is a shrink rate. The expectation in the smoothed function (5) is
taken with respect to a random vector v uniformly distributed
over the unit ball 𝔹n in ℝn. The random term 𝛿𝜑v introduces
a small perturbation around the point x, allowing us to explore
the local behaviour of the function 𝜑. By averaging over these
random perturbations, we obtain a smoothed approximation
that captures the essential features of the original function. The
shrink rate 𝜉 controls the size of the neighbourhood. A smaller
value of 𝜉 results in a tighter approximation to the original func-
tion, while a larger value leads to a smoother approximation with
a larger neighbourhood of exploration.

Under Assumption 4, we have the following results of con-
vexity and Lipschitz continuity for the smoothed function �̃�
(Lemma 2 in [25]).

Lemma 1. Under Assumption 4, we have the followings:

1. �̃� is convex on (1 − 𝜉 )𝕂.

2. �̃� is Lipschitz continuous, that is, for all x, y ∈ 𝕂, there exists a

positive constant L𝜑 such that ‖�̃�(x ) − �̃�(y)‖ ≤ L𝜑‖x − y‖.

3. For any x ∈ (1 − 𝜉 )𝕂, we have 𝜑(x ) ≤ �̃�(x ) and ‖�̃�(x ) −
𝜑(x )‖ ≤ 𝛿𝜑L𝜑.

We consider the two-point approximation of the gradient of
𝜑 defined as follows:

d̃𝜑(x ) = n

2𝛿𝜑
(𝜑(x + 𝛿𝜑u𝜑 ) − 𝜑(x − 𝛿𝜑u𝜑 ))u𝜑, (6)

where u𝜑 ∈ 𝕊n is a unit vector. The intuition behind this
approximation is to estimate the gradient by evaluating the func-
tion at two points that are slightly perturbed from the original
point x.

The properties of d̃𝜑 are summarized in the following lemma
(Lemma 2 in [25]):

Lemma 2. Under Assumption 4, we have the followings:

1. The expected value of d̃𝜑(x ) is given by the smoothed gradient, that is,

𝔼u𝜑∈𝕊n [d̃𝜑(x )] = ∇�̃�(x ), ∀x ∈ (1 − 𝜉 )𝕂. (7)

2. There exists a positive constant L𝜑 such that

‖∇�̃�(x ) −∇�̃�(y)‖ ≤ nL𝜑

𝛿𝜑
‖x − y‖, ∀x, y ∈ (1 − 𝜉 )𝕂.

(8)

3. The norm of d̃𝜑 (x ) is bounded as

‖d̃𝜑(x )‖ ≤ nL𝜑, ∀x ∈ (1 − 𝜉 )𝕂. (9)

The properties in Lemma 2 are fundamental for the analysis
of the proposed algorithm because they address the behaviour
of the gradient estimates and its smoothed function. These
properties are used in the convergence analysis in Section 4 to
bound the error terms.

3 DISTRIBUTED BANDIT FEEDBACK
OPTIMIZATION WITH
COMMUNICATION DELAYS

In this section, we propose a distributed online algorithm with
bandit feedback in the presence of communication delays. Let

x
(k)
∗ = [(x

(k)
1,∗ )

⊤
, (x

(k)
2,∗ )

⊤
,… , (x

(k)
N ,∗ )

⊤
]
⊤

be an optimal strategy at

iteration k such that x
(k)
∗ ∈ arg minx∈𝒴k

Fk(x ). Each agent i

has the estimations x
(k)
i ∈ 𝒳i and 𝜌

(k)
i ∈ ℝm

+ corresponding to

the optimal dynamic strategy x
(k)
i,∗ and the dual optimal solution

𝜌∗ ∈ ℝm
+ for the dual problem (4).

Let 𝜅
(k)
i j ∈ ℕ be the time-varying communication delay for

the directed edge ( j , i ) ∈ ℰk at iteration k. We introduce the
following assumption [17]:

Assumption 5. The communication delays are characterized
by the following conditions:

∙ The self-delay is zero, that is, 𝜅
(k)
ii = 0 for all i ∈ ℐ and k ∈

𝒦.
∙ If ( j , i ) ∈ ℰk and agent i does not receive the estimate from

agent j at iteration k + 1, then 𝜅
(k)
i j = 0.

∙ There exists a constant 𝜇 ∈ ℕ ⧵ {0} such that 0 ≤ 𝜅
(k)
i j ≤ 𝜇 −

1 for all i, j ∈ ℐ and k ∈ 𝒦.

Assumption 5 is used for analysing and ensuring the conver-
gence of the distributed optimization algorithm. By bounding
the delays, the algorithm can be effectively designed to manage
delays within a specific range. This assumption is reasonable in
many practical systems where communication delays are limited
due to physical constraints or the properties of the network [17].

Algorithm 1 shows the proposed distributed online algo-
rithm with bandit feedback. The algorithm utilizes the step-sizes

 17518652, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12759 by T

he U
niversity O

f O
saka, W

iley O
nline L

ibrary on [21/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INOUE ET AL. 5 of 15

ALGORITHM 1 Distributed online primal-dual push-sum algorithm with
Bandit feedback.

Require: For each agent i ∈ ℐ and for each iteration

𝜏 ∈ {−(𝜇 − 1),−(𝜇 − 2), … , 0}, the variables x
(𝜏)
i

, 𝜌
(𝜏)
i

, and y
(𝜏)
i

are initialized

to 0. Moreover, for all i ∈ ℐ, the variables x
(1)
i

, 𝜌
(1)
i

, and y
(1)
i

are initialized as

x
(1)
i

∈ 𝒳i , 𝜌
(1)
i

= 0, and y
(1)
i

= gi,k(x
(1)
i

).

1: for k ∈ 𝒦 do

2: Update the estimations by

𝜓
(k+1)
i

=
∑
j∈ℐ

q
(k)
i j
𝜓

(k−𝜅(k)
i j

)

j
, (13)

𝜉
(k)
i

=
∑
j∈ℐ

q
(k)
i j
𝜌

(k−𝜅(k)
i j

)

j
, (14)

𝜁
(k)
i

=
∑
j∈ℐ

q
(k)
i j

y
(k−𝜅(k)

i j
)

j
, (15)

x
(k+1)
i

= Π(1−𝜉 )𝒳i

(
x

(k)
i

− a(k) s̃
(k+1)
i

)
, (16)

𝜌
(k+1)
i

=

[
𝜉

(k)
i

+ a(k)

(
𝜁

(k)
i

𝜓
(k+1)
i

− b(k)𝜉
(k)
i

)]
+

, (17)

y
(k+1)
i

= 𝜁
(k)
i

+ gi,k(x
(k)
i

) − gi,k−1(x
(k−1)
i

). (18)

3: Set to k ∶= k + 1.

4: end for

a(k)
> 0 and b(k)

> 0, and the gradient-related vector defined as
follows:

s̃
(k+1)
i = d̃ fi,k

(x
(k)
i ) + D̃gi,k

(x
(k)
i )

⊤ 𝜉
(k)
i

𝜓
(k+1)
i

, (10)

where d̃ fi,k
(x

(k)
i ) and D̃gi,k

(x
(k)
i ) are the two-point approxima-

tions defined as follows:

d̃ fi,k
(x (k)

i ) =
ni

2𝛿 fi,k

( fi,k(x (k)
i + 𝛿 fi,k

u fi,k
) − fi,k(x (k)

i − 𝛿 fi,k
u fi,k

))u fi,k
,

(11)

D̃gi,k
(x (k)

i ) =
ni

2𝛿gi,k

(gi,k(x (k)
i + 𝛿gi,k

ugi,k
) − gi,k(x (k)

i − 𝛿gi,k
ugi,k

))ugi,k
.

(12)

The gradient estimates are obtained using smoothing param-
eters 𝛿 fi,k

> 0 and 𝛿gi,k
> 0, and unit vectors u fi,k

∈ 𝕊ni and
ugi,k

∈ 𝕊m that are uniformly chosen from the unit sphere.
In the proposed algorithm, each agent i ∈ ℐ initializes the

variables x
(𝜏)
i , 𝜌

(𝜏)
i , and y

(𝜏)
i to zero for 𝜏 ∈ {−(𝜇 − 1),−(𝜇 −

2), … , 0}. Moreover, x
(1)
i is set to an initial point in the feasible

set 𝒳i , 𝜌
(1)
i is set to zero, and y

(1)
i is initialized with the value of

the constraint function gi,k(x
(1)
i ).

At each iteration k, agent i updates the variables 𝜓
(k+1)
i , 𝜉

(k)
i ,

and 𝜁
(k)
i by combining the information received from neigh-

bouring agents considering the communication delay 𝜅
(k)
i j in

Equations (13)–(15). In Algorithm 1, the variable 𝜓
(k)
i is intro-

duced in Equation (13) to address the imbalance of information
that arises due to the directed nature of the communication
among agents [8].

The primal variable x
(k+1)
i is updated using a projected gra-

dient descent step in Equation (16). The dual variable 𝜌
(k+1)
i is

updated using a dual ascent step, followed by a projection onto
the non-negative orthant in Equation (17). Finally, the variable

y
(k+1)
i is updated by incorporating the change in the constraint

function values between consecutive iterations in Equation (18).

The variable y
(k+1)
i provides a running total of how far the cur-

rent estimates x
(k)
i are from satisfying the constraints up to the

current iteration k. By maintaining this historical information,

y
(k)
i enables agent i to adapt the estimate towards feasibility in

subsequent iterations.

4 CONVERGENCE ANALYSIS

Since the gradient information d̃ fi,k
(x

(k)
i ) and D̃gi,k

(x
(k)
i ) in

Equation (10) is estimated based on sampled function values
rather than being directly observed, the gradient descent step
(16) involves randomness in the decision-making at each iter-
ation. As a result, the regret and constraint violation are not
deterministic but involve random variables [25, 26]. In this sec-
tion, we analyse the convergence of the proposed algorithm
using the expected dynamic regret and the expected constraint
violation as follows:

R̃eg = 𝔼

[∑
k∈𝒦

∑
i∈ℐ

fi,k

(
x

(k)
i

)]
−

∑
k∈𝒦

∑
i∈ℐ

fi,k

(
x

(k)
i,∗

)
, (19)

R̃eg
c
= 𝔼

[‖‖‖‖‖‖
[∑

k∈𝒦

∑
i∈ℐ

gi,k

(
x

(k)
i

)]
+

‖‖‖‖‖‖
]
. (20)

To analyse the impact of communication delays on the conver-
gence of the distributed optimization algorithm, we introduce
an enlarged graph ̆k = (ℐ̆, ℰ̆k ). In the enlarged graph ̆k,
the vertex set ℐ̆ consists of 𝜇N nodes. The first N nodes
in ℐ̆, labelled as 1, 2, … ,N , correspond to the original agents
in k. In addition to the original agents, the enlarged graph
introduces (𝜇 − 1)N new nodes, referred to as delayed agents.
These delayed agents are labelled as N + 1,N + 2, … , 𝜇N .
Each delayed agent handles a copy of an original agent’s
state from a previous iteration. By including these delayed
agents in the enlarged graph, the outdated information can be
properly tracked.

The connectivity between the original agents in k remains
unchanged in the enlarged graph ̆k. However, when an original
agent i in ℐ sends its estimate x

(k)
i

to another agent j with a 𝜏-
step communication delay, the estimate is sent to the delayed
agent labelled as j + 𝜏N in the enlarged graph. To capture the
communication patterns and delays in the enlarged graph, an
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6 of 15 INOUE ET AL.

enlarged weight matrix Q̆(k) = [q̆
(k)
hi

] ∈ ℝ𝜇N×𝜇N is introduced.

The elements of this matrix q̆
(k)
hi

are defined as follows:

∙ If agent j receives an estimate from agent i with a 𝜏-step com-

munication delay, that is, 𝜏 = 𝜅
(k)
ji , then q̆

(k)
hi

= q
(k)
ji , where h =

j + 𝜏N . This means that the weight assigned to the delayed
agent h receiving the estimate from agent i is the same as the
weight assigned to the original agent j receiving the estimate
from agent i in the original graph.

∙ If h = i − N , then q̆
(k)
hi

= 1. This condition ensures that each
delayed agent retains its own information from the previous
iteration.

∙ In all other cases, q̆
(k)
hi

= 0, indicating that there is no
communication link between the irrelevant agents.

Agent i’s state in the enlarged graph ̆k is represented by

x̆
(k)
i ∈ ℝni . For all k ∈ 𝒦, the state of the original agent i is

set as x̆
(k)
i = x

(k)
i , while the state of the delayed agent i ∈ ℐd =

{N + 1,N + 2, … , 𝜇N } is given by x̆
(k+1)
i = x̆

(k)
i−N

. The delayed

agent’s cost and constraint values are set as fi,k(x̆
(k)
i

) = 0 and

gi,k(x̆
(k)
i ) = 0 for all i ∈ ℐ and k ∈ 𝒦.

The proposed algorithm for agent i on the enlarged graph ̆k

can be expressed as follows:

�̆�
(k+1)
i =

∑
j∈ℐ̆

q̆
(k)
i j �̆�

(k)
j , (21)

�̆�
(k)
i =

∑
j∈ℐ̆

q̆
(k)
i j �̆�

(k)
j , (22)

𝜁
(k)
i =

∑
j∈ℐ̆

q̆
(k)
i j y̆

(k)
j , (23)

x̆
(k+1)
i = Π𝒳i

(
x̆

(k)
i − a(k) s̆

(k+1)
i

)
, (24)

�̆�
(k+1)
i =

[
�̆�

(k)
i + a(k)

(
𝜁

(k)
i

�̆�
(k+1)
i

− b(k)�̆�
(k)
i

)]
+

, (25)

y̆
(k+1)
i = 𝜁

(k)
i + gi,k

(
x̆

(k)
i

)
− gi,k−1

(
x̆

(k−1)
i

)
, (26)

where �̆�
(0)
i = 1, �̆�

(0)
i = 0, gi,k(x̆

(−1)
i ) = gi,k(x̆

(0)
i ), y̆

(0)
i =

gi,k(x̆
(0)
i ), and s̆

(k+1)
i = d̃ fi,k

(x̆
(k)
i ) + D̃gi,k

(x̆
(k)
i )⊤�̆�

(k)
i ∕�̆�

(k+1)
i .

The initial states are set as x̆
(0)
i = x

(0)
i for i ∈ ℐ and x̆

(0)
i = 0

for i ∈ ℐd.
From Assumption 1, the enlarged weight matrix Q̆(k) is also

column stochastic. From the column stochasticity of Q̆(k), we
can make use of the exponential decay property as follows [17]:

Lemma 3. Under Assumptions 1–3, and 5, for every pair of

indices i, j ∈ ℐ and for any k ≥ s ≥ 0, the following inequality holds:|[Q̆(k, s)]i j − �̆�
(s)
i | ≤ C𝜎k−s , where C > 0, 0 < 𝜎 < 1, Q̆(k, s) =

Q̆(k)Q̆(k−1) ⋯ Q̆(s) is the product sequence of the weight matrices, and

�̆�(s) is a stochastic vector in ℝ𝜇N .

Here, we summarize several preliminary lemmas that play
important roles in the analysis of the regret.

Lemma 4. Under Assumptions 1–5, we have

‖‖‖‖‖‖
𝜁

(k)
i

�̆�
(k+1)
i

− ̄̆y
(k)
‖‖‖‖‖‖ ≤ 2C

r
(𝜎k‖y̆(0)‖1 +

k∑
s=1

𝜎k−s‖gs−1(x̆ (s−1) )

− gs−2(x̆ (s−2) )‖1),‖‖‖‖‖‖
�̆�

(k)
i

�̆�
(k+1)
i

− ̄̆𝜌
(k)
‖‖‖‖‖‖ ≤ 2C

r

(
𝜎k‖�̆�(0)‖1 +

k∑
s=1

𝜎k−s‖‖‖𝜀�̆�(s)
‖‖‖1

)
,

where gk(x ) = [g⊤1,k(x ), g⊤2,k(x ), … , g⊤
N ,k(x )]⊤, r = infk∈𝒦

(mini∈ℐ[Q̆(k, 0)1]i ), ̄̆y(k) = (1∕(𝜇N ))
∑

i∈ℐ̆
y̆

(k)
i , ̄̆𝜌(k) =

(1∕(𝜇N ))
∑

i∈ℐ̆
�̆�

(k)
i , 𝜀

(k)
�̆�

= [(𝜀
(k)
�̆�1

)⊤, (𝜀
(k)
�̆�2

)⊤,… , (𝜀
(k)
�̆�N

)⊤]⊤,

and 𝜀
(k)
�̆�i

=
[
�̆�

(k−1)
i + a(k−1)((𝜁

(k−1)
i ∕�̆�

(k)
i ) − b(k−1)�̆�

(k−1)
i )

]
+
−

�̆�
(k−1)
i .

Lemma 5. Under Assumptions 1–5, for any i ∈ ℐ̆ and k ∈ 𝒦, we

have r ≤ �̆�
(k)
i ≤ 𝜇N and ‖̄̆y(k)‖ ≤ Bg, where 0 < r ≤ 1.

Lemma 6. Under Assumptions 1–5, for all i ∈ ℐ̆ and k ∈ 𝒦,

there exists a positive constant By such that ‖y̆
(k)
i ‖ ≤ By and ‖𝜁(k)

i ‖ ≤
By. Moreover, we have ‖�̆� (k)

i ‖ ≤ �̆�
(k+1)
i By∕(b(k)r2) and ‖�̆�(k)

i ‖ ≤
�̆�

(k+1)
i By∕(b(k)r2 p) for all i ∈ ℐ̆ and k ∈ 𝒦.

Lemmas 4–6 provide upper-bounds for norms of the inter-
mediate variables in the enlarged system, which helps in
ensuring that these variables do not grow unboundedly.

Lemma 7. Under Assumptions 1–5, we have

𝔼

[∑
k∈𝒦

∑
i∈ℐ̆

‖‖‖‖‖ �̆�
(k)
i

�̆�
(k+1)
i

− ̄̆𝜌(k)
‖‖‖‖‖
]
≤ 4C

√
m(𝜇N )2

By

r 3(1 − 𝜎)

T −1∑
k=0

a(k),

𝔼

[∑
k∈𝒦

∑
i∈ℐ̆

‖‖‖‖‖ 𝜁
(k)
i

�̆�
(k+1)
i

− ̄̆y(k)
‖‖‖‖‖
]
≤ 2C𝜇N‖y̆(0)‖1

r (1 − 𝜎)

+
2C (𝜇N )2

√
mnL f Cg

r (1 − 𝜎)

T −1∑
k=0

a(k)

+
2C (𝜇N )2

√
mnLgCgBy

r 3(1 − 𝜎)

T −1∑
k=0

a(k)

b(k)
,

where L f = maxk∈𝒦,i∈ℐ L fi,k
and Lg = maxk∈𝒦,i∈ℐ Lgi,k

.

Lemma 7 provides an upper bound for the cumulative
deviations of the scaled vector over the entire iterations.

The proofs for Lemmas 4–7 follow the similar arguments in
Lemmas 2–5 of the reference [29] and are not included in this
paper for brevity.
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INOUE ET AL. 7 of 15

Next, we present a lemma that evaluates the error introduced
by estimating the Lagrangian function. This lemma plays a cru-
cial role in analysing the convergence properties of the proposed
algorithm.

Lemma 8. Under Assumptions 1–5, for any x̆ =
[x̆⊤

1 , x̆
⊤
2 , … , x̆⊤

𝜇N
]⊤ and �̆� ∈ ℝm

+, we have

𝔼
[
Hk (x̆ (k), ̄̆𝜌(k) ) − Hk (x̆, ̄̆𝜌(k) )

] ≤ 1
2a(k)

∑
i∈ℐ̆

(‖‖‖x̆
(k)
i − x̆i

‖‖‖2
− ‖‖‖x̆

(k+1)
i − x̆i

‖‖‖2
)

+
a(k) ∑

i∈ℐ̆
ni

2

2

(
L f +

LgBy

b(k)r2

)2

+ 2Bg

∑
i∈ℐ̆

‖‖‖‖‖‖
�̆�

(k)
i

�̆�
(k+1)
i

− ̄̆𝜌(k)

‖‖‖‖‖‖ + 𝛿
(k)
f

L f + 𝛿
(k)
g Lg,

(27)

𝔼
[
Hk (x̆ (k), �̆�) − Hk (x̆ (k), ̄̆𝜌(k) )

] ≤ 𝜇N

2a(k)
(‖ ̄̆𝜌(k) − �̆�‖2 − ‖ ̄̆𝜌(k+1) − �̆�‖2 )

+
(‖�̆�‖ +

By

b(k)r2

)∑
i∈ℐ̆

‖‖‖‖‖‖
𝜁

(k)
i

�̆�
(k+1)
i

− ̄̆y(k)

‖‖‖‖‖‖
+

2(𝜇N )3B2
y (r + 2)

r5
a(k) +

(𝜇N )2b(k)

2
‖�̆�‖2

+
(

Bg +
2𝜇NBy

r2

)∑
i∈ℐ̆

‖‖‖‖‖‖
�̆�

(k)
i

�̆�
(k+1)
i

− ̄̆𝜌(k)

‖‖‖‖‖‖,
(28)

where x̆i ∈ 𝒳i , x̆ (k) = [(x̆
(k)
1 )⊤, (x̆

(k)
2 )⊤,… , (x̆

(k)
𝜇N

)⊤]⊤, 𝛿
(k)
f

=∑
i∈ℐ̆

𝛿 fi,k
, and 𝛿

(k)
g =

∑
i∈ℐ̆

𝛿gi,k
.

The proof of Lemma 8 is given in Appendix A. Lemma 8
provides bounds on the error between the Lagrangian function
values at the estimated and optimal solutions. This lemma estab-
lishes that each agent can manage the errors effectively, ensuring
that the deviation remains within acceptable bounds.

Finally, we present a theorem that quantifies the perfor-
mance of the proposed distributed online algorithm under the
constraints of bandit feedback and communication delays.

Theorem 1. Suppose that the step-sizes a(k) and b(k) are defined as

a(k) = 1∕
√

k and b(k) = 1∕kc with c ∈ (0, 1∕4), where a(0) = 1
and b(0) = 1. Suppose also that the smoothing parameters are set as

𝛿
(k)
fi,k

= h fi
∕k and 𝛿

(k)
gi,k

= hgi
∕k with positive constants h fi

and hgi
.

Under Assumptions 1–5, we have

R̃eg = O+

(
T

1

2
+2c

)
+ O+(VT ), (29)

R̃eg
c
= O

(
T

1− c

2

)
+ O

(
V

1

2
T

T
1−c

2

)
, (30)

where VT =
∑

k∈𝒦
(1∕a(k) )

∑
i∈ℐ

‖x
(k+1)
i,∗ − x

(k)
i,∗ ‖.

The proof of Theorem 1 is given in Appendix B.

Theorem 1 shows that the proposed distributed online opti-
mization algorithm achieves sublinear dynamic regret (19) and
constraint violation (20) under the constraints of bandit feed-
back and communication delays. The bounds in Equations (29)
and (30) consist of two terms each. The first term in both
bounds depends on the time horizon T and the choice of
the parameter c of the step-size b(k). By setting c ∈ (0, 1∕4),
these terms grow sublinearly with respect to T . The second
term in both bounds depends on the accumulated variation
of the optimal strategies VT . This term captures the impact
of the time-varying nature of the problem on the algorithm’s
performance. When the variation of the optimal strategies is
sufficiently small, that is, when VT grows slowly with time, the
overall regret and constraint violation remain sublinear. This
implies that the estimation of each agent approaches the optimal
strategy over time.

5 NUMERICAL EXAMPLE

First, the performance of the proposed algorithm is evalu-
ated through a resource allocation problem in a large-scale
power network system that consists of 1000 generator agents
(N = 1000). The problem objective is to minimize the total
quadratic cost of power generation while satisfying time-varying
constraints on the total power output as follows [33]:

minimize
x∈𝒳

∑
k∈𝒦

∑
i∈ℐ

(
c

(k)
1i

(
x

(k)
i

)2
+ c

(k)
2i

x
(k)
i + c

(k)
3i

)
(31a)

subject to
∑

k∈𝒦

∑
i∈ℐ

(
x

(k)
i −

p
(k)
max

N

)
≤ 0, (31b)

∑
k∈𝒦

∑
i∈ℐ

(
−x

(k)
i +

p
(k)
min

N

)
≤ 0, (31c)

where xi ∈ 𝒳i ⊂ ℝ is agent i’s output power, p
(k)
max and

p
(k)
min are the upper-bound and the lower-bound of power

demands at iteration k, respectively. The constraint set is
given by 𝒳i = [50, 80]. The bounds of the demand are

set as p
(k)
max ∈ [290N + 0.1, 290N + 20.1] and p

(k)
min ∈ [290N −

20.1, 290N − 0.1]. The time-varying coefficients of the cost

function are randomly generated as c
(k)
1i

∈ [0.025, 0.03], c
(k)
2i

∈

[15, 20], and c
(k)
3i

∈ [25, 30]. The step-sizes are given by a(k) =
1∕

√
k and b(k) = 1∕k0.2, and the smoothing parameters are set

as 𝛿
(k)
fi,k

= 0.1∕k and 𝛿
(k)
gi,k

= 0.1∕k.
Figure 1 illustrates the evolution of the time-averaged

dynamic regret and the time-averaged constraint violation for
different algorithms. The blue line represents the performance
of the bandit feedback algorithm without communication
delay [25]. The orange line shows the result of the proposed
method for the bandit feedback setting with communication
delays. The green line corresponds to the gradient feedback
algorithm without communication delays [8]. Lastly, the red line
depicts the performance of the gradient feedback algorithm
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8 of 15 INOUE ET AL.

FIGURE 1 Evolution of the time-averaged dynamic regret and the time-averaged constraint violation for resource allocation.

with communication delays [29]. The communication delays are
randomly generated between 0 to 10 iteration steps.

These results show that the proposed algorithm achieves
sublinear growth in both the dynamic regret and constraint
violation even in the presence of bandit feedback and commu-
nication delays. Although the performance is slightly degraded
compared to using true gradients, the results show the effec-
tiveness of the bandit gradient estimation in approximating
the true gradients. Moreover, the results show that the algo-
rithm is robust to communication delays as the performance
remains relatively unaffected. However, we note that it is cru-
cial to avoid constraint violations by configuring with stricter
parameters in power control. Furthermore, the algorithm’s out-
put should be used with robust control mechanisms or safety
constraints to ensure compliance with critical operational limits.
Therefore, while the sublinear constraint violation indicates that
constraint violations become less frequent, practical implemen-
tations would need to incorporate additional safeguards to meet
the strict reliability standards required in power systems.

Next, we present a numerical experiment on intersection con-
trol with connected automated vehicles (CAVs) [29, 34]. We
consider a scenario where 8 vehicles enter an intersection from
4 different directions as illustrated in Figure 2. The intersection
control problem is formulated as follows:

minimize
T∑

k=1

N∑
i=1

J
(k)
i

subject to 𝜒
(k)
i,k+ j+1 = Ai𝜒

(k)
i,k+ j

+ Biu
(k)
i,k+ j

, ∀i ∈ ℐ, ∀ j ∈ {0, 1, … ,K − 1},

𝜒
(k)
i,k+ j

∈ i , ∀i ∈ ℐ, ∀ j ∈ {0, 1, … ,K − 1},

u
(k)
i,k+ j

∈ i , ∀i ∈ ℐ, ∀ j ∈ {0, 1, … ,K − 1},

p
(k)
i,𝓁,k+ j

+ p
(k)
𝓁,i,k+ j

≥ psafe, ∀i ∈ ℐ, ∀𝓁 ∈ ℐ̌, ∀ j ∈ {0, 1, … ,K − 1},

FIGURE 2 Initial positions of 8 CAVs.

where Ai ∈ ℝ2×2 and Bi ∈ ℝ2×1 are the system matrix and
input matrix of CAV i, respectively. i ⊂ ℝ2 and i ⊂ ℝ are
the state and input constraint sets of CAV i. psafe ∈ ℝ+ is

the minimum safe distance between any two CAVs. 𝜒
(k)
i,k+ j

=
[r

(k)
i,k+ j

, v
(k)
i,k+ j

]⊤ ∈ ℝ2 is the state (position r
(k)
i,k+ j

and velocity
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FIGURE 3 Evolution of the time-averaged dynamic regret and the time-averaged constraint violation for intersection control.

v
(k)
i,k+ j

) of CAV i at time step k + j based on the information

available at time step k. u
(k)
i,k+ j

∈ ℝ is the input of CAV i at time

step k + j . ℐ̌ is the set of CAVs that may potentially collide
with CAV i. K ∈ ℕ is the prediction horizon. The cost function
is given by

J
(k)
i =

K−1∑
j=0

{(
vr − v

(k)
i,k+ j

)⊤ (
vr − v

(k)
i,k+ j

)
+
(

u
(k)
i,k+ j

)⊤

Siu
(k)
i,k+ j

+
(

u
(k)
i,k+ j

− u
(k)
i,k+ j−1

)⊤

Qi

(
u

(k)
i,k+ j

− u
(k)
i,k+ j−1

)}
+
(

vr − v
(k)
i,k+K

)⊤(
vr − v

(k)
i,k+K

)
,

where vr is the reference velocity, and Si ∈ ℝ2×2 and Qi ∈ ℝ2×2

are the weight matrices.
The goal is to control the CAVs so that they can pass through

the intersection safely with the reference velocity vr (50 [km/h]).
For this example, the parameters of the intersection control
are set as the same as in the reference [29]. The step-sizes are

given by a(k) = 1∕
√

k and b(k) = 1∕k0.2, and the smoothing

parameters are set as 𝛿
(k)
fi,k

= 0.1∕k and 𝛿
(k)
gi,k

= 0.1∕k.
Figure 3 shows the evolution of the time-averaged dynamic

regret and the time-averaged constraint violation for the inter-
section control problem. As in the case of the resource
allocation problem, we compare the performance of four
different algorithms: the bandit feedback algorithm without
communication delays [25] (blue line), the proposed method for
the bandit feedback setting with communication delays (orange
line), the gradient feedback algorithm without communication
delays [8] (green line), and the gradient feedback algorithm
with communication delays [29] (red line). In this example, the
communication delays are randomly generated between 0 to 5
iteration steps.

These results demonstrate that the proposed bandit feedback
algorithm with communication delays (orange line) achieves
sublinear dynamic regret and constraint violation despite the
presence of communication delays and limited feedback infor-
mation. This indicates that the proposed algorithm is able to
effectively control the CAVs and optimize their trajectories
while satisfying the constraints. Despite the slight increase in
dynamic regret and constraint violation due to communica-
tion delays, the proposed method (orange line) demonstrates
its resilience. The sublinear growth of both metrics indicates
that the algorithm can still converge to the optimal strategy
and maintain safety over time. In this example, the gradi-
ent feedback algorithms, both without (green line) and with
communication delays (red line), achieve lower dynamic regret
compared to the bandit feedback algorithms. On the other
hand, the gradient feedback algorithms result in higher con-
straint violations. The gradient feedback algorithms have access
to more informative updates as they utilize the gradient of
the objective function and constraints. However, the gradient
information may not always accurately capture the feasibility
of the solutions especially in the presence of complex and
time-varying constraints. As a result, the gradient feedback
algorithms may violate the constraints more frequently to min-
imize the objective function in the settings of this numerical
example.

Figures 4 and 5 show the velocities and the inputs of CAVs
using the bandit feedback algorithm, comparing scenarios with
no communication delays [25] and with 5-step communication
delays (proposed algorithm). In the numerical example, the hor-
izontal axis in Figure 4 is labelled by the iteration k to maintain
consistency with the horizontal axis in Figure 3. In this example,
the sampling period is given by 0.01 s. Therefore, the time t can
be directly related to the iteration by t = 0.01k. These results
indicate that the velocities of all CAVs converge to the refer-
ence velocity vr in both cases. However, communication delays
lead to more fluctuation in the CAVs’ velocities compared to the
delay-free scenario. This fluctuation is likely due to the delayed
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FIGURE 4 Velocities of 8 CAVs in the bandit feedback algorithm.

FIGURE 5 Inputs of 8 CAVs in the bandit feedback algorithm.

feedback, which causes less timely adjustments. Since the cur-
rent model does not explicitly account for jerk constraints, the
control input exhibits significant variations as shown in Figure 5,
leading to relatively large velocity fluctuations in Figure 4. To
reduce these fluctuations, the optimization problem needs to
be reformulated to include jerk constraints [35]. While reduc-
ing jerk would enhance ride comfort for passengers, it could also
extend driving time and potentially cause congestion at intersec-
tions. Therefore, in practical applications, it is crucial to strike
a balance between passenger comfort and minimizing driving
time. For future work, we aim to extend the model to include
jerk explicitly in the constraint of the optimization problem to
provide a more practical control framework.

6 CONCLUSION

This paper studied the problem of distributed online opti-
mization with bandit feedback and communication delays. We
developed a distributed primal-dual algorithm that enables
agents to cooperatively optimize a global time-varying objec-
tive function while satisfying dynamic constraints using only
local bandit feedback and delayed information exchange. The
algorithm combines a primal-dual approach with a two-point

zeroth-order gradient estimation to handle constrained opti-
mization under bandit feedback. The theoretical analysis was
provided to prove the sublinear dynamic regret and constraint
violation of the proposed algorithm, demonstrating its tracking
performance even with delayed information. The results of this
paper open up several interesting directions for future research.
One direction is to investigate distributed online optimization
with more complex constraint structures.
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2. Nedić, A., Liu, J.: Distributed optimization for control. Annu. Rev. Control
Rob. Auton. Syst. 1(1), 77–103 (2018)

3. Shahrampour, S., Jadbabaie, A.: Distributed online optimization in
dynamic environments using mirror descent. IEEE Trans. Autom. Control
63(3), 714–725 (2018)

4. Wang, C., Xu, S., Yuan, D., Zhang, B., Zhang, Z.: Push-sum distributed
online optimization with bandit feedback. IEEE Trans. Cybern. 52(4),
2263–2273 (2020)

5. Yamashita, M., Hayashi, N., Hatanaka, T., Takai, S.: Logarithmic regret for
distributed online subgradient method over unbalanced directed networks.
IEICE Trans. Fundam. Electron., Commun. Comput. Sci. E104-A(8),
1019–1026 (2021)

6. Xu, H., Lu, K., Wang, Y.L.: Online distributed nonconvex optimization
with stochastic objective functions: high probability bound analysis of
dynamic regrets. Automatica 170, 111863 (2024)

7. Lu, K.: Online distributed algorithms for online noncooperative games
with stochastic cost functions: high probability bound of regrets.
IEEE Trans. Autom. Control (2024). https://doi.org/10.1109/TAC.2024.
3419018

8. Li, X., Yi, X., Xie, L.: Distributed online optimization for multi-agent net-
works with coupled inequality constraints. IEEE Trans. Autom. Control
66(8), 3575–3591 (2021)

9. Yi, X., Li, X., Xie, L., Johansson, K.H.: Distributed online convex opti-
mization with time-varying coupled inequality constraints. IEEE Trans.
Signal Process. 68, 731–746 (2020)

10. Yuan, D., Proutiere, A., Shi, G.: Distributed online optimization with long-
term constraints. IEEE Trans. Autom. Control 67(3), 1089–1104 (2022)

11. Zhang, W., Shi, Y., Zhang, B., Lu, K., Yuan, D.: Quantized distributed
online projection-free convex optimization. IEEE Control Syst. Lett. 7,
1837–1842 (2023)
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APPENDIX A: PROOF OF LEMMA 8

We show Equation (27). From Equations (1) and (24), for x̆i ∈
𝒳i , we have

‖‖‖x̆
(k+1)
i − x̆i

‖‖‖2 ≤ ‖‖‖x̆
(k)
i − x̆i − a(k) s̆

(k+1)
i

‖‖‖2

= ‖‖‖x̆
(k)
i − x̆i

‖‖‖2
+ (a(k) )2‖‖‖s̆

(k+1)
i

‖‖‖2

− 2a(k)
(

s̆
(k+1)
i

)⊤(
x̆

(k)
i − x̆i

)
. (A1)
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From Equation (10), the last term of the right-hand side of
Equation (A1) is given as follows:

𝔼

[
−2a(k)

(
s̆

(k+1)
i

)⊤(
x̆

(k)
i − x̆i

)]

= −2a(k)

(
𝔼
[
d̃ fi,k

(
x̆

(k)
i

)]
+
(
𝔼
[
D̃gi,k

(
x̆

(k)
i

)])⊤ �̆�
(k)
i

�̆�
(k+1)
i

)⊤

(x̆ (k)
i − x̆ )

≤ −2a(k)
⎛⎜⎜⎝ f̃i,k

(
x̆

(k)
i

)
− f̃i,t (x̆i ) +

�̆�
(k)
i

�̆�
(k+1)
i

⊤ (
g̃i,k

(
x̆

(k)
i

)
− g̃i,k(x̆i )

)⎞⎟⎟⎠
= −2a(k)

(
H̃i,k

(
x̆

(k)
i , ̄̆𝜌(k)

)
− H̃i,k

(
x̆i , ̄̆𝜌

(k)
))

− 2a(k)

(
�̆�

(k)
i

�̆�
(k+1)
i

− ̄̆𝜌(k)

)⊤

(g̃i,k

(
x̆

(k)
i

)
− g̃i,k(x̆i )),

where H̃i,k(x, 𝜌) = f̃i,k(x ) + 𝜌⊤ g̃i,k(x ). Then, from Lemma 1,
we have

H̃i,k

(
x̆

(k)
i , ̄̆𝜌(k)

)
− H̃i,k

(
x̆i , ̄̆𝜌

(k)
)

≥ fi,k

(
x̆

(k)
i

)
+ ( ̄̆𝜌(k) )⊤gi,k

(
x̆

(k)
i

)
−
(

fi,k(x̆i ) + 𝛿
(k)
fi,k

L f + ( ̄̆𝜌(k) )⊤gi,k(x̆i ) + 𝛿
(k)
gi,k

Lg

)
= Hi,k

(
x̆

(k)
i , ̄̆𝜌(k)

)
− Hi,k

(
x̆i , ̄̆𝜌

(k)
)
−
(
𝛿

(k)
fi,k

L f + 𝛿
(k)
gi,k

Lg

)
.

Furthermore, from Lemmas 2 and 6, we have

‖‖‖s̆
(k+1)
i

‖‖‖ =
‖‖‖‖‖‖d̃ fi,k

(x̆
(k)
i ) + D̃gi,k

(
x̆

(k)
i

)⊤ �̆�
(k)
i

�̆�
(k+1)
i

‖‖‖‖‖‖
≤ ‖‖‖d̃ fi,k

(x̆
(k)
i )‖‖‖ +

‖�̆� (k)
i ‖

�̆�
(k+1)
i

‖‖‖‖D̃gi,k

(
x̆

(k)
i

)‖‖‖‖
≤ niL f +

niLgBy

b(k)r2
. (A2)

Then, we have

𝔼
[
Hi,k

(
x̆

(k)
i , ̄̆𝜌(k)

)
− Hi,k

(
x̆i , ̄̆𝜌

(k)
)]

≤ 1
2a(k)

(‖‖‖x̆
(k)
i − x̆i

‖‖‖2
− ‖‖‖x̆

(k+1)
i − x̆i

‖‖‖2
)

+
‖‖‖‖‖‖

�̆�
(k)
i

�̆�
(k+1)
i

− ̄̆𝜌(k)
‖‖‖‖‖‖
‖‖‖‖gi,k

(
x̆

(k)
i

)
− gi,k(x̆i )

‖‖‖‖
+ a(k)

2
‖‖‖s̆

(k+1)
i

‖‖‖2
+ 𝛿

(k)
fi,k

L f + 𝛿
(k)
gi,k
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≤ 1
2a(k)
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niL f +

niLgBy
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This yields

𝔼
[
Hk

(
x̆ (k), ̄̆𝜌(k)

)
− Hk
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x̆, ̄̆𝜌(k)

)]
≤ 1
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Equation (28) can be shown in the same way. □

APPENDIX B: PROOF OF THEOREM 1

First, we show Equation (29). From Lemma 8, we have
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Let x̆
(k)
∗ = [(x̆

(k)
1,∗ )⊤, (x̆

(k)
2,∗ )⊤,… , (x̆

(k)
𝜇N ,∗ )⊤]⊤ be the optimal

strategy in the enlarged system at iteration k. From Equation
(3), we have
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−
(𝜇N )2b(k)

2
‖�̆�‖2

]

= 𝔼

[∑
i∈ℐ

fi,k

(
x̆

(k)
i

)
−

∑
i∈ℐ

fi,k

(
x̆

(k)
i,∗

)
+ �̆�⊤

∑
i∈ℐ

gi,k

(
x̆

(k)
i

)
−

(𝜇N )2b(k)

2
‖�̆�‖2

]
, (B2)

where the inequality follows from ̄̆𝜌(k)
> 0 and∑

i∈ℐ̆
gi,k(x̆

(k)
i,∗ ) < 0, and the last equality follows from

fi,k(x̆
(k)
i

) = 0 and gi,k(x̆
(k)
i

) = 0 for any agent i ∈ ℐd and
k ∈ 𝒦.

Here, we define Ξ(�̆�) as follows:

Ξ(�̆�) = �̆�⊤
∑

k∈𝒦

∑
i∈ℐ

gi,k

(
x̆

(k)
i

)
−

(𝜇N )2‖�̆�‖2

2

∑
k∈𝒦

b(k). (B3)

From Equations (B1)–(B3), we obtain

𝔼

[∑
k∈𝒦

∑
i∈ℐ

fi,k

(
x̆

(k)
i

)
−

∑
k∈𝒦

∑
i∈ℐ

fi,k

(
x̆

(k)
i,∗

)
+ Ξ(�̆�)

]
≤ Y0 +Y1 +Y2(�̆�) +Y3 +Y4(�̆�) +Y5 +Y6 +Y7, (B4)

where

Y0 =
∑
k∈𝒦

1
2a(k)

∑
i∈ℐ̆

(‖‖‖x̆
(k+1)
i − x̆

(k+1)
∗

‖‖‖2
− ‖‖‖x̆

(k+1)
i − x̆

(k)
i,∗
‖‖‖2
)
,

Y1 =
∑
k∈𝒦

1
2a(k)

∑
i∈ℐ̆

(‖‖‖x̆
(k)
i − x̆

(k)
i,∗
‖‖‖2

− ‖‖‖x̆
(k+1)
i − x̆

(k+1)
∗

‖‖‖2
)
,

Y2(�̆�) =
∑
k∈𝒦

𝜇N

2a(k)
(‖ ̄̆𝜌(k) − �̆�‖2 − ‖ ̄̆𝜌(k+1) − �̆�‖2),

Y3 =
(

3Bg +
2𝜇NBy

r2

) ∑
k∈𝒦

∑
i∈ℐ̆

‖‖‖‖‖‖
�̆�

(k)
i

�̆�
(k+1)
i

− ̄̆𝜌(k)

‖‖‖‖‖‖,
Y4(�̆�) =

∑
k∈𝒦

(‖�̆�‖ +
By

b(k)r2

)∑
i∈ℐ̆

‖‖‖‖‖‖
𝜁

(k)
i

�̆�
(k+1)
i

− ̄̆y(k)

‖‖‖‖‖‖,
Y5 =

(
L2

f

∑
i∈ℐ̆

n2
i +

2(𝜇N )2
B2

y (r + 2)

r5

) ∑
k∈𝒦

a(k),

Y6 =
B2

y L2
g

∑
i∈ℐ̆

n2
i

r4

∑
k∈𝒦

a(k)

(b(k) )2
,

Y7 =
∑
k∈𝒦

(
𝛿

(k)
f

L f + 𝛿
(k)
g Lg

)
.

For Y0, we have

Y0 =
∑

k∈𝒦

1
2a(k)

∑
i∈ℐ̆

(
x̆

(k+1)
i,∗ − x̆

(k)
i,∗

)⊤(
x̆

(k+1)
i,∗ + x̆

(k)
i,∗ − 2x̆

(k+1)
i

)

≤ 4BxVT . (B5)

From the monotonically increasing property of the sequence
{1∕a(k)}, we have

Y1 =
1

2a(1)

∑
i∈ℐ̆

‖‖‖x̆
(1)
i − x̆∗

i,1
‖‖‖2

− 1
2a(T )

∑
i∈ℐ̆

‖‖x̆i (T + 1) − x̆∗
i (T + 1)‖‖2

+ 1
2

T∑
k=2

( 1
a(k)

− 1
a(k−1)

)∑
i∈ℐ̆

‖‖‖x̆
(k)
i − x̆

(k)
i,∗
‖‖‖2

≤ 2𝜇NB2
x

a(T )
. (B6)

For Y2, we have

Y2(0) =
𝜇N

2a(1)
‖ ̄̆𝜌(1)‖2 −

𝜇N

2a(T )
‖ ̄̆𝜌(T +1)‖2

+
𝜇N

2

T∑
k=2

(
1

a(k)
− 1

a(k−1)

)‖ ̄̆𝜌(k)‖2. (B7)

From Lemmas 5 and 6, we have

‖ ̄̆𝜌(k)‖ =
∑
i∈ℐ̆

‖�̆�(k)
i ‖

𝜇N
≤ ∑

i∈ℐ̆

�̆�
(k+1)
i By

𝜇Npr2b(k)
≤ 𝜇NBy

pr2b(k)
. (B8)

From Equations (B7) and (B8), we obtain

Y2(0) ≤ (𝜇N )3B2
y

2p2r4a(T )(b(T ) )2
. (B9)

For Y3 and Y4, from Lemma 7, we have

Y3 ≤
(

3Bg +
2𝜇NBy

r2

)4C (𝜇N )2√
mBy

r3(1 − 𝜎)

T −1∑
k=0

a(k), (B10)

Y4(0) ≤ By

r2b(T )

∑
k∈𝒦

∑
i∈ℐ̆

‖‖‖‖‖‖
𝜁

(k)
i

�̆�
(k+1)
i

− ̄̆y(k)
‖‖‖‖‖‖

≤ 2C𝜇NBy

r3(1 − 𝜎)b(T )

(‖y̆(0)‖1 + 𝜇N
√

mnL f Cg

T −1∑
k=0

a(k)

+
𝜇N

√
mnLgCgBy

r2b(T )

T −1∑
k=0

a(k)

)
. (B11)

Y6 is given as follows:

Y6 =
B2

y L2
g

∑
i∈̆n2

i

r4

∑
k∈

t
2c− 1

2 ≤ B2
y L2

g

∑
i∈̆n2

i

r4 ∫
T +1

1
t

2c− 1

2 dt

≤ 2B2
y L2

g (T + 1)2c+ 1

2
∑

i∈̆n2
i

r4(1 + 4c )
. (B12)
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Since 𝛿
(k)
f

=
∑

i∈ℐ
h fi
∕k and 𝛿

(k)
g =

∑
i∈ℐ

hgi
∕k, Y7 is given

as follows:

Y7 = L f

(∑
i∈ℐ̆

h fi

) ∑
k∈𝒦

1
k
+ Lg

(∑
i∈ℐ̆

hgi

) ∑
k∈𝒦

1
k

≤
(

L f

(∑
i∈ℐ̆

h fi

)
+ Lg

(∑
i∈ℐ̆

hgi

))
∫

T +1

1

1
t

dt

≤
(

L f

(∑
i∈ℐ̆

h fi

)
+ Lg

(∑
i∈ℐ̆

hgi

))
log(T + 1). (B13)

Since a(k) = 1∕
√

k, we have

T −1∑
k=0

a(k) ≤ 2 + ∫
T +1

1
t
− 1

2 dt = 2(T − 1)
1

2 = O(T
1

2 ). (B14)

Then, from Equations (B4)–(B6) and (B9)–(B13), we obtain

R̃eg(T ) = O(T 2c+ 1

2 ) + O (VT ).
Next, we show Equation (30). We note that Ξ(�̆�) is

maximized at �̆� = �̆�0, where

�̆�0 =

[∑
k∈𝒦

∑
i∈ℐ

gi,k(x
(k)
i )

]
+

(𝜇N )2
∑

k∈𝒦
b(k)

.

Then, Equation (B4) is given as follows:

𝔼

⎡⎢⎢⎢⎢⎣
fi,k

(
x̆

(k)
i

)
− fi,k

(
x̆

(k)
i,∗

)
+

‖‖‖‖[∑k∈𝒦

∑
i∈ℐ

gi,k

(
x

(k)
i

)]
+

‖‖‖‖
2

2(𝜇N )2
∑

k∈𝒦
b(k)

⎤⎥⎥⎥⎥⎦
≤ Y0 +Y1 +Y2(�̆�) +Y3 +Y4(�̆�) +Y5 +Y6 +Y7. (B15)

Since c ∈ (0, 1∕4), we have
∑

k∈b(k) ≤ 1 + ∫ T

1
dt∕t c =

(T 1−c − c )∕(1 − c ) ≤ T 1−c∕(1 − c ). Moreover, for T ≥ 3,

we have
∑

k∈b(k) ≥ ∫ T

1
dt∕t c = (T 1−c − 1)∕(1 − c ) ≥

T 1−c∕(2(1 − c )). Thus, for T ≥ 3, we have

‖�̆�0‖ ≤ TBg

𝜇N 2
∑

k∈𝒦
b(k)

≤ 2Bg(1 − c )

𝜇N 2
T c . (B16)

Therefore, from Equations (B8) and (B16), and Lemma 7, for
T ≥ 3, we obtain

Y2(�̆�) =
∑

k∈𝒦

1
2a(k)

(‖ ̄̆𝜌(k) − �̆�0‖2 − ‖ ̄̆𝜌(k+1) − �̆�0‖2)

=
𝜇N

2a(1)
‖ ̄̆𝜌(1) − �̆�0‖2 −

𝜇N

2a(T )
‖ ̄̆𝜌(T ) − �̆�0‖2

+
𝜇N

2

T∑
k=2

(
1

2a(k)
− 1

2a(k−1)

)‖ ̄̆𝜌(k) − �̆�0‖2

≤ 𝜇N

a(T )

((
𝜇NBy

pr2b(T )

)2

+
(2Bg(1 − c )

𝜇N 2
T c

)2)

= O(T 2c+ 1

2 ), (B17)

𝔼
[
Y4(�̆�0)

]
= 𝔼

[∑
k∈𝒦

(‖�̆�0‖ +
By

b(k)r2

)∑
i∈ℐ̆

(
𝜁

(k)
i

�̆�
(k+1)
i

− ̄̆y(k)

)]

≤
(‖�̆�0‖ +

By

b(T )r2

)
𝔼

[∑
k∈𝒦

∑
i∈ℐ̆

‖‖‖‖‖‖
𝜁

(k)
i

�̆�
(k+1)
i

− ̄̆y(k)
‖‖‖‖‖‖
]

≤ 2C𝜇N

r (1 − 𝜎)

(2Bg(1 − c )

𝜇N 2
+

By

r2

)
T c

×

(‖y̆(0)‖1 + 𝜇N
√

mnL f Cg

T −1∑
k=0

a(k)

+
𝜇N

√
mnLgCgBy

r2b(T )

T −1∑
k=0

a(k)

)

= O

(
T

2c+ 1

2

)
. (B18)

From Equations (B5), (B6), (B10), (B12)–(B15), (B17), and
(B18), we have

𝔼

⎡⎢⎢⎢⎢⎣
fi,k

(
x̆

(k)
i

)
− fi,k

(
x̆

(k)
i,∗

)
+

‖‖‖‖[∑k∈𝒦

∑
i∈ℐ

gi,k

(
x

(k)
i

)]
+

‖‖‖‖
2

2(𝜇N )2
∑

k∈𝒦
b(k)

⎤⎥⎥⎥⎥⎦
= O(T 2c+ 1

2 ) + O(VT ).

From the Lipschitz continuity of fi,k, we have

∑
k∈𝒦

∑
i∈ℐ

fi,k

(
x̆

(k)
i

)
−

∑
k∈𝒦

∑
i∈ℐ

fi,k

(
x̆

(k)
i,∗

)
= −

∑
k∈𝒦

∑
i∈ℐ

( fi,k

(
x̆

(k)
i,∗

)
− fi,k

(
x̆

(k)
i

)
)

≥ −
∑

k∈𝒦

∑
i∈ℐ

L f
‖‖‖x̆

(k)
i,∗ − x̆

(k)
i

‖‖‖
≥ −2NTL f Bx .
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It follows that

(
𝔼

[‖‖‖‖‖‖
[∑

k∈𝒦

∑
i∈ℐ

gi,k

(
x

(k)
i

)]
+

‖‖‖‖‖‖
])2

≤ 𝔼
⎡⎢⎢⎣
‖‖‖‖‖‖
[∑

k∈𝒦

∑
i∈ℐ

gi,k

(
x

(k)
i

)]
+

‖‖‖‖‖‖
2⎤⎥⎥⎦

≤ O
(

T
2c+ 1

2

) ∑
k∈𝒦

b(k) + O(VT )
∑
k∈𝒦

b(k) + 4𝜇2N 3L f BxT
∑
k∈𝒦

b(k)

≤ T 1−c

1 − c
O
(

T
2c+ 1

2

)
+ T 1−c

1 − c
O(T ) + T 1−c

1 − c
O(VT )

≤ O(T 2−c ) + O(VT T 1−c ).

Therefore, we obtain R̃eg
c
= O(T 1− c

2 ) + O(V
1

2
T

T
1−c

2 ). □
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