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Acoustic Phonon Scattering in Free-Standing Anisotropic
Silicon Plates

Nobuya Mori

1. Introduction

Continuous technological innovation in the semiconductor
industry has made it possible to produce Si metal–oxide–
semiconductor field-effect transistors (MOSFETs) with channel
lengths of less than a few tens of nanometers.[1–7] In order to
suppress the short-channel effects in such ultrasmall devices,
it is necessary to introduce ultrathin channels on the nanometer
scale.[8] Since one of the major factors limiting the electron
mobility in Si MOSFETs is the intravalley acoustic phonon
scattering,[9–15] it is important to perform a detailed analysis
of the electron–acoustic-phonon interaction in ultrathin channels
for the design of the ultrasmall MOSFETs.

In a semiconductor plate, not only the electronic states but also
the acoustic phononmodes are modulated. The electron–phonon
interaction is thus generally different from that assumed for pho-
non modes in the bulk. Ezawa et al. introduced “surfons,” the
quanta of elastic waves in solids that have a boundary surface
or phonons in a half-space. Based on the surfons, they analyzed
the electron mobility of two-dimensional electron gas (2DEG) in

planar Si MOSFETs.[16–20] Bannov et al.
studied confined acoustic phonons in a
free-standing semiconductor plate and
their interaction with electrons.[21–23]

Donetti et al. developed a model for con-
fined acoustic phonons in three-layer sys-
tems and analyzed the electron mobility
in silicon-on-insulator (SOI) struc-
tures.[24,25] Uno et al. considered modu-
lated acoustic phonons in a free-standing
semiconductor plate. It was shown that
the form factors for electron–modulated-
acoustic-phonon interaction satisfy sum
rules and lie on a universal curve regardless
of plate thickness and material.[26–29] These
studies, however, assume that the semicon-

ductor crystal is an isotropic elastic body, and the effect of the
elastic anisotropy of the crystal has not been clarified yet. The
crystal anisotropy leads to the anisotropic deformation potential
constants and the anisotropic phonon dispersions. As a result,
the strength of electron scattering by acoustic phonons may
be different from that assumed in an isotropic model.
In order to accurately predict electron mobility and other trans-
port properties in Si-confined structures, it is important to study
how the anisotropy of the crystal affects the transport properties.

The intravalley electron–acoustic-phonon interaction is char-
acterized by a two-rank deformation-potential tensor, Ξij. For
the Δ valleys in the Si conduction band, Ξij can be expressed
in terms of the dialational and shear deformation potential con-
stants (Ξd and Ξu);

[30] the interaction strength depends on the
direction of the phonon wavevector. For device modeling and
simulation, however, this anisotropy of the deformation potential
is often neglected. An isotropic acoustic phonon approximation
is then used by introducing an effective deformation potential
constant Dac.

[10,13,31] It is the key parameter that effectively
describes the strength of electron–acoustic-phonon scattering
and has been widely used in device modeling because it gives
us a convenient way to estimate electron mobility with a single
number. The effective deformation potential constant Dac= 9 eV
is known for bulk Si.[10,32,33] For a Si MOS inversion layer, how-
ever, it has been reported that higher values are required to
explain the experimental mobilities,[34–37] such as Dac= 12[34,37]

and 12.9 eV.[35] For SOI MOSFETs, it has been reported that Dac

increases sharply at the MOS interfaces; the effective deforma-
tion potential varies from Dac= 10.5–18 eV with the characteris-
tic length of ≈3 nm.[38] Although the detailed mechanism behind
this sharp increase in Dac was not elucidated in ref. [38], the
results have strong implications for accurate device modeling
in the design of high-performance and/or low-power MOSFETs.
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The electron–acoustic-phonon interaction in a free-standing anisotropic Si plate
with (001) surface is studied taking into account the elastic anisotropy of the Si
crystal and the modulated phonon modes. The interaction potential is derived
from the modulated phonon modes and the anisotropic deformation potential
constants. The effective deformation potential constant Dac is then calculated
considering only the lowest electronic sub-band. In the quantum well model for
the electronic states, it is shown that the effective deformation potential for the
modulated phonons in an anisotropic Si plate becomes Dac≈ 13 eV in the thinner
region of the plate thickness w ≲ 3.2 nm. It is also shown that both the phonon
modulation and the crystal anisotropy have non-negligible effects on the effective
deformation potential and electron mobility.
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In this paper, we study the electron–acoustic-phonon interac-
tion in a free-standing Si plate with (001) surface. In particular,
we try to clarify the role of the modulated phonons on the
electron–acoustic-phonon interaction considering the elastic
anisotropy of the Si crystal and the anisotropy of the deformation
potential. We proceed as follows. First, we obtain the modulated
phonon modes taking into account the elastic anisotropy by the
method of Solie and Auld.[39] These phonon modes allow us to
derive the electron–acoustic-phonon interaction Hamiltonian
with the anisotropic deformation potential constants. We then
calculate the momentum relaxation time considering only the
lowest electronic sub-band and evaluate the acoustic-phonon-
limited electron mobility. Finally, the electron mobility is con-
verted to the effective deformation potential constant Dac for
comparison with the previous studies.

The organization of the present paper is as follows. In
Section 2, we derive the modulated phonon modes taking into
account the elastic anisotropy. Although the method follows
Solie and Auld,[39] we describe it for the sake of completeness
and to introduce the notations. We then derive the electron–
acoustic-phonon interaction potential and show the formalism
for the momentum relaxation time and the acoustic-phonon-
limited electron mobility. In Section 3, we present the calculated
results of the phonon dispersion and the effective deformation
potential and discuss the effect of the anisotropies on the
electron–acoustic-phonon interaction in a Si plate. A conclusion
is given in Section 4.

2. Theory

2.1. Phonon Modes

We consider a free-standing Si plate with (001) surface and thick-
ness w whose geometry is given in Figure 1a. The surface is
normal to the z-axis and the plate occupies �w/2≤ z≤ w/2.
Let us consider a partial wave of the lattice displacement vector
u (¼ ðux , uy, uzÞ) of the form[39]

u ¼ α exp ½iðqxx þ qyy þ qzzÞ� (1)

Here, α ¼ ðαx , αy, αzÞ represents the direction and the ampli-
tude of the displacement. The lattice displacement vector satisfies
the Christoffel equation

ðqiIcIJqJj � ρω2δijÞuj ¼ 0 (2)

Here, the following subscript notation is used[40,41]

i, j ¼ x, y, z (3)

I, J ¼ xx, yy, zz, yz, zx, xy

1 2 3 4 5 6
(4)

and summation over repeated subscripts is assumed. In
Equation (2), ρ is the mass density, ω is the vibrational frequency,
cIJ is the elastic stiffness constant, the matrix qiI is

qiI ¼
qx 0 0 0 qz qy
0 qy 0 qz 0 qx
0 0 qz qy qx 0

2
64

3
75 (5)

and qJj is the transpose. Since Si belongs to the cubic crystal sys-
tem, cIJ have three independent components, c11, c12, and c44.

[40]

The elastic anisotropy of the crystal can be measured by the quan-
tity c*= c11 – c12 – 2c44.

[30]

Considering a mode whose 2D in-plane wavevector is given by
q ¼ qðcosϕ, sinϕÞ ¼ qðlx,lyÞ with ϕ being the angle between q
and the x-axis, Equation (2) is reduced to

Dα ¼ 0 (6)

where the 3� 3 matrix D is defined by

D ¼
dxx � ρv2 dxy dxz

dyx dyy � ρv2 dyz
dzx dzy dzz � ρv2

2
64

3
75 (7)

v=ω/q is the phase velocity, lz ¼ qz=q, and dij are given by

dii ¼ ðc12 þ c44 þ c�Þl2
i þ c44ðl2

z þ 1Þ (8)

dij ¼ ðc12 þ c44Þlilj, ði 6¼ jÞ (9)

Nontrivial solutions to Equation (6) exist only when the deter-
minant jDj vanishes. The equation jDj ¼ 0 is a third-order
polynomial in ðlzÞ2 (or a sixth-order polynomial in lz) with
the three roots in ðlzÞ2

LðkÞz

� �
2
, k ¼ 1, 2, 3 (10)

Using these LðkÞz (k ¼ 1, 2, 3), the six roots in lz can be
written as

l 1ð Þ
z ,l 2ð Þ

z ,l 3ð Þ
z ,l 4ð Þ

z ,l 5ð Þ
z ,l 6ð Þ

z

� �
¼ L 1ð Þ

z , L 2ð Þ
z , L 3ð Þ

z , �L 1ð Þ
z , �L 2ð Þ

z , �L 3ð Þ
z

� � (11)

Denoting the corresponding α to lðkÞ
z as αðkÞ (k ¼ 1, 2, : : : , 6),

we have

α 1ð Þ
j , α 2ð Þ

j , α 3ð Þ
j , α 4ð Þ

j , α 5ð Þ
j , α 6ð Þ

j

� �
¼ α 1ð Þ

j , α 2ð Þ
j , α 3ð Þ

j , α 1ð Þ
j , α 2ð Þ

j , α 3ð Þ
j

� �
, j ¼ x, yð Þ

(12)

kz

kx

ky

x

y

z

o w

(a) (b)

Figure 1. a) Anisotropic Si plate with a (001) surface lying between
z ¼ � 1

2w with the surface normal to the z-axis. The crystal axes [100]
and [010] coincide with the x and y axes, respectively. b) Schematic con-
stant-energy surface for the conduction band of Si in the momentum
space, showing six valleys with the longitudinal effective mass ml and
the transverse effective mass mt.
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α 1ð Þ
z , α 2ð Þ

z , α 3ð Þ
z , α 4ð Þ

z , α 5ð Þ
z , α 6ð Þ

z

� �
¼ α 1ð Þ

z , α 2ð Þ
z , α 3ð Þ

z , � α 1ð Þ
z , � α 2ð Þ

z , � α 3ð Þ
z

� � (13)

The general solution u to Equation (2) is then written as

uj ¼
X6
k¼1

Ckα
kð Þ
j exp iq xlx þ yly þ zl kð Þ

z

� �h i

¼
X3
k¼1

α kð Þ
j eiq·x Sk cos qL kð Þ

z z
� �

þ iAk sin qL kð Þ
z z

� �h i
, j ¼ x, yð Þ

(14)

uz ¼
X6
k¼1

Ckα
kð Þ
z exp iq xlx þ yly þ zl kð Þ

z

� �h i

¼
X3
k¼1

α kð Þ
z eiq·x iSk sin qL kð Þ

z z
� �

þ Ak cos qL kð Þ
z z

� �h i (15)

Here, Ck (k ¼ 1, 2, : : : , 6) are the linear combination
coefficients, x ¼ ðx, yÞ, and Sk and Ak (k ¼ 1, 2, 3) are defined
by Sk ¼ Ck þ Ckþ3 and Ak ¼ Ck � Ckþ3.

For a stress-free plate, there are three boundary conditions for
the stress tensor σ

σxz ¼ σyz ¼ σzz ¼ 0 (16)

at each surface of the plate. Using Hooke’s law and expressing
the boundary conditions in terms of the lattice displacement, we
obtain at z ¼ � 1

2w

∂ux
∂z

þ ∂uz
∂x

¼ 0

∂uy
∂z

þ ∂uz
∂y

¼ 0

c12∇ · uþ 2c44 þ c�ð Þ ∂uz
∂z

¼ 0

8>>>>>>><
>>>>>>>:

(17)

These boundary conditions can be satisfied independently
for symmetric and antisymmetric modes with respect to the
central plane of the plate.[39] Substitution of the symmetric part
(Ak ¼ 0) of Equation (14) and (15) into the boundary conditions
gives

S
S1
S2
S3

2
4

3
5 ¼ 0 (18)

and substitution of the antisymmetric part (Sk ¼ 0) of
Equation (14) and (15) into the boundary conditions gives

A

A1

A2

A3

2
64

3
75 ¼ 0 (19)

Here, 3� 3 matrices of S and A are defined by8>>>>>>><
>>>>>>>:

S1k ¼ LðkÞz αðkÞx þ lxα
ðkÞ
z

� �
sin

1
2
qwLðkÞz

� �

S2k ¼ LðkÞz αðkÞy þ lyα
ðkÞ
z

� �
sin

1
2
qwLðkÞz

� �

S3k ¼ c12ðlxα
ðkÞ
x þ lyα

ðkÞ
y Þ þ c11L

ðkÞ
z αðkÞz Þ

h i
� cos

1
2
qwLðkÞz

� �
(20)

and8>>>>>><
>>>>>>:

A1k ¼ LðkÞz αðkÞx þ lxα
ðkÞ
z

� �
cos

1
2
qwLðkÞz

� �

A2k ¼ LðkÞz αðkÞy þ lyα
ðkÞ
z

� �
cos

1
2
qwLðkÞz

� �

A3k ¼ c12 lxα
ðkÞ
x þ lyα

ðkÞ
y

� �
þ c11 LðkÞz αðkÞz

� �h i
� sin

1
2
qwLðkÞz

� �
(21)

where k ¼ 1, 2, 3. For nontrivial solutions to Equation (18)
(Equation (19)) to exist, the determinant of S (A) is required
to vanish.

The numerical calculation of the vibrational modes can be
done as follows. First, the magnitude q and the direction ϕ of
the in-plane wavevector are determined. Under these conditions,
the mode is obtained by scanning the frequencies ω to find the
zeros of the determinant jSj (for the symmetric modes) or jAj (for
the antisymmetric modes). The n-th zero, ωn, of jSj (jAj) found
gives the dispersion curve of the n-th symmetric (antisymmetric)
branch of the vibrational modes.

2.2. Interaction Potential

From Equation (14) and (15), the Fourier component of the lat-
tice displacement vector uðq, zÞ for the n-th symmetric branch is
given by

ujSnðq, zÞ ¼
X3
k¼1

βjðkÞSn cosðqLðkÞz zÞ, ðj ¼ x, yÞ (22)

uzSnðq, zÞ ¼
X3
k¼1

βzðkÞSn sinðqLðkÞz zÞ (23)

and that for the n-th antisymmetric branch is given by

ujAnðq, zÞ ¼
X3
k¼1

βjðkÞAn sinðqLðkÞz zÞ, ðj ¼ x, yÞ (24)

uzAnðq, zÞ ¼
X3
k¼1

βzðkÞAn cosðqLðkÞz zÞ (25)

Here, βjðkÞS and βjðkÞA (k ¼ 1, 2, 3) are defined by

βjðkÞS ¼
8<
:
Skα

ðkÞ
j , ðj ¼ x, yÞ

i Skα
ðkÞ
j , ðj ¼ zÞ

(26)
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and

βjðkÞA ¼
8<
:
i Akα

ðkÞ
j , ðj ¼ x, yÞ

Akα
ðkÞ
j , ðj ¼ zÞ

(27)

The general displacement vector u xð Þ can be expressed
in terms of phonon creation and annihilation operators a†ηnq
and aηnq as

u xð Þ ¼
X
ηnq

ℏ
2ρSωηnq

 !
1= 2

uηn q, zð Þ aηnq þ a†ηn,�q
� �

eiq·x (28)

where η represents the symmetry of the mode (η= S for symmet-
ric and A for antisymmetric modes), S is the area, and uηnðq, zÞ is
normalized asZ

w= 2

�w= 2
u†ηn q, zð Þ · uηn q, zð Þdz ¼ 1 (29)

We assume the following electron–acoustic-phonon interac-
tion potential U xð Þ[30,42]

UðxÞ ¼
X
ij

ΞijεijðxÞ (30)

Here, Ξij (i, j ¼ x, y, z) is the deformation potential tensor, and
εijðxÞ is the symmetrical strain tensor

εijðxÞ ¼
1
2

∂ui
∂xj

þ ∂uj
∂xi

 !
, ði, j ¼ x, y, zÞ (31)

In this study, we consider the lowest electronic sub-band of the
twofold valleys with the principal axis in the [001] direction
(highlighted valleys in Figure 1b). In that case, the deformation
potentials are written as[30]

Ξ ¼
Ξd 0 0
0 Ξd 0
0 0 Ξd þ Ξu

0
@

1
A (32)

where Ξd and Ξu are the dialational and shear deformation poten-
tial constants, respectively. Substitution of Equation (22–25)
and (32) into Equation (30) gives

U xð Þ ¼
X
ηnq

ℏ
2ρSωηnq

 !
1= 2

iCηn q, zð Þ aηnq þ a†ηn,�q
� �

eiq·x (33)

where Cηnðq, zÞ is defined by

Cηn q, zð Þ ¼

X3
k¼1

X kð Þ
ηn ϕð Þq cos qL kð Þ

z z
� �

, η ¼ Sð Þ

X3
k¼1

X kð Þ
ηn ϕð Þq sin qL kð Þ

z z
� �

, η ¼ Að Þ

8>>>><
>>>>:

(34)

and X ðkÞ
ηn ðϕÞ (ϕ is the angle between q and the x-axis) is defined by

X kð Þ
ηn ϕð Þ ¼

8>>>>>>><
>>>>>>>:

Ξd βx kð Þ
ηn lx þ βy kð Þ

ηn ly

h i
� i Ξd þ Ξu½ �βz kð Þ

ηn L kð Þ
z , η ¼ Sð Þ

Ξd βx kð Þ
ηn lx þ βy kð Þ

ηn ly

h i
þ i Ξd þ Ξu½ �βz kð Þ

ηn L kð Þ
z , η ¼ Að Þ

(35)

2.3. Mobility

We first evaluate the intra-sub-band electron scattering rate
for the lowest electronic sub-band of the twofold valleys. Let
eik·xξ0 zð Þ= ffiffiffi

S
p

be the wavefunction of the ground sub-band
and E0ðkÞ (¼ ℏ2k2=2mt) be the in-plane energy dispersion.
In the elastic equipartion energy approximation [11,13], the
intra-ground-sub-band scattering rate, Sk!k0 , from an initial
state k to a final state k0 by absorption or emission of a phonon
is given by

Sk!k0 ¼ f v
2π
ℏ

X
ηnq

kT
ρSω2

ηnq
jhξ0ðzÞjCηnðq, zÞjξ0ðzÞij2

� δk0 ,kþq δðE0ðk0Þ � E0ðkÞÞ

¼ f v
2πkTF0

ℏρSv2l

X
q

Ξ2
0ðqÞδk0 ,kþq δðE0ðk0Þ � E0ðkÞÞ

(36)

where fv is the valley degeneracy of the final state,[43] kT is the
thermal energy, vl is the averaged longitudinal sound
velocity in the isotropic approximation vl ¼ ðcl=ρÞ1=2 with
cl ¼ c12 þ 2c44 þ ð3=5Þc�,[44,45] and F0 is the form factor

F0 ¼
Z

w=2

�w=2
ξ40ðzÞ dz (37)

and Ξ2
0ðqÞ is defined by

Ξ2
0ðqÞ ¼

1
F0

X
ηn

v2l
ω2
ηnq

jhξ0ðzÞjCηnðq, zÞjξ0ðzÞij2 (38)

For q ¼ qðcosϕ, sinϕÞ, the ϕ dependence of Ξ2
0ðqÞ is not large,

so in the following we replace Ξ2
0ðqÞ with the ϕ average of

Ξ2
0ðqÞ ¼

1
2π

Z
2π

0
Ξ2
0ðqÞ dϕ (39)

Next we evaluate the momentum relaxation time τα to calcu-
late the diagonal electron mobility μαα (α= x, y).[30] Since we are
considering the electron mobility of the twofold valleys, the
mobility is isotropic in the xy-plane and it is sufficient to calculate
only τx. In the steady-state Boltzmann transport equation for a
spatially homogeneous system, when the electron distribution
function f kð Þ is approximated by f ðkÞ ¼ f 0ðkÞ þ f xðkÞωx þ
f yðkÞωy with jf xj, jf yj ≪ f 0 (f 0 is the distribution function
at thermal equilibrium), the momentum relaxation time is
given by

1
τx

¼ 1
π

Z
∞

0

Z
2π

0

Z
2π

0

Sk0dk0dφ0 dφ
ð2πÞ2 Sk!k0ωx½ωx � ω0x� (40)
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where k ¼ ðkx , kyÞ ¼ kðcosφ, sinφÞ and ωα ¼ kα=k (the primed
symbols are defined in the same way). Inserting Equation (36)
into this equation, we have

1
τx

¼ f v
kTmtF0

ℏ3ρv2l
D2

0ðE0ðkÞÞ (41)

where the energy-dependent effective deformation potential con-
stant, D0ðEÞ, for the intra-ground-sub-band scattering is given by

D2
0ðE0ðkÞÞ ¼

4
π2

Z
π

0
Ξ2
0ð2k sin θÞθsin2θ dθ (42)

As shown by Equation (41), the momentum relaxation time τx
is a function of the initial electron energy E, τx(E).

We assume the nondegenerate electron gas whose thermal-
equilibrium distribution function is f 0ðEÞ ∝ e�E=kT . The electron
mobility μxx is then given by μxx ¼ ehτxi=mt with the averaged
momentum relaxation time given by

hτxi ¼
Z

∞

0
Ef 0ðEÞτxðEÞ dE

	Z
∞

0
Ef 0ðEÞ dE (43)

From Equation (41), we obtain

hτxi ¼ f v
kTmtF0

ℏ3ρv2l


 ��1 1
ðkTÞ2

Z
∞

0
Ee�E=kTD�2

0 ðEÞ dE (44)

In the isotropic acoustic phonon approximation,[46] τxh i is
written as

1
τxh i ¼ f v

kTmtF0D2
ac

ℏ3ρv2l
(45)

Note that this Kawaji formula shows that the electron mobility
is proportional to ðvl=DacÞ2 and that the sound velocity as well as
the deformation potential is an important factor in limiting the
electron mobility. Comparing Equation (44) and (45), we can
identify the effective deformation potential constant Dac in the
anisotropic model as

Dac ¼
1

ðkTÞ2
Z

∞

0
Ee�E=kTD�2

0 ðEÞ dE

 ��1=2

(46)

3. Results and Discussion

3.1. Phonon Modes

We calculate the phonon modes using the following material
parameters:[47] c11= 16.577� 1010 Pa, c12= 6.393� 1010Pa,
c44= 7.962� 1010 Pa, and ρ= 232.9 kgm�3. Figure 2 shows
the sound velocities in the (001) plane of bulk Si as a function
of angle ϕ from [100]. There are three modes, L, T1, and T2,
which are the quasi-longitudinal, pure transverse, and quasi-
transverse modes, respectively. For an isotropic model, the pho-
non modes are either pure longitudinal or pure transverse. For
the anisotropic model, only the T1 mode is pure transverse. The
other two modes, T2 and L, are not exactly transverse or longitu-
dinal; the atoms vibrate perpendicular to or in the same direction

as the wave propagation only in certain special crystal orienta-
tions. As a result, electrons can interact with both
T2 and L modes. In the figure, we also plot the averaged longi-
tudinal sound velocity, vl, and the averaged transverse sound
velocity, vt;

[44,45] the latter is given by vt ¼ ðct=ρÞ1=2 with
ct ¼ c44 þ 1

5 c
�. The present parameter set gives vl ¼ 9.00 km s�1

and vt ¼ 5.41 km s�1. As can be seen from the comparison with
the isotropic model, the anisotropy in the Si crystal is not so large
with the Zener anisotropy factor A= 2c44/(c11 – c12)= 1.56, but
the sound velocity depends on the direction of the wave
propagation.

Figure 3 shows the dispersion relations of an anisotropic (001)
Si plate, a) for the in-plane phonon wavevector, q, along [100];
b) for 30° off the [100] axis; and c) for 45° off the [100] axis.
For comparison, the dispersion relations of the longitudinal
and transverse waves in bulk Si crystal are also plotted in the fig-
ure. Figure 4 shows the dispersion relation of an isotropic Si
plate whose elastic stiffness constants, ĉ11, ĉ12, and ĉ44, are set
to ĉ11 ¼ cl, ĉ12 ¼ cl � 2ct, and ĉ44 ¼ ct to give the Zener anisot-
ropy factor A= 1 and the isotropic longitudinal and transverse
velocities of vl and vt. The dispersion relation in the anisotropic
plate is found to depend on the direction of the wave propagation,
similar to the angle dependence of the dispersion relation in the
bulk. In addition, it is found to exhibit weakly oscillatory behav-
ior, rather than the monotonic behavior of the isotropic plate.
These characteristics can be understood through Mindlin’s cou-
pled mode theory[48] extended by Solie and Auld.[39] They relate
the dispersions of a free-standing anisotropic plate to the
uncoupled primary and shear vertical modes, which in turn
are related to the slowness curves for bulk waves. This type of
analysis provides a means of approximating the behavior of
the dispersion curves from the behavior of the slowness curves
and makes the dispersion curves understandable.[39]

3.2. Effective Deformation Potential

We consider an infinite quantum well model for the electronic
states, where the wavefunction of the lowest sub-band, ξ0ðzÞ,

Figure 2. Sound velocities in the (001) plane of bulk Si as a function of
angle ϕ from [100]. There are three modes, L, T1, and T2, which are the
quasi-longitudinal, pure transverse, and quasi-transverse modes, respec-
tively. Dotted lines show the averaged longitudinal and transverse veloci-
ties in the isotropic model.[44,45]
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associated with the quantized z-motion is given by

ξ0ðzÞ ¼
ffiffiffiffi
2
w

r
cos

πz
w

� �
, jzj < 1

2
w

� �
(47)

For this wavefunction, only the symmetric phonon modes
interact with the electrons, and we have

Ξ2
0ðqÞ ¼

1
F0

X
n

v2lq
2

ω2
Snq

�����
X3
k¼1

X ðkÞ
Sn ðϕÞG0

1
2
qwLðkÞz

� ������
2

(48)

where

G0ðxÞ ¼
sin x

x½1� ðx=πÞ2� (49)

Figure 5 shows the effective deformation potential constant
Dac as a function of the plate thickness w at T= 300 K. The effec-
tive masses are set to ml ¼ 0.916m0 and mt ¼ 0.190m0,

[11] and
the deformation potential constants are Ξd ¼ 1.10 eV and

Ξu ¼ 10.5 eV [49] Note that this parameter set of Ξd and Ξu gives
the effective deformation potential Dac of bulk Si as Dac= 10 eV
for the anisotropic model of Herring and Vogt (see Equation (54)
and (55))[30] and 9.4 eV for the isotropic approximation using ĉ11,
ĉ12, and ĉ44.

The blue solid line shows DM;A
ac (the superscript M stands for

modulated and A for anisotropic) for the modulated phonons in
an anisotropic Si plate calculated with Equation (48). We see that
DM;A

ac is almost constant (DM;A
ac ≈ 13 eV) in the thinner region of

the plate thickness w ≲ 3.2 nm. As the thickness increases
w ≳ 3.2 nm, DM;A

ac decreases with w. This w-dependence can be
explained as follows. In the thin plate limit, the electrons are
strongly confined, so the effective 3D phonon wavevector[50]

involved in the scattering is mainly oriented along the z-axis,
leading to a larger deformation potential component involved
(see Equation (32)). However, as the plate becomes thicker
and the electrons are less confined, the effective phonon

(a) (b) (c)

Figure 3. Dispersion relations of an anisotropic (001) Si plate, a) for the in-plane phonon wavevector, q, along [100]; b) for 30° off the [100] axis; and c) for
45° off the [100] axis. Note that we plot ωqw as a function of qw because the dispersion relation is scaled by the plate thickness w.[39] Black solid lines
represent the symmetric and dotted lines the antisymmetric modes. For comparison, the bulk dispersion relations of (quasi-)longitudinal and (pure and
quasi-)transverse waves are plotted by red and blue dashed lines, respectively.

Figure 4. Dispersion relation of an isotropic Si plate. Black solid lines rep-
resent the symmetric and dotted lines the antisymmetric modes. Red and
blue dashed lines show ωq ¼ vlq and vtq, respectively.

Figure 5. The effective deformation potential constant Dac as a function of
the plate thickness w at T= 300 K. Blue solid (dashed) line shows DM;A

ac

(DM;I
ac ) for the modulated phonons in the anisotropic model (isotropic

approximation), and red solid (dashed) line shows DB;A
ac (DB;I

ac ) for the bulk
phonons in the anisotropic model (isotropic approximation).
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wavevector will tilt toward the xy plane, thus weakening the
deformation potential component involved in the scattering.

Note that in the present study, we consider only the lowest
sub-band and neglect higher sub-bands, which should be consid-
ered for thicker w region; the decrease in Dac as a function of w
shown in Figure 5 does not necessarily imply an increase in the
total mobility with the higher sub-bands contributions.

In Figure 5, we also plot DM;I
ac for the modulated phonons in

the isotropic approximation using ĉ11, ĉ12, and ĉ44 by the blue
dashed line, showing a similar w-dependence to DM;A

ac , but with
smaller values. For example, DM;I

ac ¼ 11.8eV and DM;A
ac ¼ 12.8 eV

at w= 1 nm. This smaller DM;I
ac than DM;A

ac is mainly due to the
smaller sound velocity in the anisotropic model. As shown in
Figure 3, the lowest symmetric mode at around q= 0 almost
follows the bulk quasi-longitudinal mode, and the quasi-
longitudinal sound velocity in bulk Si for the [100] direction,
v½100� ¼ 8.44 kms�1 (see Figure 2), is smaller than the averaged
longitudinal sound velocity vl ¼ 9.00 kms�1. For thin plates, the
contribution of phonons oriented along the z-axis is considered
large. We thus estimate the deformation potential ratio
DM;I

ac =DM;A
ac by the square of the velocity ratio ðv½100�=vlÞ2 (¼ 0.88),

which is almost equal to and slightly smaller than DM;I
ac =DM;A

ac

(¼ 0.92 at w= 1 nm).
In Figure 5, the red solid (dashed) line shows DB;A

ac (DB;I
ac ) for

the bulk phonons in the anisotropic model (isotropic approxima-
tion). In the bulk phonon model, Ξ2

0ðqÞ is given by

Ξ2
0ðqÞ ¼

1
F0

Z
2π

0

d qz
2π

Ξ2
lðθÞ þ

v2l
v2t

Ξ2
t ðθÞ


 �
G2

0
1
2
qw

� �
(50)

Here, θ is the angle between the 2D phonon wavevector q and
qz, and Ξ2

lðθÞ and Ξ2
t ðθÞ are defined by

Ξ2
lðθÞ ¼ ðΞd þ Ξucos2θÞ2 f lðθÞ (51)

Ξ2
t ðθÞ ¼ Ξ2

ucos2θsin2θ f tðθÞ (52)

and

f lðθÞ ¼ f tðθÞ ¼ 1 (53)

for the isotropic approximation and

f lðθÞ ¼ 1� c�ð0.15� 1.50cos2θ þ 1.75cos4θÞ
cl

(54)

f tðθÞ ¼ ct

"
3

c44 þ 1
3 c

� �
2

c44 þ 1
2 c

�

þ 6cos2θ

"
1

c44 þ 1
2 c

� �
1

c44 þ 1
3 c

�

## (55)

for the anisotropic model of Herring and Vogt.[30] Comparing the
results between the modulated phonons (DM;A

ac and DM;I
ac ) and the

bulk phonons (DB;A
ac and DB;I

ac ), we can see that not only the crystal
anisotropy but also the phonon modulation have non-negligible
effects on the effective deformation potential and the electron
mobility.

4. Conclusion

We have studied the electron–acoustic-phonon interaction in a
free-standing Si plate with (001) surface, taking into account
the elastic anisotropy of the Si crystal and the modulated phonon
modes obtained by the calculation method of Solie and Auld.[39]

Using the obtained phonon modes, we derived the electron–
acoustic-phonon interaction potential with the anisotropic
deformation potential constants. Considering only the lowest
electronic sub-band, we calculated the electron mobility and con-
verted it to the effective deformation potential constant Dac.

The dispersion relation in the anisotropic plate is found to
depend on the direction of the wave propagation, similar to
the angle dependence of the bulk dispersion relation. In addition,
it is found to exhibit weakly oscillatory behavior, rather than the
monotonic behavior of the isotropic plate, as explained by the
extended coupled-mode theory.[39,48]

In the quantum well model for the electronic states, we find
that the effective deformation potential, DM;A

ac , for the modulated
phonons in an anisotropic Si plate becomes DM;A

ac ≈ 13 eV in the
thinner region of the plate thickness w ≲ 3.2 nm. The effect of the
elastic anisotropy on the effective deformation potential is found to
be rather large; for example, it is reduced by ≈1 eV in the thinner
region if we assume the isotropic approximation. We also find that
the phonon modulation and the crystal anisotropy have non-
negligible effects on the effective deformation potential and the
electron mobility. Note that only the lowest sub-band is considered
in this study, so the calculations must take into account the excited
sub-bands and the upper valleys for consideration in the thicker
plate region. Such studies are the subject of future work.

Physically reliable modeling is essential for the realization of
ultrasmall Si MOS transistors. As shown in this study, the con-
ventional isotropic model using a constant deformation potential
is insufficient for modeling acoustic phonon scattering in con-
fined structures. The method presented in this paper is applica-
ble to device modeling of 2D structures such as SOI MOSFETs.
In the case of 3D structures such as nanosheets, the phonons are
confined in 2D, so the method in this paper is not directly appli-
cable, but can be extended. In both cases, the actual design of
transistors requires simplified modeling that can be imple-
mented in technology computer-aided design tools. For this pur-
pose, the effective deformation potential Dac should be the key
parameter. However, as shown in this study, the effective defor-
mation potential varies with the plate thickness. Also, although
not included in this paper, numerical tests show that the effective
deformation potential is also affected by the shape of the wave-
functions and the excited sub-bands (valleys). Therefore, it may
not be possible to analyze the electron transport properties in
confined channel devices using only a single constant of Dac.
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