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The goal of this paper is to study the possible monoids appearing as the associated 
monoids of the initial algebra of a finitely generated homogeneous k-subalgebra of 
a polynomial ring k[x1, . . . , xn]. Clearly, any a˙ine monoid can be realized since the 
initial algebra of the a˙ine monoid k-algebra is itself. On the other hand, the initial 
algebra of a finitely generated homogeneous k-algebra is not necessarily finitely 
generated. In this paper, we provide a new family of no-finitely generated monoids 
which can be realized as the initial algebras of finitely generated homogeneous k
algebras. Moreover, we also provide an example of a no-finitely generated monoid 
which cannot be realized as the initial algebra of any finitely generated homogeneous 
k-algebra.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let k be a field, S = k[x1, . . . , xn] the polynomial ring in n variables over k, and � a monomial order 
on (Z≥0)n. We use an abbreviation of monomials xu1

1 · · ·xun
n with xu for u = (u1, u2, . . . , un) ∈ (Z≥0)n. 

Given a non-zero polynomial f =
∑

cux
u ∈ S with cu ∈ k, we dfine supp f := {u ∈ (Z≥0)n | cu �= 0}, 

deg� f := max�(supp f), and in� f = cdeg� fx
deg� f . Let R be a finitely generated k-subalgebra of S. 

We dfine deg� R := {deg� f | f ∈ R\{0}} and in� R the k-vector space spanned by {in� f | f ∈ R}, 
called initial algebra of R. A subset F of R is said to be SAGBI basis of R if the k-algebra generated by 
{in� f | f ∈ F} is equal to in� R. The word ``SAGBI'' is introduced by Robbiano and Sweedler [5] and 
stands for ``Subalgebra Analog to Gröbner Bases for Ideal''. Remark that in� R is not necessarily a finitely 
generated k-algebra even if R is finitely generated, so R may have no finite SAGBI basis with respect to 
any monomial orders. The sufficient condition for R to have ifinite SAGBI basis is not found yet as far 
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as the authors know. In [4], it is claimed that it will be helpful for this problem to study the mechanism 
of no-finite generation of the initial algebras. The goal of this paper is to study no-finitely generated 
monoids appearing as no-finitely generated homogeneous monoid k-algebras.

Let M be a monoid, a set with an operation M ×M → M that is associative and has the identity. For 
a monoid M ⊂ (Z≥0)n and a field k, k[M ] is a k-vector space with the base {xu | u ∈ M}. Since both 
k[M ] and in� R are k-subalgebras of S generated by monomials, for any initial algebra in� R, there exists 
a monoid M such that

in� R = k[M ].

Concretely, such a monoid M is deg� R. Therefore, to check whether in� R is finitely generated or not is 
equivalent to check whether M(= deg� R) is so. In that sense, the following question naturally arises.

Question 1.1. Can we characterize no-finitely generated monoids arising from some finitely generated k
subalgebras?

Towards the solution of Question 1.1, in this paper, we concentrate on our discussion in the case of homo
geneous subalgebras of k[x, y]. In particular, we mainly study subalgebras generated by one homogeneous 
binomial xv1 + xv2 and finitely many monomials xu1 , xu2 , . . . , xut .

There are two main results in this paper. The first main result is to provide a class of no-finitely 
generated monoids that correspond to some finitely generated subalgebras.

Theorem 3.4. Let v1,v2 ∈ (Z≥0)2 be linearly independent over Q. Let � be a monomial order with v1 � v2

and let C ⊂ (R≥0)2 be the cone generated by v1,v2. We take u1,u2, . . . ,us from (Z≥0)2 ∩ C◦, where C◦

denotes the interior of C. Let N be the monoid generated by v2, and let L be an N -module generated by 
u1,u2, . . . ,us. We dfine M by setting the monoid generated by {v1} ∪ L. If R is a k-algebra generated by

G := {xv1 + xv2} ∪ {xu | u ∈ L},

then R is finitely generated. Moreover, for a monomial order � with v1 � v2, we have in� R = k[M ]. In 
particular, G is an ifinite SAGBI basis of R.

The following second main result is to show that submonoids of (Z≥0)2 do not necessarily correspond to 
some initial algebras of finitely generated homogeneous subalgebras.

Theorem 4.1. Let M be a submonoid of (Z≥0)2 generated by ifinitely many irreducible elements {(1, n2) |
n ∈ Z≥0}. Then, for any subalgebra R generated by finitely many homogeneous polynomials in k[x, y] and 
any monomial order � of (Z≥0)2, in� R is never equal to k[M ].

This paper is organized as follows. In Section 2, we prepare the fundamental materials on SAGBI basis, 
monoids and cones. In Section 3, we enumerate examples of monoids and subalgebras, and show the first 
main result as a generalization of them. In Section 4, we give a proof of the other main result, Theorem 4.1. 
In Section 5, we display examples that do not suit the class in Section 3.
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2. SAGBI basis criterion, monoids and cones

In this section, we introduce the fundamental materials on SAGBI basis, monoids, and cones.
We first provide the SAGBI basis criterion. We use the notation used in [6, Chapter 11] on SAGBI basis. 

Algorithm 2.1 is a modfication of [6, Algorithm 11.1].

Algorithm 2.1 The subduction algorithm.
Input: F = {f1, f2, . . . , fs} ⊂ S, f ∈ S
Output: q ∈ k[F ], r ∈ S such that f = q + r

q := 0; r := 0
p := f
while p / ∈ k do

find i1, i2, . . . , is ∈ Z≥0 and c ∈ k\{0} such that

in� p = c · in� f1
i1 · in� f2

i2 · · · in� fs
is . (∗)

if representation  (∗) exists then
q := q + c · f i1

1 · f i2
2 · · · f is

s

p := p − c · f i1
1 · f i2

2 · · · f is
s

else
r := r + in� p
p := p − in� p

return q, r

Let u1,u2, . . . ,us ∈ (Z≥0)n with in� fi = xui , A = (u1,u2, . . . ,us) the n× s-matrix whose columns are 
ui’s, and let IA be the toric ideal of A, i.e. the kernel of the k-algebra homomorphism

k[X1, X2, . . . , Xs] → k[x1, x2, . . . , xn], Xi 
→ xui .

Thanks to Proposition 2.1, we can determine whether F is a SAGBI basis.

Proposition 2.1 ([6, Corollary 11.5]). Let {p1, p2, . . . , pt} be generators of the toric ideal IA. Then F is a 
SAGBI basis if and only if Algorithm 2.1 subduces pi(f1, f2, . . . , fs) to an element of k for all i.

We use the notation used in [1, Chapters 1 and 2]. In this paper, let M be a submonoid of (Z≥0)n. For 
x ∈ M , we call x irreducible on M if there are y, z ∈ M with x = y + z, then either y or z must be 0. A 
monoid M is no-finitely generated if and only if M has ifinitely many irreducible elements on M . A set 
N with an operation M ×N → N is called an M -module if

(u + v) + x = u + (v + x) and 0 + x = x for any u,v ∈ M and x ∈ N.

It is convenient to observe R≥0M := {
∑s

i=1 aixi | xi ∈ M,ai ∈ R≥0, s ∈ Z≥0} for determining if M is 
finitely generated. For i = 1, 2, . . . , t, let σi be a linear form on Rn and let Hi, H+

i be linear hyperplanes 
and linear closed halfspaces such that

Hi := {x ∈ Rn | σi(x) = 0} and H+
i := {x ∈ Rn | σi(x) ≥ 0},

respectively. Note that we also often use w ∈ Rn to describe each linear form σ, i.e., σ(x) = 〈x,w〉, where 
〈·, ·〉 denotes the usual inner product of Rn. A polyhedral cone is dfined to be an intersection of finitely 
many linear closed halfspaces, i.e., C is written as C =

⋂t
i=1 H

+
i . Moreover, by using Proposition 2.2, we 

can determine if a given monoid M is finitely generated.

Proposition 2.2 ([1, Corollary 2.10]). A monoid M is finitely generated if and only if R≥0M is a polyhedral 
cone.
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A face F of C is a non-empty intersection of a linear hyperplane H = {x ∈ Rn | σ(x) = 0} and C
satisfying C ⊂ H+. Namely,

F := H ∩ C = {x ∈ C | σ(x) = 0} �= ∅.

For a polyhedral cone C =
⋂t

i=1 H
+
i , we dfine

C◦ := {x ∈ C | σi(x) > 0 for each i}.

Note that for all x ∈ C and x′ ∈ C◦, we have x + x′ ∈ C◦.

3. Examples of monoids and subalgebras

In this section, various no-finitely generated monoids are generalized (Lemma 3.3) and we construct 
finitely generated subalgebras that correspond to monoids (Theorem 3.4).

We found these examples through computational experiments by using the package ``SubalgebraBases'' 
[2] on Macaulay2 [3]. On our experiments, we focused on subalgebras generated by one homogeneous 
binomial xv1 + xv2 and t monomials xu1 , xu2 , . . . , xut . First, we discuss the case t = 1.

Proposition 3.1. Let v1,v2 ∈ (Z≥0)2 be linearly independent. Assume that the binomial xv1 + xv2 is homo
geneous. For any u ∈ (Z≥0)2, the k-subalgebra R = k[xv1 + xv2 , xu] has a finite SAGBI basis.

Proof. We may assume v1 � v2 without loss of generality.
Let v1,u be linearly independent over Q. We consider a linear relation

a1v1 + a2u = b1v1 + b2u,

where a1, a2, b1, b2 ∈ Z≥0. Since v1,u are linearly independent, we have a1 = b1 and a2 = b2. Thus, any 
cancellation of initial terms in R cannot occur and we obtain that {xv1 + xv2 , xu} is a SAGBI basis of R.

Let mv1 = �u with some coprime positive integers m, �. Then, we can obtain a polynomial in R as 
follows:

f := 1 (
m
1 
) ((xv1 + xv2)m − (xu)�)

= x(m−1)v1+v2 +
(
m
2 
)

(
m
1 
)x(m−2)v1+2v2 + · · · + 1 (

m
1 
)xmv2 .

Now, we prove {xv1 + xv2 , xu, f} is a SAGBI basis of R. Similarly to the previous case, we consider the 
equality

a1v1 + a2u + a3((m− 1)v1 + v2) = b1v1 + b2u + b3((m− 1)v1 + v2).

Since v1 and u are linearly dependent while v1 and v2 are linearly independent, we obtain a3 = b3. Therefore, 
it is sufficient to check cancellations involving only xv1 + xv2 and xu. Since we have f , the cancellations 
involving xv1 + xv2 and xu have been also already discussed. �

We can similarly prove the following.

Proposition 3.2. Let v1,v2 ∈ (Z≥0)2 be linearly independent and let u1,u2 ∈ (Z≥0)2 be linearly independent. 
Assume that the binomials xv1+xv2 , xu1+xu2 are homogeneous. Then the k-subalgebra R = k[xv1+xv2 , xu1+
xu2 ] has a finite SAGBI basis.
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Proof. We may assume v1 � v2 and u1 � u2 without loss of generality. If v1,u1 are linearly independent, 
then the proof is the same as in Proposition 3.1.

Next, we assume that mv1 = �u1 with some positive integers m, �. If m = � = 1 and v2 = u2, then 
{xv1 + xv2} is a SAGBI basis of R. We set v2 �= u2, and let

f := (xv1 + xv2)m − (xu1 + xu2)�

=
(
m

1 

)
x(m−1)v1+v2 + · · · + xmv2 −

((
� 
1

)
x(�−1)u1+u2 + · · · + x�u2

)
.

Then, in� f is 
(
m
1 
)
x(m−1)v1+v2 or −

(
� 
1
)
x(�−1)u1+u2 . In both cases, {xv1 +xv2 , xu1 +xu2 , f} is a SAGBI basis 

of R. The proof is the same as Proposition 3.1 since both v1,v2 and u1,u2 are linearly independent. �
We enumerate examples found in our experiments. These examples can be regarded as a generalization 

of [5, 1.20]. All monoids corresponding to these examples are no-finitely generated monoids by Lemma 3.3.

Lemma 3.3. Let v1,v2 ∈ (Z≥0)2 be linearly independent and let � be a monomial order with v1 � v2. Let 
C be the cone generated by v1,v2. Fix u1,u2, . . . ,us ∈ (Z≥0)2 ∩ C◦, let N be the monoid generated by v2, 
and let L be the N -module generated by u1,u2, . . . ,us. We dfine M by setting the monoid generated by 
{v1} ∪ L. Then M is not finitely generated.

Proof. Let w1,w2 ∈ R2 such that

〈w1,v1〉 = 0 and 〈w1,x〉 ≥ 0 (∀x ∈ C);

〈w2,v2〉 = 0 and 〈w2,x〉 ≥ 0 (∀x ∈ C).

In other words, w1 and w2 are chosen as they dfine the facets R≥0v1 and R≥0v2 of C, respectively. Since 
u1,u2, . . . ,us ∈ C◦, we have 〈w2,ui〉 > 0 for each i. Let, say, u1 attain 〈w2,u1〉 ≤ 〈w2,ui〉 for each i. Let 
L1 := {u1 + mv2 | m ∈ Z≥0} be the N -module generated by u1. Then L1 is an ifinite subset of M . In 
what follows, we prove that all elements of L1 are irreducible on M . On the contrary, suppose that

u1 + mv2 = x1 + x2

for some m ∈ Z≥0 and x1,x2 ∈ M\{0}. Then x1 and x2 can be written as follows:

x1 =
∑

asys and x2 =
∑

btzt, (1)

where ys, zt ∈ {v1}∪L and as, bt ∈ Z≥0. Since generators of M are a subset of C\R≥0v2, we have 〈w2,x〉 > 0
for all x ∈ {v1} ∪ L. If ui + m′v2 ∈ L appears in the summand of x1 or x2 of (1), say, in x1, then we 
obtain that 〈w2,x1〉 ≥ 〈w2,u1〉. Since 〈w2,x2〉 > 〈w2,v2〉 = 0, we have 〈w2,x1 + x2〉 > 〈w2,u1 + mv2〉, a 
contradiction to u1 +mv2 = x1 +x2. Thus, no elements in L appear in the summand of (1). Hence, x1 +x2
is a positive integer multiple of v1. We can rewrite it as like

u1 + mv2 = x1 + x2 = �v1

with some positive integer �. However, by applying 〈w1,−〉 to both sides of these equations, we obtain that

0 < 〈w1,u1 + mv2〉 = 〈w1, �v1〉 = 0,

a contradiction.
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Therefore, we conclude that all elements of L1 are irreducible on M , implying the no-finite generation 
of M . �

Now, we provide a family of examples of finitely generated k-algebras whose initial algebras are equal to 
k[M ] with M dfined in Lemma 3.3. This is the first main theorem of this paper.

Theorem 3.4. Work with the same notation as in Lemma 3.3. Let R be the k-algebra generated by

G := {xv1 + xv2} ∪ {xu | u ∈ L}.

Then R is finitely generated. Moreover, given a monomial order � with v1 � v2, we have in� R = k[M ]. 
In particular, G is a SAGBI basis of some R consisting of ifinitely many polynomials (most of which are 
monomials).

Proof. First, we prove that R is finitely generated.
Since v1 and v2 are linearly independent and u1,u2, . . . ,us ∈ C◦, there exist positive integers �i, ai, bi

such that

�iui = aiv1 + biv2

holds for each i = 1, . . . , s. Fix i. Let

f0 = xui+aiv1+biv2 (= (xui)�i+1)

and

fk = xui+(bi−1+k)v2 (xv1 + xv2)ai+1−k

=
ai+1−k∑

j=0 

(
ai + 1 − k

j

)
xui+(ai+1−k−j)v1+(bi−1+k+j)v2

for k = 1, . . . , ai. Let V be the k-vector space with a basis

{mp := xui+(ai−p)v1+(bi+p)v2 | p = 0, 1, . . . , ai}.

Then f0, f1, . . . , fai
belong to V . Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(
ai

0 
)

0 0 0

0
(
ai

1 
) (

ai−1
0 

) ...
...(

ai−1
1 

)
· · · 0

...
...

...
(2
0
)

0(
ai

ai−1
) (

ai−1
ai−2

) (2
1
) (1

0
)

0
(
ai

ai

) (
ai−1
ai−1

) (2
2
) (1

1
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be the (ai + 1) × (ai + 1)-matrix. Then

(m0 m1 · · · mai
)A = (f0 f1 · · · fai

).

Now, we claim that f0, f1, . . . , fai
also form a basis of V by seeing that A is invertible. We subtract 3-rd 

column from 2-nd column, 4-th column from 3rd column, . . ., and (ai + 1)-th column from ai-th column. 
Then A is transformed into
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(
ai−1

0 
)

0 0 0

0
(
ai−1

1 
) (

ai−2
0 

) ...
...(

ai−2
1 

)
· · · 0

...
...

...
(1
0
)

0(
ai−1
ai−1

) (
ai−2
ai−2

) (1
1
) (1

0
)

0 0 0 0
(1
1
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, by induction on ai, we can see that A is invertible.
Therefore, the monomial mai

= xui+(ai+bi)v2 ∈ V can be written as a (unique) k-linear combination of 
f0, f1, . . . , fai

. This means that the monomial xui+(ai+bi)v2 belongs to

k[xv1 + xv2 , xui , xui+biv2 , xui+(bi+1)v2 , . . . , xui+(ai+bi−1)v2 ].

Similarly to the above discussion, we can show that the monomial xui+(ai+bi+1)v2 can be written as a 
k-linear combination of the polynomials

(xui)�i(xui+v2) and xui+(bi+k)v2(xv1 + xv2)ai+1−k for k = 1, . . . , ai.

By applying these repeatedly, we can show that all monomials xui+jv2 for j ∈ Z≥0 belong to k[xv1 +
xv2 , xui , xui+v2 , . . . , xui+(ai+bi−1)v2 ]. Thus, the k-algebra generated by

{xv1 + xv2} ∪
s ⋃

i=1
{xui , xui+v2 , . . . , xui+(ai+bi−1)v2}

coincides with R, which is finitely generated.

Next, we prove that in� R = k[M ]. It is sufficient to prove that G is a SAGBI basis of R. Namely, we 
prove that for any polynomial f ∈ R, in� f can be written as a product of finitely many monomials in 
{in� g | g ∈ G}. Since f can be written as

f =
∑
i 

ci(xv1 + xv2)α
(i)

(xw1)β
(i)
1 (xw2)β

(i)
2 · · · (xwt)β

(i)
t , (2)

where ci ∈ k, α(i), β
(i)
1 , β

(i)
2 , . . . , β

(i)
t ∈ Z≥0 and w1,w2, . . . ,wt ∈ L, the initial monomial in� f belongs to

S := supp((xv1 + xv2)α
(i)

(xw1)β
(i)
1 (xw2)β

(i)
2 · · · (xwt)β

(i)
t )

for some i.

• If one of β(i)
1 , β

(i)
2 , . . . , β

(i)
t is not 0, then all monomials in S can be written as xm1u1+m2u2+...+msus+av1+bv2

with m1,m2, . . . ,ms, a, b ∈ Z≥0 and one of m1,m2, . . . ,ms is positive, say, m1 > 0. Then we have

xm1u1+m2u2+···+msus+av1+bv2 = (xv1)a(xu1)m1−1(xu2)m2 · · · (xus)ms(xu1+bv2).

• If β(i)
1 = β

(i)
2 = . . . = β

(i)
t = 0, i.e., in� f ∈ supp (xv1 + xv2)α(i) , since u1,u2, . . . ,us ∈ C◦, the monomial 

xα(i)v1 cannot be written like

xm1u1+m2u2+···+msus+av1+bv2
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x

y

O

Fig. 1. The monoid M of Example 3.5 in the case with v1 = (2, 1),v2 = (1, 2). 

with m1,m2, . . . ,ms, a, b ∈ Z≥0 and one of m1,m2, . . . ,ms is not 0. Therefore, the cancellation of the 
monomials of the form xα(i)v1 in (2) never happens, i.e., xα(i)v1 definitely appears in f . Since xα(i)v1 is 
the strongest monomial with respect to � in supp (xv1 + xv2)α(i) , we have in� f = (xv1)α(i) .

By these discussions, we see that for any f ∈ R, the initial monomial in� f can be written as a product 
of finitely many monomials in {in� g | g ∈ G}. Therefore, G is a SAGBI basis of R. �

We provide three families of examples of Theorem 3.4. Each of Examples 3.5, 3.7 and 3.6 generalizes the 
initiated example [5, 1.20] of finitely generated k-algebra whose initial algebra is not finitely generated. In 
what follows, let � be a monomial order with x � y.

Example 3.5. Given v1,v2 ∈ (Z≥0)2 which are linearly independent and satisfy xv1 � xv2 , let

R1 = k[xv1 + xv2 , xv1+v2 , xv1+2v2 ].

Then

{xv1 + xv2} ∪ {xv1+mv2 | m ≥ 1}

forms a SAGBI basis of R1 with respect to �. When v1 = (2, 1),v2 = (1, 2), the initial algebra of R1
corresponds to the monoid plotted in Fig. 1. In particular, the case with v1 = (1, 0),v2 = (0, 1) is the same 
as that of [5, 1.20]. 

Example 3.6. Given a positive integer s, let

R2 = k[xs + ys, xsys, xsy2s, xs+1ys−1, xs+1y2s−1, . . . , x2s−1y, x2s−1ys+1].

Then

{xs + ys} ∪
s−1⋃
i=0 

{xs+iys−i+sm | m ∈ Z≥0}

forms a SAGBI basis of R2. When s = 3, the initial algebra of R2 corresponds to the monoid plotted in 
Fig. 2. In particular, the case s = 1 is the same as [5, 1.20]. 

Example 3.7. Given positive integers a, b, let

R3 = k[x + y, xayb, xayb+1, . . . , xaya+2b−1].
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x

x

O

Fig. 2. The monoid M of Example 3.6 in the case with s = 3. 

x

y

O

(4, 3)

Fig. 3. The monoid M of Example 3.7 in the case with a = 4, b = 3. 

Then

{x + y} ∪ {xaym | m ≥ b}

forms a SAGBI basis of R3. When a = 4, b = 3, the initial algebra of R3 corresponds to the monoid plotted 
in Fig. 3. In particular, the case a = b = 1 is the same as [5, 1.20]. 

Remark 3.8. Readers may have a doubt about the similarity between our examples and the ones developed 
in [4]. On the one hand, Examples 3.5 and 3.6 can be obtained via the method developed in [4]. In fact, for 
Example 3.5, we may assign xv1 and xv2 instead of x and y in [4, Example 2.7], and for Example 3.6, we may 
assign xs and ys and U = {xs+1ys−1, xs+2ys−2, . . . , x2s−1y}, where U appears in (A3) of the construction 
developed in [4].

On the other hand, most cases of Example 3.7 cannot be obtained in that way. In fact, we can observe 
that the subalgebra R constructed in the way of [4] always contains xy whenever R contains x + y. This 
implies that the algebra R3 cannot be equal to R constructed in [4].

4. Nonexistence of the monoid algebra as an initial algebra

This section is devoted to proving the second main theorem, which provides an example of a monoid 
whose algebra cannot be realized as any initial algebra of a finitely generated homogeneous k-algebra.

Theorem 4.1. Let M be a submonoid of (Z≥0)2 generated by ifinitely many irreducible elements {(1, n2) |
n ∈ Z≥0}. For any subalgebra R generated by finitely many homogeneous polynomials in k[x, y] and any 
monomial order � in (Z≥0)2, the initial algebra in� R cannot be equal to k[M ].
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Proof. Suppose the existence of a subalgebra R and a monomial order � such that in� R = k[M ]. Let gn
be a polynomial with in� gn = xyn

2 for each n and let G = {g0, g1, . . .} be the reduced SAGBI basis of 
R. Since we assume that R is generated by homogeneous polynomials of k[x, y], the reduced SAGBI basis 
G can be chosen as a set of homogeneous polynomials. Since R is finitely generated and R = k[g0, g1, . . .], 
there exists m ∈ Z≥0 such that R = k[g0, g1, . . . , gm]. Then deg� R is a submonoid of the monoid generated 
by 

⋃m
i=0 supp gi because all monomials appearing in polynomials of R can be written as a product of finitely 

many monomials appearing in g0, g1, . . . , gm.

(The first step): First, we prove that there exists a positive integer a with (0, a) ∈
⋃m

i=0 supp gi. On the 
contrary, suppose that (0, a) �∈

⋃m
i=0 supp gi for any a ≥ 1. Let C be the cone generated by 

⋃m
i=0 supp gi. 

Since

m ⋃
i=0

supp gi ⊂ {(x, y) ∈ (Z≥0)2 | x + y ≤ m2 + 1} \ {(0, y) | y ≥ 1}

by our assumption, the ray generated by (1,m2) is a face of C, and y ≤ m2x for any (x, y) ∈ C. However, for 
all integer � > m, (1, �2) is out of C, i.e., out of deg� R, a contradiction. Hence, we have (0, a) ∈

⋃m
i=0 supp gi

for some a ≥ 1. In particular, if (0, a) ∈
⋃m

i=0 supp gi, then a = i2 + 1 for some i ∈ {0, 1, . . . ,m} because 
gi’s are homogeneous.

(The second step): Next, we prove that each gi can be written like gi = yi
2(x + ay) for some a ∈ k \ {0}. 

Note that a is independent of i.
Since each gi is homogeneous, we can write

g0 = x + a0y

g1 = xy + · · · + a1y
2 + · · ·

...

gm = xym
2
+ · · · + amym

2+1 + · · ·
...

with a0, a1, . . . , am, . . . ∈ k and one of a0, a1, . . . , am is not 0. Since in� gi = xyi
2 , we get xyi2 � yi

2+1. 
Therefore, we have x � y. For b ≥ 2, monomials xbyi

2+1−b do not appear in gi because xbyi
2+1−b � xyi

2 . 
Thus we can rewrite gi’s by

gi = xyi
2
+ aiy

i2+1.

We prove a0 = a1 = . . . = am = · · · by induction on m. In the case of m = 2, we consider

g := g3
0g2 − g4

1 − (3a0 + a2 − 4a1)g0g1g2

= (a0a1 − a0a2 − 2a2
1 + 3a1a2 − a2

2)x2y6

+ (a3
0 − 3a2

0a1 + 4a0a
2
1 − a0a

2
2 − 4a3

1 + 4a2
1a2 − a1a

2
2)xy7

+ (a3
0a2 − 3a2

0a1a2 + 4a0a
2
1a2 − a0a1a

2
2 − a4

1)y8.

Though in� g ∈ in� R, any monomials in {x2y6, xy7, y8} cannot be written as a product of x, xy, xy4, xy9, . . .. 
Thus, all coefficients of g should be 0. Let h1, h2, h3 be the following polynomials in k[X0, X1, X2]:
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h1 = X0X1 −X0X2 − 2X2
1 + 3X1X2 −X2

2 ;

h2 = X3
0 − 3X2

0X1 + 4X0X
2
1 −X0X

2
2 − 4X3

1 + 4X2
1X2 −X1X

2
2 ;

h3 = X3
0X2 − 3X2

0X1X2 + 4X0X
2
1X2 −X0X1X

2
2 −X4

1 .

Then a0, a1, a2 satisfy h1(a0, a1, a2) = h2(a0, a1, a2) = h3(a0, a1, a2) = 0. The reduced Gröbner basis for the 
ideal generated by h1, h2, h3 with respect to a lexicographic ordering is given by the following polynomials:

h̃1 = X4
1 − 4X3

1X2 + 6X2
1X

2
2 − 4X1X

3
2 + X4

2 = (X1 −X2)4;

h̃2 = X0X1 −X0X2 − 2X2
1 + 3X1X2 −X2

2 ;

h̃3 = X3
0 − 3X2

0X2 + 3X0X
2
2 − 8X3

1 + 24X2
1X2 − 24X1X

2
2 + 7X3

2 .

Hence, a0, a1, a2 also satisfy h̃1(a0, a1, a2) = h̃2(a0, a1, a2) = h̃3(a0, a1, a2) = 0. We get a1 = a2 from 
h̃1(X0, X1, X2), and a0 = a1 from a1 = a2 and h̃3(a0, a1, a2) = 0. Thus, we conclude a0 = a1 = a2.

Now, assume a0 = a1 = . . . = ai−1 = a for some i ≥ 3. Let b = ai − a and suppose b �= 0. If i = 2k + 1
for some k ≥ 1, then a direct computation implies that

b2g1g2g2k+1 − bg2
0g2g2k+1 + g0g

3
1g2k+1 − g0gk−1g

3
k+1 = b3y4k2+4k+7(x + ay)2

by using gj = yj
2(x+ ay), (0 ≤ j ≤ i− 1) and gi = yi

2+1(x+ aiy). The initial monomial of this polynomial 
is x2y4k2+4k+7, but x2y4k2+4k+7 cannot be written as a product of two monomials of x, xy, xy4, . . . because 
any squares of integers are 0 or 1 modulo 4, a contradiction. Similarly, if i = 2k for some k ≥ 2, then we 
get a polynomial in R

b2g2
1g2k − bg2

0g1g2k + g4
0g2k − g0g

4
k = b3y4k2+3(x + ay)2,

a contradiction. Thus, we have b = 0, i.e., ai = a for each i ≥ 0.

(The third step): Finally, we prove that {g0, g1, . . . , gm} forms a reduced SAGBI basis of R. This claim con
tradicts the uniqueness of the reduced SAGBI basis of R, so we can prove the nonexistence of homogeneous 
finitely generated subalgebra R with in� R = k[M ].

Let σ be an automorphism of k[x, y] dfined by

σ(x) = x− ay and σ(y) = y.

Then σ(gi) = xyi
2 for each i. Let IA be the toric ideal of 2 × (m + 1)-matrix

A =
(

1 1 . . . 1
0 1 . . . m2

)

For all binomials tα0 · · · tαm − tβ0 · · · tβm in generators of IA, the image of gα0
0 · · · gαm

m − gβ0
0 · · · gβm

m by σ is

σ(gα0
0 · · · gαm

m − gβ0
0 · · · gβm

m ) = (x)α0 · · · (xym2
)αm − (x)β0 · · · (xym2

)βm = 0.

This implies that gα0
0 · · · gαm

m −gβ0
0 · · · gβm

m = 0. Therefore, all gα0
0 · · · gαm

m −gβ0
0 · · · gβm

m subduce to an element 
of k. From Proposition 2.1, we conclude that {g0, g1, . . . , gm} is a finite SAGBI basis, and clearly reduced. �
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x

y

O

Fig. 4. Monoid of Example 5.2. 

5. Other examples

In this section, we provide examples that do not suit Section 3. Since these examples were found by 
computer experiments, we omit proofs of no-finitely generation.

Our first interest is whether the converse of Lemma 3.3 and Theorem 3.4 is true. Our question can be 
rewritten more precisely into the following way.

Question 5.1. Let C be the cone generated by v1,v2 ∈ (Z≥0)2, and let

{xv1 + xv2} ∪ {xui}∞i=1

be a reduced SAGBI basis of some finitely generated k-subalgebra R ⊂ k[x, y], where each ui belongs to C◦. 
Then, does there exist any monoid M constructed in the way as in Lemma 3.3 together with a monomial 
order � such that in� R = k[M ]?

This is not true in general as Examples 5.2 and 5.3 indicate. Those examples are counterexamples of 
Question 5.1.

Example 5.2. Let R = k[x + y, x2y, x2y2, x3y3] and � a monomial order with x � y. Then a SAGBI basis 
of R with respect to � seems to be

{x + y, x2y, x2y2, x3y3, x2y4, x2y5, . . .}.

The expected initial ideal of R corresponds to the monoid plotted in Fig. 4. This example is similar to 
Example 3.7 with a = 2, b = 1, but x2y3 is not contained in R in this example. Therefore, generators of the 
monoid cannot be written as a union of {(1, 0)} and any N -modules with N = Z≥0(0, 1). 

Example 5.3. Let R = k[x2 + y2, x2y, x2y2] and let � be a monomial order with x � y. Then a SAGBI basis 
of R with respect to � seems to be

{x2 + y2, x2y, x2y2, x2y4, x2y6, . . .}.

The expected initial ideal of R corresponds to the monoid plotted in Fig. 5.

Throughout this paper, we constructed finitely generated k-subalgebras (having an ifinite SAGBI ba
sis) generated by exactly one binomial xv1 + xv2 and finitely many monomials xu1 , xu2 , . . . , xut with 
u1,u2, . . . ,ut ∈ C◦, where C = R≥0v1 + R≥0v2. However, the condition ``u1,u2, . . . ,ut ∈ C◦'' is not 
necessary for the ifiniteness of SAGBI basis. 
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Fig. 5. Monoid of Example 5.3. 

Example 5.4. Let R = k[xy + y2, x, xy2] and � a monomial order with x � y. Then a SAGBI basis of R
with respect to � seems to be

{x, xy + y2, xy2, 2xy3 + y4, xy4, 3xy5 + y6, . . .}

Computing SAGBI basis of R, monomials and binomials appear in this SAGBI basis alternately. This 
example is almost the same as [5, 4.11] up to sign.

Finally, we introduce the most complicated example through our experiments.

Example 5.5. Let R = k[x2 − y2, x3 − y3, x4 − y4] and � a monomial order with x � y. Computing a SAGBI 
basis of R, we observe that the following monomials appear as initial terms:

x2, x3, x2y2, x3y3, x5y7, x6y8, x6y10, x7y11, x7y13, x8y14, x8y16, x9y17, x9y19, . . . .

Thus, generators of M which satisfy in� R = k[M ] are

(2, 0), (3, 0), (2, 2), (3, 3), (5, 7), (6, 8), (6, 10), (7, 11), (7, 13), (8, 14), (8, 16), (9, 17), (9, 19), . . . .

The monoid M is plotted in Fig. 6. All points following (3, 3) are contained in

{(5, 7) + m(1, 3) | m ∈ Z≥0} ∪ {(6, 8) + m(1, 3) | m ∈ Z≥0}.

However, first four points (2, 0), (3, 0), (2, 2), (3, 3) are not contained there, and (2, 2) + (1, 3) = (3, 5) and 
(3, 3) + (1, 3) = (4, 6) are not contained in M . Moreover, the monomial xy3 does not appear in generators 
of R.

In contrast, let us change the signs of generators of R, i.e. let R = k[x2 + y2, x3 + y3, x4 + y4]. Then R
has a finite SAGBI basis with respect to a monomial order with x � y, which is

{x2 + y2, x3 + y3, x2y2, x3y3}.
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Fig. 6. Non-finitely generated monoid of Example 5.5 with Mathematica. 
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