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A B S T R A C T

This study focuses on cooperative beamforming among base stations in wireless communication technology
and proposes a new approach based on the Free Energy Principle (FEP). Traditionally, the trade-off between
the accuracy of channel information acquisition and overhead has posed a challenge in beamforming. FEP
addresses this trade-off by balancing the value from observation and the value from action to select the
optimal behavior. This enables adaptive responses to dynamic environmental fluctuations through integrated
search, reasoning, and learning. Additionally, by introducing a hierarchical coordination structure, information
sharing among base stations and indirect state sharing among agents are achieved, enhancing the efficiency
and stability of beamforming. Furthermore, this study utilizes Integrated Sensing and Communication (ISAC)
to perform simultaneous communication and real-world sensing. By integrating feedback from terminals
and terminal location information for channel state estimation, the overhead is reduced. Simulation results
demonstrate that the proposed method effectively improves the Signal to Interference and Noise Ratio (SINR)
and energy efficiency.
1. Introduction

In recent years, beamforming has been gaining importance in wire-
less communication technology. Beamforming is a technique to im-
prove communication quality and capacity by controlling the direc-
tivity of transmitted radio waves using a transmitting antenna array.
In particular, the combination of beamforming and Massive MIMO
(Multiple Input Multiple Output) can significantly enhance directiv-
ity [1]. The use of a large number of transmit/receive antennas also
enables simultaneous communication with multiple User Equipment
(UE) devices.

However, in cellular communications consisting of multiple cells,
coordination among base stations is required in the cell boundary
region. In these regions, radio waves from multiple cells reach the
terminal, resulting in significant interference effects. Therefore, there
is a need for CoMP (Coordinated Multi-Point) operation, in which
multiple base stations cooperate to perform beamforming and improve
the communication quality of UE devices in the boundary region [2,3].

The effectiveness of the CoMP scheme depends on the accuracy of
the channel state estimation. When accurate information is available,
high throughput can be achieved by joint transmission (JT), where mul-
tiple base stations transmit the same signal [4]. Conversely, when accu-
rate information is not available, cooperative scheduling/beamforming

∗ Corresponding author.
E-mail address: t-otoshi@econ.osaka-u.ac.jp (T. Otoshi).

(CS/CB), in which multiple base stations transmit different signals
while avoiding interference, is employed, albeit with reduced through-
put compared to JT.

A critical challenge in cellular communications, especially in multi-
cell environments, is the dynamic adaptation to the temporal variations
of the Channel State Information (CSI) amidst environmental noise.
The sources of noise include variations in channel state due to fading,
feedback delays, quantization of feedback information, and hardware-
induced noise. When beamforming is performed using erroneous feed-
back information, it may result in the selection of inappropriate beams
or improper encoding and modulation [5]. This issue is exacerbated in
the boundary regions of cells, where interference from multiple cells
significantly affects signal quality. Hence, there is a pressing need for
a robust solution that can adaptively respond to these environmental
fluctuations and maintain high communication quality.

Simultaneously, the use of radio waves for both sensing and commu-
nication has been considered under the ISAC (Integrated Sensing and
Communication) framework [6]. ISAC aims to utilize real-world infor-
mation such as location data for channel state estimation, in addition
to feedback from data communication. Although sensing and commu-
nication applications have been treated separately in previous ISAC
studies and are often treated as simultaneous optimization of different
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Computer Networks 257 (2025) 110989 
objectives [7], this study aims to utilize sensing information to improve
communication quality. However, sensed information also contains
noise. For instance, an experiment with two 5G base stations estimated
the position of a target using the Angle of Arrival (AoA) and evaluated
its error [8]. In experiments targeting pedestrians, the average position
estimation error was approximately 0.99 m, with temporary errors
exceeding 3 meters during pedestrian tracking. Thus, integrating mul-
timodal inputs for estimation and addressing the trade-offs in accuracy
between modalities remain significant challenges.

To address these challenges, we draw inspiration from the human
brain’s functioning and employ the free energy principle (FEP) [9–
11]. FEP aims to minimize free energy, a combination of search and
use values. By minimizing free energy, FEP facilitates the selection of
actions that balance exploration and exploitation. In [12], a method is
proposed for beamforming using Deep Q-Network (DQN) across multi-
ple base stations. However, the primary goal of reinforcement learning
(RL) is utility maximization, and directly reducing the uncertainty
of the system’s perceived state is not its main objective. In contrast,
the FEP considers both utility and uncertainty reduction, enabling
the selection of optimal actions. FEP effectively integrates multiple
nformation sources, such as location and feedback information, and
dapts to environmental changes.

In this paper, we propose inter-cell cooperative beamforming using
FEP. To achieve this, an FEP agent is placed in each base station,
nd a higher-level FEP agent coordinates their actions. The lower-level
gents perform beamforming using information from the higher-level
gents and feedback and sensing information from the UEs. The upper
gents observe the states of the lower agents and provide feedback in
he form of predicted states. This hierarchical structure enables coop-
rative beamforming and ensures consistency throughout the system.
dditionally, we introduce a sensitivity adjustment mechanism within
EP, allowing the selection of appropriate actions even in environments
ith varying noise levels.

The novelty and contributions of this paper are as follows:

• We propose a method to improve communication quality by
utilizing sensing information in pursuit of the true integration
of communication and sensing information within ISAC. By em-
ploying the Free Energy Principle (FEP), this framework not
only enhances communication quality but also incorporates the
objective of reducing uncertainty, which is a fundamental goal of
sensing.

• FEP enables the active selection of beams to acquire new infor-
mation. In contrast, conventional methods such as DQN primarily
focus on exploiting existing information, with action selection
for acquiring new information relying on ad-hoc techniques like
𝜖-greedy.

• We propose a hierarchical structure in which multiple FEP agents
are deployed to coordinate beamforming across base stations.
Lower-level agents perform beamforming using feedback and
sensing information, while upper-level agents integrate and share
information across the lower-level agents to ensure system-wide
consistency.

• A sensitivity adjustment mechanism is introduced to handle fluc-
tuations in environmental noise, allowing for the selection of ap-
propriate actions even in environments where noise levels them-
selves vary.

The structure of this paper thereafter is as follows. In Section 2, we
describe the system model that we treat in this paper. In Section 3,
we give an overview of the active inference based on the free energy
principle. Section 4 describes the beamforming method for multi-
ell coordination using active inference. In Section 5, we describe the

simulation results of the proposed method. In Section 6, we discuss the
effectiveness and limitations of the proposed method. Section 7 presents
 summary of this paper.
2 
2. System model

2.1. Components

There are 𝑀 macrocells and 𝑆 small cells communicating with 𝐷
Es. In downlink communication, we assume a situation where radio
aves from the base station by beamforming interfere with each UE.

The set of base stations 𝐵(𝑚) of a macrocell, the set of small cells
𝐵(𝑠), and the set of UEs 𝑈 are defined as follows:

𝐵(𝑚) = {𝑏(𝑚)𝑖 |𝑖 = 1,… , 𝑀} (1)

𝐵(𝑠) = {𝑏(𝑠)𝑖 |𝑖 = 1,… , 𝑆} (2)

𝑈 = {𝑢𝑖|𝑖 = 1,… , 𝐷} (3)

Also, let 𝐵 = 𝐵(𝑚) ∪ 𝐵(𝑠) be the set of all base stations.

2.2. Channel coefficients and beamforming

Each base station 𝐵 transmits radio waves using 𝑀𝑏 antennas, which
are transformed by spatial characteristics to reach 𝑀𝑢 antennas of the
receiving UE 𝑢. The spatial characteristics are represented by the matrix
𝐻𝑢,𝑏(𝑡), where the element 𝐻𝑢,𝑏

𝑖𝑗 (𝑡) represents the channel coefficients
or transmission from antenna 𝑖 to antenna 𝑗.

At each time, each UE 𝑢 is connected to one of the base stations 𝑏,
nd the correspondence is denoted by 𝐴(𝑡). The element 𝑎𝑢,𝑏(𝑡) of 𝐴(𝑡)
s 1 if 𝑢 and 𝑏 are connected, and 0 otherwise.

Each base station performs beamforming by setting the phase and
amplitude of the radio wave to be transmitted for each antenna. The
phase is represented by the beam vector 𝒘𝑏(𝑡) and the amplitude by
𝑃𝑏(𝑡). The following relationship is established between the transmitted
signal 𝑥𝑏(𝑡) and the received signal 𝑦𝑢,𝑏(𝑡):

𝒚𝑢,𝑏(𝑡) =
√

𝑃𝑏(𝑡)𝐻𝑢,𝑏(𝑡)𝒘𝑏(𝑡) ◦ 𝒙𝑏(𝑡) (4)

where ◦ denotes element-wise multiplication.

2.3. Radio interference

Since radio waves and noisy signals transmitted from other base
stations reach UE 𝑢, the received signal at 𝑢 is expressed as follows:

𝒚𝑢(𝑡) = 𝒚𝑢,𝑏(𝑡) +
∑

𝑏′∈𝐵∖{𝑏}
𝒚𝑏′ (𝑡) + 𝜎𝑢(𝑡). (5)

At this time, SINR (Signal to Interference and Noise Ratio) is ex-
pressed as follows:

𝛾𝑢(𝑡) =
𝑃𝑏(𝑡)‖𝐻𝑢,𝑏(𝑡)𝒘𝑏(𝑡)‖2

𝐼𝑢(𝑡) + 𝜎2𝑢 (𝑡)
(6)

𝐼𝑢(𝑡) =
‖

‖

‖

‖

∑

𝑏′∈𝐵∖{𝑏}
𝒚𝑏′ (𝑡)

‖

‖

‖

‖

2
(7)

where 𝐼𝑢(𝑡) is the strength of the interfering radio wave and 𝜎2𝑢 (𝑡) is the
trength of the noise.

2.4. Base station observation

The base station 𝑏 is assumed to be able to observe the SINR 𝜸𝑢(𝑡) to
each UE based on feedback from the terminal. However, this feedback

ay contain noise due to delays or incorrect feedback. The noisy
observation �̃�𝑢(𝑡) is modeled as a Gaussian distribution with the true
SINR 𝛾𝑢(𝑡) as the mean:

�̃�𝑢(𝑡) ∼  (𝛾𝑢(𝑡), 𝜎2) (8)

where 𝜎2 represents the variance of the noise. The variance may change
depending on the level of feedback error or environmental factors,
influencing the observation accuracy.
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2.5. Objective function

The transmission rate of data to UE 𝑢 is estimated using SINR as
follows [12,13]:

𝐶𝑢(𝑡) = log(1 + 𝛾𝑢(𝑡)). (9)

Therefore, the transmission rate can be maximized by maximizing
SINR. Thus, maximizing SINR as one of the objective functions can
mprove beamforming performance. In FEP, however, the objective
unction is defined through a selection distribution. Details are given
n Section 4.

Other objective functions may be used, such as power efficiency
[12] or fairness-aware power efficiency [13]. Power efficiency is de-
fined as the transmission rate per unit power consumption as:

𝐸 𝐸 = 1
𝑇

𝑇
∑

𝑡=1

∑

𝑚 log(1 + 𝛾𝑚(𝑡))
𝑃𝑡𝑜𝑡𝑎𝑙(𝑡)

(10)

where 𝛾𝑚(𝑡) is the SINR of terminal 𝑚 at time 𝑡 and 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) =
∑

𝑏(𝑃𝑏(𝑡) +
𝑃𝐵 𝑆 +𝑃𝑈 𝑇 ) is the total power consumption at time 𝑡. 𝑃𝐵 𝑆 = 9 dBW, 𝑃𝑈 𝑇
= 10 dBm is the power dissipation at the base station and terminal.

In the method proposed in this paper, it is possible to use not only
SINR but also power efficiency as an objective function. Therefore, in
Section 5, we evaluate the case where power efficiency is also used as
the objective function in addition to SINR.

2.6. Location sensing

In ISAC, the base station transmits signals for sensing and receives
eflected waves from objects in the environment to estimate the loca-
ion of the reflected objects [6,14,15]. In this case, the reflective object
s not limited to a terminal, so it cannot be used alone to identify the
erminal. Therefore, when multiple terminals are present, the location
f all but the target terminal is also given without distinction.

Therefore, as location information, information on the density of
reflective objects at each location is assumed to be obtained. Let 𝜌(𝐴)
be the density of reflective objects in area 𝐴 and 𝜌 be the density of
reflective objects in the whole area. Then 𝜌 is defined as follows:

𝝆 =
(

𝜌(𝐴1),… , 𝜌(𝐴𝐾 )
)

(11)

where 𝐾 is the number of areas and 𝐴𝑖 represents the 𝑖th area.
With ISAC, it is possible to simultaneously acquire location informa-

ion while maintaining the conventional communication rate. Although
t is possible to acquire location information with higher accuracy by
acrificing part of the communication rate, this paper assumes that
ocation information is acquired while maintaining the communication
ate. In addition, it is assumed that the error in location information
hat occurs in this case is absorbed by the granularity of the area.

3. Active inference

In the context of active reasoning based on the free energy princi-
le [11], the policy 𝜋 = (𝑎1,… , 𝑎𝑇 ), representing the chosen sequence

of actions over a period from time 1 to 𝑇 , is determined to minimize
the expected free energy over the entire time horizon. The expected
free energy for the whole period is defined as:

𝐺(𝑜1∶𝑇 , 𝑠1∶𝑇 , 𝜋) = 𝐸𝑄[log𝑄(𝑠1∶𝑇 , 𝜋) (12)
− log𝑃 (𝑜1∶𝑇 , 𝑠1∶𝑇 , 𝜋)]

where 𝑜1∶𝑇 denotes observed values, 𝑠1∶𝑇 denotes states, 𝑄 denotes
he approximate posterior distribution, and 𝑃 denotes the target dis-

tribution. This formulation accounts for the expected free energy ac-
cumulated over the entire period, incorporating all observations and
tates from time 1 to 𝑇 . The specific correspondence with beamforming,
hich is the subject of this paper, is discussed in Section 4.
3 
At each specific time step 𝜏, the expected free energy can also be
calculated independently for that particular point in time. The expected
free energy at a single time step 𝜏 is given by:

𝐺𝜏 (𝜋) = 𝐸𝑄(𝑜𝜏 ,𝑠𝜏 |𝜋)[log𝑄(𝑠𝜏 |𝜋) − log𝑃 (𝑜𝜏 , 𝑠𝜏 |𝜋)] (13)

≥ −𝐸𝑄(𝑜𝜏 |𝜋)[𝐷𝐾 𝐿(𝑄(𝑠𝜏 |𝑜𝜏 , 𝜋) ∥ 𝑄(𝑠𝜏 |𝜋))] (14)
−𝐸𝑄(𝑜𝜏 |𝜋)[log𝑃 (𝑜𝜏 )].

This expression focuses on the expected free energy at a single time
step 𝜏, considering only the observations and states at that specific
point in time. The first term in the above equation is the information
gain of updating the posterior distribution by obtaining a new observed
value 𝑜𝜏 . The second term represents the expected utility based on the
bserved value 𝑜𝜏 . This utility must be specified a priori by the prior
istribution 𝑃 (𝑜𝜏 ). Both the first and second terms are negative, and
he expected free energy decreases as the information gain and utility
ncrease.

In the case of beamforming with multiple base stations, the number
of observations, states, and actions increases with the number of base
stations. In particular, for states and actions, it is not realistic to mini-
mize the expected free energy of the entire system since the distribution
calculation must take into account their combinations. Therefore, it is
desirable for the active inference agents placed at each base station to
determine local actions based on local information. Each base station
𝑏 ∈ 𝐵 determines a local action sequence 𝜋(𝑏) = (𝑎(𝑏)1 ,… , 𝑎(𝑏)𝑇 ) that
minimizes the following local free energy under the local observation
information 𝑜(𝑏)𝜏 and local state 𝑠(𝑏)𝜏 :

𝐺𝜏 (𝜋)(𝑏) = 𝐸𝑄(𝑜(𝑏)𝜏 ,𝑠(𝑏)𝜏 |𝜋(𝑏))[log𝑄(𝑠(𝑏)𝜏 |𝜋(𝑏)) (15)

− log𝑃 (𝑜(𝑏)𝜏 , 𝑠(𝑏)𝜏 |𝜋(𝑏))].

Coordination with other base stations is achieved by the exchange
f local observation information 𝑜(𝑏)𝜏 and prediction/prediction errors.
n FEP, coordination at the same hierarchical level is achieved by
ther agents observing the results of the agents’ actions [16]. On the
ther hand, coordination between the upper and lower hierarchies is
chieved through the exchange of predictions and prediction errors,
here the upper hierarchy predicts the state of the lower hierarchy at

a higher level of abstraction and the lower hierarchy communicates its
prediction errors to the upper hierarchy [17,18].

4. Distributed beamforming with position and CSI feedback

In this section, we propose a method for distributed beamforming
using active inference based on the Free Energy Principle (FEP). The
verview of the proposed method is illustrated in Fig. 1. In the proposed
ethod, lower-layer agents are placed at base stations that directly

transmit beams to UEs, while upper-layer agents handle coordination
among the base stations. The figure depicts a scenario where lower-
layer agents are placed in small cells, and upper-layer agents are
placed in macro cells. Lower-layer agents determine the beams using
feedback from the targeted terminals and sensed density information of
neighboring terminals as observed values. Upper-layer agents facilitate
coordination by setting the expected states for each lower-layer agent
based on the states estimated by the lower-layer agents.

The following subsections provide a detailed explanation of the
ower-layer and upper-layer agents.

4.1. Lower layer agents

Lower layer agents are placed in each cell and determine the beam
using feedback from terminals and sensed density information as ob-
served values. Although the agents in the lower layer are independent
of each other, they receive predictive distributions from the upper layer
and cooperate with each other by realizing control according to their
preference distributions. The detailed steps are outlined in Algorithm
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Fig. 1. Overview of the hierarchical coordination with active inference. Lower-layer
agents are placed in small cells, and upper-layer agents are placed in macro cells.
Lower-layer agents determine the beam using feedback from terminals and sensed
density information as observed values. Upper-layer agents share the expected states
for each lower-layer agent.

1, which shows how lower-layer agents operate in real-time, from
observing SINR and estimating the channel coefficient, to determining
the beam vector and transmit power.

Algorithm 1 Lower Layer Agent Operation at Each Time Step
Input: Feedback from UEs 𝜸𝑏(𝑡), Sensed density information 𝝆,
Predicted distribution from upper layer 𝑃𝐶 (𝑠𝑏(𝑡))
Output: Beam vector 𝒘𝑏(𝑡), Transmit power 𝑃𝑏(𝑡)

1: Estimate system state 𝑠𝑏(𝑡) using Bayesian inference, where the prior
distribution 𝑃𝐶 (𝑠𝑏(𝑡)) is provided by the upper layer

2: Update internal model 𝑃 (𝑠𝑡+1|𝑠𝑡) and 𝑃 (𝑜𝑡|𝑠𝑡) through Bayesian
inference

3: Infer the policy 𝜋 that minimizes the expected free energy 𝐺𝑡(𝜋)
4: Determine action 𝑎𝑏(𝑡) = (𝒘𝑏(𝑡), 𝑃𝑏(𝑡)) with the policy 𝜋
5: Transmit beam with power 𝑃𝑏(𝑡) to UEs

4.1.1. Observation value
The base station 𝑏 is assumed to be able to observe the SINR 𝜸𝑏(𝑡)

to each UE based on feedback from the terminal.
At the same time as communicating data with the terminal, the

base station also transmits a signal for sensing and receives its reflected
wave to obtain the location information of a person in the environment.
However, in consideration of the fact that it does not lead to the
identification of a person, the acquired position of a person shall be
observed as the density 𝜌(𝐴) for each area. Since the error in the
estimated position is absorbed by dividing into areas, the uncertainty in
the position is assumed to be mainly due to person-specific uncertainty.

4.1.2. State
Based on the observed SINR 𝜸𝑏(𝑡) and its own beamforming infor-

mation, the channel coefficient 𝐻𝑢,𝑏(𝑡) is estimated.
Since the area 𝐴 where the targeted terminal is located is unknown,

𝐴 is estimated based on density information and feedback from the
terminal.

Thus, the state of the system corresponds to 𝑠𝑏(𝑡) = (𝐻𝑢,𝑏(𝑡), 𝜸𝑏(𝑡), 𝐴).
The prior distribution of states is given as the predicted distribution

of the states of the lower layers by the upper layers, and the lower
layers control themselves to conform to the assumptions of the upper
layers, thereby realizing cooperation among the lower layers. There-
fore, the prior distribution of the state in the lower layers is given
by:
𝑃𝐶 (𝑠𝑏(𝑡)) = 𝑃 (𝑠𝑏(𝑡)|𝑜𝑏ℎ (𝑡)) (16)

4 
where 𝑏ℎ denotes the macrocell base station.

4.1.3. Behavior
The base station specifies the beam shape by the beam vector 𝒘𝑏(𝑡)

and determines the transmit power 𝑃𝑏(𝑡). Thus, 𝑎𝑏(𝑡) = (𝒘𝑏(𝑡), 𝑃𝑏(𝑡))
corresponds to the action.

4.1.4. Preference distribution
The preference distribution sets the desired state for the control as

a prior distribution over the observed values.
In existing beamforming methods, the objective function is the

power efficiency in Eq. (10) or transmission rate by maximizing SINR
in Eq. (6). When setting such a specific objective function 𝑅𝑏(𝑜𝜏 ), since
utility is measured by the logarithm of the preference distribution, the
following Boltzmann distribution can be used to reflect 𝑅(𝑜𝜏 ) as the
preference:

𝑃𝑅(𝑜𝜏 ) ∝ exp(𝛽 𝑅(𝑜𝜏 )) (17)

where 𝛽 is a parameter that indicates how much the preference is
biased by the size of the objective function. In this paper, simulation
evaluation is performed using SINR or power efficiency as the objective
function.

4.2. Upper layer agents

Upper layer agents are placed in macrocells, and the upper layer de-
termines the CoMP setting (the group of lower layer agents that perform
JT) using the states estimated by the lower layer agents as observed
values. The predicted distribution of the upper layer states is used as a
prior distribution for the lower layer states. Algorithm 2 illustrates the
step-by-step process for upper-layer agents, from observing the states
of lower-layer agents to determining the CoMP group and sending the
predicted distributions back to lower-layer agents.

Algorithm 2 Upper Layer Agent Operation at Each Time Step
Input: States estimated by lower layer agents 𝑃 (𝑠𝑏𝑙 (𝑡)|𝑜𝑏𝑙 (𝑡))
Output: CoMP group 𝐺, Predicted distribution for lower layer
agents 𝑃𝐶 (𝑠𝑏(𝑡))

1: Observe state 𝑃 (𝑠𝑏𝑙 (𝑡)|𝑜𝑏𝑙 (𝑡)) from each lower layer agent 𝑏𝑙
2: Estimate system state 𝑆𝐵(𝑡) using Bayesian inference
3: Update internal model 𝑃 (𝑆𝐵(𝑡+1)|𝑆𝐵(𝑡)) and 𝑃 (𝑜𝑡|𝑆𝐵(𝑡)) through

Bayesian inference
4: Infer the policy 𝜋 that minimizes the expected free energy 𝐺𝑡(𝜋)
5: Select CoMP group 𝐺 with the policy 𝜋
6: Send predicted distribution of states 𝑃𝐶 (𝑠𝑏(𝑡)) to lower layer agents

4.2.1. Observation value
The estimated result 𝑃 (𝑠𝑏𝑙 (𝑡)|𝑜𝑏𝑙 (𝑡)) of the state at the lower layer

base station 𝑏𝑙 is the observed value. Thus, it corresponds to 𝒐𝑏(𝑡) =
𝑃 (𝑠𝑏𝑙 (𝑡)|𝑜𝑏𝑙 (𝑡)).

4.2.2. State
The upper layer controls based on the channel coefficients 𝐻𝑢,𝑏𝑙 (𝑡)

of each lower layer and the area 𝐴 of the terminal being targeted. Thus,
𝑆𝐵(𝑡) = (𝐴, 𝐻𝑢,𝑏𝑙1 (𝑡), 𝐻𝑢,𝑏𝑙2 (𝑡),…).

4.2.3. Action
The upper layer determines the group of lower layer base stations

that will perform JT. That is, we determine 𝑎𝑏(𝑡) = 𝐺, where 𝐺 ⊆ 𝐵(𝑠)

is a subset of the set of small cells.
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4.2.4. Preference distribution
The preference distribution is assumed to be the Boltzmann distribu-

ion with power efficiency and transmission rate as in the lower layer.
owever, the upper layer differs from the lower layer in that it uses

he aggregated power efficiency and transmission rate for the entire
ystem.

4.3. Noise-resilient active inference

The Free Energy Principle estimates the magnitude of the error as
n internal model. When the error is large, the influence of the error
an be suppressed by reducing the weight of the observed values in
he state update. However, for this to work appropriately, the internal
odel must be correctly learned. Nevertheless, it is considered difficult

to estimate errors from the internal model, especially when there is
a discrepancy between the observed values predicted by the internal
model and the actual observed values. This is because it is challeng-
ing to distinguish whether the discrepancy is due to an error in the
observed values or an error in the estimated state.

As a countermeasure, it is possible to distinguish between changes in
the state of the external environment and a decrease in observation ac-
curacy. In this case, since position information and radio wave strength
feedback are used as observed values, it can be considered that if the
prediction error occurs in conjunction with these, it indicates a change
in the state of the external environment. Conversely, if the prediction
error occurs independently, it indicates a decrease in observation accu-
racy. Then, if a decrease in observation accuracy occurs, the influence
of the error can be suppressed by reducing the weight of the observed
values.

Observation accuracy is represented by matrix 𝐴 in the internal
odel. Matrix 𝐴 represents the probability 𝐴(𝑚)

𝑜,𝑠 of obtaining the ob-
served value 𝑜 in state 𝑠 for each modality 𝑚. A state with low obser-
ation accuracy is one in which 𝐴(𝑚)

𝑜,𝑠 varies for each observed value 𝑜
when state 𝑠 is fixed, and in the case of the lowest accuracy, it becomes
a uniform distribution with respect to 𝑜.

Therefore, by approximating 𝐴 to a uniform distribution as follows,
t is possible to reflect the decrease in observation accuracy in the
nternal model:

𝑑𝑜 = 𝐴(𝑚)
𝑜,𝑠 − 1

𝑛
(18)

𝑎𝑜 = 𝐴(𝑚)
𝑜,𝑠 − 𝜙 ⋅ 𝑑𝑜 (19)

′(𝑚)
𝑜,𝑠 =

𝑎𝑜
∑𝑛

𝑗=1 𝑎𝑜
(20)

where, 𝜙 ∈ [0, 1] is a parameter representing the degree of decrease in
observation accuracy, and the larger 𝜙 is, the greater the decrease in
observation accuracy.

5. Evaluation

Simulations are performed to confirm the effectiveness of using
ISAC position estimation in beamforming with longitudinal coordina-
tion by FEP.

5.1. Simulation setting

The simulation environment is designed to match the setting in
12], allowing for a direct comparison of energy efficiency between

the proposed method and the baseline method. For one UE with one
ntenna, two base stations with 𝑁 = 4 antennas transmit radio waves.
o check the effectiveness of the location estimation, we evaluate it

n a situation where the terminal is moving. The terminal moves in
 random walk. The random walk is assumed to follow a Gaussian

distribution with a standard deviation of 1 m per second. The speed
converted to mph is 3.6 km/h, which is almost the same as the walking

Fig. 2 shows the trajectory of a terminal on a random
speed of a person. p

5 
Fig. 2. Trajectory of terminal movement and base station location.

Table 1
Evaluation environment.

Parameters Simulation values

Cell radius 200 m
Noise intensity −114 dBm
Maximum transmit power 38 dBm
Power levels 5 levels
Multipath spread of the transmission angle 3 degrees
Attenuation over distance 120.9 + 37.6 lg(𝑑) dB

walk. The triangles in the diagram indicate the location of the base
station. Other parameters are shown in Table 1. Transmit power 𝑃𝑏(𝑡)
is chosen from 5 levels from 0 to 𝑃max where 𝑃max = 38 dBm.

Depending on the location of the terminal, the channel coefficients
are set as follows:

ℎ𝑖𝑗 =

√

𝛽𝑖,𝑗
𝐿

𝐿
∑

𝑙=1
𝑎†𝑖,𝑗 (𝜃𝑙) (21)

𝑎𝑖,𝑗 (𝜃𝑙) = 1
√

𝑁

(

1, exp(𝑙 𝜋 𝑖 ⋅ 1 cos 𝜃𝑙),… , (22)

exp(𝑙 𝜋 𝑖 ⋅ (𝑁 − 1) cos 𝜃𝑙)
)

where 𝐿 is the number of paths from the base station to the terminal
nd we set 𝐿 = 4. 𝜃𝑙 denotes the transmission angle of path 𝐿 and

follows a uniform distribution of (𝜃𝑙 − 𝜗∕2, 𝜃𝑙 + 𝜗∕2). The mean value
𝜃𝑙 of the sending angle changes as the terminal moves. The 𝛽𝑖,𝑗 rep-
resents the attenuation due to distance, which also changes according
o the movement of the terminal. The noise intensity is assumed to be
−114 dBm.

The beamforming vectors shall be selected from 𝑁 types of pre-
repared codebooks. The 𝑛th beamforming vector is as follows:

𝒘𝑛 =

(

1
√

𝑁
exp

(

2𝜋 𝑖(𝑛 − 1)0
𝑁

)

,… , (23)

1
√

𝑁
exp

(

2𝜋 𝑖(𝑛 − 1)(𝑁 − 1)
𝑁

)

)

.

The base station observes the SINR from the UEs as feedback and
also observes the position of each UE as density information in space.
When the observation results are obtained, the internal model and
tate are updated, and the power and beamforming vector of the next
eam to be transmitted are determined. The initial values of the inter-
al model 𝑃 (𝑜𝜏 |𝑠𝜏 , 𝜋) and 𝑃 (𝑠𝜏 |𝑠𝜏−1, 𝜋) are set to random conditional

robabilities as initial models.
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Fig. 3. Time series of SINR and selected beams with and without location information.
l
u
a
i

5.2. Results with maximizing SINR

To confirm the effect of using sensing by ISAC, we compare the
ehavior with and without location information (density information)
s input to the FEP. First, we use SINR as the objective function.

Fig. 3 shows the simulation results with and without location infor-
mation. (a) and (b) are the SINR time series for each case, and (c) and
(d) represent the beams selected at each time in each case. The unit
time on the 𝑥-axis corresponds to the time step, 𝜏 = 1 s.

From the figure, it can be seen that the period of stable and high
SINR is longer and the beam changes less when location information is
used.

Around time 3000, the UE has moved away from its initial position,
and the SINR is also moving towards a slight decrease. If only feedback
information is used, the UE reacts to this decrease and starts searching
for the beam. On the other hand, when position information is used, the
change of beam is suppressed because it is known that the decrease in
SINR is due to a change in position and should not be responded to
by changing the direction of the beam. Thus, it was observed that the
use of position information stabilizes the beam selection and keeps the
SINR high.

In both cases, a temporarily low SINR is recorded immediately after
he simulation starts, but this is due to the random initialization of the
odel. In practice, the model is iterated after training, so the initial
rop is not an issue.
6 
Fig. 4 shows the average SINR for different input information. The
average SINR was calculated for 100 different movement patterns. In
the figure, DM is the result when the position information is input as
a density map, SINR is the result when SINR is input as feedback, and
SINR+DM is the result when both are input.

The figure shows that by using feedback and location information
together, a higher SINR is achieved than when each is used separately,
indicating that the information is properly integrated.

5.3. Results with maximizing power efficiency

Fig. 5 shows the time variation of power efficiency with and without
ocation information. From the figure, when location information is
sed, the power efficiency reaches 350, which is almost the same
s the highest value of the power efficiency of the method proposed
n Ref. [12]. It takes about 25,000 steps to reach the highest power

efficiency in the [12] method, while the proposed method reaches the
highest value in a short period of time. On the other hand, when
no location information is used, the power efficiency reaches 350
temporarily but does not stabilize and settles near 250. The power
efficiency of 250 is equivalent to the power efficiency of the case where
each base station uses only its own power efficiency as the objective
function in the literature [12], and is not the overall optimum, but the
power efficiency when each cell maximizes its own power efficiency.
When location information is not used, it is considered that due to the
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Fig. 4. Average SINR with different input information.

Fig. 5. Timeseries of the power efficiency.

uncertainty of the channel state, coordination among cells cannot be
chieved and we are stuck with a local solution. As shown above, the

effectiveness of the method is demonstrated by the fact that the overall
ptimal beamforming can be achieved in a short period of time by using
ocation information.

5.4. Results with noise-resilient active inference

To investigate the impact of observation errors on control and
he effectiveness of Noise-Resilient Active Inference, simulations were
onducted. The agent’s observation information consists of two types:
eedback information of channel state and position information, each
onsidering its respective errors.

For the feedback of the channel state, observation information with
rrors is obtained by adding Gaussian noise to the SINR in Eq. (8).

By changing the variance of the Gaussian noise, the degree of error
is varied. For position information, observation values with errors are
obtained by adding errors to the actual positions. Since position infor-
mation pertains to the number of people per area, when errors cause
misclassification across area boundaries, the terminals are considered
to exist in the neighboring area 𝑎′ instead of the actual area 𝑎. By
changing the frequency of misclassifications to neighboring areas, the
degree of error is varied.

Fig. 6 shows the time series of SINR when the standard deviation of
noise is changed during the simulation. At time 2000 in the simulation,
he standard deviation of the noise is changed from 0 to 5, and the

simulation continues with the constant standard deviation thereafter.
The figure shows the time series of SINR when the parameter 𝜙, which
represents the degree of decline in observation accuracy, is varied.
 o

7 
Fig. 6. Time series of SINR with different 𝜙.

Fig. 7. Time series of expected free energy with different 𝜙.

Additionally, Fig. 7 shows the time series of expected free energy,
which represents the prediction error with inner model, and Fig. 8
shows the time series of the selected beams.

From the figures, it can be observed that when 𝜙 = 0, i.e., no cor-
rection for observation accuracy in the internal model, beam switching
starts at time 2000 when noise begins to be added. Initially, beams
that temporarily lower the SINR are selected, but subsequently, slightly
higher SINR beams are chosen. However, after time 3000, different
beams are also selected, resulting in a generally lower average SINR
compared to when corrections are made. The expected free energy
change is also the fastest for 𝜙 = 0, indicating that it is sensitive to
noise.

On the other hand, when observation accuracy corrections are made
or 𝜙 = 0.1 and 0.2, it is observed that the same beams continue
o be selected for a while even when noise is added. This is because

the corrections for observation accuracy suppress the impact of noise.
Subsequently, beam switching occurs around time 3000, which is due
to the user’s movement causing a change in the appropriate beam. The
beams selected are the same as those selected earlier in the case of 𝜙 =
0, but in the case of 𝜙 = 0, additional different beams are selected after
time 3000 due to the influence of noise, resulting in a generally higher
average SINR for 𝜙 = 0.1 and 0.2 compared to 𝜙 = 0. Increasing 𝜙 also
slows down the change in expected free energy, indicating that changes
in the internal model due to overreaction to noise are suppressed.

Thus, it was confirmed that improving the SINR is possible by
uppressing hypersensitive reactions due to noise through corrections
n observation accuracy.

However, in all cases, SINR fluctuations due to continuous switching
f multiple beams are observed. This occurs because the presence of
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Fig. 8. Time series of selected beams with different 𝜙.

noise in the observation values leads to exploration to reduce uncer-
tainty. Since the gain from exploration is included in the objective
function under the free energy principle, in the presence of noise,
the relative gain from exploration increases, leading to frequent beam
 l

8 
Fig. 9. SINR with different numbers of UEs. The box plot displays the distribution
f SINR values for each group, where the central line indicates the median, the box

represents the interquartile range (IQR), and the whiskers extend to the smallest and
largest data points within 1.5 times the IQR from the quartiles. Outliers, shown as
individual points, are defined as values beyond this range.

switching. This intuitively reasonable behavior, where exploration oc-
curs in the presence of noise and a single beam is continuously selected
in its absence, emerges as a result of minimizing free energy.

5.5. Scalability

To evaluate the scalability of the proposed method, we present
imulation results with varying numbers of UEs. Since the positioning

sensing treats the presence of UEs as a density distribution without
distinguishing between individual UEs, increasing the number of UEs
tends to degrade the accuracy of the target UE’s position estimation.
However, the proposed method also utilizes feedback from the target
UE’s received signal strength, allowing it to integrate this feedback
with the density information. As a result, an increase in the number of
UEs does not necessarily lead to a significant degradation in position
estimation accuracy or communication performance.

Fig. 9 shows the box plot of SINR values as the number of UEs
varies. It can be observed that the variation in SINR values across differ-
ent numbers of UEs is comparable to the variation within each group
of UEs. This suggests that the proposed method effectively integrates
CSI feedback with position information, maintaining reliable position
and channel estimation even as the number of UEs increases.

6. Discussion

The effectiveness of utilizing location information in beamforming
has been demonstrated through the proposed approach. In contrast
to conventional position-aided beamforming approaches [19] that rely
on precise position information of a certain target UE, the proposed
method leverages uncertain sensing data combined with CSI feedback.
This innovative integration enables effective beamforming even in
scenarios where the target UE cannot be distinctly identified, such as
ISAC sensing. By integrating location information with CSI feedback,
it becomes possible to achieve stable beamforming. This is particularly
evident in the fact that the proposed method does not rely on directly
measuring the position of the target UE, but instead utilizes the density
distribution of multiple UEs and the integrated CSI feedback to derive
information that can be used for beamforming. This dual approach
enhances the system’s adaptability and performance.

The key distinction between active inference and reinforcement
earning is also notable. In traditional reinforcement learning [12],
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the agent learns behavior through interaction with the environment,
ypically using methods like the 𝜖-greedy algorithm for exploratory
ctions. However, in active inference, the value of exploration itself

is embedded within the calculation of free energy, allowing the agent
to actively explore based on its internal model when necessary. This

ethod is inherently more suited to Integrated Sensing and Communi-
ation (ISAC) systems, as it not only aims to improve communication
erformance but also optimizes the sensing process. This dual optimiza-
ion aligns well with the goals of ISAC, ensuring efficient resource usage
nd performance stability.

Scalability is another important aspect of the proposed method.
When utilizing reflections of radio waves for position estimation, the
position of a specific UE is not directly measured, and as the num-
er of UEs increases, the accuracy of target UE position estimation

can degrade. Nevertheless, the proposed approach has been shown
to maintain communication performance even as the number of UEs
increases. This is due to the ability to effectively integrate CSI feedback
with location information, allowing for accurate position and channel
estimation despite the increased number of UEs. In the present study,
imulations were limited to two base stations, but the scalability of this

approach to larger systems should be explored further. As the number
of base stations increases, the amount of information aggregated by
the upper-level base stations will also increase, potentially requiring
a multi-tier hierarchical structure to handle the additional complexity
efficiently.

In terms of dynamics, this study assumed a relatively slow-moving
nvironment where UEs move at walking speed. The results show that
he proposed method can appropriately adapt to changes in channel
tate under these conditions. However, for faster-moving UEs, where
hannel state changes more rapidly, the method may need to in-
orporate faster information sharing among lower-level base stations
ithout relying solely on upper-level coordination. This could involve

techniques such as low-latency communication between lower-level
gents or decentralized decision-making processes to maintain optimal
eamforming under more dynamic conditions.

The proposed method presents a novel approach to cooperative
eamforming, integrating location sensing and communication in a way
hat balances information acquisition and control. While the results
re promising, future work should focus on real-world experiments to
alidate the method in practical environments. Furthermore, expanding

the scope of ISAC beyond location information to incorporate addi-
ional sensing modalities could further enhance system performance
nd broaden the applicability of the approach.

Additionally, this study assumes fixed base stations, without con-
sidering environments where both the base stations and the UEs are
mobile, such as in mobile base stations or sidelink communication sce-
arios. In cases where both sides are moving, even if their relative posi-
ions remain constant, the radio environment may vary due to dynamic
onditions. In such scenarios, it may be necessary to manage spatial
nformation more dynamically, for instance, through geographic-based
patial information management to account for the changing radio
nvironment.

7. Conclusion

This study proposes a method for balancing information acquisition
nd control in cooperative beamforming among multiple base stations
y considering the trade-off between information acquisition and con-
rol performance. The method is based on the Free Energy Principle
FEP), where FEP agents installed in base stations perform beamform-
ng using feedback from user terminals and sensing information. The
oordination among agents improves the efficiency and stability of
eamforming as a whole by indirectly sharing the agents’ states through
he introduction of a hierarchical structure. Simulation results demon-
trate that by combining channel information from terminal feedback

ith location information sensed by ISAC, more stable beamforming

9 
can be achieved, leading to improvements in average SINR and energy
efficiency. Furthermore, by introducing sensitivity adjustments within
FEP, noise-resilient beamforming can be achieved even when the level
of noise varies due to environmental changes.

Future work includes verifying the effectiveness of this method
hrough experiments in real-world environments. Additionally, expand-
ng the scope of ISAC sensing beyond human movement and location
nformation to integrate a broader range of data could further enhance
eamforming performance.
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