
Title Rapid and efficient dehydration of cellulose
nanofiber hydrogels via electroosmosis

Author(s) Kasuga, Takaaki; Mizui, Ami; Ishioka, Shun et
al.

Citation Sustainable Materials and Technologies. 2025,
43, p. e01215

Version Type VoR

URL https://hdl.handle.net/11094/100387

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Rapid and efficient dehydration of cellulose nanofiber hydrogels 
via electroosmosis

Takaaki Kasuga *, Ami Mizui , Shun Ishioka , Hirotaka Koga , Masaya Nogi
SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan

A R T I C L E  I N F O

Keywords:
Cellulose nanofibers
Nanocellulose
Electroosmosis
Dehydration
Transparent film

A B S T R A C T

Efficient dehydration of cellulose nanofiber (CNF)/water dispersions and hydrogels is still a challenge in the 
industrial use of CNFs. In this study, electroosmosis of CNF hydrogels was evaluated as a dehydration method. 
TEMPO-oxidized CNF hydrogels were rapidly dehydrated by applying DC 20 V, and the CNF concentration 
increased from 0.5 wt% to ~10 wt% within 3 min. The energy efficiency of dehydration was more than 7 times 
greater than that of evaporation, and the resulting concentrated CNF hydrogels were successfully redispersed 
through a simple neutralization process. In addition, the anisotropic shrinkage of CNF hydrogels due to elec-
troosmosis is suitable for CNF film preparation. This work provides new insights into dehydration methods for 
CNF/water dispersions and hydrogels.

1. Introduction

In order to realize a sustainable society, there is a need to use 
biomass in various fields, such as the development of functional mate-
rials [1–5]. In particular, cellulose nanofibers (CNFs) are promising 
biomass-derived nanomaterials with excellent properties, such as light 
weight, high strength, transparency, thermal resistance and sustain-
ability [6–8]. CNFs are expected to be used for various applications, 
including functional films, filters, composites, and dispersion stabilizers 
[9–13]. In particular, CNFs with widths of ~3 nm, such as TEMPO- 
oxidized CNFs, are expected to be fundamental materials for sophisti-
cated functional materials because of their large specific surface area, 
suitability for surface modification, and transparency [6,10,12,13]. 
However, the industrial use of CNFs is still limited to a few areas. One of 
the technical hindrances to industrial use is the dehydration of CNF/ 
water dispersions [14]. CNFs are prepared as dilute water dispersions 
from wood pulps or other resources [6–8]. The concentration of CNF/ 
water dispersions is typically less than 2 wt%, with more than 98 wt% 
water. The use of such dilute dispersions entails enormous storage and 
transportation costs. Moreover, additional energy and time are required 
for dehydration to prepare dried CNF products such as films, filters and 
molds.

Various methods to improve the efficiency of the dehydration pro-
cess have been reported, including filtration, evaporation, osmotic 
concentration and freeze–thaw cycling [9,10,14–18]. High-efficiency 

rapid dehydration of CNF/water dispersions to higher concentrations 
is still difficult because of the high affinity for water and high surface 
area of CNFs. In recent years, electrodeposition has received much 
attention as an effective dehydration method for nanocellulose [19–23]. 
During electrodeposition, hydrogelation of CNFs via electrochemical 
reactions and dehydration via electroosmosis enable highly efficient 
dehydration of dilute CNF/water dispersions. As a disadvantage of 
electrodeposition, increasing the concentration of the CNF/water 
dispersion to higher than 2 wt% takes time [23]. In addition, dehydra-
tion to high concentrations (e.g., ~10 wt%) is difficult. The dehydration 
process must be improved to reduce the dehydration time and increase 
the CNF concentration.

Electroosmotic dehydration is known as an efficient dehydration 
method for particulate dispersions [24–26]. It is an electrokinetic 
approach for dehydration that uses electroosmosis and has been devel-
oped mainly as a dewatering technology for sludge [25]. Electroosmotic 
dehydration is performed by applying a voltage to the dehydration 
target (e.g., sludge), which is a mixture of a solid and a liquid (water). In 
water, adsorbed or dissociated ions form an electric double layer on the 
solid surface. When a voltage is applied in this state, movement of the 
ions in the electric double layer is induced by the electric field between 
the electrodes, and hydrated water molecules move with the moving 
ions, generating a water flow called electroosmotic flow. The solid 
particles are fixed by a filter or another method, and the water is 
extruded from the dehydration target by the electroosmotic flow [25]. 
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The filtration and mechanical compression methods normally used for 
dehydration require a long time to dehydrate sludge-like particle dis-
persions [23–25]. On the other hand, electroosmotic dehydration is 
limited to charged particles, however, it is faster than filtration and 
consumes less energy than thermal dehydration. The surface charge 
density of the solid particles is an important factor for the generation of 
electroosmotic flow. Therefore, TEMPO-oxidized CNFs with a high 
surface charge density are likely suitable for electroosmotic 
dehydration.

Herein, we report a fast and efficient dehydration method for CNF 
hydrogels via electroosmosis to overcome the trade-off between time 
and energy consumption during dehydration and accelerate the indus-
trial use of CNFs. Our method targeted CNF hydrogels instead of CNF/ 
water dispersions and achieved rapid dehydration and simplified 
dehydration equipment. In addition, we propose a dehydration strategy 
that combines electrodeposition and electroosmosis dehydration, which 
can be applied to CNF/water dispersions as starting materials. The 
anisotropic shrinkage caused by electroosmotic dehydration could be 
applied to CNF film preparation. The findings of this study will accel-
erate the industrial use of CNFs.

2. Methods

2.1. Materials

1 M hydrochloric acid solution and 0.1 M sodium hydroxide aqueous 
solution were purchased from Nacalai Tesque, Inc. (Japan). TEMPO- 
oxidized cellulose pulp (carboxylate content: 1.8 mmol/g) was sup-
plied by DKS Co., Ltd.

2.2. Preparation of CNF/water dispersions and CNF hydrogels

The 0.6 wt% TEMPO-oxidized cellulose pulp slurry was homoge-
nized by a high-pressure water-jet system (HJP-25008, Sugino Machine 
Co., Ltd., Japan) equipped with a ball-collision chamber. The slurry was 
passed through a small nozzle (diameter: 0.15 mm) under a pressure of 
200 MPa 5 times. The resulting dispersion was adjusted to a concen-
tration of 0.5 wt% for subsequent use. The 0.5 wt% CNF aqueous dis-
persions along with molds (diameter: 20 mm or 30 mm, thickness: 10 
mm) were immersed in 1 M hydrochloric acid for 3 h. The resulting H- 
type CNF hydrogels were thoroughly washed with distilled water to 
remove excess hydrochloric acid.

2.3. Electroosmotic dehydration

Two 50 × 50 × 0.1 mm platinum electrodes were used for electro-
osmotic dehydration. The CNF hydrogels were sandwiched between the 
upper (anode) and lower (cathode) electrodes, and a load of 1 N (pres-
sure: ~3.2 mN/mm2) was applied to ensure constant contact with the 
electrodes. Voltages ranging from 5 to 20 V were applied by a source 
measurement unit (B2902A, Keysight Technologies, USA). After voltage 
application for 1–5 min, the CNF hydrogels were collected, and the CNF 
concentration was quantified by drying the samples at 110 ◦C.

2.4. Redispersibility test

Hydrogelation and predehydration via electrodeposition were car-
ried out according to the same procedure as previously reported [23]. 
The CNF/water dispersions were adjusted to a concentration of 0.2 wt% 
for electrodeposition. Two 100 × 100 × 5 mm graphite electrodes were 
placed in an acrylic cell (with a distance of 3 cm between the electrodes), 
and the cell was filled with 2 L of a 0.2 wt% CNF/water dispersion. DC 5 
V was applied between the electrodes by a source measurement unit 
(B2902A, Keysight Technologies, USA) for 1 h. The obtained CNF 
hydrogels (~1.2 wt%) were collected and concentrated via electroos-
motic dehydration at DC 20 V for 3 min to obtain highly concentrated 

CNF hydrogels (~13.5 wt%). For neutralization, the CNF hydrogels 
were diluted to 0.5 wt%, and a 0.1 M sodium hydroxide solution was 
added to the redispersed CNF dispersion until the pH of the dispersion 
reached 7. For redispersion, the CNF dispersions were diluted to 0.2 wt% 
by adding distilled water and homogenized at 8000 rpm for 10 min with 
a homogenizing mixer (MARKII Model 2.5, PRIMIX Corp., Japan). The 
transmittances of the CNF/water dispersions were measured with a 
UV–vis–NIR spectrophotometer (UV-3600 Plus, Shimadzu Corp., 
Japan). Fourier transform infrared (FT-IR) spectra and X-ray diffraction 
(XRD) patterns of CNF films prepared by drying the original and redis-
persed CNF/water dispersions were obtained with an FT-IR spectrom-
eter (Frontier TN, PerkinElmer Inc., USA) and a desktop X-ray 
diffractometer (MiniFlex600, Rigaku, Japan) with Cu Kα radiation over 
a scanning angle (2θ) range of 5–45◦ at a 40 kV voltage and a 15 mA 
current.

3. Results

3.1. Electroosmotic dehydration of CNF hydrogels

0.5 wt% Cylindrical CNF hydrogels were sandwiched between plat-
inum electrodes on top and on bottom, and 5–20 V was applied (Fig. 1a). 
In this study, platinum electrodes were used to prevent contamination 
by anodic metal ions and products during electroosmosis [27,28]. When 
20 V was applied, the hydrogel thickness decreased from 10 mm to less 
than 1 mm within 3 min. The CNF concentration of the concentrated 
CNF hydrogels increased to ~10.2 wt% (Fig. 1b-d). This result indicated 
that more than 95 % of the water in the hydrogel was dehydrated within 
3 min, and the CNF concentration increased to 20 times greater than the 
original value. The dehydration was faster under a higher voltage, and 
the CNF concentration increased with a longer voltage application time 
(Fig. 1d). Unlike dehydration via evaporation, in electroosmotic dehy-
dration, the dehydrated water was extruded from the hydrogel as water, 
not water vapor (Supporting Video S1). The water was expelled from the 
interface between the upper cathode and the hydrogel. In electroosmotic 
dehydration, dehydration proceeds via electroosmotic flow [25]. In this 
case, protons (H+) generated by electrolysis of water at the anode 
migrated to the cathode, causing electroosmotic flow inside the CNF 
hydrogel, and water was discharged from the cathode side.

3.2. Comparison of the dehydration energy efficiencies for evaporative 
dehydration and electroosmotic dehydration

Next, the efficiency of CNF hydrogel dehydration via electroosmotic 
dehydration was calculated. The dehydration efficiency was defined as 
the ratio of the amount of dehydrated water [g] to the amount of energy 
consumed [Wh] [23,25]. Dehydration of the 0.5 wt% CNF hydrogel to 
10 wt% by applying 20 V for 3 min was ~7 times more efficient than 
evaporative dehydration (Fig. 2). Electroosmotic dehydration removes 
the water inside the hydrogel as water, rather than water vapor, as in 
vacuum filtration [29] and osmotic dehydration [16]. Therefore, less 
energy is required than in evaporative dehydration. As dehydration 
progresses and the solid concentration of the hydrogel increases, the 
energy consumption tends to increase (Fig. 3). The efficiency of elec-
troosmotic dehydration has been reported to gradually decrease as 
dehydration progresses [26]. The reasons for the decrease in the dehy-
dration efficiency include a decrease in the pH inside the dehydration 
target and ionic conduction inhibition due to the high concentration of 
particles around the anode [25]. There was no significant difference in 
the efficiency with the different applied voltages in this study, and it was 
confirmed that the final CNF concentration tended to determine the 
efficiency (Fig. 3). This result suggests that for dehydration up to 10 wt 
%, the approach of high voltage (e.g., 20 V) application and rapid 
dehydration may be effective.
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3.3. Dehydration and redispersion strategy

In this study, electroosmotic dehydration was applied to H-type 
TEMPO-oxidized CNF hydrogels [30,31]. The hydrogels were prepared 
by immersing Na-type TEMPO-oxidized CNF/water dispersions in hy-
drochloric acid. Under low pH conditions such as hydrochloric acid, the 
counter ions of the carboxy groups on the surface of CNFs are converted 
from Na+ to H+, and CNFs partially aggregate and form a hydrogel [30]. 
However, gelation using hydrochloric acid is not desirable in industry 
because it involves additional washing processes and the discharge of 
waste liquid. On the other hand, electrodeposition-based hydrogelation 
can be used to directly prepare H-type TEMPO-oxidized CNF hydrogels 
from industrially produced Na-type TEMPO-oxidized CNFs without 
additional washing processes [23,32]. Therefore, we evaluated a dehy-
dration strategy that combines electrodeposition and electroosmotic 
dehydration, targeting individually dispersed Na-type TEMPO-oxidized 
CNFs (Fig. 4a). First, electrodeposition was applied to 0.2 wt% CNF/ 
water dispersions [23]. After electrodeposition at DC 5 V for 1 h, H-type 
TEMPO-oxidized CNF hydrogels (~1.2 wt%) were obtained. The 

obtained CNF hydrogels were electroosmotically dehydrated at DC 20 V 
for 3 min to obtain highly concentrated CNF hydrogels (~13.5 wt%). In 
this process, the starting materials, 0.2 wt% CNF/water dispersions, 
were converted into ~13.5 wt% CNF hydrogels. More than 95 wt% of 
the water in the original dispersion was removed with high energy ef-
ficiency. Next, the effects of electroosmotic dehydration on CNFs were 
evaluated. The highly concentrated CNF hydrogels were neutralized by 
NaOH, redispersed and then compared with the original dispersions. 
The appearance of the CNF/water dispersion after dehydration and 
neutralization process was the almost same as before dehydration 
(Fig. 4a). FT-IR measurements revealed no significant change in the 
chemical structure of the CNFs after dehydration (Fig. 4b). In addition, 
no significant change was observed in the crystal structure of the CNFs 
(Fig. 4c). The results suggest that there are no significant inter-crystal 
interactions that have a strong effect on the redispersion of CNFs 
[40–42]. However, the transmittance of the redispersed CNF/water 
dispersion was slightly lower than that of the original dispersion 

Fig. 1. a) Outline of the electroosmotic dehydration system. b) Overhead view 
and c) side view of CNF hydrogel before and after dehydration. d) CNF con-
centration in CNF hydrogels after electroosmotic dehydration realized by 
applying DC 5–20 V for 1–5 min.

Fig. 2. Comparison of the energies consumed by evaporation and electrode-
position for dehydration from 0.5 wt% to ~10 wt%.

Fig. 3. Energy consumption relative to the concentration of CNFs after elec-
troosmotic dehydration.
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(Fig. 4d). These results suggested that small CNF aggregates remained in 
the redispersed CNF/water dispersion [26–28]. When the concentration 
was increased to around 1.6 wt% by electrodeposition, the transparency 
of the dispersion did not change [23], therefore, these small CNF ag-
gregates were formed during electroosmotic dehydration. Such CNF 
aggregates might cause a decrease in the performance of CNF films and 
changes in the viscosity of the dispersion [23,33–35,42]. In the future, it 
is necessary to optimize the electroosmosis conditions and disintegrate 
the aggregates through additional homogenization. These results show 
that CNFs maintain almost the same properties as the original state even 
after electrodeposition and electroosmotic dehydration and that this 
strategy is promising as a rapid high-efficiency dehydration method.

3.4. Application of electroosmotic dehydration to film preparation

In the case of evaporative dehydration, water evaporates from all the 
interfaces between air and the CNF hydrogel. The hydrogel isotropically 
shrinks to a certain extent, and eventually, the dried product takes on a 
complex shape that reflects the orientation of the internal CNFs and 
differences in the drying speed (Fig. 5a) [22,36,37]. In the case of 
electroosmotic dehydration, water is expelled from the interface be-
tween the cathode and the CNF hydrogel because of the electroosmotic 
flow caused by the protons moving from the anode to the cathode 
(Fig. 5b) [25]. As a result, the CNF hydrogels anisotropically shrink, and 
sheet-like CNF hydrogels are obtained. The sheet-like CNF hydrogels are 
highly concentrated, and CNF films can be obtained via a short-term hot- 
pressing process (Fig. 6a). Compared with conventional film preparation 
methods such as dry casting and filtration, this method has advantages 
in terms of energy consumption and drying time. In addition, we suc-
cessfully preparing thick CNF films using thick CNF hydrogels (Fig. 6b). 
When preparing thick CNF films of over 100 μm in size using individ-
ually dispersed CNFs such as TEMPO-oxidized CNFs, special techniques 
such as layering must be used due to problems with the drying time and 
complex drying shrinkage [38,39]. Electroosmotic dehydration enables 
easy preparation of thick CNF films because of its rapid dehydration and 
anisotropic shrinkage.

Fig. 4. a) Storage/transportation/redespersion strategy for CNFs via electrodeposition and electroosmotic dehydration. b) FT-IR spectrum, c) XRD pattern and d) 
transmittance of the original and redispersed CNF water dispersions.

Fig. 5. a) Evaporative and b) electroosmotic dehydration processes of 
CNF hydrogels.
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4. Conclusion

In summary, we evaluated electroosmosis of CNF hydrogels as a 
novel dehydration method. The electroosmotic dehydration of CNF 
hydrogels is fast, and concentrated CNF hydrogels can be redispersed as 
CNF/water dispersions through a simple neutralization process. By 
combining electrodeposition and electroosmotic dehydration, the CNF/ 
water dispersions can be dehydrated with high efficiency. In addition, 
anisotropic shrinkage due to electroosmosis is suitable for preparing 
CNF films. Notably, electroosmotic dehydration is effective for indi-
vidually dispersed CNFs with a high surface charge; however, it might 
have limited effectiveness for CNFs that do not have these characteristics 
(e.g., mechanically fibrillated CNFs). This research has succeeded in 
simplifying the dehydration equipment by using CNF hydrogel as the 
dehydration target. However, in order to use CNF/water dispersion as 
the starting material, it is essential to combine electrodeposition and 
electroosmotic dehydration, therefore, it is essential to develop a novel 
dehydration device that integrates these two processes to enable long- 
term operation in the future. In addition, further research is needed 
regarding the application in CNF film preparation, such as examination 
of the optimal voltage conditions and achievement of continuous film 
preparation. These results provide a new dehydration strategy for 
individually dispersed CNFs, which are particularly difficult to 
dehydrate.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.susmat.2024.e01215.
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