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Quantum chemical calculation 
dataset for representative protein 
folds by the fragment molecular 
orbital method
Daisuke Takaya   1 ✉, Shu Ohno   1, Toma Miyagishi   1, Sota Tanaka1, Koji Okuwaki1, 
Chiduru Watanabe   2, Koichiro Kato   3, Yu-Shi Tian   1 & Kaori Fukuzawa1 ✉

The function of a biomacromolecule is not only determined by its three-dimensional structure but also 
by its electronic state. Quantum chemical calculations are promising non-empirical methods available 
for determining the electronic state of a given structure. In this study, we used the fragment molecular 
orbital (FMO) method, which applies to biopolymers such as proteins, to provide physicochemical 
property values on representative structures in the SCOP2 database of protein families, a subset of 
the Protein Data Bank. Our dataset was constructed by over 5,000 protein structures, including over 
200 million inter-fragment interaction energies (IFIEs) and their energy components obtained by pair 
interaction energy decomposition analysis (PIEDA) using FMO-MP2/6-31 G*. Moreover, three basis 
sets, 6-31 G*, 6-31 G**, and cc-pVDZ, were used for the FMO calculations of each structure, making it 
possible to compare the energies obtained with different basis functions for the same fragment pair. 
The total data size is approximately 6.7 GB. Our dataset will be useful for functional analyses and 
machine learning based on the physicochemical property values of proteins.

Background & Summary
The three-dimensional structures of biological macromolecules such as proteins and nucleic acids are crucial 
for understanding their functions. These structures can be determined experimentally using X-ray crystallog-
raphy, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy. The results of this study make 
more than 200,000 structures available from the Protein Data Bank (PDB) on the websites of the wwPDB group 
members1–3. Recently, AlphaFold24 has made it possible to generate accurate protein model structures even in 
the absence of experimental information. Uniprot5 provides a database of AlphaFold2 model structures, called 
the AlphaFold Protein Structure Database (AlphaFold DB)6. Because new insights obtained from such reliable 
structures are useful, the accumulation of computational data from simulations is expected to become increas-
ingly important.

There are two major computational methodologies for biomacromolecules: molecular dynamics (MD) 
simulations7 for investigating dynamic behavior and quantum mechanical (QM) calculations for the precise 
electronic states. MD simulations are used to study loop flexibility, molecular conformation in solvents, and 
especially the interactions with ligand molecules. Although MD simulations account for the dynamic structural 
changes, they typically employ fixed charges. Biological macromolecules also perform their functions by form-
ing specific atomic networks, including hydrogen bonds, ionic bonds, and nonpolar interactions, all of which 
involve the structure-dependent electronic state. QM is a promising non-empirical method though which the 
electronic state of a given molecular conformation can be determined. In general, the computational cost of 
QM calculations is approximately proportional to the fourth to sixth power of the number of basis functions; 
therefore, QM is mostly applied to small molecules. Several methods have been developed to overcome this lim-
itation. QM/MM techniques such as ONIOM are hybrid approaches that logically partition molecules, enabling 
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quantum chemical calculations in targeted regions and molecular force field calculations in others. Such meth-
ods have also been used to study chemical and enzymatic reactions8.

Currently, the fragment molecular orbital (FMO) method9 is the promising full-QM method applicable to 
biological macromolecules. The FMO method divides biological macromolecules such as proteins and nucleic 
acids into residual fragments and performs quantum chemical calculations (Fig. 1a). The FMO method has been 
implemented in software programs such as GAMESS10–12, and ABINIT-MP13–15 and is still under development.

The data obtained from the FMO method includes the inter-fragment interaction energy (IFIE also called 
pair interaction energy (PIE)), total energy, and atomic charge. IFIE/PIE has the advantage of describing 
residue-by-residue interactions and facilitating the energy interpretation of inter- and intramolecular interac-
tions (Fig. 1b). Pair interaction energy decomposition analysis (PIEDA)16 is a method for analyzing the inter-
action between fragments that decomposes IFIE into electrostatic interaction (ES), exchange repulsion (EX), 
charge transfer with higher-order mixed-term interactions (CT + mix), and dispersion interaction (DI) com-
ponents, and can be used to quantitatively determine which of these components is strongly involved in the 
binding between fragments. For example, hydrogen bonds, which frequently occur in the main and side chain 
interactions of amino acid residues, can be evaluated using in terms of the ES and CT + mix components. The 
DI component is particularly suitable for evaluating nonpolar interactions and contributes strongly to CH/π and 
π–π bonds17–21. Computational simulations for protein-ligand binding based on experimental structures have 
been reported22,23.

The IFIE and PIEDA in the FMO method have the following relationships. The total energy of a molecule can 
be calculated using the following equation9:
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where ′EIJ, EJ
′, and ′EJ are the energies without environmental electrostatic potential between fragments I and J, 

fragment I, and fragment J, respectively, N is the number of fragments in the molecule, ∆D IJ  is the difference 
density matrix, and V IJ is the electrostatic potential of the surrounding fragments. The IFIE is defined using the 
following equation:
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The components of the PIEDA16 can be obtained from the following equation:
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where the IFIE is described by four types of energy terms.

Fig. 1  Summary of the dataset of QM-based energies of protein structures by the FMO method. (a) The 
structure of a protein can be divided into fragments based on amino acid units. (b) IFIE/PIEDA data are 
calculated based on interactions between fragments. (c) The dataset includes protein atomic coordinates and its 
IFIE/PIEDA energy data.
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As a quantum chemistry dataset, QM9 dataset is well known, which contains quantum chemical calculation 
values for molecular structures consisting of nine non-hydrogen atoms24. Our group also provides FMO calcu-
lation data from database, FMODB, containing the electronic states of biological macromolecules25. Currently, 
FMODB includes 37,450 entries constructed by the unique 7,783 PDB entries in 23 Jul 2024. Such datasets are 
used for machine learning applications, and all-electronic data on proteins are already being used for the con-
struction of artificial intelligence platforms and other purposes26. The data registered in the FMODB depend on 
the interests of researchers. For example, there are many calculations for the Protein Kinase family (e.g., CDK2, 
p38 MAP, and Aurora), the nuclear receptor family (e.g., ERα and ERβ), the related proteins of SARS-CoV-227, 
and apoproteins of X-ray crystal structure data25,28. The authors aim to make the FMO calculation results avail-
able for all structures deposited in the PDB for a wide range of applications of the FMO method. As of Sep 2024, 
there were more than 220,000 entries in the PDB; however, analyzing all entries is only possible if sufficient 
computing resources, such as supercomputers, could be used without restrictions. Because the convergency of 
FMO calculations depend on the atomic coordinate of proteins and can be unpredictable for individual proteins 
owing to variations in amino acid sequences, and crystallization conditions such as resolution, it is advisable to 
gather data on the convergence rate and distribution of FMO-based energies for representative structures before 
performing FMO calculations for all proteins in the PDB.

SCOP2, which is a database of protein folds, was selected as the dataset in this study to provide FMO calcu-
lation data for a wide range of proteins29,30. SCOP2 is a hierarchical classification of protein folds based on their 
structural and evolutionary relationships. It was derived from a subset of experimentally determined protein 
structures deposited in the PDB. The database is updated periodically to incorporate new families and struc-
tures. As of June 29, 2022, SCOP2 comprised 5,936 families. In this study, we present a comprehensive FMO 
computational dataset that encompasses all the experimentally characterized protein folds. This dataset, derived 
from protein structures associated with SCOP2 families, serves as a valuable resource for assessing the current 
capabilities of FMO methods, and enables researchers to readily access quantum chemistry data for folds of 
interest.

In the FMO method, as in any QM calculation, the judicious choice of calculation methods and basis sets 
is paramount for obtaining reliable and accurate results. The Hartree–Fock (HF) method is a fundamental ab 
initio quantum chemical method that utilizes the Hamiltonian operator and Slater determinant to approxi-
mate the ground state wave function of a molecular system. Although the STO-3G minimal basis set offers 
computational cost advantages, it requires at least double-zeta basis and the polarization functions in order 
to describe various interaction in biomolecules. In the context of FMO calculations, the MP2/6-31 G* level of 
theory (FMO-MP2/6-31 G*) is preferred because of the balance between accuracy and computational cost. 
This is because, in contrast to the HF method, the MP2 method (second order Møller–Plesset perturbation 
theory)31–33 can account for electron correlation, and the 6-31 G* basis set incorporates polarization functions 
for non-hydrogen atom polarization. The FMO-MP2/6-31 G* is frequently application in the study of relatively 
medium-sized organic compounds and the analysis of intermolecular interactions, including hydrogen bond-
ing, CH/π34, and π–π interactions, between small molecules and proteins35,36. In addition, all of the data pub-
lished in the FMODB uses this level of theory25. The validation of energy values derived from the FMO method, 
employing various combinations of calculation methods and basis sets, has been confined to a limited number 
of systems37. However, the recent development of supercomputers has enabled the use of higher levels of theory.

Basis functions are mathematical representations that approximate the spatial distribution of electrons 
within atomic orbitals. The characteristics of the basis sets used in this study are listed in Table 1. These functions 
are employed to express the molecular orbitals as linear combinations of atomic orbitals. In this study, we aug-
mented the 6-31 G basis set by incorporating polarization functions for non-hydrogen atoms only and hydrogen 
atoms, denoted as 6-31 G* and 6-31 G**, respectively, thereby enhancing the accuracy of the electronic structure 
calculations. In addition, we used the correlation-consistent polarized valence double-zeta (cc-pVDZ) basis 
set, which was specifically designed to account for electron correlation effects. Consequently, our dataset now 
encompasses the FMO-MP2/6-31 G*, FM0-MP2/6-31 G**, and FMO-MP2/cc-pVDZ levels of theory. While 
MP2/6-31 G* only includes polarization functions (i.e., additional p-orbital functions) for non-hydrogen atoms, 
both MP2/cc-pVDZ and MP2/6-31 G** include them for hydrogen atoms. The cc-pVDZ basis set is distin-
guished by its utilization of Dunning-type functions and its design as a correlation-consistent basis set38. Since 
the formation of CH/π and π-π interactions through dispersion forces related to electronic correlations as well 
as hydrogen bonds contribute to protein folding, the use of either 6-31 G** or cc-pVDZ is considered necessary 
to properly evaluate the polarization of hydrogen atoms.

In summary, there is currently no quantum chemical dataset encompassing over 5000 protein structures 
classified into diverse families computed using multiple quantum chemical levels of theory. This dataset is not 
only instrumental for protein function and interaction analysis but is also anticipated to serve as training data 

Basis set Function type

Polarization

Non-hydrogen atoms Hydrogen atoms Correlation consistent

6-31 G* Pople ✓

6-31 G** Pople ✓ ✓

cc-pVDZ Dunning ✓ ✓ ✓

Table 1.  Properties of the basis sets used in this study.
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for the development of machine learning models for protein charge prediction. Notably, providing energy values 
calculated using three distinct basis sets for the same fragment pairs facilitate the analysis of the effects of hydro-
gen atom polarization and electron correlation on intermolecular interactions.

Methods
A flowchart of this study is shown in Fig. 2. First, data for the target proteins were obtained from SCOP2, and 
model structures for FMO calculations were created from these protein structures. Finally, the data from FMO 
calculations were analyzed.

Preparation of dataset.  The latest structure list (29 June 2022) was retrieved from the SCOP2 website. The 
list contains 36,900 structure information items such as the classification of SCOP and the corresponding PDB 
ID. Each family may contain multiple PDB IDs. In such cases, the first PDB ID from the list was selected, resulting 
in 5,936 PDB IDs. In addition, multiple domains were assigned to a family using a single combination of PDB and 
chain IDs. For example, in the case of “1aaa A:1–100… 1aaa A:101–200”, two different families were selected from 
one PDB ID and its chain combination. In such cases, FMO calculations were performed on all residues within 
the chain ID to prevent exposure of the hydrophobic core of the protein and to ensure the accurate calculation 
of the total energy for each chain. Consequently, the number of unique PDB ID and chain ID combinations was 
reduced to 5,351, which were subjected to FMO calculations.

Preprocessing of the protein structures.  The structures employed as input files for the FMO calculations 
must be chemically valid. Given that X-ray crystal structures typically lack hydrogen atoms and that some resi-
dues may have missing atoms, it is imperative to construct model structures suitable for FMO calculations while 
preserving as much experimental information as possible. Automation is essential to facilitate high-throughput 
calculations. The methodology employed in this study was developed with reference to the procedures utilized in 
the construction of the FMODB39. To facilitate FMO calculations and subsequent analyses, all non-natural amino 
acids were converted to their corresponding natural amino acid counterparts using the functionalities provided 
by MOE (Molecular Operating Environment)40. For residues for which the initial conversion was unsuccessful, a 
correspondence table provided by the PDB was used to guide the transformation. In cases where atoms or entire 
residues were missing, a homology model with 100% sequence identity and complete atomic information was 
generated using the homology modeling function implemented in MOE. The missing parts were then trans-
planted into the experimental structure by superposition based on the coordinates of the surrounding residues. 
Energy minimization calculations were conducted on all model structures, irrespective of whether transplanta-
tion was necessary, using the Amber10:EHT force field implemented in MOE with constraints applied to the ini-
tial positions. Hydrogen atoms were generated using the Protonate3D module. Residues containing transplanted 
atoms were subjected to positional restraints with a tether value of 1.0, whereas all other non-hydrogen atoms 
were restrained with a tether value of 0.5 using the MOE parameters, where smaller tether values correspond 
to stronger constraints on the initial positions. Hydrogen atoms were not constrained because they were added 
during model construction and were not present in the experimental structures. In this study, metal ions, water 
molecules, and ligand molecules were excluded from the model structures because the primary objective was to 
provide FMO calculation data for fundamental protein folds.

Despite these procedures, some structures remain difficult to model. Manual model building was attempted 
to maximize the amount of FMO calculation data. Initially, we attempted to build structures by utilizing the 
Structure Preparation module of MOE. When this was unsuccessful, model structures were obtained from 
AlphaFold DB6 or ColabFold41. Finally, 5,332 structures, representing 99.6% of the total, were successfully mod-
eled and subjected to FMO calculations. The remaining 19 structures were listed in Table 2.

Fig. 2  Flowchart of this study.

PDB ID and chain ID

1di1_A, 1jmu_A-B, 1uc9_A, 2ex3_J, 2g6t_A, 2gnx_A, 2im9_A, 
2pva_A, 3a1j_A, 3dh4_C, 3if8_A-B, 3j8c_E, 3opb_A, 4bq6_C-D, 
4dgw_C, 4uy4_A, 4yg8_A, 5byh_M, 5d6s_E

Table 2.  List of PDB IDs for which FMO calculation structures could not be obtained due to modeling errors.
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FMO calculations and data analysis.  The FMO calculations were performed using SQUID 
(Supercomputer for Quest to Unsolved Interdisciplinary Data Science, http://www.hpc.cmc.osaka-u.ac.jp/en/
squid/), a supercomputer consisting of a group of CPU nodes, a group of GPU nodes, and a group of vector 
nodes, developed and operated by Osaka University. In this study, only the CPU-node group was used. The 
configuration is as follows. The CPU node group has 1,520 nodes, each of which has two processors (Intel Xeon 
Platinum 8368 (Icelake)) with a clock speed of 2.40 GHz and 38 cores (76 cores in total per node). The main 
memory capacity is 256 GB. A Mellanox InfiniBand HDR (200 Gbps) is used for inter-node connectivity. The the-
oretical computing performance of the SQUID’s CPU nodes was 8.871 PFLOPS. A Python script was developed 
to extract IFIE and PIEDA data from the log files generated by the FMO calculations. The extracted data were 
subsequently converted into tabular format and visualized using the Matplotlib library to illustrate trends in the 
energy distributions. All FMO calculations were performed using our own customized version of ABINIT-MP 
version 1.23. The convergence rates of the FMO calculations are summarized in Table 3. IFIE and PIEDA val-
ues were successfully obtained for 99% or more of the calculated structures. Only fragment pairs without the 
dimer-ES approximation42,43 were analyzed for the distribution of IFIE and PIEDA.

Data Records
This dataset named FMO-SCOP-29Jun202244 provides protein structural data and the corresponding results 
of the FMO calculations (Fig. 1c). The input structures for the FMO calculations are provided in PDB format. 
These structures are modified models that include added hydrogen atoms and complementary residues to ensure 
convergence of the FMO calculations. The FMO calculations using the MP2/6-31 G*, MP2/6-31 G**, and MP2/
cc-pVDZ results included IFIE and PIEDA, which were calculated per fragment based on amino acid residues. 
As is well established among researchers utilizing the FMO method, it is crucial to note that the default frag-
mentation was performed at sp3 bonds rather than at typical peptide bonds in the main chain. The data are pro-
vided in a simple tabular format in plain text files. Each row of the dataset comprises the PDB ID, residue name, 
residue number, inter-fragment distance, and IFIE and PIEDA values. The three TSV files corresponding to 
the FMO-MP2/6-31 G*, FMO-MP2/6-31 G**, and FMO-MP2/cc-pVDZ levels of theory contain 228,158,975, 
222,506,834, and 221,978,084 IFIE records, respectively. The number of fragment pairs for which the dimer-ES 
approximation was not applied (i.e., rows where the value in the “approx” column is “F”) and thus PIEDA 
energies are available, is 7,856,291, 7,814,304, and 7,804,181 for FMO-MP2/6-31 G*, FMO-MP2/6-31 G**, and 
FMO-MP2/cc-pVDZ, respectively. The data for the mulliken charge was also added for each calculation condi-
tion. The total size of the dataset is approximately 6.7 GB after compression, and made available under a Creative 
Commons Attribution (CC-BY) license from figshare44.

Technical Validation
Strategy of technical validation.  The dataset used in this study was generated by performing FMO 
calculations on model structures using three levels of theory: FMO-MP2/6-31 G*, FMO-MP2/6-31 G**, and 
FMO-MP2/cc-pVDZ. Next, we compared the distribution of the inter-fragment energies calculated by each 
method with the characteristics of the interactions that the combination can consider to verify that IFIE or 
PIEDA are expressed as the intended values for the basis sets.

Validation of distribution of IFIE and PIEDA.  Takaya et al. analyzed the distribution of IFIE values for 
each distance in the FMODB registration structure and reported that it showed a distribution similar to a Morse 
potential25. In this study, we conducted a similar analysis, and although the datasets were different, they showed 
the same trend. In addition, in FMO calculations targeting proteins, the formal charges of fragments derived 
from amino acid residues can assume values other than zero. This means that the scale of the IFIE value can differ 
significantly even for the same amino acid residue. Therefore, the data was divided into charge combinations for 
each fragment pair, where the inter-fragment distance was defined as the shortest interatomic distance between 
two fragments, including hydrogen atoms. The distributions of pairs consisting of two neutral fragments and two 
attractive charged fragments (i.e., the combination of formal charges is 1 or more and −1 or less in a fragment 
pair) are shown in Fig. 3a and b, respectively. In a previous study25, the interactions of neutral fragment pairs 
and ion pairs were analyzed using hydrogen bond interaction data. For the FMO-MP2/6-31 G* dataset, both 

Calculation condition # of FMO data Total Convergence rate (%) PDB IDs for which FMO calculation failed

FMO-MP2/6-31 G* 5313 5332 99.6
1h71_P,1k8w_A,1ml9_A,1nlt_A,1ppj_F, 
1tex_A,1xm7_A,1z0s_A,1z8g_A,2b9d_A, 
2h3o_A,2xdj_F,3hna_A,3mtv_A,3x2r_B, 
4kh9_A,4o3m_A,5fig_C,5lye_A

FMO-MP2/6-31 G** 5311 5332 99.6
1h71_P,1k8w_A,1ml9_A,1nlt_A,1tex_A, 
1xm7_A,1z0s_A,1z8g_A,2b9d_A,2h3o_A, 
2vz8_A,2xdj_F,3mtv_A,3x2r_B,4egc_A, 
4kh9_A,4o3m_A,4o9x_A,5amr_A,5fig_C,5lye_A

FMO-MP2/cc-pVDZ 5307 5332 99.5

1h71_P,1k8w_A,1ml9_A,1nlt_A,1s7e_A,1tex_A, 
1xm7_A,1z0s_A,1z8g_A,2b9d_A,2h3o_A, 
2o3o_B,2vz8_A,2xdj_F,3m63_A,3mtv_A, 
3x2r_B,4egc_A,4kh9_A,4lp7_C,4o3m_A, 
4o9x_A,5amr_A,5fig_C, 5lye_A

Table 3.  Convergence rates of FMO-MP2/6-31 G*, FMO-MP2/6-31 G**, and FMO-MP2/cc-pVDZ.
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distributions were generally consistent with those previously reported despite differences in the distance defini-
tion and protein dataset. Other charge combinations of the fragment pairs are summarized in Fig. 3c–f.

This dataset also provides fragment-based IFIE and PIEDA values. We verified that the calculated ener-
gies exhibited the expected characteristics of the MP2 method. In QM calculations, the choice of method 
and basis set determines the range of electron behaviors that is considered. The MP2 method accounts for 
electron-electron interactions in multi-electron systems, enabling an accurate evaluation of CH/π and π–π 
interactions based on dispersion forces. Given the presence of π electrons in double bonds and aromatic rings, 
the MP2 method is particularly suitable for proteins containing aromatic amino acids such as Tyr, Trp, and Phe. 
The 6-31 G* basis set includes polarization functions for non-hydrogen atoms but not for hydrogen atoms. No 
exhaustive analyses have been conducted on the differences between different levels of theory. Therefore, we 
compared the FMO-MP2/6-31 G*, FMO-MP2/6-31 G**, and FMO-MP2/cc-pVDZ PIEDA components, which 
were calculated for fragments with the same coordinates. Heatmaps of the median ES, EX, CT+mix, and DI val-
ues calculated for all possible pairs of 20 amino acid residues using the FMO calculation conditions are shown 
in Fig. 4. The maximum and minimum ratios of the median value of each PIEDA component for each basis set 
combination, as well as the associated amino acid pairs, are summarized in Table 4. In this analysis, pairs of Cys 
fragments that form disulfide bonds are excluded.

The median ES, EX, CT+mix, and DI energies for the FMO-MP2/6-31 G* and FMO-MP2/6-31 G** datasets 
are almost identical, with a maximum ratio of approximately 1.14 for EX and a minimum ratio of approximately 
0.84 for ES. Although the 6-31 G** basis set has a larger number of atomic orbitals owing to the inclusion of 
polarization functions for hydrogen atoms, which could lead to changes in accounting for dispersion forces, 
only 1.37% of the fragment pairs had an absolute IFIE difference of 1 kcal/mol or more. When IFIE is used as 
a criterion for selecting important interactions, such as an absolute IFIE difference of 3 kcal/mol or more45, the 
IFIE difference due to the basis set may affect the detection of such important interactions. It is worth noting that 
all of the hydrogen atoms in the model structures were generated by modeling and optimized using molecular 
mechanics (Amber10:EHT, implemented in MOE). If FMO-MP2/6-31 G** is used to accurately evaluate the 
contribution of hydrogen atoms, it may be necessary to optimize the hydrogen atom positions using calculation 
conditions equivalent to those of MP2/6-31 G**.

Fig. 3  IFIE and EX energy component (from PIEDA) values calculated with FMO-MP2/6-31 G* for each inter-
fragment distance bin, with an EX energy threshold of 30 or less. The upper distributions indicate the number 
of fragment pairs within each distance range. (a) neutral fragment pairs and (b) attractive charged fragment 
pairs. (c) Fragment pairs with one positively charged fragment and another neutral. (d) Fragment pairs with one 
negatively charged fragment and another neutral. (e) Positively and (f) negatively charged fragment pairs.
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For the analysis of amino acid interactions in proteins, it is reasonable to select FMO-MP2/6-31 G*, which 
is already the convention. Although the FMO-MP2/6-31 G* calculations were faster than FMO-MP2/6-31 G** 
calculations (at most 2.0 times, as shown in Fig. 5), the difference in computational time may not be a significant 
factor in the application of a few target proteins, making the use of both methods a viable option.

Compared to FMO-MP2/6-31 G*, FMO-MP2/cc-pVDZ exhibited larger differences than 6-31 G**. 
Although the median ES and EX energies were comparable for the FMO-MP2/6-31 G* and FMO-MP2/
cc-pVDZ datasets, the median CT+mix and DI energies were more stable in the FMO-MP2/cc-pVDZ dataset 
(up to approximately 2.6 times and at least approximately 1.62 times, respectively). This is also evident from the 
shading of the CT+mix and DI heatmaps (Fig. 4g–l), where the FMO-MP2/cc-pVDZ dataset is clearly darker 
than the other two datasets. As shown in Table 1, the main differences between the cc-pVDZ and 6–31 G* 

Fig. 4  Heatmaps of the median ES, EX, CT + mix, and DI values calculated for all possible pairs of 20 amino 
acid residues using the following FMO calculation conditions: FMO-MP2/6-31 G*, FMO-MP2/6-31 G**, and 
FMO-MP2/cc-pVDZ. Subfigures (a–c), (d–f), (g–i), and (j–l) show ES, EX, CT + mix, and DI, respectively.
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basis sets are their polarization functions and correlation consistency. Furthermore, 34.3% of the fragment pairs 
had an absolute IFIE difference of 1 kcal/mol or more. The cc-pVDZ basis set incorporates polarization func-
tions for hydrogen atoms and correlation consistency compared to the 6-31 G* basis set, which significantly 
improved the quality of the wave function. Although the energy values obtained with FMO-MP2/cc-pVDZ were 
more stable than those obtained with FMO-MP2/6-31 G*, further research is needed to correlate these results 
with experimental data, such as protein–protein and antibody–antigen binding affinities, to determine whether 
FMO-MP2/cc-pVDZ is more suitable for explaining biological phenomena or should be used in conjunction 
with FMO-MP2/6-31 G*.

Code availability
ABINIT-MP version 1.23 is available in binary format by following the instructions at https://www.cenav.
org/abinit-mp-open_ver-1-rev-22/. MOE 2022.02 is a molecular modeling software package developed and 
distributed by the Chemical Computing Group (CCG; https://www.chemcomp.com).
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