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ABSTRACT This paper proposes a novel method using image-recognition techniques to develop three-
dimensional (3D) models of basil plants. Traditional approaches have dificulty scanning outdoor plants and
stems overlapping outer leaves. In this paper, we collect 3D plant models in advance that reproduce the
external and internal structures. Then, by selecting from the database the 3Dmodel most similar to the actual
plant in appearance, the proposed method develops 3D plant models using only images. However, collecting
precise 3D models is a cost-intensive task. Based on the growth pattern that basil plants exhibit alternating
leaves during growth, the proposed method automatically mass-produces realistic 3D plant models by
assembling 3D leaf and stem models of actual plants. Additionally, we employ an image-recognition
technique to extract embedding vectors from multi-angle images and assess the visual similarity between
the actual plant and the realistic 3D plant model based on their cosine similarity. Finally, we construct a
vector-search system incorporating k-means clustering and dimensionality reduction to limit the search scope
and minimize computational complexity. Experimental results show that the proposed method efficiently
obtains the most similar 3D model in the database, achieving a mean reciprocal rank of 0.90 and a search
time of 0.003 s per query.

INDEX TERMS Computer vision, image recognition, plant, three-dimensional model, vector search.

I. INTRODUCTION
Three-dimensional (3D) models, digital data structures that
represent actual objects in 3D space, have been utilized
in various fields. In the healthcare sector [1], [2], 3D
organ models have enabled early diagnosis and reduced
surgical times. Geographic information systems have inte-
grated 3D models of buildings and land for comprehen-
sive spatial analyses in urban planning and environmental
management [3], [4]. Compared with 2D images, 3D plant
models of plants are more critical for elucidating plant
phenotypes such as volume, shape, and posture [5], [6].
Additionally, replicas of actual plants offer a new direction for
agricultural technology, enabling remote cultivation through
digital twins [7], [8]. This paper aimed to develop 3D
plant models that resemble actual plants to integrate the
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real and digital worlds seamlessly. However, developing
accurate and realistic 3D plant models remains a significant
challenge because their complex structures and diversity
make it difficult to reproduce them fully. Data scarcity is also
particularly pronounced for rare species and plants with long
cultivation periods. These issues pose a significant barrier
to plant phenotype research, remote agriculture, and the
realization of digital twins. Therefore, there is a demand
for developing more efficient and versatile methods for
developing 3D plant models.

There are two main 3D scanning methods for acquiring 3D
plant models: active and passive [9], [10]. Active methods
involve measuring the reflections of light or lasers emitted
by a transmitter to determine their distance from objects.
Conversely, passive methods use the triangulation principle
to obtain distance information based on the correspondence
between multiple images. Although they can obtain high-
precision 3D models, these methods require specialized
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equipment and scanning spaces, making them impractical
for developing 3D models of outdoor plants. While the
outer surface can be accurately reproduced, reproducing
internal structures is also challenging due to overlapping
outer leaves.

The development of alternatives to traditional active
and passive 3D scanning technologies has gained momen-
tum in recent years. Computer-aided design (CAD)-based
methods [11] enable the creation of high-precision 3D
plant models but require significant time, expertise, and
the involvement of skilled professionals, making them less
practical for large-scale applications. Deep learning has
emerged as a promising tool for 3D model development,
leveraging large-scale datasets to create models from textual
descriptions [12], [13], a limited number of images [14], [15],
or even a single image [16], [17]. However, these approaches
heavily depend on the availability of specialized and expan-
sive datasets. Distinct and varied morphologies further com-
plicate this process, necessitating dedicated plant-specific
datasets for practical model training. The development of
high-precision 3D plant models still needs to be solved,
particularly in the face of ecological diversity and limited
datasets.

This paper introduces a novel approach to developing 3D
plant models byutilizing visual similarity between actual
plants and pre-constructed database models rather than striv-
ing for replication as in traditional methods. The proposed
method effectively addresses challenges such as the occlusion
of internal structures and the high cost associated with data
acquisition through a component-based assembly process and
a vector-search system leveraging image recognition models.
Unlike photogrammetry [18], [19], [20], [21], which relies
on numerous overlapping images from multiple viewpoints
to reconstruct 3Dmodels, our approach simplifies the process
by utilizing only eight side-view images to approximate the
plant structure. By prioritizing efficiency, scalability, and
suitability for outdoor environments, the proposed method
is well-suited for practical applications such as integration
into remote cultivation systems for large-scale agriculture.
Additionally, the proposed method thoughtfully balances
computational efficiency and model quality for the use of the
actual apprication. The key contributions of our method can
be summarized as follows:

• We introduced an image recognition-based 3D plant
model development method that eliminates the need for
specialized equipment or complex scanning procedures.
This approach overcomes the limitations of traditional
active and passive scanning methods, enabling practical
and efficient applications in outdoor environments.

• We developed a dataset comprising 4,096 realistic 3D
plant models using 3D leaf and stem models of 16 sweet
basil plants, followed by distinct alternating leaf growth
patterns. If some components, such as leaves and stems,
are scanned, this approach can seamlessly reproduce the
actual plant structure in a 3D plant model. It facilitates
the rapid expansion of datasets, even for rare plants

with limited data, effectively addressing data scarcity in
training generative models.

• We implemented a vector-search system to optimize
the efficiency of navigating candidate 3D plant models
while minimizing computational overhead. The system
significantly enhances computational performance by
integrating dimensionality reduction through singular
value decomposition (SVD) and search scope narrowing
via k-means clustering. This innovation facilitates the
rapid development of 3D plant models across various
applications, including digital twinning for large-scale
agricultural farms.

The remainder of this paper is organized as follows.
Section II introduces related works for 3D scanning tech-
niques. Section III presents the cultivation environments and
proposes a vector-search system using an image-recognition
technique. Section IV discusses the experimental results, and
Section V concludes the study.

A. 3D PLANT MODEL DEVELOPMENT
II. RELATED WORKS
Light-scanning approaches involve projecting structured light
onto an object to capture surface and distance information
by analyzing the time, angle, and distortion of reflected
light [22], [23]. Although compact scanning devices can
produce high-resolution 3D plant models, they require a
controlled scanning environment conducive to stable light
reflections, such as a dark room, which renders them
impractical for scanning outdoor plants. Moreover, manually
adjusting the light source position based on the object size
increases the time required to generate 3D plant models.

Terrestrial laser scanning involves projecting laser light
onto objects to acquire 3D information from the reflected
light, making it suitable for outdoor environments. Light
detection and ranging (LiDAR) is a prominent terrestrial
laser-scanning technology that can scan objects over a wide
area in real-time and has enabled non-destructive pheno-
type measurements of multiple vegetables [24], [25] and
trees [26], [27]. However, it requires specialized equipment
with high scalability costs, and the resolution of 3D models
for small plants is limited. Additionally, the 3D models are
represented by point clouds and do not include additional
information such as color and texture.

The RGB-D camera method simultaneously captures color
and depth information of objects through color and distance
sensors [28], [29]. This information is integrated to generate
3D plant models by iteratively updating the correspondences
between point clouds to minimize inter-point distances.
However, it cannot acquire accurate depth information based
on the reflectivity or transparency of the object surface,
resulting in imprecise 3D plant models. Therefore, additional
image processing is necessary to enhance the depth accuracy
and mitigate model deficiencies.

Photogrammetry reconstructs 3D plant models by
analyzing the geometric properties and visual features
from multiple images captured from different angles.
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FIGURE 1. Development process of the proposed 3D plant modeling methodology.

The structure-from-motion technique calculates the camera
position and orientation based on the correspondence
between image characteristics [18], [19]. Multiview stereo
techniques employ stereo matching across multiple view-
points to compute the depth and surface normals, which
are fused to generate a dense 3D point cloud [20], [21].
They enable the accurate reconstruction of minute plant
components, provided that precise camera positions are
available. However, occlusions pose challenges to capturing
internal structures such as plant stems. Additionally, success-
ful photogrammetric reconstructions require capturing many
overlapping images under uniform lighting conditions.

Based on the limitations identified in traditional 3D
scanning techniques, it is impractical to develop 3D plant
models accurately. Therefore, this paper aims to select
visually similar models from a database as substitutes rather
than replicating them accurately. The proposed approach
compares the appearance of 3D plant models with actual
plants using a few images, which offers the advantage of
generating 3D models of outdoor plants without specialized
equipment. However, collecting many precise 3D plant
models in advance is necessary. Our strategy consists of
assembling prescanned individual components of actual
plants to mass-produce realistic 3D plant models artificially.
Although this paper focused on small plants, the proposed
method can be applied to plants of any size and shows
promise for broader applications under appropriate image-
capture environments. Further details of the proposed method
and the experimental design are presented in subsequent
sections.

III. MATERIALS AND METHODS
Figure 1 depicts the development process of the proposed
3D plant modeling methodology. The process starts with
segmenting an actual plant into discrete components, such
as leaves and stems, which are then scanned to create
detailed 3D models of each part. A realistic 3D plant
model can be assembled by aligning and connecting these
individual models. The final stage involves selecting the 3D
plant model from the database that resembles the actual

plant’s appearance. First, by rotating around their stems, this
approach captures the 3D plant model and the actual plant
from the sides. It extracts embedding vectors from these
images using an image recognition model and then calculates
their cosine similarity to quantify the visual similarity.

A. CULTIVATION ENVIRONMENTS
This paper employed sweet basil plants to develop 3D
plant models owing to their simple structure wherein
the leaves grow in an alternating pattern. We cultivated
26 plants using a hydroponic cultivation kit (GS1 Max;
JustSmart) in two batches. The first batch included six
plants cultivated from September 23 to October 23, 2023,
followed by the second batch including 20 plants from
October 23 to November 22, 2023. The hydroponic cul-
tivation kit was installed with LED lights at a height
of 0.22m. The air-temperature of the controlled indoor
environment was maintained at 20–23 ◦C. The fertilizer
temperature was 20–22 ◦C, with an electrical conductivity of
1.1–1.4 mS cm−1. Artificial lighting was provided for
16 h per day at a photosynthetic photon flux density of
250–300 µmolm−2 s−1. After a two-day germination period
in the dark, liquid fertilizer was introduced on the seventh
day. The plants with eight leaves were scanned on the final
day using the structured light-scanning technique.

We employed a 3D scanner (VL-500; Keyence), which is
ideal for creating precise 3D models of small and delicate
objects. The 3D scanner is notable for its accuracy of
up to 2 µm, substantial scanning area of 500 × 500 ×

500 mm, and the capability to process data rapidly at a
rate of 100,000 points/s. However, direct scanning of the
plants failed to capture the internal structures, such as
stems, because the leaves occluded them. To overcome this
challenge, we scanned the plants by segmenting them into
three parts: third and fourth main leaves, fifth and sixth main
leaves, and the remaining parts. Each segment was carefully
mounted on a pedestal and secured using clip stands, enabling
scanning from 12 distinct angles. Consequently, we obtained
mesh models accurately representing the intricate 3D struc-
tures of plants without color and texture information.

VOLUME 12, 2024 185559
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FIGURE 2. 3D leaf and stem models of the sweet basil plant.

FIGURE 3. Vectors of the 3D plant parts.

The scanned mesh models included extraneous elements,
such as clip stands, and exhibited surface holes in areas
where the reflective light was not captured. Additionally, their
large file sizes increased both the storage and computational
complexity. Therefore, we employed MeshLab [30], a
3D processing software, to address these challenges. The
postprocessing began with the manual removal of unwanted
parts and filling of the surface holes. Subsequently, the file
sizes were reduced by simplifying the mesh using a 3D grid
with a cell size of 25 % to balance accuracy and resource
efficiency. The final step involved surface smoothing to
eliminate any remaining flaws. Figure 2 shows the 3Dmodels
of the leaves and stems of a sweet basil plant, illustrating
that even intricate details such as branches were distinctly
captured. Finally, we assembled these 3D models to generate
realistic 3D plant models.

1) GENERATION OF REALISTIC 3D PLANT MODELS
The proposed method automatically generates realistic 3D
plant models by assembling the 3D leaf and stem models
to match the branches. In this paper, we define ‘‘3D plant
parts’’ as 3D leaf and stem models with vectors representing
the branch orientation and both leaf sides. Figure 3 shows the
vectors of these 3D plant-part models. First, three coordinates
on the branch are selected through a user-friendly interface

using click functionality. These coordinates define the
vectors; however, smaller branches can cause displacement
errors. Therefore, the proposed method extends the specified
coordinates to N nearest points. The center of gravity of the
mesh formed using these points improves robustness against
displacement errors. Let pn(n = 1, 2, 3) denote the center of
gravity of the nearest points. p1 corresponds to the edge of
the branch and connection points and p2 and p3 are located
on either sides at the end of the branch. Vector v indicates the
branch orientation and is defined as follows:

v =
p2 + p3

2
− p1. (1)

We also defined the following normal vector representing
both leaf sides:

h = (p2 − p1) × (p3 − p1), (2)

where ‘‘×’’ denotes the cross-product operator.
The 3D plant parts are assembled to match the vectors at

their connection points. As they comprise different coordinate
axes, the proposed method adjusts them by using Rodriguez’s
rotation formula. Let the line and normal vectors of the
two 3D plant parts be vA,hA and vB,hB, respectively. The
rotation axis r and rotation angle θ of the normal vector are
obtained as

r =
hA × hB

|hA × hB|
, (3)

θ = arccos
(

hA · hB

|hA||hB|

)
, (4)

where|h| denotes the normal of h. Using r = [rx, ry, rz]T,
the rotation matrix for the normal vector Rh is defined as

Rh
= I + sin θ K + (1 − cos θ )K2, (5)

where I denotes an identity matrix and

K =

 0 −rz ry
rz 0 −rx

−ry rx 0

 . (6)

The rotation matrix for the line vectors Rv is also calculated
using the same method. Using these rotation matrices, the
rotation matrix R can be obtained as follows:

R = RhRv. (7)

Applying R to another matrix transforms it into the same
coordinate axis.
Figure 4 shows the original and realistic 3D plant models.

In the original 3D plant model, the stem on the underside of
the leaves could not be depicted because it did not irradiate
the structured light. By contrast, the realistic 3D plant model
exhibits the internal 3D structure. Additionally, replacements
with 3D plant parts can easily generate various 3D plant
models. Therefore, the proposed method rapidly develops a
database containing numerous realistic 3D plant models.
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FIGURE 4. 3D plant models: (a) Original and (b) realistic.

TABLE 1. Relationship between the number of images and capture
angles.

2) VISUAL SIMILARITY BETWEEN ACTUAL PLANTS AND
THEIR 3D MODELS
The proposed method searches for the realistic 3D plant
models that resemble the actual plants from the database.
We focused on the fact that the appearance of 3D plant
models is similar to that of the scanned plant. This section
uses CNN-based image recognition to examine the visual
similarity between the actual plants and their 3D models.

We captured actual plants using the web camera (UCAM-
C520FBBK; ELECOM), which was positioned 30 cm away
from the plant to ensure that it was in the center of the
frame. Additionally, blackout curtains were installed behind
the actual plant to ensure a consistent background. The plant
was rotated around its stem axis at 45Â◦ increments. The
‘‘front’’ of the plant (0Â◦) was determined as the position in
which the first leaves opened to the left and right. Table 1 lists
the capture angles of the N images used in this paper.
Similarly, images of the 3D plant model were captured

from the side while rotating around the stem at 45Â◦

increments. The rendering engine was configured to ensure
that the camera parameters produced images with consistent
quality from all viewpoints in the actual camera settings.
We also defined the front of the 3D model to be the same
as that of the actual plant. However, unlike actual plants, the
3D plant models do not contain color and texture information.
Hence, we employed grayscale images with a Gaussian filter
to eliminate the texture information.

We extracted the embedding vectors from the images
using three CNN-based image-recognition models: Visual
Geometry Group (VGG16) [31], residual neural network
(ResNet18) [32], and Inception-v3 [33]. The output of
the final convolutional layers of these models encapsulates
high-dimensional information about the image. We then

TABLE 2. Comparisons of the visual similarity between the actual plants
and 3D plant models of five sweet basil plants. The underlined values
indicate the maximum similarity for each plant.

concatenated their outputs, which were treated as embedding
vectors. Let fA and fM denote the embedding vectors of the
actual plant and its 3D model, respectively. We evaluate the
visual similarity S using the cosine similarity between the
embedding vectors as follows:

S =
fA · fM

||fA|| ||fM||
. (8)

The closer the value of S is to 1, the more visually similar the
actual plant and its 3D plant model, and vice versa.

Table 2 presents the visual similarity values of five
sweet basil plants with their 3D models. The overall
visual similarity values are below 0.87 because the camera
environments were not exactly similar, and the rotating axis
was not always ensured to be at the stem of the actual
plant. The diagonal components identified the highest values
for combinations that targeted the same plant. These results
indicate that 3D plant models resembling actual plants can
be selected by verifying their appearance from multiple
directions. The following section describes the development
of a vector-search system based on the visual similarity to
navigate candidate 3D plant models that closely resemble the
actual plants.

3) VECTOR-SEARCH SYSTEM BASED ON VISUAL SIMILARITY
We develop a vector-search system to navigate candidate
3D plant models based on visual similarity; however, it has
two problems. First, to represent the detailed 3D information
about the plant, a long embedding vector extracted from
multiangle images is required, leading to increased compu-
tational complexity and memory consumption. For example,
the dimensionality of the embedding vector extracted from
eight images using VGG16 reaches 32,768. Second, the
model-search time is proportional to the number of 3D plant
models; however, an extensive database contains 3D plant
models that more closely resemble actual plants. Therefore,
we employ dimensionality reduction for the embedding
vector and k-means clustering to limit the search scope.

Figure 5a shows a block diagram outlining the system-
construction process. Let Q represent the output length of
the image-recognition model. The proposed method extracts
outputs from N images of 3D plant models and then
combines them to create an embedding vector of length QN .
We construct matrix D ∈ RM×QN by concatenating these
embedding vectors with M candidate 3D plant models.
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FIGURE 5. Block diagram of the proposed vector-search system.
(a) System construction. (b) Model search.

The matrix functions as a database; however, its computa-
tional complexity and memory consumption increase with
size. These embedding vectors are sparse and include patterns
relevant to the plants. The proposed method employs SVD
and k-means clustering to reduce the matrix size.

SVD breaks down matrix D into three key matrices:
U, 6, and V. Let T denote the number of singular values.
Matrix U ∈ RM×T contains the left singular vectors
encapsulating the principal components of the rows. The
diagonal matrix 6 ∈ RT×T contains singular values that
quantify the importance of each principal component in U
and V. Meanwhile, the right singular matrix V ∈ RQN×T

comprises right singular vectors outlining the principal
components of the columns. D can be reconstructed using
D ≈ U6VT. In this paper, we approximate the matrix
D̂ = U6 to reduce the row dimensionality. By retaining
limited singular values, each row of D̂ corresponds to a
dimension-reduced embedding vector that concisely captured
the visual features of the plant.

We use the k-means clustering algorithm to narrow the
search scope by leveraging the dimension-reduced embed-
ding vectors. The algorithm randomly selects centroids by
sorting the data into C unique clusters. Each data point is
assigned to its closest centroid based on the cosine similarity
between the dimension-reduced embedding vectors, which
serve as a proximity measure. Subsequently, the centroids are
updated to reflect the average positions of all points within
their clusters. The cycle of assigning data points and updating
centroids continues until the centroids remain constant or a
predetermined number of iterations is reached.

Figure 5b presents a block diagram illustrating the search
process for identifying the most suitable 3D plant model
from the database. Initially, the proposed method extracts the
embedding vector d from multiangle images of the actual
plant. The dimension-reduced embedding vector is obtained

using d̂ = dV to reduce the computational complexity.
The proposed method compares it with the centroids of each
cluster by using cosine similarity to determine the best match.
Subsequently, the candidate 3D plant model with the highest
cosine similarity, which most closely resembles the actual
plant, is searched within the cluster by employing the cosine
similarity between the original embedding vectors.

IV. EXPERIMENTS AND DISCUSSION
A. EXPERIMENTAL CONDITIONS
In this paper, we extracted embedding vectors from images
using the VGG16 [31], ResNet18 [32], and Inception-V3 [33]
image-recognition models on Python 3.10. These models
were trained using ImageNet [34]. The input-image size for
VGG16 and ResNet18 was 224×224, and that for Inception-
V3 was 250×250. The output lengths of VGG16, ResNet18,
and Inception-V3 were Q = 4096, Q = 512, and Q = 2048,
respectively.

The proposed method targeted 4,096 realistic 3D plant
models assembled using 3D plant parts of 16 actual plants.
We evaluated the performance and computational complexity
by using Q = 10 actual plants whose 3D plant parts were not
captured. The search performance of the model was evaluated
using the mean reciprocal rank (MRR) and mean average
precision (mAP) metrics. MRR indicates the average of the
reciprocal ranks at which the first relevant item is found
across a series of queries and is calculated as follows:

MRR =
1
Q

Q∑
i=1

1
ri

, (9)

where ri denotes the highest rank of the relevant item in
the i-th query. The total number of search results was set to
L = 25. The five 3D plant model candidates were treated
as relevant items (correct models) in the experiment. The
models were ranked in the top five in terms of their visual
similarity to the 3D plant models of the actual plant scanned
without partwise disassembly. The closer the visual similarity
between the actual plant and any top-ranking correct model,
the closer theMRR is to one. Additionally, mAP indicates the
mean of the average precision (AP) across multiple queries.
AP is defined as the proportion of relevant items in the search
results and computed as follows:

AP =

∑L
l=1 P(l) · rel(l)

L
, (10)

where P(l) indicates the precision of the top l-th item in the
search results and rel(l) is a function that returns 1 when
the l-th item is relevant and 0 otherwise. As the proportion
of correct models in the search results increased, the mAP
approached 1. Regarding the computational complexity,
we measured the time required to construct the vector-search
system after extracting the embedding vectors from images
(CONST) and searching for candidate 3D plant models per
query (SEARCH). The vector-search system was designed
using MATLAB 2023b.
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TABLE 3. Performance evaluation of the vector-search system using
ResNet18 (RES), VGG16 (VGG), and Inception-v3 (INC) models. We set
C = 16 and N = 8.

We also evaluated the structural similarity to compare the
weights of the plants and the highest-ranking 3D plant models
in the search results. The fresh weights of the actual plants,
excluding the roots, were measured. In contrast, the weights
of the 3D plant models were calculated by adding the fresh
weights of each plant part. We used two metrics to assess the
errors: mean squared error (MSE) to measure the absolute
error andmean absolute percentage error (MAPE) to measure
the relative error. When the structure of a 3D plant model
is similar to that of an actual plant, the difference in their
weights should be slight, and the values of these metrics
should approach 0.

B. EXPERIMENTAL RESULTS AND DISCUSSION
Table 3 presents the performance evaluation results of the
vector-search systems employing the three image-recognition
models. All models achieved an MRR of 0.900, indicating
that correct models frequently appeared at the top of the
search results. Regarding the mAP, the ResNet18-based
approach consistently outperformed the other approaches
across all dimension-reduced embedding vector lengths.
This superior performance was attributed to the shortest
output lengths obtained from the final convolutional layer
of ResNet18, suggesting that it was less susceptible to
information loss during dimensionality reduction. However,
themAP did not exceed 0.46, indicating that the search results
did not include all correct models. Because all 3D plant
models represent specific plants, it is difficult to completely
distinguish the correct model from others based on visual
similarities.

Shorter dimensionality-reduced embedding vectors corre-
late with lower system construction times because the cal-
culation of the cosine similarity between dimension-reduced
embedding vectors accounts for most of the clustering
processes. However, this has a negligible effect on the
model-search times because the original embedding vectors
are used to search the models within the clusters. The
ResNet18-based approach achieved the lowest search times,
enabling image representation with shorter embedding vec-
tors, and is practical for searching 3D plant models based on
visual similarity.

The performance results of the vector-search system using
ResNet18 to extract the embedding vectors from the images
are presented in Table 4. The MRR and mAP decreased
as T decreased. Because dimensionality reduction reduces

the image information in embedding vectors, distinguishing
between the candidate 3D plant models becomes more diffi-
cult. The performance drop is mitigated for N = 4, 8 because
comprehensive information regarding the 3D structure of the
plant can be extracted frommultiple images. Furthermore, the
system-construction time was significantly reduced by over
90 % when comparing T = 4096 with T = 256, highlighting
the importance of reducing computational complexity via
dimensionality reduction of the database. The model-search
time remained relatively unaffected by T . Almost all the
computations were allocated to searching for models within
the cluster, wherein the calculation time was proportional
to the length of the original embedding vector. Thus, the
model-search performance and the system construction time
were a trade-off according to T .
An increase in N led to improvements in the MRR and

mAP. The images captured from the front (N = 1, 2) with
C = 16 exhibited an MRR of less than 0.25, whereas those
captured from eight directions (N = 8) exhibited an MRR
greater than 0.80. Thus, capturing images from various angles
is necessary to represent 3D structures using embedding
vectors effectively. However, increasing the number of
images resulted in longer embedding vectors, extending both
the system construction andmodel-search times. Thus,N also
offers a trade-off between computational complexity and
model-search performance.

An increase in C diminished the model-search perfor-
mance. The correct model could have been absent from
the selected cluster because there were fewer candidate
3D plant models per cluster. Despite using the images
captured from eight directions, the mAP decreased by
0.360 when comparing C = 32 with C = 4. Embedding
vectors must include information on 3D structures from
multiple perspectives beyond horizontal angles. An MRR
of 0.900 was achieved at C = 16, indicating that the
correct models were among the top search results within their
clusters. Therefore, the proposed method selected candidate
3D plant models within a cluster resembling actual plants.

Without employing dimensionality reduction (T = 4096),
the system construction time for C = 32 was approximately
1.5 times longer than that for C = 4. The k-means clustering
algorithm updates the centroids of each cluster to generate
clusters that better represent the data points within the dataset,
and the cluster quantity affects the system construction
time. Nevertheless, the impact of the cluster quantity on
the system construction time was reduced with T because
the process primarily involved cosine similarity calculations.
Additionally, the model-search time was reduced by over
85 % for C = 32 compared with C = 4 by searching with
embedding vectors derived from eight images. Therefore,
the search-scope limitation using the clustering approach
expedited the efficient search performance.

Figure 6 depicts the weight distributions of 3D plant
models and actual plants. The 3D plant model corresponds
to that in highest ranked search result of the vector-search
system. The weights of the 3D plant models did not
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TABLE 4. Performance evaluation of the vector-search system across three metrics. The embedding vectors were extracted from the images using
ResNet16. (a) MRR. (b) mAP. (c) CONST [s]. (d) SEARCH [s].

FIGURE 6. Weights of 3D plant models and actual plants. The 3D plant
model corresponds to that in highest ranked search result of the
vector-search system.

always align with those of actual plants. This discrepancy
was attributed to the images being captured solely from
horizontal angles, wherein the embedding vectors failed
to include the vertical structures. The proposed method
incorrectly categorized candidate 3D plant models that were
similar in shape but differed in size. Additionally, as we
obtained 3D plant parts from smaller plants in this paper,
mostly small candidates were automatically developed by
assembling them.

Table 5 presents the structural similarity results of the
3D plant models by comparing their weights with those

of actual plants. Although the VGG16-based approach
achieved the lowest root mean squared error (RMSE) of
0.915, the MAPE exceeded 21% across all approaches.
The deviation of the 3D structure from the actual plants
was independent of the image-recognition model employed.
However, the RMSE decreased below 0.77 for smaller
plants weighing less than 4.5 g. Because absolute errors
are vulnerable to outliers, smaller plants were considered
to have fewer divergences than larger ones. Thus, when
appropriately sized 3D plant parts are available, 3D plant
models with structures similar to those of actual plants can
be developed. To improve the performance further, it is
necessary to design embedding vectors that include size
information and create an extensive database using 3D plant
parts obtained from plants of various sizes. However, the
larger the length of the embedding vector and the higher
the number of 3D plant models, the greater the computa-
tional complexity of the vector-search system. Therefore,
the dimensionality reduction and clustering techniques
employed in this paper can effectively expand the proposed
method.

C. DISCUSSION
The experimental results highlight the effectiveness of the
proposed vector-search system in developing 3D plant
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TABLE 5. Structure similarities of 3D plant models by comparing weights
with actual plants across all plants (ALL) and those under 4.5 g (LOW).
The vector-search system employs the following settings: C = 16, N = 8,
and T = 256.

models that closely approximate actual plants. Achieving an
MRR of 0.90, the system reliably retrieves the most visually
similar models from the pre-constructed database containing
4,096 realistic 3D plant models. With a search time of just
0.003 seconds per query, it underscores its computational
efficiency, rendering it suitable for real-time applications.
Key to this performance was integrating dimensionality
reduction using SVD and k-means clustering to narrow search
scopes, enhancing scalability and leading to significant
computational savings, including a 90 % reduction in system
construction time and a 75 % decrease in query search time.

Photogrammetry produces 3D models by reconstructing
depth information from keypoint correspondences between
overlapping images taken from various angles but demands
increased computational resources and specialized equip-
ment. For example, Paturkar et al.’s photogrammetry
method [19] requires at least 17 minutes of post-processing
per plant. Similarly, Feldmann et al. devised a method for
measuring the 3D shape of fruits at low cost and high
speed [21], but it requires meticulous calibration using
specialized equipment and is unsuitable for 3D plant models
with complex structures. In contrast, our method, which
simplifies the modeling process by focusing on semantic
features captured from a limited number of viewpoints,
demonstrates that capturing images from just eight horizontal
directions is sufficient to encapsulate the essential structural
features of plants. Even a limited number of images can
effectively facilitate structurally similar 3D plant models
without requiring extensive computational resources or spe-
cialized equipment. This efficiency level aligns well with the
demands of modern precision agriculture and environmental
monitoring for commercial plant cultivation, where fast and
reliable data processing is critical.

While the proposed vector-search system demonstrates
significant promise in generating 3D plant models that
closely resemble actual plants, there are inherent limitations
to our current approach. A fundamental limitation lies in
its reliance on images captured from horizontal viewpoints,
which may overlook critical vertical and oblique structural
details. This reliance introduces the potential for misidenti-
fication of 3D plant models that are structurally similar in
horizontal aspects but differ in scale or vertical structure.
Additionally, our method has only been validated on sweet
basil plants with relatively simple and uniform structures.
Since other plant species exhibit a wide variety of growth
patterns and morphological complexities, the generalizability
of our approach remains to be thoroughly evaluated.

Future work will enhance the embedding features by
capturing images from multiple perspectives, including
vertical and oblique angles. By incorporating positional
information rather than merely combining their embedding
vectors, we aim to represent the 3D structure of plants more
effectively. This multi-view approach is expected to capture
a more comprehensive set of semantic features, thereby
improving the accuracy of structural similarity assessments
and reducing the potential for misidentification. Additionally,
we plan to build an expanded database that includes plants
other than sweet basils. By handling plants at different growth
stages, we can facilitate the development of 3D plant models
across different scales and complexities. These improvements
will enable a more precise 3D plant modeling system to
handle diverse plant species and structures.

V. CONCLUSION
This paper proposed an efficient vector-search system that
obtains models closely resembling actual plants based on
visual similarity among 4,096 realistic 3D plant models.
The experimental results showed that the top search results
contained the correct models with an MRR of 0.90.
Additionally, the system construction time was reduced
by more than 80 % via dimensionality reduction, and
the model-search time per query was decreased by 75 %
using k-means clustering. Experiments on weight distribution
confirmed that the proposed method could develop 3D
plant models structurally similar to actual plants when
appropriately sized 3D plant parts are available. In the
future, we plan to design embedding vectors that can better
distinguish 3D plant models by capturing images from
angles other than the horizontal direction. Another future
research direction is to develop an extensive database of
3D plant parts to represent the 3D structures of larger
plants.
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